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BOUNDS FOR THE SMALLEST NORM IN AN IDEAL CLASS

ANA-CECILIA DE LA MAZA

Abstract. We develop a method for obtaining upper bounds for the smallest
norm among all norms of integral ideals in an ideal class. Applying this to
number fields of small degree, we are able to substantially improve on the best
previously known bounds.

1. Introduction

Let K be a number field with [K : Q] = r1 + 2r2, where K has r1 real embed-
dings and 2r2 complex embeddings. Minkowski proved that there exists a constant
C(r1, r2), which depends only on r1 and r2, such that for any ideal class C of K,
there exists an integral ideal aC ∈ C satisfying N(aC) ≤ (C(r1, r2))−1

√
|dK |. Here

N denotes the absolute norm and dK is the discriminant of the field K.
By results of C. A. Rogers [R] and H. P. Mulholland [M], one has that for [K : Q]

large

N(aC) ≤
(

(32.5)
r1
2 (15.7)r2

)−1√
|dK |.

The best bound so far for the constant C(r1, r2) was given by Zimmert [Zi] in 1981,
who found that

N(aC) ≤ ((50.7)
r1
2 (19.9)r2)−1

√
|dK |

(for [K : Q] large). He also obtained the best known bounds when the degree of K
is small.

Before Zimmert, the bound was always obtained using methods from the geom-
etry of numbers [N, p. 129]. The paper [Zi] in contrast introduces a new analytic
method for deriving the bound. We will modify this method to obtain, for fields
of small degree, a bound which improves on Zimmert’s. In Table 1 at the end of
the introduction we give both Zimmert’s bound and the new bound found for each
case.

The main technique for obtaining the new bounds is contained in Theorem 1
and its corollary below. To formulate the result, we need some definitions.
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For parameters r1, r2 and γ > 0, let the functions P (s) and T (s) be defined as
follows:

P (s) =
Γr1,r2(s)

Γr1,r2(s+ 2γ + 1)
,(1)

T (s) =
Γr1,r2(1− s)

Γr1,r2(s+ 2γ + 1)
,(2)

where Γr1,r2 is given by

Γr1,r2(s) = Γ
(s

2

)r1+r2
Γ
(
s+ 1

2

)r2
(3)

(and Γ(·) denotes the gamma function). For given values r1, r2, and parameter
γ (> 0), a rational function Rγ(s) is called an admissible rational function if it can
be written as

Rγ(s) =
(

1 +
1 + 2γ
s

)−r1−r2 (
1 +

1 + 2γ
s+ 1

)−r2 l∑
i=0

ei

ni∏
j=0

(s+ aij)−1,(4)

where l ≥ 0 and all ei ≥ 0, aij ≥ 0 and ni > 0. To an admissible rational function
Rγ we associate a weight function Fγ(y) : R→ R, via the contour integral

Fγ(y) =
1

2πi

∫ −δ1+i∞

−δ1−i∞
(ey)1−sT (s)Rγ(s)ds,(5)

where T (s) is as in (2) (with the same γ) and δ1 > 0 such that Rγ(s) has no pole
in the strip −δ1 ≤ Re s ≤ 0.

The partial zeta function of an ideal class C is defined as

ζC(s) =
∑
a∈C

(N(a))−s,

where the sum runs over all the integral ideals in C. It can be alternatively written
as

ζC(s) =
∞∑

m=N(aC)

amm
−s,(6)

where aC is an integral ideal in C with minimal norm and am denotes the number
of integral ideals in C with norm equal to m.

Theorem 1. Let C be an ideal class for a field K, where K has r1 real embeddings
and 2r2 complex embeddings. Then for any parameter γ and any weight function
Fγ , we have that

B

∞∑
m=N(aC)

amFγ

(
y − log

(
m

N(aC)

))
≥ t0ey −

√
dK

N(aC)
for y ∈ R,

where am is as in (6), and B, t0 are positive numbers given by

B =
√
πn

κRγ(1)P (1)N(aC)
and t0 =

Rγ(0)T (0)
Rγ(1)P (1)

√
πn,

with n = [K : Q].

