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LAVRENTIEV REGULARIZATION + RITZ APPROXIMATION
= UNIFORM FINITE ELEMENT ERROR ESTIMATES

FOR DIFFERENTIAL EQUATIONS
WITH ROUGH COEFFICIENTS

ANDREW KNYAZEV AND OLOF WIDLUND

Abstract. We consider a parametric family of boundary value problems for a
diffusion equation with a diffusion coefficient equal to a small constant in a sub-
domain. Such problems are not uniformly well-posed when the constant gets
small. However, in a series of papers, Bakhvalov and Knyazev have suggested a
natural splitting of the problem into two well-posed problems. Using this idea,
we prove a uniform finite element error estimate for our model problem in the
standard parameter-independent Sobolev norm. We also study uniform reg-
ularity of the transmission problem, needed for approximation. A traditional
finite element method with only one additional assumption, namely, that the

boundary of the subdomain with the small coefficient does not cut any finite
element, is considered.

One interpretation of our main theorem is in terms of regularization. Our
FEM problem can be viewed as resulting from a Lavrentiev regularization and
a Ritz–Galerkin approximation of a symmetric ill-posed problem. Our error
estimate can then be used to find an optimal regularization parameter together
with the optimal dimension of the approximation subspace.

1. Introduction

A particularly challenging class of problems arises with models described by
partial differential equations (PDE’s) with highly discontinuous coefficients. Many
important physical problems are of this nature. In particular, they arise in the
design and study of composite materials built from essentially different components;
see, e.g., [9, 38, 7, 34, 24].

The fictitious domain/embedding method is another source of PDE’s with highly
discontinuous coefficients; cf., e.g., [39, 1, 12, 31]. In this method, the domain of
the original boundary value problem is embedded into a larger one, where a new
artificial boundary value problem is constructed. In the new, fictitious part of
the domain the coefficients of PDE are chosen to be close to zero, if the original
boundary condition is of Neumann type, or very large, in the Dirichlet case.
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There are several difficulties associated with the numerical solution of PDE’s
with a large jump in the coefficients as the problems are not uniformly well-posed
with respect to the jump. The most serious difficulty is that an approximation, e.g.,
by a finite element method (FEM), of the PDE’s may be very inaccurate. There
are two main reasons for that: the lack of smoothness of the solution and the jump
in the coefficients.

It is well known that solutions of problems with rough coefficients are generally
not smooth, and then the usual finite element method cannot provide an accurate
approximation; see, e.g., [20]. One way of approximating a nonsmooth function
involves extra, special trial functions, to augment the standard FEM space, in order
to approximate the nonsmooth part of the function. Finding such trial functions
will usually require some knowledge of the form of the singularity, which is not
always available. Another possibility is to employ refined meshes in the areas of
low regularity; these areas are often known in advance.

In this paper, however, the lack of smoothness in the solution is not our primary
concern. We shall assume that the solution can somehow be approximated by a
trial subspace in a suitable Sobolev space. In our FEM example, we shall assume,
for simplicity, that the coefficients are piecewise smooth and that the jumps in the
coefficients appear across a smooth interface between subdomains.

Here we instead address a second difficulty, attributable to the large jump in the
coefficients, concentrating on a case of a small coefficient in a subdomain, which
results in a problem which is not uniformly elliptic.

The standard approach of deriving a FEM error estimate for selfadjoint PDE
problems is based on the fact that the FEM approximation is the best approxi-
mation in the energy norm. In our case of highly discontinuous coefficients, the
energy norm is not uniformly equivalent (with respect to the jump) to a natural
parameter-independent Sobolev norm. This standard approach will fail to give an
error estimate in a nonweighted Sobolev space with a constant, independent of
the jump. Therefore, energy norm based estimates are naturally considered for
problems with highly discontinuous coefficients; there are also similar results based
on a least squares technique (see [30]) in weighted Sobolev spaces. Energy norm
based error estimates are perfectly adequate when the Sobolev norm of the solution
goes to infinity with the jump, in other words, when the solution is not uniformly
smooth. As a simple example, we can consider a homogeneous Dirichlet problem
for a diffusion equation with a small diffusion coefficient in a subdomain and with
a fixed, parameter-independent right-hand side. Then, not even the H1 norm of
the solution is uniformly bounded, and there is little hope to obtain uniform er-
ror estimates in that norm. However, the assumption that the right-hand side
is independent of the jump is not always satisfactory from the physical point of
view, e.g., it does not allow us to consider a cavity in a perforated domain as a
limit case of a subdomain with a small, but positive, diffusion coefficient. If we
instead assume that the right-hand side is also small in the subdomain, where the
diffusion coefficient is small, then the solution is uniformly bounded in a related
parameter-independent Sobolev norm, in this case, the H1 norm; see [3] for the
exact formulation of such an assumption. It is known (see, e.g., [29, 3]) that un-
der such an assumption a problem with a cavity can indeed be treated as a limit
of a problem with a vanishing coefficient in the corresponding subdomain. Equa-
tions determining homogenized properties of composite materials (see, e.g., [7, 34])
provide an example of practical problems where our assumption is satisfied.
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In such a case, the energy norm will clearly deteriorate in the subdomain where
the coefficient is small, and energy norm-based error estimates do not provide much
information on the accuracy in the subdomain. Our goal is to derive new error
estimates, which would use the assumption that the amplitude of the right-hand side
is consistent with the value of the coefficients in subdomains such that the solution
is uniformly bounded in an appropriate parameter-independent Sobolev norm. We
also want to take advantage of the assumption that the jump in the coefficients is
“regular.” While in our example the operator is not uniformly elliptic (with respect
to the jump) and the problem is not uniformly well posed, we can nevertheless
treat the problem as essentially well-posed because of our special assumptions on
the discontinuity in coefficients.

Our approach does not cover truly degenerate elliptic equations (see, e.g., [28])
with arbitrary discontinuous coefficients and/or ultimate failure of the ellipticity
condition. For such equations, the use of the energy norm, or a properly weighted
Sobolev norm seems vital.

As an application of our abstract result, we derive a FEM error estimate for the
diffusion equation with a large jump in coefficients between subdomains. For this
application, we also study uniform regularity of the transmission problem, needed
for approximation. We prove that the solution, under some natural assumptions,
is somewhat smooth uniformly in the jump of coefficients.

In the present paper, we consider the FEM approximation only. However, we
expect our technique might be helpful for other approximation schemes as well; see,
e.g., [18, 16, 17].

