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THE ERROR BOUNDS AND TRACTABILITY
OF QUASI-MONTE CARLO ALGORITHMS

IN INFINITE DIMENSION

FRED J. HICKERNELL AND XIAOQUN WANG

Abstract. Dimensionally unbounded problems are frequently encountered in
practice, such as in simulations of stochastic processes, in particle and light
transport problems and in the problems of mathematical finance. This pa-
per considers quasi-Monte Carlo integration algorithms for weighted classes of
functions of infinitely many variables, in which the dependence of functions
on successive variables is increasingly limited. The dependence is modeled by
a sequence of weights. The integrands belong to rather general reproducing
kernel Hilbert spaces that can be decomposed as the direct sum of a series of
their subspaces, each subspace containing functions of only a finite number of
variables. The theory of reproducing kernels is used to derive a quadrature
error bound, which is the product of two terms: the generalized discrepancy
and the generalized variation.

Tractability means that the minimal number of function evaluations needed
to reduce the initial integration error by a factor ε is bounded by Cε−p for
some exponent p and some positive constant C. The ε-exponent of tractability
is defined as the smallest power of ε−1 in these bounds. It is shown by using
Monte Carlo quadrature that the ε-exponent is no greater than 2 for these
weighted classes of integrands. Under a somewhat stronger assumption on
the weights and for a popular choice of the reproducing kernel it is shown

constructively using the Halton sequence that the ε-exponent of tractability is
1, which implies that infinite dimensional integration is no harder than one-
dimensional integration.

1. Introduction

The evaluation of complicated integrals is a common computational problem
occurring in many areas of sciences such as computational physics, statistics, com-
puter graphics and mathematical finance. The univariate case is well-developed
[DR84], and the multivariate case has been extensively studied in recent years
(see [CMO97, FW94, Hic98, Nie92, SJ94, SW98, Sob98, Woź91] and the references
therein).

For high dimensional integration, Is(f) =
∫

[0,1]s
f(x) dx, Monte Carlo (MC)

and quasi-Monte Carlo (QMC) methods can be used to break the curse of dimen-
sionality. MC and QMC use the sample mean, QN,s(f ;P ) = 1

N

∑
z∈P f(z), to
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approximate the integral Is(f). For MC, the sample points P are independent
random points distributed uniformly on [0, 1]s, and the asymptotic convergence
rate is O(N−1/2), which is independent of the dimension. For QMC, P is a low
discrepancy point set, and the error bound takes the form∣∣∣Is(f)−QN,s(f ;P )

∣∣∣ ≤ D(P )V (f),

where D(P ) is the generalized discrepancy and V (f) is the generalized variation
of f(x) [Hic98]. A special case of the above inequality is the well-known Koksma-
Hlawka inequality, for which D(P ) is the traditional star-discrepancy and V (f)
is variation of f(x) in the sense of Hardy and Krause [Nie92]. The asymptotic
convergence rate can be O(N−1(logN)s).

Dimensionally unbounded problems are frequently encountered in practice. For
example, in particle and light transport problems and in simulations of stochastic
processes, there is no a priori bound on the number of random numbers needed
in one path simulation. The corresponding integral is of infinitely many variables.
Many problems in mathematical finance can be expressed as Feynman-Kac for-
mulas (see [Duf96]), and their solutions can be reduced to evaluations of infinite
dimensional integrals. This paper considers integrals of functions of infinitely many
variables. The corresponding problems are often called path integrations or func-
tional integrations [WW96, TW98].

The infinite dimensional integral takes the form

I∞(f) =
∫
C∞

f(x) dx,(1)

where

C∞ := [0, 1]∞ =
{

x = (x1, x2, . . . ) : 0 ≤ xi ≤ 1, i = 1, 2, . . .
}

is the infinite dimensional unit cube, and dx = dx1dx2 . . . is the infinite product
of Lebesgue measures. For example, the measure of the interval {an ≤ xn ≤
bn, n = 1, 2, . . .} equals

∏∞
n=1(bn−an) (see [Sob69, Sob98]). For a finite dimensional

function, depending only on the variables x1, · · · , xs, the integral (1) reduces to the
common s-dimensional integral Is(f).

We are interested in QMC algorithms of the form

QN,∞(f) = QN,∞(f ;P ) =
1
N

N∑
i=1

f(zi),(2)

where P = {z1, . . . , zN} is the set of N points in the infinite dimensional unit cube
C∞. The weights of the QMC algorithms are equal to 1/N . It is natural to ask
under what conditions on the integrands and on the points does this quadrature
rule approximate the integral well. Specifically, one would like to have a bound on
the quadrature error. It would also be interesting to know under what conditions
infinite dimensional integration has roughly the same difficulty as one dimensional
integration. This is related to the question of tractability.

The concept of QMC tractability in infinite dimension is analogous to the finite
dimensional case [NW00, SW98]. Let H be a normed space of functions defined on
C∞, and let the norm in H be denoted by ‖ · ‖H. Let P be a set of N points in
C∞. (Points in P may be repeated.) Define the worst-case error of the algorithm
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QN,∞(·;P ) by its worst-case performance over the unit ball in H:

Err(QN,∞,H) = sup
{∣∣∣I∞(f)−QN,∞(f)

∣∣∣ : f ∈ H, ‖f‖H ≤ 1
}
.(3)

For a given sample size N , one would like to find the algorithm error for the best
possible sample points P , that is,

(4) Err(N,H) = inf
P

Err(QN,∞,H)

= inf
P

sup
{∣∣∣I∞(f)−QN,∞(f)

∣∣∣ : f ∈ H, ‖f‖H ≤ 1
}
.

For N = 0, we formally set Q0,∞(f) = 0, so the initial algorithm error is given as
the norm of the functional I∞(f):

Err(0,H) = sup {|I∞(f)| : f ∈ H, ‖f‖H ≤ 1} = ‖I∞‖ .
One might ask what is the smallest N , for which there exists an algorithm QN,∞,

such that the initial error is reduced by a factor ε, where ε ∈ (0, 1], i.e., what is

N(ε,H) = min{N : Err(N,H) ≤ ε Err(0,H)}?
The problem of infinite dimensional integration, I∞(f), is QMC tractable if there
exist nonnegative constants C and p such that

N(ε,H) ≤ C ε−p ∀ε ∈ (0, 1].(5)

The infimum of p for which (5) holds is called the ε-exponent of QMC tractability.
A simple example of intractability in infinite dimension is due to Chentzov (see

[Sob69, Sob98]). Consider the set of functions

F = {(xj − xm)2 : j,m = 1, 2, . . . },(6)

and suppose that the class H contains F . For an arbitrary sequence {zi}∞i=1 of
points in C∞, and for any N , there exists a function f ∈ F such that

|I∞(f)−QN,∞(f ; {zi}Ni=1)| ≥ 1
12
.