The next result is an immediate consequence.
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Table 1.

n r1 r2 Z0(r1, r2) Z(r1, r2) minimal value for√
|d| known

2 2 0 1.760 2.137 2.236
2 0 1 1.400 1.651 1.732
3 3 0 4.636 6.235 7.0
3 1 1 3.355 4.340 4.795
4 4 0 14.45 21.21 26.92
4 2 1 9.749 13.76 16.58
4 0 2 6.792 9.250 10.81
5 5 0 50.21 79.19 121.0
5 3 1 32.12 49.57 67.16
5 1 2 21.11 31.02 40.11
6 6 0 188.1 315.0 547.8
6 0 3 46.74 70.98 98.72
8 8 0 3088 5644 16801
8 0 4 385.5 635.5 1121

10 10 0 58540 121120 716099
10 0 5 3560 6443 14464

Corollary. Suppose that for a given weight function Fγ there exists a y1 ∈ R such
that

Fγ(y) ≤ 0 for −∞ < y ≤ y1.(7)

Then

N(aC) ≤ (t0ey1)−1
√
|dK |.

Thus to obtain a bound for the smallest norm of an ideal using the above corol-
lary, we need to find a suitable y1. Unfortunately, very little is known in general
about a weight function Fγ as in Theorem 1. Analyzing Zimmert’s technique, we
are able to show that indeed y1 exists. However, to obtain new bounds we need a
far larger value of y1 than the one given by Zimmert’s proof. To do this we must
numerically calculate Fγ(y) (see Theorem 2 below) and also develop an algorithm
to ensure that for all y ≤ y1 we have Fγ(y) ≤ 0.

In Table 1, we give Zimmert’s lower bound
√
|dK |/N(aC) ≥ Z0(r1, r2) and our

new lower bound Z(r1, r2). In the last column we give the smallest
√
|dK | known

for K with the given signature (r1, r2) [O, p. 133]. Taking C to be the trivial class,
for which N(aC) = 1, we see that no general lower bound for

√
|dK |/N(aC) could

exceed the last column.
The numerical approximation of Fγ(y) is based on the following theorem.

Theorem 2. The function Fγ(y) admits an expansion of the form

Fγ(y) =
m∑
j=1

(ey)1−jPj(y) + ε(m, y) (m ≥ 1).
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Here the error term is given by

ε(m, y) =
1

2πi

∫ m+ 1
2 +i∞

m+ 1
2−i∞

(ey)1−s
Rγ(s)T (s)ds,

which tends to zero as m → ∞ and Pj(y) is a polynomial in y of degree at most
r1 + r2.

In fact, the above result allows us to quickly calculate Fγ(y) numerically for
any given y, since |ε(m, y)| can be bounded explicitly (see Proposition 3) and the
polynomials Pj can be determined recursively. Specifically, if Pj(y) =

∑tj
k=0 ak,jy

k,
then the coefficients of Pj+1(y) can be found by a recursion of the form ak,j+1 =
f(a0,j, · · · , atj,j). The exact form of the function f is obtained with the help of a
formula analogous to the gamma function formula xΓ(x) = Γ(x + 1) (see Section
3).

It seems to be difficult to prove that a given point y1 satisfies the condition (7),
i.e., Fγ(y) < 0 for all −∞ < y ≤ y1. We need to work carefully with numerical
estimates. We used PARI [C] to calculate Fγ(y) numerically and then to obtain
a bound y1. To assure their reliability, we have done an independent check of
the numerical computation of the function Fγ(s) based on a numerical integration
through Simpson’s rule with a variable cut off. Both numerical methods coincided
in at least twice as many digits as those displayed in Table 2 (i.e., they coincided
at least in 10 significant digits.)

The paper is organized as follows. In Section 2 we present the basic idea of
Zimmert’s method, the proof of Theorem 1 and we obtain a point y0 that satisfies
the inequalities of the corollary. In Section 3 we give the proof of Theorem 2 and
different expressions for T (s) that permit computing the polynomials Pj . Finally,
in Section 4 we give an algorithm to find a largest possible point y1 satisfying the
inequalities of the corollary.

2. Zimmert’s method

Zimmert’s method uses the functional equation of the zeta function of an ideal
class. We present his method, slightly reformulated.

Lemma 1 (Zimmert). Let Rγ be an admissible rational function as in (4). Let
f(s) be a Dirichlet series with nonnegative coefficients, convergent in the half-plane
Re(s) > 1. Then for any x > 0 and τ > 1,

1
2πi

∫ τ+i∞

τ−i∞
xsRγ(s)P (s)f(s)ds ≥ 0,(8)

where P (s) is as in (1) (with the same parameter γ).

Proof. Zimmert [Zi, p. 369] proved this for a certain Rγ(s), but his proof is actually
valid for all admissible rational functions, as was pointed out by E. Friedman [F1,
p. 618].

Given an ideal class C of K, denote by C′ = ∂KC−1 the conjugate class of C,
where ∂K is the ideal class of the different of K. We can write the functional
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equation of ζC(s) as ∆(s, C′) = ∆(1− s, C), where

∆(s, C) =

(√
|dK |
πn

)s
Γr1,r2(s) ζC(s),

with n = [K : Q] and Γr1,r2(s) as in (3).