Our main result, being stated for the case involving a small coefficient, can be
trivially reformulated for the case of a large coefficient and provides a uniform error
estimate in the absence of locking. Thus, it can be applied, e.g., to estimate the
error of a conforming FEM for displacements for linear elasticity equations in the
incompressible limit, provided that non-locking elements are used. Some problems
with a large parameter that appear in penalty methods can also be treated using
our approach.

The technical part of the paper starts with some simple, but relevant, theoreti-
cal results for a parametric family of abstract symmetric operator equations with a
jump in the coefficients described by a small parameter; see Section 2. Such prob-
lems are not uniformly well-posed, in the traditional sense, when the constant gets
small. However, they can be split naturally into two well-posed problems as sug-
gested in [3, 4]. Using the projection method for the original problem is equivalent
to applying the projection method to these two problems separately.

By exploring this idea and analyzing the fine structure of the error, we prove,
in Section 3, a new error estimate of the Ritz–Galerkin method applied to our
operator equation. The estimate does not use the energy norm, and all the constants
are explicitly displayed and shown to be independent of the parameter. Under
the assumption that the amplitude of the corresponding right-hand side is small
consistently with the parameter, our bound for the error is parameter independent.

It is interesting to note that our finite dimensional problem can be viewed as a
result of a Lavrentiev regularization—an analog of the Tikhonov regularization for
symmetric problems—for the Ritz–Galerkin approximation of an ill-posed problem
with a null-space; see, e.g., the recent books [41], pp. 162-173, and [8], Chapter
4. Our error estimate can be used to find the optimal regularization parameter
together with the optimal dimension of the approximation subspace. A similar
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result is known in the regularization theory (cf. [35], pp. 75-78) but is based on
different assumptions and techniques. However, the question of the choice of the
regularization parameter for a general symmetric ill-posed problem is beyond the
scope of this paper.

In Section 4, we provide a simple example of our general theory. We apply our
main result to estimate the error of the FEM approximation of a parametric family
of boundary value problems for the diffusion equation where the diffusion coefficient
equals a small constant in a subdomain. For simplicity, we only analyze a quite
simple finite element method rather than one particularly constructed for “rough
coefficient” problems; we consider piecewise linear finite elements and assume, in
addition, that no element is cut by the boundary of the subdomain with the small
coefficient. In such a setting our abstract estimate becomes a uniform FEM error
estimate for the model problem in the standard parameter-independent Sobolev
norm. Our theory can also provide an error estimate for the well-known case of
a self-intersecting interface with a constant independent of the jump, but it will
depend on the mesh size. Sufficient smoothness of the interface is important.

Finally, we recall that the numerical solution of the resulting algebraic system is
also difficult as the matrix of the system is not uniformly well-posed with respect
to the jump in coefficients. For a number of preconditioned iterative methods the
larger the jumps of the coefficients, the slower the convergence. However, it has
been shown in the continuous case (cf. [2, 3, 6]) that if a special initial guess
is used, then the rate of convergence does not depend on the size of the jumps
even if a standard preconditioned iterative method is used. A similar result has
been established in [27, 4] for algebraic systems of linear equations with symmetric
coefficient matrices. Such methods are closely related to the capacitance matrix
methods; see, e.g., [36, 11]. Many domain decomposition methods can also be used
for the effective solution of problems with rough coefficients and can provide uniform
convergence. A relationship of different methods of this sort has been discovered
in [5].

A preliminary version of this paper was published as a technical report UCD-
CCM 132, 1998, at the Center for Computational Mathematics, University of Col-
orado at Denver.

2. An abstract equation

In a real Hilbert space, we consider an abstract linear system (A+ωI)u = f with
a bounded symmetric nonnegative definite operator A, and a positive parameter
ω, 0 < ω ≤ 1, where I is the identity operator. The condition number of the
operator A + ωI may tend to infinity as ω tends to zero; our system may not be
uniformly well posed. The operator A may have a non-zero null-space Ker(A).

In the present paper, we call a linear subset, which is not necessarily closed, a
subspace. If such a linear subset is closed, we call it a closed subspace. We note
that the kernel of a bounded operator is always a closed subspace.

The subspace Im(A), the range of A, and its closure, Im(A), which is also the
orthogonal complement to the kernel Ker(A), will play a key role in the present
paper.

We first make a couple of simple, but important observations, based on results
from [3, 4].
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Lemma 2.1. The subspace Im(A) and its closure Im(A) are invariant with respect
to the operator A+ ωI.

Lemma 2.2. Let

f = f0 + f1, f0 ∈ Ker(A), f1 ∈ Im(A).

Then,

u = u1 +
1
ω
f0,

where u1 ∈ Im(A) is the solution of

(A+ ωI)u1 = f1.(2.1)

Lemma 2.3. Let us assume that

A ≥ cI on Im(A),(2.2)

i.e.,

(Av, v) ≥ c(v, v), ∀v ∈ Im(A).

Then, Im(A) = Im(A),

A+ ωI ≥ (c+ ω)I on Im(A),

and the problem (2.1) is well-posed on Im(A) uniformly in ω, 0 < ω ≤ 1. This
means that, for any given f1 ∈ Im(A), there exists a unique solution u1 ∈ Im(A)
and that

‖u1‖ ≤
1

c+ ω
‖f1‖.

Informally speaking, under assumption (2.2) the problem (A+ ωI)u = f is not
truly ill-posed as it can be split into two problems which are uniformly well-posed
in ω, 0 < ω ≤ 1.

Let us also mention that we do not use assumption (2.2) in our main Theorem
3.1. Instead, we shall assume a discrete analog of it, (3.4), in the next section.

3. The Ritz–Galerkin method for the abstract equation

Let P be an orthogonal projector on a closed trial subspace Im(P ). We do not
assume that Im(P ) is necessarily finite dimensional, though in FEM applications
this is usually the case.

Applying the Ritz–Galerkin method to the original equation (A+ωI)u = f gives

P (A+ ωI)v = Pf, v ∈ Im(P ).(3.1)

Let B = PA|Im(P ); then 0 ≤ B = B∗ ≤ ‖A‖I. We can rewrite (3.1) as (B+ωI)v =
Pf in Im(P ).

We use the same approach as in the previous section when treating this equation.
Let

Pf = (Pf)0 + (Pf)1, (Pf)0 ∈ Ker(B), (Pf)1 ∈ Im(B).