Thus, if c = supf∈F ‖f‖H is finite, it follows that Err(QN,∞,H) ≥ (12c)−1, and
N(ε,H) = ∞ for all ε < [12cErr(0,H)]−1. Therefore, the integration problem for
this function class H is not QMC tractable.

In the example above all the coordinate directions have equal importance. How-
ever, the tractability situation may change completely if the dependence of f(x) on
successive variables is increasingly limited, i.e., the dependence of f(x) on xj be-
comes weaker as j increases. Such situations often occur in practice. For example,
in the simulation of the trajectories of particles, successive collisions become less
influential to the quantity in which we are interested. In mathematical finance, the
payoff of a certain derivative security is less influenced by the interest rate of the
time periods close to the expiration time. Sobol’ [Sob69, Sob98] studied some func-
tions satisfying conditions of this type. In the finite dimensional case, Sloan and
Woźniakowski [SW98] studied the strong tractability and tractability of weighted
classes of functions.

This paper investigates the error bounds and tractability of certain weighted
classes of functions as in [SW98], but in infinite dimension. Section 2 defines the
relevant Hilbert spaces of integrands with very general reproducing kernels. It is
shown that such Hilbert spaces can be decomposed as the direct sum of a series
of their subspaces, each subspace containing functions of only a finite number of
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variables. In Section 3, the theory of reproducing kernel Hilbert spaces is used to
derive a quadrature error bound, which takes the form of a product of a general-
ized discrepancy and a generalized variation. The general theory is illustrated by
two concrete kernels, which correspond to the star-discrepancy and the centered-
discrepancy respectively. In Section 4, we establish the tractability of QMC algo-
rithms for weighted classes of infinite dimensional functions, and prove that the
ε-exponent is less than 2 under a very natural assumption. Moreover, under a
somewhat stronger assumption on the weights, it is shown that the ε-exponent is
1. The proof is constructive.

2. The projection decomposition of functions in infinite dimension

In finite dimension, the derivation of QMC integration error bounds and the
study of tractability of QMC algorithms rely on a decomposition of integrands
into low dimensional parts and the theory of reproducing kernel Hilbert spaces
[Hic98]. A similar approach is adopted here for the infinite dimensional case. The
decomposition of the integrand into finite dimensional parts is called a projection
decomposition.

Let 1 : ∞ denote the infinite set {1, 2, · · · } of coordinate indices, and let 1 : s
denote the set {1, 2, · · · , s} of the coordinate indices of the first s variables. For
any u ⊂ 1 : ∞, let |u| denote its cardinality, and let Cu = [0, 1]u denote the |u|-
dimensional unit cube involving the coordinates in u. Furthermore, let xu denote
the vector containing the coordinates of x whose indices are in u. By (xu,1) we
mean the vector in C∞, where all the components xj with j /∈ u are set equal to 1.

In order to obtain good estimators for the integral (1), we must define appropriate
spaces of integrands, such that the dependence of f(x) on successive variables, xj , or
sets of variables, xu, becomes weaker with increasing j or |u|. For any set u ⊂ 1 :∞
with finite cardinality the nonnegative weight γu indicates the importance of the
variables indexed by j ∈ u. This approach was introduced in [SW98]. For the
purpose of standardization, we set γ∅ = 1. An important special case is

γu :=
∏
j∈u

γj , u ⊂ 1 :∞,(7)

for some nonnegative γ1, γ2, . . . , but most of the results that follow are proved for
arbitrary choices of γu. These weights must satisfy a summability condition, given
below.

Define a reproducing kernel of the form

K∞(x,y) =
∑

0≤|u|<∞
γu
∏
j∈u

k(xj , yj),(8)

where k(x, y) is a symmetric, real-valued positive definite function on [0, 1]2. In the
remainder of this paper the one-dimensional kernel k and the weights γu are always
assumed to satisfy the following condition.

Assumption 1. The Hilbert space of univariate functions H(k), admitting the re-
producing kernel k(x, y), does not contain any nonzero constant, that is

H(1) ∩H(k) = {0},(9)

where H(1) is the Hilbert space with kernel 1. Moreover, it is assumed that the
kernel is bounded over the unit square, integrable over the unit square, and integrable
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along the diagonal:

L := sup
(x,y)∈[0,1]2

|k(x, y)| <∞,(10a)

m :=
∫

[0,1]2
k(x, y) dx dy ≤ L, M :=

∫
[0,1]

k(x, x) dx ≤ L.(10b)

It is also assumed that

h(x) =
∫ 1

0

k(x, y) dy ∈ H(k).(11)

The summability condition on the weights is∑
0≤|u|<∞

γuL
|u| <∞.(12)

If the γu take the form (7), then this is equivalent to
∞∑
j=1

γj <∞.(13)

Note that in fact m ≤ M since k(x, y) is positive definite (see [HW00]). It
follows from condition (12) that the function K∞(x,y) given by formula (8) is well
defined. Moreover, it is positive definite. From the theory of reproducing kernel
Hilbert spaces [Aro50, Sai88, Wah90] there exists a uniquely determined Hilbert
space, admitting the reproducing kernel K∞(x,y). We denote this Hilbert space
by H(K∞).

To characterize the space H(K∞) consider first the reproducing kernel

R̃u(xu,yu) =
∏
j∈u

k(xj , yj)

defined for finite sets u ⊂ 1 : ∞. Denote the associated Hilbert space as Hu, with
inner product and induced norm 〈·, ·〉Hu and ‖·‖Hu , respectively. When u = ∅,
we define R̃∅ = 1, and the corresponding Hilbert space is H∅ = H(1) = {f :
f is a constant}. Also, consider the reproducing kernel

Ru(xu,yu) = γuR̃u(xu,yu) = γu
∏
j∈u

k(xj , yj).