Theorem 1. Let C be an ideal class for a field K, where K has r1 real embeddings
and 2r2 complex embeddings. Then for any parameter γ and any weight function
Fγ , we have that

B
∞∑

m=N(aC)

amFγ

(
y − log

(
m

N(aC)

))
≥ t0ey −

√
dK

N(aC)
for y ∈ R,

where am is as in (6), and B, t0 are positive numbers given by

B =
√
πn

κRγ(1)P (1)N(aC)
and t0 =

Rγ(0)T (0)
Rγ(1)P (1)

√
πn,

with n = [K : Q], P, T, and Rγ are as in (1), (2) and (4) .

Proof. In Lemma 1 take f(s) = ζC′(s), any x > 0 and τ > 1. By the functional
equation, a convexity theorem [L, p. 266] and the asymptotic formula |Γ(σ+ it)| ∼
e−

π
2 |t||t|σ− 1

2 (uniformly for real σ in an interval and real t with |t| � 0 [G-R, p.
945]), we can shift the line of integration in (8), from Re s = τ to Re s = −δ1.
Thus we pick up the residue at s = 0 and s = 1 corresponding to the (simple) poles
of ∆(s, C). By using the functional equation for the gamma function we get:

0 ≤ Rγ(1)P (1)−ARγ(0)T (0)

+
x

Aκ2πi

∫ −δ1+i∞

−δ1−i∞

(
A2

x

)1−s
Rγ(s)T (s)ζC(1− s)ds,(9)

where κ = 2r1+r2πr2RK
wK
√
dK

, A =
√
|dK|
πn , RK is the regulator of K, and wK is the

number of roots of unity in K. Hence

ARγ(0)T (0)
xRγ(1)P (1)

− 1 ≤

1
κARγ(1)P (1)

∞∑
m=N(aC)

am
1

2πi

∫ −δ1+i∞

−δ1−i∞

(
A2

xm

)1−s
Rγ(s)T (s)ds.(10)

Let

t0 =
Rγ(0)T (0)
Rγ(1)P (1)

√
π
n =

Rγ(0)
Rγ(1)

(
Γ(1 + γ)
Γ(1

2 + γ)

)r1 (1
2

+ γ

)r2 √
π
n
,(11)

and choose x so that y = log( A2

xN(aC) ). We can rewrite (10) as

t0e
y −

√
|dK |

N(aC)
≤

√
πn

κ Rγ(1)P (1)N(aC)

∞∑
m=N(aC)

amF

(
y − log

(
m

N(aC)

))
.

We note that hypothesis (4) on Rγ(s) implies that Rγ(t) > 0 for t > 0. Hence, t0
as in (11) is positive and letting B =

√
πn

κRγ(1)P (1)N(aC) > 0, we are done.
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Zimmert used the admissible rational function Rγ(s) = (s+α)
(s+β) (s+2γ−β) (s+2γ−α) ,

with 0 ≤ α < β < γ. By estimating the integral in (9) and taking the limit β → γ,
he obtained the bound

Z0(r1, r2) ≤
√
|dk|

N(aC)
, where Z0(r1, r2) = t0e

Y (r1,r2,γ),

Y (r1, r2, γ) = −r1
Γ′

Γ

(
1 + γ

2

)
− 2r2

(
Γ′

Γ
(1 + γ)− log(2)

)
− 2
γ − α,

and t0 as in (11). For each signature (r1, r2), Zimmert chose appropiate γ and α
in order to obtain his bound [Zi, p. 368]. By modifiyng the admisible rational
function Rγ(s), we will now improve the bound of Zimmert.

Proposition 1. For all s ∈ C with Re s ≥ −γ and Re s 6= 1, 2, 3, · · · , the function
T (s) introduced in (2) satisfies the inequality

|T (s)| ≤ |T (Re s)|.(12)

Proof. Setting

G(s, γ) =
Γ(s)

Γ(1 + γ − s) ,(13)

we can write T (s) in the following way:

T (s) = G

(
1− s

2
, γ

)r1+r2

G

(
1
2

+
1− s

2
, 1 + γ

)r2
.(14)

We claim now:
(∗) For all γ > 0 and s ∈ C with Re s ≤ 1+γ

2 and Re s 6= 0,−1,−2 · · · , we
have |G(s, γ)| ≤ |G(Re s, γ)|.