Then,

v = v1 +
1
ω

(Pf)0,
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where v1 satisfies

P (A+ ωI)v1 = (Pf)1, v1 ∈ Im(B).(3.2)

The following lemma is an analog of Lemma 2.1.

Lemma 3.1. The subspace Im(B) and its closure Im(B) are invariant with respect
to the operator B in Im(P ) and to the operator P (A+ ωI).

Lemma 3.2.

Ker(B) = Ker(A) ∩ Im(P ).

Proof. Clearly,

Ker(B) ⊇ Ker(A) ∩ Im(P ).

Let u ∈ Im(P ), such that PAu = 0. Then,

0 = (PAu, u) = (Au, u) = ‖A1/2u‖2.
Thus, A1/2u = 0 and u ∈ Ker(A).

Lemma 3.3. The vector (Pf)0 ∈ Ker(A) ∩ Im(P ) is the best approximation of
the vector f0 in the subspace Ker(A) ∩ Im(P ), i.e.,

(f0 − (Pf)0, v) = 0, ∀ v ∈ Ker(A) ∩ Im(P ).(3.3)

Proof. Indeed,

((Pf)0, v) = (Pf, v) = (f, v) = (f0, v) + (f1, v) = (f0, v)

as (Pf)0 ∈ Ker(A) ∩ Im(P ) and v ∈ Ker(A) ∩ Im(P ).

Lemma 3.4.

Im(B) = P Im(A).

Proof. We have

Im(B) = Im(PAP ) ⊆ Im(PA) = P Im(A),

but this does not complete the argument.
Instead of the statement of the Lemma, we shall prove the following equivalent

formula

Ker(PAP ) = Ker(AP ).

Trivially,

Ker(PAP ) ⊇Ker(AP ).

Now, let PAPu = 0 for some vector u. Then

0 = (PAPu, u) = (APu, Pu) = ‖A1/2Pu‖2.
Therefore, A1/2Pu = 0 and APu = 0.

We have to make an important Assumption, analogous to (2.2),

B ≥ c̃I on Im(B),(3.4)

i.e.,

(Bv, v) ≥ c̃(v, v), ∀v ∈ Im(B).

It is important to understand that assumption (3.4) always holds for finite di-
mensional approximations, i.e., when dim Im(P ) < ∞. However, for essentially
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ill-posed problems the constant goes to zero when we make the subspace Im(P )
larger in order to improve the approximation. In our later example, assumption
(3.4) will be equivalent to a discrete extension theorem, Proposition 4.2, which is
valid uniformly in the mesh size parameter, under some assumptions. Consequently,
our example in the next section is not truly ill-conditioned.

Lemma 3.5. Under assumption (3.4), the subspace Im(B) is closed, Im(B) =
Im(B), and

Im(B) = P Im(A).(3.5)

Proof. The subspace Im(B) is closed by the Closed Graph Theorem of functional
analysis. Then (3.5) follows from the previous lemma and the inclusion

Im(B) ⊆ P Im(A)

already given in Lemma 3.4

The following lemma can be established by using standard arguments.

Lemma 3.6. Under assumption (3.4), the following inequality holds

P (A+ ωI) = B + ωI ≥ (c̃+ ω)I on Im(B),

and problem (3.2) is well-posed on Im(B) uniformly in ω. The latter means that
there exists an inverse operator (B + ωI)−1 : Im(B) → Im(B) which is bounded
uniformly in ω, 0 < ω ≤ 1, such that

‖(B + ωI)−1‖Im(B)→Im(B) ≤
1

c̃+ ω
<

1
c̃
,

and for any given f1 ∈ Im(A) there exists a unique solution v1 ∈ Im(B) such that

‖v1‖ ≤ 1
c̃+ ω

‖Pf1‖.

Our goal is to estimate the norm of the difference of the exact solution u of our
original equation (A+ ωI)u = f and its Ritz approximation v given by (3.1):

‖u− v‖ = ‖u1 − v1 +
1
ω
{f0 − (Pf)0}‖.

We first need some simpler estimates.

Lemma 3.7. The following estimate holds:

‖Pf1 − (Pf)1‖ ≤ ‖f0 − (Pf)0‖.(3.6)

Proof. We have

Pf1 − (Pf)1 = Pf1 − {Pf − (Pf)0} = (Pf)0 − Pf0 = P{(Pf)0 − f0}.
Thus,

‖Pf1 − (Pf)1‖ = ‖P{(Pf)0 − f0}‖ ≤ ‖f0 − (Pf)0‖.

Lemma 3.8. Under assumption (3.4), let w1 ∈ Im(P ) be the Ritz approximation
of u1 ∈ Im(A), the solution of (2.1), i.e.,

P (A+ ωI)w1 = Pf1.(3.7)
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Then, the following estimate holds:

‖u1 − w1‖ ≤
(

1 +
‖(I − P )AP‖

c̃+ ω

)
‖u1 − Pu1‖.(3.8)

Proof. By the triangle inequality,

‖u1 − w1‖ ≤ ‖u1 − Pu1‖+ ‖Pu1 − w1‖.
We now estimate the second term.

We first notice that Pu1 ∈ Im(B) and Pf1 ∈ Im(B) by Lemma 3.5 as u1 ∈
Im(A) and f1 ∈ Im(A). Then, w1 ∈ Im(B) by Lemmas 3.1 and 3.6. Thus,
Pu1 − w1 ∈ Im(B) and, using Lemma 3.6,

‖Pu1 − w1‖ = ‖(B − ωI)−1(A− ωI)(Pu1 − w1)‖

≤ 1
c̃+ ω

‖(A− ωI)(Pu1 − w1)‖

=
1

c̃+ ω
sup

v∈Im(B), v 6=0

|((A + ωI)(Pu1 − w1), v)|
‖v‖ .

By using the equality

((A+ ωI)(u1 − w1), v) = 0, v ∈ Im(P ),

which follows fromw1 being the Ritz approximation of u1 in Im(P ), we can estimate
the numerator:

|((A+ ωI)(Pu1 − w1), v)| = |((A+ ωI)(Pu1 − u1), v)|
= |(PA(I − P )(Pu1 − u1), v)| ≤ ‖(I − P )AP‖‖Pu1 − u1‖‖v‖.

The statement of the lemma follows immediately.

Lemma 3.9. For w1, defined in the previous lemma, we also have the estimate

‖v1 − w1‖ ≤ 1
c̃+ ω

‖Pf1 − (Pf)1‖(3.9)

assuming that (3.4) holds.