Denote the associated Hilbert space as Wu, with inner product and induced norm
〈·, ·〉Wu and ‖·‖Wu

, respectively. The Hilbert space Hu is closely related to the
Hilbert space Wu. In fact, if γu > 0, then Wu = Hu, and their inner products are
related by

〈f, g〉Wu = γ−1
u 〈f, g〉Hu .

If γu = 0, then Wu = {0}.

Lemma 2. Under Assumption 1 it follows that Hu∩Hv = {0} and Wu∩Wv = {0}
for all u 6= v where u, v ⊂ 1 :∞ and |u| , |v| <∞.

Proof. Let f be any function in Hu ∩ Hv, and without loss of generality suppose
that ` ∈ u − v. Since f ∈ Hu, it follows that f can be written as an infinite series
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in terms of the reproducing kernel R̃u:

f(xu) =
∑
i

ciR̃u(xu,yiu) =
∑
i

ci
∏
j∈u

k(xj , yij)

=
∑
i

ci ∏
j∈u−{`}

k(xj , yij)

 k(x`, yi`).

For any fixed xu−{`} the above series represents some function of g(x`) ∈ H(k).
On the other hand, since f ∈ Hv and ` /∈ v, the function g(x`) must be constant.
By Assumption 1 it follows that g(x`) = 0. Since this holds no matter how xu−{`}
is fixed, the function f must be zero.

Now consider the s-dimensional reproducing kernel Ks(x1:s,y1:s) defined as

Ks(x1:s,y1:s) =
∑
u⊆1:s

Ru(xu,yu).(14)

It is shown in the lemma below that the Hilbert space H(Ks), admitting this kernel
is simply the direct sum of the appropriate Wu.

Lemma 3. The Hilbert space H(Ks) with the reproducing kernel Ks(x1:s,y1:s) can
be decomposed as the direct sum of Hilbert spaces Wu with u ⊆ 1 : s, that is

H(Ks) =
⊕
u⊆1:s

Wu.(15)

Any function f(x1:s) ∈ H(Ks) has a unique decomposition

f(x1:s) =
∑
u⊆1:s

fu, fu ∈ Wu.(16)

This is called the projection decomposition. The inner product and norm for H(Ks)
are related to the inner products and norms of the spaces Wu as follows:

〈f, g〉H(Ks) =
∑
u⊆1:s

〈fu, gu〉Wu , ‖f‖2H(Ks)
=
∑
u⊆1:s

‖fu‖2Wu
.

Proof. Since it was shown in Lemma 2 that Wu ∩Wv = {0} for all u 6= v, one may
define the Hilbert space W̃s =

⊕
u⊆1:sWu. Any f ∈ W̃s may be written uniquely

as f =
∑
u⊆1:s fu with fu ∈ Wu. One can then define an inner product and norm

associated with W̃s in terms of the inner products and norms associated with the
Wu:

〈f, g〉W̃s
=
∑
u⊆1:s

〈fu, gu〉Wu , ‖f‖2W̃s
=
∑
u⊆1:s

‖fu‖2Wu
.

For this definition of the inner product it is straightforward to show that the re-
producing kernel for W̃s is Ks as defined in (14). Since each reproducing kernel
corresponds to a unique Hilbert space, H(Ks) = W̃s.

Now we are ready to discuss the infinite dimensional case. Consider the kernel,
defined in (8), which can be rewritten as

K∞(x,y) =
∑
|u|<∞

Ru(xu,yu).(17)
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This is the limit of Ks when s→∞. Note that there are no terms with |u| =∞ in
the sum of (17). Let

W̃∞ =

 ∑
|u|<∞

fu : fu ∈Wu,
∑
|u|<∞

‖fu‖2Wu
<∞

 .(18)

Since Wu ∩Wv = {0} for all u 6= v, any f ∈ W̃∞ has a unique projection decompo-
sition

f(x) =
∑
|u|<∞

fu, fu ∈Wu.(19)

Define the following inner product and norm for this space:

〈f, g〉W̃∞ =
∑
|u|<∞

〈fu, gu〉Wu , ‖f‖2W̃∞ =
∑
|u|<∞

‖fu‖2Wu
.(20)

The following lemma shows that this Hilbert space has reproducing kernel (17).

Lemma 4. The space W̃∞ with inner product and the square norm defined in (20)
is a Hilbert space with reproducing kernel (17), i.e., H(K∞) = W̃∞.

Proof. The fact that W̃∞ as defined is a Hilbert space is obvious. It remains
to be shown that K∞(x,y) is its reproducing kernel. For any fixed y ∈ C∞ it
must be shown that K∞(x,y) ∈ W̃∞. From (17) it follows that K∞(x,y) =∑
|u|<∞Ru(xu,yu) and each Ru(·,yu) ∈ Wu. Moreover,∑

|u|<∞
‖Ru(·,yu)‖2Wu

=
∑
|u|<∞

〈
Ru(·,yu), Ru(·,yu)

〉
Wu

=
∑
|u|<∞

Ru(yu,yu) = K∞(y,y) <∞

by summability condition (12). Therefore, K∞(x,y) ∈ W̃∞ for any fixed y ∈ C∞.
Next, for any f =

∑
|u|<∞ fu ∈ W̃∞ it follows that

〈f,K∞(·,y)〉W̃∞ =
∑
|u|<∞

〈fu, Ru(·,yu)〉Wu =
∑
|u|<∞

fu(yu) = f(y),

soK∞(x,y) has the reproducing property. The relationH(K∞) = W̃∞ follows from
the uniqueness of Hilbert spaces admitting the same reproducing kernel K∞(x,y).

Corollary 5. The space H(K∞) may also be defined as

H(K∞) =


∑
|u|<∞
γu>0

fu : fu ∈ Hu,
∑
|u|<∞
γu>0

γ−1
u ‖fu‖

2
Hu

<∞

 .

If s < d < ∞, then H(Ks) is a subspace of H(Kd), which is a subspace of
H(K∞). The inner product for the Hilbert space H(Ks) is the same as for H(Kd)
and H(K∞) but restricted to the space of s-dimensional functions H(Ks).
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3. The error bounds of quasi-Monte Carlo algorithms

in infinite dimension

Having defined an appropriate space of integrands we now derive the error
bounds for quasi-Monte Carlo integration (2) using the theory of reproducing kernel
Hilbert spaces. First, some notation is defined. Let ‖·‖p denote the Lp-norm of a
function on Cu with |u| <∞, that is

‖f‖p =
[∫

Cu
|f |pdxu

]1/p

, ‖f‖∞ = inf{λ : f ≤ λ almost everywhere}.