For s = σ + it, with σ and t real, and σ 6= 0,−1,−2, · · · , we have [G-R, 8.326]∣∣∣∣Γ(σ + it)
Γ(σ)

∣∣∣∣2 =
∞∏
n=0

(
1 +

(
t

σ + n

)2
)−1

.

Hence∣∣∣∣G(σ + it, γ)
G(σ, γ)

∣∣∣∣2 =

∏∞
n=0

(
1 +

(
t

1+γ−σ+n

)2
)

∏∞
n=0

(
1 +

(
t

σ+n

)2
) ≤ 1, for σ ≤ 1 + γ

2
.

This proves the claim. Using the claim (∗) and (14) we obtain the proposition.

Using an analogous method to Zimmert’s, we obtain in the next lemma a point
y0 = y0(δ2) satisfying (7). This value of y0 is in general a bad bound for the minimal
norm of ideals, but we use it as a starting point in the algorithm to obtain better
bounds (cf. Section 4).

Lemma 2. Let Rγ(s) be an admissible rational function and let δ2 be such that δ2 ≤
γ and the function Rγ(s) has the unique simple pole −β in the strip −δ2 ≤ Re s ≤ 0.
Suppose furthermore that the residue ρ = Ress=−β(Rγ(s)T (s)) is negative. Let
y0 = y0(δ2) be defined by

y0 =
1

δ2 − β

(
log
(
− ρ

)
− log

(
|T (−δ2)|

2π

∫ −δ2+i∞

−δ2−i∞
|Rγ(s)ds|

))
.(15)
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Then the weight function Fγ(y) specified by Rγ(s) satisfies Fγ(y) < 0 for all y in
the interval −∞ < y ≤ y0.

Proof. We shift the line of integration in (5) (the integral that defines Fγ(y)) from
Re s = −δ1 to Re s = −δ2. Then

Fγ(y) = (ey)1+β ρ+
1

2πi

∫ −δ2+i∞

−δ2−i∞
(ey)1−s

Rγ(s)T (s)ds.

Using δ2 ≤ γ in Proposition 1, we have Fγ(y) ≤ 0 if y ≤ y0.

The following proposition provides an explicit admissible rational function sat-
isfying the conditions of Lemma 2 together with a bound for y0 (15).

Proposition 2. The rational function Rγ(s) given by

Rγ(s) =
(s+ α)

(s+ β)(s+ α1)(s+ α2)
,

with

0 ≤ α < β < γ < α1 ≤ α2,(16)

is an admissible rational function. Furthermore, let δ2 be such that γ ≥ δ2 ≥ β.
The point y0(δ2) given in Lemma 2 satisfies

y0 ≥
1

δ2 − β
log
(

(β − α)T (−β)
(α1 − β)(α2 − β)

)
− log

(
(δ2 − α)|T (−δ2)|

2(δ2 − β)(α1 − δ2)

)
.(17)

Proof. First, note that

(s+ α)
(s+ β)(s + α1)

(
1 +

1 + 2γ
s

)
=
(

1 +
α

s

)(
1 +

1 + 2γ − β
s+ β

)(
1

s+ α1

)
.

Hence by (16), Rγ(s) is of the form (4), i.e., Rγ(s) is an admissible rational function;
furthermore, by this inequalities we obtain that Ress=−β(Rγ(s)T (s)) is negative.
By the condition on δ2, Rγ(s) has a unique pole −β in the strip −δ2 ≤ Re s ≤ 0;
furthermore we see that | s+αs+β | in s = −δ2 + it has a maximum at t = 0.

Hence, one has∫ −δ2+i∞

−δ2−i∞
|Rγ(s)ds| ≤

∫ ∞
−∞

δ2 − α
(δ2 − β)((α1 − δ2)2 + t2)

dt ≤ (δ2 − α)π
(δ2 − β)(α1 − δ2)

(using also the condition δ2 ≤ α1 ≤ α2).

3. An approximation of Fγ

We will now give an approximation of the weight function Fγ (γ > 0), which is
given by

Fγ(y) =
1

2πi

∫ −δ1+i∞

−δ1−i∞
(ey)1−sRγ(s)T (s)ds,

where

T (s) =

(
Γ
(

1−s
2

)
Γ
(
s+1

2 + γ
))r1+r2 (

Γ
(

2−s
2

)
Γ
(
s
2 + 1 + γ

))r2 ,
andRγ is an admissible rational function without poles in the strip−δ1 < Re s ≤ 0.
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Theorem 2. The function Fγ(y) admits an expansion of the form

Fγ(y) =
m∑
j=1

(ey)1−jPj(y) + ε(m, y) (m ≥ 1).(18)

Here the error term is given by

ε(m, y) =
1

2πi

∫ m+ 1
2 +i∞

m+ 1
2−i∞

(ey)1−s
Rγ(s)T (s)ds,(19)

which tends to zero as m→∞, and

Pj(y) =
tj−1∑
k=0

(
1
k!

tj−1∑
i=0

ci,j d−(i+k+1),j

)
yk,(20)

with tj = r1 + r2 for j odd and tj = r2 for j even, and with ck,j and dk,j given by
the Laurent expansions of Rγ(s) and T (s) near s = j:

Rγ(s) =
∞∑
k=0

ck,j (s− j)k and T (s) =
∞∑

k=−tj

dk,j (s− j)k.