Proof. Comparing equations (3.2) and (3.7), which define v1 and w1, shows that
the operator is the same, but that the right-hand sides may differ,

(B + ωI)(v1 − w1) = Pf1 − (Pf)1.

Now, by Lemma 3.5,

Pf1 ∈ P Im(A) = Im(B).

Therefore, by Lemma 3.1, w1 ∈ Im(B) and so is v1. Finally, Lemma 3.6 gives the
estimate of the lemma.

Summarizing Lemmas 3.7-3.9, we have our main result.

Theorem 3.1. Under assumption (3.4), the following error estimate holds:

‖u− v‖ ≤ C1dist{u1; Im(P )}+ C2dist
{

1
ω
f0; Im(P ) ∩Ker(A)

}
,(3.10)

where

C1 = 1 +
‖(I − P )AP‖

c̃+ ω
≤ 1 +

‖(I − P )AP‖
c̃

,

C2 =
ω

c̃+ ω
+ 1 ≤ 1

c̃+ 1
+ 1 < 2,



UNIFORM FINITE ELEMENT ERROR ESTIMATES 25

u is the exact solution of (A + ωI)u = f and v is its Ritz approximation given by
(3.1).

Remark 3.1. Let us assume that we can approximate u1 and f0 accurately by prop-
erly choosing P and that the constant c̃ does not tend to 0. Then, the first term can
be made small uniformly in ω, 0 < ω ≤ 1. If we make the natural assumption that
the amplitude of f0 is consistent with ω → 0, i.e., f0 = O(ω), which is equivalent
to the assumption that the exact solution

u = u1 +
1
ω
f0

is uniformly bounded, see Lemmas 2.2-2.3, then the second term in our theorem
can also be made uniformly small. Thus, the theorem provides a ω-uniform error
estimate of the Ritz solution for a problem which is not formally ω-uniformly well-
posed.

Remark 3.2. The theorem can also be applied to a problem with a large parameter
written in the following form (

I +
1
ω
A

)
u = g.

We simply take f to satisfy g = ωf and use a scaling to return to the previous
problem. If g is parameter-independent, which is usually the case in practice, then
the amplitude of f0 is consistent with ω → 0 automatically, and we get a uniform
estimate. Moreover, the amplitudes of f1 and u1 are then also consistent with
ω → 0. This allows us to rewrite the estimate (3.10) in the following form:

‖u− v‖ ≤ C3dist
{

1
ω
u1; Im(P )

}
+ C2dist

{
1
ω
f0; Im(P ) ∩Ker(A)

}
,(3.11)

where,

C3 = ωC1 = ω + ‖(I − P )AP‖ ω

c̃+ ω
≤ 1 + ‖(I − P )AP‖, C2 < 2.

This shows that assumption (3.4) is no longer needed. Let us note that in some
practical applications the subspace Im(P )∩Ker(A) is too small, maybe even trivial,
to provide a good approximation for f0 ∈ Ker(A). Such a situation is known as
locking. Thus, our inequality (3.11) gives a uniform error estimate if there is no
locking.

Remark 3.3. The term ‖(I − P )AP‖ can be replaced by the simple upper bound
‖A‖.

The following section gives an example of our general theory.

4. Example: FEM for the diffusion equation

To illustrate our results, we now consider a standard finite element method
applied to the diffusion equation in two dimensions with a highly discontinuous
diffusion coefficient:

div ((k + ω)gradu− φ) = 0, u ∈
0

W 1
2 (2), φ ∈ (L2(2))2,(4.1)

where 2 is a polygonal simply connected domain.
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Let D ⊂ 2 be a polygonal connected domain and let the open set D⊥ be defined
by the conditions:

D ∩ D⊥ = ∅, D̄ ∪ D̄⊥ = 2̄.

We assume that D⊥ is a polygonal simply connected domain. To simplify the
regularity results and extension theorems we need, let us also assume that D⊥ is
strictly inside 2. This assumption, in particular, forces the intersection ∂D ∩ ∂2

to have a positive Lebesgue measure on ∂2,

mes{∂D ∩ ∂2} > 0,

which ensures that any function in
0

W 1
2 (2) that is constant in D vanishes there.

We assume that 0 < ω ≤ 1 and that k is a piecewise constant function on 2,
and highly discontinuous :

k = 0 on D⊥, k = 1 on D.(4.2)

To be able to approximate the solution, using a FEM subspace, we naturally need
extra smoothness assumptions. We shall assume that the restrictions φ satisfy:

φ|D ∈ (Wα
2 (D))2, φ|D⊥ ∈ (Wα

2 (D⊥))2

with a positive constant α < 1/2. For our first theorem of this section, Theorem 4.1,
we shall also assume that

u|D ∈W 1+α
2 (D);

and we shall actually prove that this assumption holds uniformly in ω in Theo-
rem 4.2.

Because of the abstract nature of our main error estimate, it can be applied to
any conforming FEM that fits inside the general Ritz–Galerkin framework. As an
example, we consider the simplest FEM.

Let a standard finite element triangulation be constructed, with shape regular
and quasi-uniform triangles, and denote the mesh size parameter by h. To prove
a quasi-optimal error estimate, we need to assume, in addition, that none of the
finite elements cuts the boundary ∂D ∪ ∂D⊥ ∪ ∂2. Finally, we consider the FEM

subspace of
0

W 1
2 (2) that consists of continuous piecewise linear functions.

Theorem 4.1. Under the assumptions made above in this section, we have

‖u− uh‖W 1
2 (2) ≤ Chα

(
‖u‖W 1+α

2 (D) +
1
ω
‖φ‖(Wα

2 (D⊥))2

)
,(4.3)

where u is the exact solution and uh, earlier denoted by v, the FEM solution. Here
and below C denotes a generic constant which depends only on the domains 2 and
D.

Proof. The proof requires several steps, formulated as lemmas.
We first need to represent equation (4.1) as in (3.1).

Lemma 4.1. Let
0

W 1
2 (2) be the Hilbert space with the scalar product

(u, v) = (u, v) 0
W 1

2 (2)
=
∫

2

gradu · grad vd2,
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and let the operator A be defined by∫
D

gradu · gradvdD = (Au, v), ∀u, v ∈
0

W 1
2 (2).

Let further the right-hand side f be defined by∫
2

φ · grad vd2 = (f, v), ∀v ∈
0

W 1
2 (2).