This notation is extended to the case of a series of projection terms (fu) where the
range of u is often 0 ≤ |u| <∞ or 0 < |u| <∞. If fu is a function on Cu let∣∣∣∣∣∣(fu)∣∣∣∣∣∣

p
=
[∑
u

∫
Cu
|fu|pdxu

]1/p

, ‖(fu)‖∞ = max
u
‖fu‖∞ .

3.1. General case. Consider now the infinite dimensional integration functional
given by (1). Assumption (11) on h(x) implies that one-dimensional integration is
well defined for the space H(k), and in fact h(x) is the representer of the integration
functional. Note that

‖h‖2H(k) = 〈h, h〉H(k) =
∫ 1

0

h(x) dx =
∫

[0,1]2
k(x, y) dx dy = m.

It is straightforward to show that the function γu
∏
j∈u h(xj) is the representer of

the integration functional for the Hilbert space Wu, and∥∥∥∥∥∥γu
∏
j∈u

h(xj)

∥∥∥∥∥∥
2

Wu

= γum
|u|.

Define the function

h∞(x) =
∫
C∞

K∞(x,y) dy =
∑
|u|<∞

γu
∏
j∈u

h(xj).

From the condition (12) it follows that ‖h∞‖2H(K∞) =
∑
|u|<∞ γum

|u| < ∞, so
h∞ ∈ H(K∞). Integration onC∞ is a continuous, linear functional with representer
h∞, i.e.,

I∞(f) = 〈f, h∞〉H(K∞) with h∞(y) =
∫
C∞

K∞(x,y)dx.

The square norm of this functional is

‖I∞‖2 = ‖h∞‖2H(K∞) =
∑
|u|<∞

γum
|u|.(21)

Because H(K∞) has a reproducing kernel, QN,∞ is a continuous, linear func-
tional, and so is the integration error I∞ − QN,∞. By the Riesz Representation
Theorem the quadrature error may be expressed as(

I∞ −QN,∞
)
(f) = 〈ξ, f〉H(K∞), ∀f ∈ H(K∞),

where the representer of the error functional is

ξ(x) = 〈ξ,K∞(·,x)〉H(K∞) =
(
I∞ −QN,∞

)
(K∞(·,x)).(22)
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Since QMC rules are exact for constants, the integration error for f is the same as
that for f⊥ := f−f∅, the nonconstant part of the integrand f . The Cauchy-Schwarz
inequality implies the following error bound

|I∞(f)−QN,∞(f)| = |〈ξ, f〉H(K∞)| = |〈ξ, f⊥〉H(K∞)| ≤ ‖ξ‖H(K∞) ‖f⊥‖H(K∞) .

This error bound is tight, since equality holds if f(x) is a multiple of ξ(x), the
worst-case integrand.

The terms ξu making up the projection decomposition of the worst-case inte-
grand, ξ(x), are the errors in integrating Ru(·,xu). Indeed,

ξ(x) =
(
I∞ −QN,∞

)
(K∞(·,x)) =

(
I∞ −QN,∞

) ∑
0≤|u|<∞

Ru(·,xu)

=
∑

0≤|u|<∞

(
I∞ −QN,∞

)
Ru(·,xu).

Note that
(
I∞ −QN,∞

)
Ru(·,xu) ∈ Wu. According to the uniqueness of decompo-

sition of functions in H(K∞), we have ξ∅ = 0, and for u 6= ∅

ξu(x) =
(
I∞ −QN,∞

)
Ru(·,xu) = γuξ̃u(x),(23a)

where

ξ̃u(x) =

[∏
j∈u

∫ 1

0

k(z, xj)dz −
1
N

∑
z∈P

∏
j∈u

k(zj , xj)

]
.(23b)

To show how each projection term fu in the series for the integrand f contributes
to the total integration error, the inner product 〈ξ, f⊥〉H(K∞) is expressed in terms
of 〈ξu, fu〉Wu

using Lemma 4:

∣∣∣I∞(f)−QN,∞(f)
∣∣∣ = |〈ξ, f〉H(K∞)| = |〈ξ, f⊥〉H(K∞)|

=

∣∣∣∣∣∣
∑

0<|u|<∞
〈ξu, fu〉Wu

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

0<|u|<∞
γu 6=0

〈ξ̃u, fu〉Hu

∣∣∣∣∣∣∣∣
≤

∑
0<|u|<∞
γu 6=0

D2,u(P )V2,u(f)

≤ D2(P,K∞)V2(f,K∞),(24)

where

D2,u(P ) =
∣∣∣∣ξ̃u∣∣∣∣Hu , V2,u(f) =

∣∣∣∣fu∣∣∣∣Hu
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and

(25) D2(P,K∞) =

{ ∑
0<|u|<∞

γuD
2
2,u(P )

}1/2

=


∑

0<|u|<∞
γu 6=0

γu

∥∥∥ξ̃u∥∥∥2

Hu


1/2

=


∑

0<|u|<∞
γu 6=0

γ−1
u ‖ξu‖

2
Hu


1/2

=
∣∣∣∣ξ∣∣∣∣

H(K∞)
,

(26) V2(f,K∞) =


∑

0<|u|<∞
γu 6=0

γ−1
u V 2

2,u(f)


1/2

=


∑

0<|u|<∞
γu 6=0

γ−1
u ‖fu‖

2
Hu


1/2

=
∣∣∣∣f⊥∣∣∣∣H(K∞)

.

Definition 6. For any point set P in the infinite dimensional unit cube C∞, the
L2-discrepancy is defined by (25) and is the norm of the worst-case integrand ξ(x).
The L2-variation of f(x) is defined by (26) and is the norm of the nonconstant part
of f(x).

The discrepancy depends on the point set P , but not on the integrand, f(x),
while the variation depends on the integrand but not on the point set. Both the
discrepancy and the variation depend on the choice of the one-dimensional kernel,
k, and the weights, γu.