Proof. The function (ey)1−s
Rγ(s) is analytic in the half-plane Re s ≥ −δ1 and

T (s) has poles of order r1 + r2 at s = 1, 3, 5, · · · and of order r2 at s = 2, 4, 6, · · · .
Hence, if we shift the line of integration in (5) (the integral that defines Fγ(y))
from Re(s) = −δ1 to Re(s) = m + 1

2 , we pick up the residues at these poles.
Given a pole at s = j of order tj , we have (ey)1−s

Rγ(s) = (ey)1−j+(j−s)
Rγ(s) =

(ey)1−j∑∞
k=0 ek,j(y)(s− j)k with ek,j(y) =

∑k
i=0

(−1)ick−i,j
i! yi. Hence

Ress=j
(

(ey)1−s
Rγ(s)T (s)

)
= (ey)1−j

tj−1∑
k=0

ek,j(y) d−k−1,j .

Inserting the explicit expressions of the ek,j in this equalities and collecting powers
of y, we are led to the polynomials Pj(y).

The fact that the error term |ε(m, y)| tends to 0 as m → ∞ is an immediate
consequence of Proposition 3 below.

Proposition 3. a) For m ∈ N and y ∈ R, we have

|ε(m, y)| ≤ (ey)
1
2−m |T (m+ 1

2 )|
2π

∫ m+ 1
2 +i∞

m+ 1
2−i∞

|Rγ(s)|ds.

b) If we take Rγ(s) = (s+α)
(s+β)(s+α1)(s+α2) with 0 ≤ α < β < γ < α1 ≤ α2, we

have

|ε(m, y)| ≤ (ey)
1
2−m

|T (m+ 1
2 )|

2(α1 +m+ 1
2 )
.

c) For each m ∈ N, we have∣∣∣∣T (m+
1
2

)∣∣∣∣ =
(
√

2π)a+b(
Γ(m2 + 3

4 )Γ(m2 + 3
4 + γ)

)a (Γ(m2 + 1 + 1
4 )Γ(m2 + 1

4 + γ)
)b ,

where a = r1 + r2 and b = r2.
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Proof. a) Follows from inequality for T (s) in (12) and the expression for ε(m, y)
in (19).

b) When

Rγ(s) =
(s+ α)

(s+ β)(s+ α1)(s+ α2)
,

we construct the bound ∫ m+ 1
2 +i∞

m+ 1
2−i∞

|Rγ(s)|ds

just as in the proof of Proposition 2, upon bounding | s+αs+β | at s = (m+ 1
2 )+ it

by 1. Hence, one has∫ m+ 1
2 +i∞

m+ 1
2−i∞

|Rγ(s)ds| ≤ π

α1 +m+ 1
2

.

c) Using the definition of T (s) and the reflection-relation Γ(1 − z)Γ(z) = π
sinπz

to rewrite the numerators, we see that

∣∣∣∣T(m+
1
2

)∣∣∣∣ =

∣∣∣∣∣ Γ(1−(m+ 1
2 )

2 )
Γ(m2 + 3

4 + γ)

∣∣∣∣∣
a ∣∣∣∣ Γ(1 − (m2 + 1

4 ))
Γ(1 + m

2 + 1
4 + γ)

∣∣∣∣b

=

( √
2π

Γ(m2 + 3
4 )Γ(m2 + 3

4 + γ)

)a( √
2π

Γ(m2 + 1
4 )Γ(m2 + 1 + 1

4 + γ)

)b
.

Notice that it is immediate from the proposition that |T (m+ 1
2 )|, and hence the

error term ε(m, y) tends to zero rapidly as m→∞.
Let us now demonstrate that the coefficients ck,j and dk,j appearing in the

polynomial Pj (see (20)) can be found recursively (in the variable j). The proof
uses several steps and culminates in a method for computing Pj given at the end
of this section.

The following proposition lies at the basis of the recursive computation of the
coefficients ck,j .