Then the weak form of equation (4.1),∫
2

(k + ω)gradu · grad vd2 =
∫

2

φ · gradvd2, ∀v ∈
0

W 1
2 (2)

is equivalent to our original operator equation (A + ωI)u = f, written in the fol-
lowing form

((A+ ωI)u, v) = (f, v), ∀v ∈
0

W 1
2 (2).

Proof. From our definition of A,∫
2

(k + ω)gradu · gradvd2

=
∫
D

gradu · gradvdD + ω

∫
2

gradu · gradvd2 = ((A + ωI)u, v),

or, in other words,

A+ ωI = (∆)−1div(k + ω)grad ,

where ∆ ≡ div grad refers to the Laplacian, defined on functions in
0

W 1
2 (2).

Our definition of the right-hand side f is equivalent to

f = ∆−1divφ.

The statement of the lemma follows immediately.

The next important step, simple for our example, is to characterize the subspaces
Ker(A) and Im(A). We use the definition of the operator A directly.

Lemma 4.2. The subspace Ker(A) is
0

W 1
2 (D⊥) extended by zero to D. The sub-

space Im(A) is the set of all functions in
0

W 1
2 (2) which are harmonic in D⊥.

This result allows us to describe u1 and f0, which play main roles in our analysis
in Section 3, immediately.

Corollary 4.1. The function u1 is the restriction of the function u to the subdo-
main D extended harmonically into D⊥.

Proof. The formula u = u1 + f0/ω of Lemma 2.2 gives an orthogonal sum, with
u1 ∈ Im(A).

Similarly, as f = f0+f1 is an orthogonal sum with f0 ∈ Ker(A) and f1 ∈ Im(A),
we obtain

Corollary 4.2. The function f1 is the restriction of f to the subdomain D extended

harmonically into D⊥. Then, f0 = f − f1 ∈
0

W 1
2 (D⊥), extended by zero in D.
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Remark 4.1. The structure of the subspace Ker(A) and, thus, that of Im(A), the
orthogonal complement of the former, clearly depends on topological properties of
our domain 2 and its subdomain D. For example, if mes{∂D∩∂2} = 0, contrary to
our assumption, Ker(A) would consist of functions, taking a constant, not neces-
sarily zero, value in D. The situation gets even more complex, if D is not connected;
see [3]. In the present paper, we consider only the simplest possible scenario.

In Section 2, we have established that our abstract problem, though not formally
well posed itself, can be split into two well posed problems, under assumption (2.2).
We follow [3] to prove that assumption (2.2) holds for equation (4.1) under our
assumptions on the subdomains. We do it in two steps using the following

Proposition 4.1. There exists a constant κ > 0 such that for any function v ∈
0

W 1
2 (2) there is a function w ∈

0

W 1
2 (2) satisfying w − v ∈ Ker(A) and∫

D

gradw · gradwdD ≥ κ
∫
2

gradw · gradwd2.(4.4)

Lemma 4.3. Proposition 4.1 holds under our assumptions on the subdomains.

Proof. The proposition is, in fact, a well known extension theorem in
0

W 1
2 (2) from

the polygon D to the polygon 2. It holds for general Lipschitz domains as well; see,
e.g., [10, 32].

Lemma 4.4. Assumption (2.2) is equivalent to Proposition 4.1, where c = κ.

Proof. Assumption (2.2) means that

(Av, v) ≥ c(v, v), v ∈ Im(A).

By the definition of A,

k0

∫
D

gradv · gradvdD ≤
∫
D

grad v · gradvdD = (Av, v).

Thus, we just need to prove that the inequality of the proposition is equivalent to∫
D

gradv · grad vdD ≥ κ
∫
2

gradv · gradvd2, v ∈ Im(A).(4.5)

Let us suppose that the proposition holds. We apply inequality (4.4) to a function
v ∈ Im(A), using the fact that v = w in D since w − v ∈ Ker(A) :∫

D

grad v · gradvdD ≥ κ
∫
2

gradw · gradwd2.

Finally, ∫
2

gradw · gradwd2 = (w,w) = (v, v) + (w − v, w − v) ≥ (v, v)

=
∫
2

gradv · grad vd2,

as w = v + (w − v) is an orthogonal decomposition.
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To prove the reverse, let us consider an arbitrary function v ∈
0

W 1
2 (2) and

represent it as an orthogonal decomposition v = w + (v −w), w ∈ Im(A), v −w ∈
Ker(A). Then (4.5) holds for w ∈ Im(A) and (4.4) immediately follows.

Remark 4.2. We note that the proposition is not true, in general, if the boundary
of D is not Lipschitz, cf., e.g., [3]. For periodic boundary value problems, extension
theorems can be found in [34, 3].

The previous step guarantees, by Lemmas 2.1-2.3, that equation (2.1) for u1 is
well-posed. We now have to prove that the functions u1 and f0, of Theorem 3.1,
are smooth enough (uniformly in ω) in D and D⊥ under natural assumptions, so
that we can use standard FEM approximation results.

We first consider f0:

Lemma 4.5. Let φ ∈ (Wα
2 (D⊥))2 for a positive constant α < 1/2. Then f0 also

has extra smoothness:

‖f0‖W 1+α
2 (D⊥) ≤ C‖φ‖(Wα

2 (D⊥))2 .

Proof. f0 ∈ Ker(A) can be defined by

(f − f0, v) = 0, ∀v ∈ Ker(A),

i.e., f0 vanishes in D and its restriction to D⊥ satisfies f0 ∈
0

W 1
2 (D⊥) and∫

D⊥
(grad f0 − φ) · grad vdD⊥ = 0, ∀v ∈

0

W 1
2 (D⊥);

see Corollary 4.2. Under our assumptions on D⊥, this problem is well posed:

‖f0‖W 1
2 (D⊥) ≤ C‖φ‖(L2(D⊥))2 .

Moreover, if the function φ is smooth in D⊥, the statement of the lemma follows
from well-known regularity results (e.g., [21, 26, 32]) as f0 is a solution of the

Poisson equation in
0

W 1
2 (D⊥).

By Lemmas 2.2-2.3,

‖u1‖W 1
2 (2) ≤ C‖φ‖(L2(D))2 ,

i.e., the function u1 is bounded in W 1
2 (2), uniformly in ω. We also need u1 to be

smooth enough in D and D⊥, uniformly in ω:

Lemma 4.6. If u ∈W 1+α
2 (D) for a positive constant α < 1/2, then

‖u1‖W 1+α
2 (D) + ‖u1‖W 1+α

2 (D⊥) ≤ C‖u‖W 1+α
2 (D).