Note that in the above derivation, one at first writes the error as the inner
product of the worst-case integrand, ξ, with f⊥. The inner product is expanded as
a sum of inner products over u with 0 < |u| < ∞, and the absolute value is taken
inside the sum. The Cauchy-Schwarz inequality is applied to each inner product
in the sum. The uth term in this sum is multiplied and divided by a factor γ−1/2

u .
Finally the Cauchy-Schwarz inequality is again applied to the sum to obtain the
error bound. The term

∣∣∣〈ξ̃u, fu〉Hu ∣∣∣ is the integration error for the projection term
fu, and this does not depend on γu. This error is no larger than the product
D2,u(P )V2,u(f).

Because the reproducing kernel K∞(x,y) is given by (8), the L2-discrepancy
may be written in terms of integrals and sums involving the reproducing kernel:

(27) D2(P,K∞) = 〈ξ, ξ〉1/2H(K∞) =
(
I∞(ξ) −QN,∞(ξ)

)1/2
=

{∫
C∞

∫
C∞
K∞(x,y) dx dy− 2

N

∑
z∈P

∫
C∞
K∞(z,y) dy+

1
N2

∑
z,z′∈P

K∞(z, z′)

}1/2

.

The following theorem summarizes these results.

Theorem 7. For any function f(x) ∈ H(K∞), the infinite dimensional QMC in-
tegration algorithm (2) has an error bound

|I∞(f)−QN,∞(f)| = |〈ξ, f〉H(K∞)| ≤ D2(P,K∞)V2(f,K∞),
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where D2(P,K∞) and V2(f,K∞) are L2-discrepancy and L2-variation, respectively.
Equality holds when f(x) is a multiple of the worst-case integrand ξ(x) as given in
(22). The worst-case error of QMC algorithm QN,∞ over the unit ball of H(K∞)
is the L2-discrepancy:

Err
(
QN,∞, H(K∞)

)
= D2(P,K∞).

Remark. If f(x) is an s-dimensional function where s is finite, then the sums over u
in formulas (25) and (26) need only be taken over u ⊆ 1 : s. In this way we recover
the error bounds of QMC algorithms for finite dimensional functions, which were
studied by Hickernell [Hic98].

3.2. Star-discrepancy. Consider the following particular choice of kernel

K∗∞(x,y) =
∑
|u|<∞

γu
∏
j∈u

k∗(xj , yj),(28)

where k∗(x, y) = min(1 − x, 1 − y). It is easy to check that k∗(x, y) satisfies all
the conditions in Assumption 1. Let H∗u denote the Hilbert space with the kernel∏
j∈u k

∗(xj , yj). The inner product and the square norm are given by

〈fu, gu〉H∗u =
∫
Cu

∂|u|gu
∂xu

∂|u|fu
∂xu

dxu, ‖fu‖2H∗u =
∫
Cu

(
∂|u|fu
∂xu

)2

dxu,(29)

for fu, gu ∈ H∗u.
The projection term of the worst-case integrand ξ(x) can be computed using

(23) for 0 < |u| <∞

ξu(x) = γuξ̃u(x), ξ̃u(x) =

[∏
j∈u

(
1
2
− 1

2
x2
j

)
− 1
N

∑
z∈P

∏
j∈u

(
1−max(xj , zj)

)]
.

Therefore,

∂|u|ξ̃u
∂xu

=

[∏
j∈u

(−xj)−
1
N

∑
z∈P

∏
j∈u

(
−1{zj<xj}

)]
= (−1)|u|Disc∗(u,xu;Pu),

D∗2,u(P ) =
∥∥∥ξ̃u∥∥∥

Hu
=

{∫
Cu

[
Disc∗(u,xu;Pu)

]2

dxu

}1/2

,

where

Disc∗(u,xu;Pu) = Vol([0,xu))− 1
N

∣∣∣Pu ∩ [0,xu)
∣∣∣,

and Pu denotes the projection of the point set P on the cube Cu, the notation |A|
means the number of points in the set A counted with multiplicity. The geometric
meaning of Disc∗(u,xu;Pu) is the absolute difference between the volume of a box
[0,xu) and the proportion of points in Pu that are also in that box (see [Hic98]).
In this case the corresponding discrepancy is called the star-discrepancy. From the
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definition of discrepancy (25), the L2-star-discrepancy takes the form

D∗2(P ) =

{ ∑
0<|u|<∞

γu[D∗2,u(P )]2
}1/2

(30)

=

{ ∑
0<|u|<∞

γu

∫
Cu

(
Disc∗(u,xu;Pu)

)2

dxu

}1/2

=

 ∑
0<|u|<∞

γu

(1
3

)|u|
− 2
N

∑
z∈P

∏
j∈u

(
1− z2

j

2

)

+
1
N2

∑
z,z′∈P

∏
j∈u

min(1− zj, 1− z′j)


1/2

.

Furthermore, from (27) the L2-star-discrepancy of P can be reduced to a double
sum when the γu satisfy (7):[

D∗2(P )
]2 =

∞∏
j=1

(
1 +

γj
3

)
− 2
N

∑
z∈P

∞∏
j=1

(
1 +

γj
2

(1 − z2
j )
)

+
1
N2

∑
z,z′∈P

∞∏
j=1

[
1 + γj min(1 − zj, 1− z′j)

]
.

The above formula is the limiting discrepancy, defined by Sloan and Woźniakowski
[SW98]. It is clear that D∗2(P ) is finite if and only if

∑∞
j=1 γj < ∞, as noted in

[SW98], but obtained in a somewhat different manner.
Now consider the variation of the integrand f(x). For a fixed subset u ⊂ 1 : ∞

with 0 < |u| <∞ recall that the reproducing kernel for H∗u is
∏
j∈u[1−max(xj , yj)].

Thus, for any fu ∈ H∗u, it follows that f(xu) = 0 when xj = 1 for any j ∈ u. Thus,
if f =

∑
|u|<∞ fu is the projection decomposition of any f ∈ H(K∗∞), then

f(xu,1) =
∑
v⊆u

fv(xv),
∂|u|

∂xu
f(xu,1) =

∂|u|fu
∂xu

.

Therefore, from (26) the L2-variation can be written as

V ∗2 (f) =

∥∥∥∥∥∥∥
(
γ
− 1

2
u

∂|u|

∂xu
f(xu,1)

)
0<|u|<∞
γu 6=0

∥∥∥∥∥∥∥
2

.