Proposition 4. Let Rγ(s) be an admissible rational function with −a1, · · · ,−ar
and −b1, · · · ,−bt the zeros and poles (i.e., Rγ(s) = α (s+a1)···(s+ar)

(s+b1)···(s+bt) ).
a) Then we have that

Rγ(s) =
α

b1 · · · bt
(s+ a1) · · · (s+ ar)

t∏
i=1

( ∞∑
k=0

(−1)k

bki
sk

)
.

b) If Rγ(s) =
∑∞

k=0 ck,j(a1, · · · , as, b1, · · · , bt)(s−j)k for s near j (j = 0, 1, 2 · · · ),
then the expansion coefficients ck,j satisfy the recurrence relation

ck,j+1(a1, · · · , as, b1, · · · , bt) = ck,j(a1 + 1, · · · , ar + 1, b1 + 1, · · · , bt + 1).

Proof. We get the expansion formula of part a) upon expanding the factors of
the denominator by means of the geometric series 1

s+b = 1
b

∑∞
k=0

(−1)k

(b)k (s)k. The
recurrence relation for the coefficients ck,j of part b) is then obtained by writing
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s+a as a+j+(s−j) in the numerator and s+b as b+j+(s−j) in the denominator
and invoking of the geometric series.

Let us recall that (cf. eqs. (13), (14))

T (s) = G

(
1− s

2
, γ

)r1+r2

G

(
1
2

+
1− s

2
, 1 + γ

)r2
,

with

G(s, γ) =
Γ(s)

Γ(1 + γ − s) .

To find the recurrence relations for the expansion coefficients dk,j of the Laurent
series of T (s) around s = j, we will employ functional equations for G(s, γ) anal-
ogous to the difference equation sΓ(s) = Γ(s+ 1) and duplication formula for the
gamma function.

Lemma 3. a) G(s+ 1, γ) = (γ − s)sG(s, γ).
b) G(s, γ) G

(
1
2 + s, γ

)
= 21+2γ−4sG(2s, 2γ) = 21+2γ−4s

4(γ−s)s G
(
2
(
s+ 1

2

)
, 2γ
)
.

Proof. These formulas readily follow from the difference equation Γ(s+ 1) = sΓ(s)
and the duplication formula 22s−1Γ(s)Γ(1

2 + s) =
√
πΓ(2s) [G-R, p. 946].

The next lemma (together with Proposition 5 below) is a key step for obtaining
the recurrence for dk,j in terms of dk,j−2.

Lemma 4. We have that

T (s) = 22(1+γ−2w)b G(w, γ)a−b G(2w, 2γ)b

(1 + 2γ − 2w)b
, w =

1− s
2

,(21)

and

T (s) =
2(1+2γ−4w)a G(w, γ)b−aG(2w, 2γ)a(
(1

2 + γ − w)(w − 1
2 )
)a(1 + γ − w

)b , w = 1− s

2
,(22)

where a = r1 + r2 and b = r2.

Proof. By (14) and using Γ(1 + x) = xΓ(x) in (13) (with s = 1
2 + γ − w), we have

T (s) = 2b
G(w, γ)a G(1

2 + w, γ)b

(1 + 2γ − 2w)b
.

Using b) above, we have the lemma.

The following proposition encodes a recurrence for the coefficients of the Laurent
series of G(s, γ) (and G(2s, 2γ)) near near s = −j − 1 in terms of the coefficients
near s = −j.

Proposition 5. a) If γ > 0 and G(s, γ) =
∑∞

k=−1 ak(s + j)k for s near −j
(j = 0, 1, 2 · · · ), then near s = −(j + 1)

G(s, γ) = −
∑∞
k=0

(
s+j+1
j+1

)k∑∞
k=0

(
s+j+1
γ+j+1

)k
(j + 1)(γ + j + 1)

∞∑
k=−1

ak(s+ j + 1)k.
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b) If γ > 0 and G(2s, 2γ) =
∑∞

k=−1 bk(s+ j)k near s = −j, then near
s = −(j + 1)

G(2s, 2γ) =

∑∞
k=0

(
s+j+1
j+1

)k
·
∑∞

k=0

(
2(s+j+1)

2j+1

)k
·
∑∞
k=0

(
s+j+1
γ+j+1

)k
2(j + 1)(2j + 1)2(γ + j + 1)

·
∑∞

k=0

(
2(s+j+1)
2γ+2j+1

)k
(2γ + 2j + 1)

∞∑
k=−1

bk(s+ j + 1)k.

Proof. a) For each j ≥ 0, we only need to rewrite a) in Lemma 3 as

G(s, γ) =
−G(s+ 1, γ)

(γ + j + 1− (s+ j + 1))(1 + j − (s+ j + 1))
.