Proof. By Corollary 4.1, the function u1 is simply the restriction of the function u
to the subdomain D extended harmonically into D⊥. Thus, as u ∈ W 1+α

2 (D), we
have trivially

‖u1‖W 1+α
2 (D) = ‖u‖W 1+α

2 (D).

Moreover,

‖u1‖W 1+α
2 (D⊥) ≤ C‖u‖W 1+α

2 (D).

The latter statement is based on the fact that u1 is harmonic in D⊥ and is an
extension of the function u, which is smooth in D. Thus, u1 solves the Laplace
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equation with nonhomogeneous Dirichlet boundary condition on ∂D⊥ given by the
trace of u on ∂D⊥. Under our assumption that D⊥ is a polygon strictly inside of
2, we have

u|∂D⊥ ∈ W
1/2+α
2 (∂D⊥)

(e.g., [26, 32]). Then, the required estimate follows from known regularity results
for general Lipschitz domains (e.g., [26, 40, 32]).

We now turn our attention to the finite element method. Let P be the
0

W 1
2 (2)-

orthogonal projector onto Im(P ), which is our FEM subspace of
0

W 1
2 (2) that

consists of continuous piecewise linear functions on a standard finite element tri-
angulation, with shape regular and quasi-uniform triangles. Then our abstract
Ritz-Galerkin method becomes a standard FEM.

The subspace Ker(B) is, by Lemma 3.2, a subspace of continuous piecewise
linear functions in Im(P ) which vanish on D. The subspace Im(B) consists of
functions in Im(P ) that are discrete harmonic on D⊥.

Based on our regularity result, Lemma 4.5, f0 can be approximated in
0

W 1
2 (D⊥)

by a finite element-based subspace:

Lemma 4.7.

dist {f0; Im(P ) ∩Ker(A)} ≤ Chα‖φ‖(Wα
2 (D⊥))2 .

Proof. We recall that the subspace Ker(A) is
0

W 1
2 (D⊥) extended by zero to D. By

our assumption that none of finite elements cuts the interface between D and D⊥,
the intersection Im(P ) ∩Ker(A) is simply a subspace of our FEM space of FEM

functions taking zero value in D. As the function f0 is in
0

W 1
2 (D⊥), the distance we

need to estimate is the standard
0

W 1
2 (D⊥) FEM approximation error in D⊥ and

the estimate follows from a standard result of FEM theory; see, e.g., [13].

Similarly, by Lemma 4.6, u1 can be approximated by a finite element-based
subspace:

Lemma 4.8.

dist {u1; Im(P )} ≤ Chα‖u‖W 1+α
2 (D).

Now we need to prove that assumption (3.4) holds in our example. As in the
continuous case discussed earlier in the proof, we do it in two steps, using the
following

Proposition 4.2. There exists a constant κ̃ > 0 such that for any function v ∈
0

W 1
2 (2) ∩ Im(P ) there exists a function w ∈

0

W 1
2 (2) ∩ Im(P ) satisfying w − v ∈

Ker(A) ∩ Im(P ) and∫
D

gradw · gradwdD ≥ κ̃
∫
2

gradw · gradwd2.(4.6)

Remark 4.3. Let us note that Proposition 4.2 always holds for any FEM, since a
FEM uses a finite dimensional trial subspace. However, in some cases the constant,
κ̃, goes to zero with h, the mesh size parameter, even if the continuous analog,
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Proposition 4.1, holds. Then c̃ decreases too, which affects our error estimate for
small ω. Therefore, if possible, the FEM should be constructed such that κ̃ in
Proposition 4.2 can be chosen to be independent of h.

The following well-known lemma (see, e.g., [1, 42]) provides the required result
for our example.

Lemma 4.9. Under the assumption made earlier that none of finite elements cut
the boundary ∂D ∪ ∂D⊥ ∪ ∂2, Proposition 4.2 holds with a constant κ̃ independent
of h.

We now prove that assumption (3.4) is equivalent to this finite element extension
theorem.

Lemma 4.10. Assumption (3.4) is equivalent to Proposition 4.2, in particular,
Proposition 4.2 justifies assumption (3.4) with c̃ = κ̃.

Proof. Assumption (3.4) means that

(Bv, v) ≥ c̃(v, v), v ∈ Im(B).

By the definition of B, we have (Av, v) = (Bv, v). Then, by (4.2),∫
D

gradv · gradvdD = (Bv, v).

Thus, we just need to prove that the inequality of the proposition is equivalent to∫
D

grad v · gradvdD ≥ κ̃
∫
2

grad v · grad vd2, v ∈ Im(B).(4.7)

Let us suppose that the proposition holds. We can then apply inequality (4.6)
to a function v ∈ Im(B), using the fact that v = w in D since w − v ∈ Ker(B) ⊂
Ker(A) : ∫

D

grad v · gradvdD ≥ κ̃
∫
2

gradw · gradwd2.

Finally, ∫
2

gradw · gradwd2 = (w,w) = (v, v) + (w − v, w − v) ≥ (v, v)

=
∫
2

gradv · grad vd2,

as w = v + (w − v) is an orthogonal decomposition.
To prove the reverse, let us consider an arbitrary function v ∈ Im(P ) and rep-

resent it as an orthogonal decomposition v = w + (v − w), w ∈ Im(B), v − w ∈
Ker(B). Then we have (4.7) for w ∈ Im(B) and (4.4) immediately follows.

Thus, our constant c̃ does not depend on ω and h. Another needed quantity, the
norm ‖(I − P )AP‖, can be estimated trivially:

‖(I − P )AP‖ ≤ ‖A‖ ≤ 1,

and therefore, ‖(I − P )AP‖ is bounded uniformly in ω as well.
Putting all the arguments above together turns our abstract estimate (3.10) into

the error estimate (4.3), we needed to prove.
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We finally consider the question of regularity of the solution u, uniform in ω.
Theorem 4.1 involves a term ‖u‖W 1+α

2 (D). We will argue that this quantity is
uniformly bounded in ω, with a fixed positive α up to a certain value αmax, in the
following sense:

‖u‖W 1+α
2 (D) ≤ C‖φ‖(Wα

2 (2))2 , α ∈ (0, αmax).(4.8)

The crucial value αmax is determined by the strongest possible singularity in
the solution u, informally speaking. It is well-known that, under our assumptions,
the solution u is regular strictly inside of subdomains D and D⊥ for a sufficiently
smooth right-hand side φ, but may have singularities near the boundary ∂2 and
near the interface

Γ = ∂D ∩ ∂D⊥,
defined by the jump in the coefficients. The interface Γ simply separates subdomains
D and D⊥, where the diffusion coefficient takes different values.