What kind of function belongs to H(K∗∞)? As an example, suppose that φ(x) is
a function of infinitely many variables with all partial derivatives ∂|u|φu/∂xu con-
tinuous and uniformly bounded. Then the function f(x) = φ(γ1x1, · · · , γjxj , · · · )
belongs to H(K∗∞) assuming that the γu are defined by (7) and that the γj satisfy
Assumption 1. Indeed,

∂|u|fu
∂xu

= γu
∂|u|φu
∂xu

,

so it is easy to see that ‖f‖H(K∗∞) is finite. Here we can also see the role of the
weights γj .
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Since in this special case the inner product of H∗u takes the form (29), one can
also define the so-called Lp-star-discrepancy and Lq-variation in terms of the Lp-
norm. Following similar lines as in (24) and applying the Hölder inequality instead
of Cauchy-Schwarz inequality, we obtain the following family of error bounds∣∣∣I∞(f)−QN,∞(f)

∣∣∣ ≤ D∗p(P )V ∗q (f), p−1 + q−1 = 1, p ∈ [1,∞],

where

D∗p(P ) =

∣∣∣∣∣
∣∣∣∣∣
(
γ

1
2
u
∂|u|ξ̃u
∂xu

)
0<|u|<∞

∣∣∣∣∣
∣∣∣∣∣
p

, V ∗q (f) =

∥∥∥∥∥∥∥
(
γ
− 1

2
u

∂|u|fu
∂xu

)
0<|u|<∞
γu 6=0

∥∥∥∥∥∥∥
q

.

The quantities D∗p(P ) and V ∗q (f) are called the Lp-star-discrepancy of the point
set P and the Lq-variation of f(x), respectively. Using the formulas for ∂|u|ξ̃u/∂xu
and ∂|u|fu/∂xu, one obtains the formulas

D∗p(P ) =

∣∣∣∣∣
∣∣∣∣∣
(
γ

1
2
u Disc∗(u,xu;Pu)

)
0<|u|<∞

∣∣∣∣∣
∣∣∣∣∣
p

,

V ∗q (f) =

∥∥∥∥∥∥∥
(
γ
− 1

2
u

∂|u|

∂xu
f(xu,1)

)
0<|u|<∞
γu 6=0

∥∥∥∥∥∥∥
q

.

For p < ∞, the pth power of the discrepancy, [D∗p(P )]p, is the weighted sum of
the terms ‖Disc∗(u,xu;Pu)‖pp, which are the pth powers of the traditional Lp-star-
discrepancy of the projections Pu (see [MC94]) . For p =∞,

D∗∞(P ) = sup
x∈C∞

max
0<|u|<∞

γ
1
2
u Disc∗(u,xu;Pu).

3.3. Centered-discrepancy. Now consider another choice of kernel:

Kc
∞(x,y) =

∑
|u|<∞

γu
∏
j∈u

kc(xj , yj),(31)

with

kc(x, y) =
1
2
|x− 1/2|+ 1

2
|y − 1/2| − 1

2
|x− y|.

It is also easy to check that kc(x, y) satisfies all the conditions in Assumption 1. Let
Hc
u denote the Hilbert space with the kernel

∏
j∈u k

c(xj , yj). The inner product
and the square norm are given by

〈fu, gu〉Hcu =
∫
Cu

∂|u|gu
∂xu

∂|u|fu
∂xu

dxu, ‖fu‖2Hcu =
∫
Cu

(
∂|u|fu
∂xu

)2

dxu,

for any fu, gu ∈ Hc
u. The projection term of the worst-case integrand can be

computed by using (23) for 0 < |u| <∞:

ξu(x) = γuξ̃u(x),

ξ̃u(x) =

[∏
j∈u

(
1
2

∣∣∣∣xj − 1
2

∣∣∣∣− 1
2

∣∣∣∣xj − 1
2

∣∣∣∣2
)
− 1
N

∑
z∈P

∏
j∈u

kc(xj , zj)

]
.
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Therefore,

∂|u|ξ̃u
∂xu

= Discc(u,xu;Pu),

where

Discc(u,xu;Pu) =
∏
j∈u

(
−xj + 1{xj>1/2}

)
− 1
N

∑
z∈P

∏
j∈u

(
1{xj>1/2} − 1{xj>zj}

)
.

For the geometric meaning of Discc(u,xu;Pu) see Hickernell [Hic98]. In the same
way as in the star-discrepancy case, one can obtain that for any f(x) ∈ H(Kc

∞)
and 0 < |u| <∞,

∂|u|fu
∂xu

=
∂|u|

∂xu
f(xu,0.5).

The error bounds can be derived similarly. The formulas for the Lp-centered-
discrepancy and the corresponding Lq-variation are

Dc
p(P ) =

∣∣∣∣∣
∣∣∣∣∣
(
γ

1
2
u Discc(u,xu;Pu)

)
0<|u|<∞

∣∣∣∣∣
∣∣∣∣∣
p

,

V cq (f) =

∣∣∣∣∣
∣∣∣∣∣
(
γ
− 1

2
u

∂|u|

∂xu
f(xu,0.5)

)
0<|u|<∞
γu 6=0

∣∣∣∣∣
∣∣∣∣∣
q

.

For p = 2 and γu of the form (7) the L2-centered-discrepancy takes the form[
Dc

2(P )
]2 =

∞∏
j=1

(
1 +

γi
12

)
− 2
N

∑
z∈P

∞∏
j=1

[
1 +

γj
2

(∣∣∣∣zj − 1
2

∣∣∣∣− ∣∣∣∣zj − 1
2

∣∣∣∣2
)]

+
1
N2

∑
z,z′∈P

∞∏
j=1

[
1 +

γj
2

(∣∣∣∣zj − 1
2

∣∣∣∣+
∣∣∣∣z′j − 1

2

∣∣∣∣− ∣∣∣∣zj − z′j∣∣∣∣)
]
.

Clearly, Dc
2(P ) is finite if and only if

∑∞
j=1 γj <∞.

4. Tractability of quasi-Monte Carlo algorithms

in infinite dimension

The concept of QMC tractability in infinite dimension was described in the
introduction. An example of intractability is also given there. That example shows
that we may have intractability of QMC algorithms even for a relatively simple
class of functions, if all variables are equally important. It is natural to ask when
are QMC algorithms tractable in infinite dimension, and when is the ε-exponent
the same as for the one-dimensional case?