We note that when s is near −(j + 1), then s + 1 is near −j. Hence we obtain a)
by using the geometric series.

To prove b), we write part b) of Lemma 3 as

G(2s, 2γ) =
G(2(s+ 1), 2γ)

(2γ − 2s) 2s (2γ − (2s+ 1)) (2s− 1)
,

replace −2s by 2(j + 1)− 2(s+ j + 1), and proceed as in the proof of a).

The explicit form of the recurrence relations for the coefficients dk,j is rather
complicated and will be omitted here (as we do not need it). For our purposes it
suffices to combine the above results into an effective method for computing the
coefficients of the polynomials Pj quickly by means of a computer. We will now
describe this method.

Method for computing the polynomials Pj . We compute the polynomials
Pj(y) =

∑tj−1
k=0 ak,jy

k recursively. Let us recall that

ak,j =
1
k!

tj−1∑
i=0

ci,jd−(i+k+1),j ,

where ck,j and dk,j are the coefficients of the Laurent expansions of Rγ(s) and T (s)
around s = j:

Rγ(s) =
∞∑
k=0

ck,j (s− j)k, T (s) =
∞∑

k=−tj

dk,j (s− j)k.

The coefficients ck,j are determined from Proposition 4. First part a) of the
proposition is used to compute ck,0, and next one uses the recursion of part b) to
obtain ck,j for j > 0.

The coefficients dk,j are determined from Lemma 4 and Proposition 5. For j
odd we use formula (21) for T (s) and for j even we use formula (22). Expanding
G(w, γ) and G(2w, 2γ) (with w = (1 − s)/2 and w = 1 − s/2 respectively) by
means of Proposition 5 yields a recurrence relation for dk,j in terms of dk,j−2. To
start the recursion we must compute dk,j for j = 1 and j = 0. To this end we
expand formula (21) around s = 1 and formula (22) around s = 0, respectively.
This involves the expansion of exponential factors and geometric series, and the
expansion of the gamma factors G(w, γ) and G(2w, 2γ) (with w = (1 − s)/2 and
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w = 1−s/2, respectively). The latter expansions depends on the standard Laurent
series [G-R, p. 944] (for |w| < 1)

Γ(w) =
1
w

Γ(w + 1) =
∞∑
n=0

cnw
n−1,(23)

with cn+1 = (n+ 1)−1
∑n

k=0(−1)k+1sk+1cn−k, c0 = 1, and

1
Γ(w)

=
w

Γ(w + 1)
=
∞∑
n=0

dnw
n+1,(24)

with dn+1 = (n+ 1)−1
∑n

k=0(−1)ksk+1dn−k, d0 = 1, where s1 = C = 0, 577215 . . .
denotes Euler’s constant and sn = ζ(n) for n > 1. (Here ζ(·) refers to the Riemann
zeta function.) Indeed, the gamma factors of the numerator and denominator are
expanded by means of (23) and (24), respectively, after translating the arguments
of the gamma functions to a neighborhood of the origin by means of the functional
equation Γ(w + 1) = wΓ(w).

4. The algorithm

In this section, we will describe the algorithm to approximate (from below) the
largest point y∗ satisfying property (7):

Fγ(y) ≤ 0 for −∞ < y ≤ y∗.
We implemented this algorithm using PARI [C]. From (the lower estimate of)
y∗ we then get a bound on the Minkowski constant via the corollary of Theorem 1
stated in the introduction.

The following proposition describes a procedure to augment lower estimates of
y∗ (thus improving the bound).

Proposition 6. Let ε(m, y) be given by (19) and let ε > 0. Suppose that |ε(m, y)| ≤
ε for all y in an interval [x1, x2]. Furthermore, let a1 ∈ [x1, x2] be such that there
exists a δ = δ(a1) > 0 satisfying [a1, a1 + δ] ⊆ [x1, x2] and

δcM +
∑
j∈A

gj(a1 + δ) +
∑

j∈B∪C
gj(a1) ≤ −ε.(25)

Here gj(y) := ey(1−j)Pj(y) for 1 ≤ j ≤ m with Pj given by (20),

A = {1 ≤ j ≤ m| gj is increasing on [x1, x2]},
B = {1 ≤ j ≤ m| gj is decreasing on [x1, x2]},
C = {1 ≤ j ≤ m| gj is not monotone on [x1, x2]},

c = card(C), and for each j ∈ C we have that |g′j(y)| < M for x1 ≤ y ≤ x2.