Regularity of the solution of the problem of the present section is closely related
to regularity of transmission and diffraction problems and properties of layer po-
tentials and Steklov-Poincaré operators on nonsmooth interfaces, which have been
extensively studied; see, e.g., recent papers [40, 33], the book [32], and references
therein. A very brief summary of relevant known results follows.

Two major cases need to be considered separately: when domain D⊥ is strictly
inside (SI) of 2 and the opposite case, when it is not (NSI). The former, the SI,
case is simpler as it can be reduced to studying layer potentials on Γ without
boundary conditions, because in the SI case the boundary Γ is a closed Lipschitz
curve without selfintersection and it does not have any common points, also called
junction points, with the boundary ∂2, where the homogeneous Dirichlet boundary
condition is enforced.

Under the assumption that both subdomains are polygons, the only possible
singularities are known to be vertex singularities corresponding to corner points of
∂2 and Γ, and, in the NSI case, to junction points of ∂2 and Γ. These singularities
can be calculated explicitly, using well-known equations for αmax for every vertex;
see, e.g., Kellogg in [25], p. 112, who shows that αmax ∈ [1/2, 3/2] for the SI case.
The NSI case is also affected by the type of boundary conditions imposed on the
boundary ∂2. For our case of the Dirichlet boundary conditions everywhere on ∂2,
[33] states on p. 368 that αmax ∈ [1/4, 1]. Let us highlight that, though the actual
singularity due to the jump in coefficients does depend on ω, the lower bounds, 1/2
for the SI case, and 1/4 for the NSI case, do not, thus providing regularity uniform
in ω. An important issue of uniformity of constants in regularity estimates is not
considered in [25, 33], therefore leaving the question of validity of estimate (4.8)
open.

For general Lipschitz domains instead of polygons, the situation is even more
delicate. None of publications known to us specifically addresses regularity issues
uniformly in the jump of coefficients. The SI case is treated (e.g., in [19]) from
where one can derive (4.8) with αmax = 1/2, but for a fixed ω. A similar result
for the NSI case is obtained in [40], Theorem 5, with an extra assumption on the
junction points of ∂2 with Γ. The latter result does not appear to be uniform in
ω as it would contradict a sharp lower bound 1/4 for polygons cited above. In the
former result of [19], however, for the SI case, the dependence on ω can be removed,
as we show in the next theorem, using a different technique. We note that in the
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limit ω = 0, which corresponds to a Neumann boundary value problem on D, the
regularity result holds with αmax = 1/2; see, e.g., [26]. We will provide a sketch of
the proof of uniform regularity for the SI case and general Lipschitz domains in the
rest of the section. Let us just remind the reader that we have already made the
SI assumption in the beginning of the section and used it in Lemma 4.6.

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied, except that the
domain 2 and its subdomains D and D⊥ can be general Lipschitz domains, not
necessarily polygons. Then estimate (4.8) holds for αmax = 1/2, uniformly in ω.

Proof. We first simplify equation (4.1) by introducing a new function

w = u− û ∈
0

W 1
2 (2),

where function û ∈
0

W 1
2 (2) satisfies the equation

(1 + ω)
∫
D

(grad û− φ) · gradvdD = 0, ∀v ∈
0

W 1
2 (D),(4.9)

in D and satisfies the equation

ω

∫
D⊥

(grad û− φ) · grad vdD⊥ = 0, ∀v ∈
0

W 1
2 (D⊥),(4.10)

in D⊥.
Let us introduce the following notation for the corresponding restrictions ûD =

û|D and ûD⊥ = û|D⊥ of the function û and similarly for the function φ. We note that
equations (4.9) and (4.10) are uniformly elliptic homogeneous Dirichlet boundary
value problems on Lipschitz domains. Therefore,

‖ûD‖W 1+α
2 (D) ≤ C‖φD‖(Wα

2 (D))2 , α ∈ (0, αmax)(4.11)

and

‖ûD⊥‖W 1+α
2 (D⊥) ≤ C

1
ω
‖φD⊥‖(Wα

2 (D⊥))2 , α ∈ (0, αmax),(4.12)

uniformly in ω by well-known regularity results; see, e.g., [21, 22]. We just now
need to prove uniform regularity of w.

By construction, the function w is piece-wise harmonic, i.e., the function wD =
w|D is harmonic in D and the function wD⊥ = w|D⊥ is harmonic in D⊥. On the
interface of the jump in the coefficients, Γ, the functions wD and wD⊥ have the
same trace w|Γ from D and D⊥ and satisfy the following standard transmission
condition on Γ between D and D⊥ for the normal components:

n · ((1 + ω)grad (wD + ûD)− φD)|Γ = n · (ωgrad (wD⊥ + ûD⊥)− φD⊥)|Γ ,(4.13)

where the left side corresponds to D and the right side to D⊥, and n is the normal
direction on Γ, oriented outward D.

Let us rewrite equation (4.13) by collecting all terms with w in the left-hand
side:

(1 + ω)
∂

∂n
wD

∣∣∣∣
Γ

− ω
∂

∂n
wD⊥

∣∣∣∣
Γ

= n · (φD − (1 + ω)grad ûD)|Γ − n · (φD⊥ − ωgrad ûD⊥)|Γ .
(4.14)
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Let us now define a Steklov-Poincaré operator SD that, for a given harmonic

function wD = w|D , where w ∈
0

W 1
2 (2), maps its trace on Γ into its Neumann

datum on Γ:

SD : wD|Γ 7→
∂

∂n
wD

∣∣∣∣
Γ

.

Let us define, similarly, the Steklov-Poincaré operator SD⊥ for the other domain
D⊥ using the normal direction on Γ, oriented outwards from D⊥. Steklov-Poincaré
operators act between the corresponding space of trace functions

Λ = {w|Γ, ∀w ∈
0

W 1
2 (2)}.

and its dual Λ′. These operators are symmetric and positive semi-definite on Λ and
bounded as mappings Λ→ Λ′; see, e.g., [37]. Moreover, the operator SD is positive
definite, because of the homogeneous Dirichlet boundary conditions on ∂2.