Let B(K∞) denote the unit ball in the space H(K∞), i.e.,

B(K∞) = {f ∈ H(K∞) : ‖f‖H(K∞) ≤ 1}.

Note that by (4) and Theorem 7 it follows that

Err(N,H(K∞)) = inf
P

sup
f∈B(K∞)

∣∣∣I∞(f)−QN,∞(f)
∣∣∣ = inf

P
D2(P,K∞).(32)

Thus, the problem of tractability becomes one of determining how small the dis-
crepancy can be made using N sample points.
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4.1. When are QMC algorithms tractable? Consider the reproducing ker-
nel K∞(x,y) defined in (8) and the corresponding weighted class of functions
H(K∞). We will show that for H(K∞) the infinite dimensional integration problem
is tractable.

Theorem 8. If Assumption 1 holds, then the infinite dimensional QMC integra-
tion algorithm (2) is QMC tractable for Hilbert space H(K∞), and the ε-exponent
satisfies p∗ ≤ 2.

Proof. The proof is obtained by looking at the performance of a simple Monte Carlo
algorithm. The same technique was employed in [SW98] in the finite dimensional
case.

Recall the formula for the discrepancy in terms of the reproducing kernel in (27).
Assume that P consists of independent points all uniformly distributed on [0, 1)∞.
Then take the expectation of the square discrepancy

(33) EP

[
D2(P,K∞)

]2

=
∫
C∞

∫
C∞
K∞(x,y) dx dy − 2

∫
C∞

∫
C∞
K∞(x,y) dx dy

+
1
N2

(
N

∫
C∞

K∞(x,x) dx + (N2 −N)
∫
C∞

∫
C∞

K∞(x,y) dx dy

)

=
1
N

(∫
C∞

K∞(x,x) dx−
∫
C∞

∫
C∞

K∞(x,y) dx dy

)
.

This formula also appears in [Hic98] and elsewhere.
Assumption 1 and (21) imply that the two integrals appearing above are finite,

namely,∫
C∞

K∞(x,x) dx =
∑
|u|<∞

γu
∏
j∈u

∫ 1

0

k(xj , xj) dxj =
∑
|u|<∞

γuM
|u| <∞,

‖I∞‖2 =
∫
C∞

K∞(x,y) dx dy =
∑
|u|<∞

γum
|u| <∞.

Under the assumption that γ∅ = 1, it follows that ‖I∞‖ ≥ 1.
The best discrepancy possible is certainly no worse than the root mean square

discrepancy produced by Monte Carlo quadrature. Combining formulas (32) and
(33) together with the above equations now implies that[

Err(N,H(K∞))
Err(0, H(K∞))

]2

≤ EP [D2(P,K∞)]2

‖I∞‖2
≤ 1
N

∑
|u|<∞

γuM
|u|.

This implies that Err(N,H(K∞)) ≤ ε Err(0, H(K∞)) for

N = ε−2
∑
|u|<∞

γuM
|u|.

So integration is tractable with the ε-exponent satisfying p∗ ≤ 2.

A lower bound on the ε-exponent may be found by considering how small one
can make the discrepancy for one-dimensional integration, i.e., by setting γu = 0
for all u 6= ∅, {1}. The answer depends on the smoothness of the reproducing kernel
k(x, y), or equivalently, the smoothness of the functions in H(k). For the examples
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of the star- and centered-discrepancy given in the previous section, it is known that
p∗ ≥ 1. The next subsection answers the question of when the ε-exponent equals
one for the infinite dimensional case.

4.2. When is the ε-exponent of QMC tractability 1 for the star-discrep-
ancy? This subsection considers the specific kernel K∗∞(x,y) defined by (28) and
its corresponding Hilbert space H(K∗∞). The corresponding discrepancy is the star-
discrepancy. Consider the unit ball in H(K∗∞), that is, B(K∗∞) = {f ∈ H(K∗∞) :
‖f‖H(K∗∞) ≤ 1}. The notation Disc∗(u,xu;Pu) retains the same meaning as in
Section 3. Under a somewhat stronger assumption on the weights {γj} than As-
sumption 1, it is shown that the ε-exponent of QMC tractability is 1. The proof is
constructive.

The multidimensional Halton sequence is defined in [Hal60]. This definition is
now extended to infinite dimension. Let bj be the jth prime number. Define the
infinite dimensional Halton sequence to be the sequence S = {x0,x1, · · · } with

xn =
(
φb1(n), φb2 (n), · · · , φbj (n), · · ·

)
, n = 0, 1, 2, · · · ,

where {φbj (n)} is the van der Corput sequence in base bj . Let u be a subset of
1 : ∞ with |u| <∞. The projection of the infinite dimensional Halton sequence S
on the cube Cu is a |u|-dimensional Halton sequence (denoted by Su) in bases bj
with j ∈ u.

Theorem 9. Assume that in the QMC algorithm (2), the points are taken to be
the first N points of an infinite dimensional Halton sequence. If the weights γu
satisfy

γu =
∏
j∈u

γj ,

∞∑
j=1

γ
1/2
j j log j <∞,(34)

or if there exists some s <∞ such that

γu =

{∏
j∈u γj , |u| ≤ s,

0, |u| > s,

∞∑
j=1

γj j
2 log2 j <∞,(35)

then for any δ > 0, there exists a constant C∗, such that

D∗2(SN ) = sup
f∈B(K∗∞)

∣∣∣I∞(f)−QN,∞(f)
∣∣∣ ≤ C∗N−1+δ.

Consequently, the ε-exponent of QMC tractability equals 1.

Proof. Recall from (30) that the L2-star-discrepancy may be written as

D∗2(SN ) =

 ∑
0<|u|<∞

γu[D∗2,u(SuN )]2


1/2

,

D∗2,u(SuN ) =
{∫

Cu
[Disc∗(u,xu;SuN )]2 dxu

}1/2

.

The traditional (extreme) star-discrepancy of the first N points of the Halton se-
quence can be bounded (see [Nie92]), and this serves as an upper bound for the
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pieces making up the L2-star-discrepancy:

D∗2,u(SuN ) ≤ |u|
N

+
1
N

∏
j∈u

αj , for all N ≥ 1,(36)

where

αj = βj logN +
1
2

(bj + 1), βj =
bj − 1
2 log bj

.