Then all y ∈ [a1, a1 + δ] satisfy property (7), provided a1 satisfies property (7).

Proof. Note that by (18), we have that Fγ(y) =
∑m
j=1 gj(y) + ε(m, y). Moreover,

if y ∈ [a1, a1 + δ], we have by the mean value theorem and the definition of A, B
and C and (25) that

Fγ(y) ≤
∑
j∈A

gj(a1 + δ) +
∑
j∈B

gj(a1) +
∑
j∈C

gj(y) + ε(m, y)

≤
∑
j∈A

gj(a1 + δ) +
∑

j∈B∪C
gj(a1) + δcM + ε(m, y) ≤ 0.
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Table 2.

n r1 r2 γ z0 = t0e
y0 upper bound m new bound

for Fγ(y0) Z(r1, r2)

2 2 0 2.48 0.2036 −5.9027 · 10−7 30 2.1379
2 0 1 3.09 0.1500 −4.7945 · 10−9 40 1.6518
3 3 0 1.63 0.6069 −7.0926 · 10−5 12 6.2350
3 1 1 1.92 0.4199 −4.327 · 10−6 16 4.3407
4 4 0 1.25 2.0029 −1.781 · 10−3 8 21.219
4 2 1 1.41 1.3195 −1.651 · 10−4 9 13.768
4 0 2 1.61 0.8911 −1.146 · 10−5 11 9.2504
5 5 0 1.04 7.1184 −2.062 · 10−2 6 79.190
5 3 1 1.15 4.5012 −2.821 · 10−3 7 49.572
5 1 2 1.27 2.9145 −3.284 · 10−4 8 31.025
6 6 0 0.91 26.716 −1.543 · 10−1 5 315.00
6 0 3 1.16 6.5421 −6.095 · 10−4 7 70.987
8 8 0 0.74 424.17 −6.005 4 5644.0
8 0 4 0.94 54.767 −1.032 · 10−2 5 635.5
10 10 0 0.47 7452.2 −182.064 4 112120
10 0 5 0.82 98.560 −6.604 · 10−3 5 6443.8

To obtain the numerical bounds on the Minkowski constants we work with the
admissible rational function

Rγ(s) =
(s+ α)

(s+ β)(s+ 2(2γ − β))(s + 2(2γ − α))
,

where α = γ − γ(γ+1)√
1+3γ(γ+1)

as in [Zi, p. 373], and β is near to γ such that 0 ≤ α <
β < γ. Notice that Rγ(s) is of the form given in Proposition 2 with α1 = 2(2γ−β)
and α2 = 2(2γ−α). (In particular, the parameters of Rγ(s) satisfy the constraints
in (16).) As a starting value for the lower estimate of y∗ we take the lower bound
for y0 (15) given by (17). We pick 0 < ε < −Fγ(y0)

2 and use Proposition 3 to select
an m such that |ε(m, y)| < ε for each y ≥ y0. Then, by means of Proposition
6, we move from (the lower estimate of) y0 to a larger value y1 such that Fγ(y)
remains negative on the interval [y0, y1]. By iterating this process one constructs a
sequence {yl}, l = 0, 1, 2, . . . , converging from below to y∗. In principle the value
Z∗(r1, r2) := t0e

y∗ (with t0 from (11)) now provides a new lower bound such that√
|dK |/N(a) ≥ Z∗(r1, r2) (cf. the corollary of Theorem 1 in the introduction).

In practice, however, the iteration ends after a finite (but large) number of steps
producing a value Y very close but smaller than y∗. This leads to a numerical
approximation (from below) Z(r1, r2) = t0e

Y of the bound Z∗(r1, r2). In Table
2, we give the parameter γ, the starting bound z0 := t0e

y0, an upper bound for
Fγ(y0), m (the number of polynomials Pj used in the computation), and the new
numerical bound Z(r1, r2) produced by the algorithm.

It is illuminating to illustrate the state of affairs by means of a plot of the
function Fγ(·). In Figure 1 we have plotted Fγ(log( zt0 )) as a function of z for the
case r1 = 1, r2 = 2 (corresponding to the 10th line of Table 2). It is an empirical
observation that for the other cases the graph of Fγ(log( zt0 )) is qualitatively of the
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Figure 1. Graph of Fγ(log( zt0 )) for r1 = 1, r2 = 2 and γ = 1.27

same shape. Notice that in the case under consideration we have at the starting
point y0 that z0 = 2.9145 (see Table 2). This point is close to the zero on the left.
For the numerical approximation (from below) Y of y∗ we have on the other hand
that z = 31.025, which is much bigger and close to the point where the function
changes sign.
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