It is well known that the jth prime number bj is O(j log j) when j →∞, so βj ∼ j,
and

D∗2,u(SuN ) ≤ 1
N

∏
j∈u

(αj + 1) ≤ 1
N

∏
j∈u

[C1j log(j + 1) log(eN)],

for some constant C1 > 0, where e ≈ 2.718 is the antilogarithm of 1. This leads to
a bound on the square L2-star-discrepancy of

[D∗2(SN )]2 ≤ 1
N2

∑
0<|u|<∞

γu
∏
j∈u

[C1j log(j + 1) log(eN)]2.(37)

If the γu satisfy (34), then for any δ > 0 choose an ` such that

∞∑
j=`+1

γ
1/2
j j log(j + 1) ≤ δ/C1,

and define

C2 = min

1, δC−1
1

∑̀
j=1

γ
1/2
j j log(j + 1)


−1
 ,

wj =

{
C2

2γj , j = 1, . . . , `,
γj , j = `+ 1, `+ 2, . . . .

Note from these definitions that wu =
∏
j∈uwj ≥ C2`

2 γu, and

∞∑
j=1

w
1/2
j j log(j + 1) = C2

∑̀
j=1

γ
1/2
j j log(j + 1) +

∞∑
j=`+1

γ
1/2
j j log(j + 1) ≤ 2δ/C1.
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Using (37), the binomial theorem, and some elementary properties of exponentials
and logarithms one may then derive the following upper bound on the discrepancy:

[D∗2(SN )]2 ≤ 1
N2C2`

2

∑
0<|u|<∞

wu
∏
j∈u

[C1j log(j + 1) log(eN)]2

≤ 1
N2C2`

2

∞∏
j=1

{1 + wj [C1j log(j + 1) log(eN)]2}

≤ 1
N2C2`

2

exp

 ∞∑
j=1

log{1 + wj [C1j log(j + 1) log(eN)]2}


≤ 1
N2C2`

2

exp

 ∞∑
j=1

w
1/2
j [C1j log(j + 1) log(eN)]


=

1
N2C2`

2

exp

C1 log(eN)
∞∑
j=1

w
1/2
j j log(j + 1)


≤ 1
N2C2`

2

exp [2δ log(eN)] = C2
∗N
−2+2δ,

where C∗ = eδ/C`2. This completes the proof under condition (34).
When condition (35) is satisfied, note that this implies that

∑
0<|u|<∞

γu
∏
j∈u

[j log(j + 1)]2 ≤
s∑

d=1


∞∑
j=1

γj [j log(j + 1)]2


d

<∞.

Define

C3 =
∑

0<|u|<∞

γu∏
j∈u

[j log(j + 1)]2

 max
d=1,... ,s

(
C1

2δ

)2d

(2d)!.

It now follows from (37) that

[D∗2(SN )]2 ≤ 1
N2

s∑
d=1

[C1 log(eN)]2d
∑
|u|=d

γu∏
j∈u

[j log(j + 1)]2




≤ C3

N2

s∑
d=1

[2δ log(eN)]2d

(2d)!
≤ C3

N2
exp[2δ log(eN)] = C2

∗N
−2+2δ,

where C∗ =
√
C3e

δ. This completes the proof under the hypothesis (35).

The proof of Theorem 9 is constructive. Some other low discrepancy sequences,
for example, the Sobol’ sequence [Sob69], some Niederreiter sequences [Nie92] and
some Niederreiter-Xing sequences [NX96] also have infinite dimensional versions.
The upper bounds for the traditional star-discrepancy of these sequences may be
better than that of the Halton sequence. Thus, one may be able to construct
an infinite dimensional QMC algorithm with ε-exponent equal to 1 under slightly
weaker assumptions on the weights than those above. Note, however, that the
Faure sequence [Fau82] has no infinite dimensional version, since one must use a
prime base no smaller than the dimension of the sequence.
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Figure 1. The L2-star-discrepancy of the Halton sequence (solid)
for the choice of weights (38a) for s = 1, 2, 4, . . . , 128 and N =
1, 2, 4, . . . , 8192 and the root mean square L2-star-discrepancy of
a simple random sample (dashed) for the same choice of weights
with s =∞.

4.3. Computational investigation of infinite dimensional low discrepancy
sequences. Theorem 7 shows that the discrepancy is the worst-case error of the
QMC algorithm over the unit ball in H(K∞). Theorems 8 and 9 give upper bounds
on the ε-exponent under different conditions on the weights. It is interesting to
investigate empirically the influence of the weights on the discrepancy of an actual
infinite dimensional low discrepancy sequence. The traditional discrepancies in
finite dimension were studied empirically in [MC94].

In practice, one cannot exactly compute the discrepancy of an infinite dimen-
sional sequence. However, one may do the following. Suppose that the γu satisfy
(7), and the γj satisfy one of two possibilities:

γj = j−2, j = 1, 2, . . . , s, γj = 0, j = s+ 1, s+ 2, . . . ,(38a)

γj = 2−j , j = 1, 2, · · · , s, γj = 0, j = s+ 1, s+ 2, . . . ,(38b)

for some fixed s. The L2-star-discrepancy of the Halton sequence is computed for
these two choices of weights for s = 1, 2, 4, 8, 16, 32, 64, 128. As s increases the
discrepancy approaches the infinite dimensional case. The root mean square L2-
star-discrepancy of a simple random sample is also shown for reference. These plots
are shown in Figures 1 and 2.

According to Theorem 8 both choices of the weights in (38) insure that the
infinite dimensional integration problem is QMC tractable and the corresponding
ε-exponent is no greater than 2. From the proof of this theorem the root mean
square discrepancy of the random sample decays like O(N−1/2), as shown in both
Figures 1 and 2. The discrepancy of the Halton sequence in Figure 1 decays roughly
like O(N−1/2) for small N and at a faster rate for large N . It would seem that
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Figure 2. The same as in Figure 1, but for the choice of weights (38b).

the discrepancy for the Halton sequence decays at best like O(N−1/2) for weights
(38a) and s → ∞. For the choice of weights in (38b), Theorem 9 guarantees that
the infinite dimensional Halton sequence has a discrepancy that decreases nearly
like O(N−1). The plot in Figure 2 is consistent with this conclusion. In fact, the
discrepancy in this figure approaches the infinite dimensional case quite quickly;
the cases s = 8, . . . , 128 are indistinguishable to the eye.
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