As the domain D⊥ is strictly inside, i.e., Γ is a closed curve, the space Λ is simply
W

1/2
2 (Γ) and Λ′ is W−1/2

2 (Γ).
Using the Steklov-Poincaré operators just defined, we rewrite equation (4.14) as

((1 + ω)SD + ωSD⊥)λ = χ,(4.15)

where we introduce new notations: λ for the common trace w|Γ of wD and wD⊥ on
Γ and χ for the right-hand side of (4.14). The operator (1 +ω)SD +ωSD⊥ ≥ SD is
symmetric, positive definite and bounded, uniformly in ω, 0 ≤ ω ≤ 1, e.g., [5]. The
right-hand side χ is bounded uniformly in ω, i.e.,

‖χ‖
W
−1/2
2 (Γ)

≤ C‖φ‖(L2(2))2

as follows from its definition; see, e.g., [32]. Therefore, the solution λ is bounded
uniformly in W

1/2
2 (Γ), i.e.,

‖λ‖
W

1/2
2 (Γ)

≤ C‖φ‖(L2(2))2 ,

which leads to uniform boundedness of w and u1 in
0

W 1
2 (2). This is the result

established earlier in the paper using Lemmas 2.2–2.3. Thus, the restriction of u
to D is uniformly bounded in W 1

2 (D).
At this point, we are prepared to study the uniform regularity of λ, which shall

demonstrate uniform regularity of u in D.
We first notice that χ ∈ W−1/2+α

2 (Γ) because of extra smoothness of our func-
tions φ and û that determine χ according to (4.11), (4.12), and (4.14):

‖χ‖
W
−1/2+α
2 (Γ)

≤ C‖φ‖(Wα
2 (2))2 .

In recent works [14, 23, 32], a regularity theory of Steklov-Poincaré operators is
established for Lipschitz domains. Using these results for our situation, we have
that for all α ∈ [0, 1/2) the Steklov-Poincaré operator SD⊥ is bounded as

SD⊥ : W 1/2+α
2 (Γ) 7→W

−1/2+α
2 (Γ)

and the Steklov-Poincaré operator SD is coercive:

‖S−1
D ψ‖

W
1/2+α
2 (Γ)

≤ C
(
‖ψ‖

W
−1/2+α
2 (Γ)

+ ‖S−1
D ψ‖

W
1/2
2 (Γ)

)
.(4.16)

The boundedness of SD and the coerciveness (modulo constants) of SD⊥ are not
important for our further arguments.
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It is not clear, whether our Steklov-Poincaré operators are symmetric and pos-
itive semi-definite on W

1/2+α
2 (Γ) as they are on W

1/2
2 (Γ), so we need to use a

different approach.
Let us rewrite equation (4.15) as(

I +
ω

1 + ω
S−1
D SD⊥

)
λ =

1
1 + ω

S−1
D χ.(4.17)

As the operator S−1
D SD⊥ is bounded in W

1/2+α
2 (Γ), the operator of equation

(4.17) is a small perturbation of the identity, therefore, it has a bounded inverse in
W

1/2+α
2 (Γ), for nonnegative ω small enough, e.g., for

0 ≤ ω ≤ ‖S−1
D SD⊥‖−1

W
1/2+α
2 (Γ)

.(4.18)

Thus, the regularity estimate holds

‖λ‖
W

1/2+α
2 (Γ)

≤ C‖φ‖(Wα
2 (2))2 ,

uniformly in ω satisfying (4.18).
The function λ, the trace of w, is uniformly bounded in W

1/2+α
2 (Γ). Thus, the

function wD, as a harmonic extension of λ to D, is uniformly bounded in W 1+α
2 (D):

‖wD‖W 1/2+α
2 (D)

≤ C‖φ‖(Wα
2 (2))2 .

Indeed, wD solves the Laplace equation in the Lipschitz domain D with homoge-
neous Dirichlet boundary conditions on ∂2 and nonhomogeneous Dirichlet bound-
ary conditions, given by λ ∈ W

1/2+α
2 (Γ), on Γ. Thus, known regularity results

(e.g., [26, 40, 32]) can be applied.
As u = w + û, we combine the previous inequality with (4.11) to get (4.8)

uniformly in ω, satisfying (4.18).
Finally, we repeat that the statement of the theorem for a fixed positive ω follows

from [19, 40]. Therefore, we can take ω ∈ [0, 1].

5. Numerical experiments for the diffusion equation

We illustrate our theoretical estimates by solving three model problems numer-
ically: a square divided into two rectangles (Case I), an L-shaped domain divided
into two rectangles (Case II), and a square divided into four squares (Case III). See
Figure 5.1.

D D⊥

0 1 2
0

2

D D⊥

0 1 2
0

2

D D⊥

D⊥ D

0 1 2
0

1

2

Figure 5.1. Model Domains: Cases I–III
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Figure 5.2. Exact Solution, ω = 1/4, Cases I–III

We note that none of these cases satisfies our assumptions on the subdomains. In
Case III, even the extension theorem fails. Nevertheless, we shall see that numerical
results for the solutions chosen are very favorable and support our conclusion on
the uniformity of error bounds.

We assume that

k = 0 on D⊥, k = 1− ω in D,(5.1)

and that 0 < ω ≤ 1.
The exact solution is chosen to be the following function (see also Figure 5.2):

Case I: u =
{
ωx(x− 1)y(y − 2) in D
−(x− 1)(x− 2)y(y − 2) in D⊥.

Case II: u =

 ωx(x − 1)y(y − 1) in D, 0 ≤ y ≤ 1
−ωx(x− 1)(y − 1)(y − 2) in D, 1 ≤ y ≤ 2
−(x− 1)(x− 2)y(y − 1) in D⊥.

Case III: u =


ωx(x− 1)y(y − 1) in D, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
ω(x− 1)(x− 2)(y − 1)(y − 2) in D, 1 ≤ x ≤ 2, 1 ≤ y ≤ 2
−(x− 1)(x− 2)y(y − 1) in D⊥, 1 ≤ x ≤ 2, 0 ≤ y ≤ 1
−x(x− 1)(y − 1)(y − 2)) in D⊥, 0 ≤ x ≤ 1, 1 ≤ y ≤ 2.

The Galerkin method used is defined by piecewise linear functions on the stan-
dard uniform triangulation, and we use a four-point quadrature scheme (see [15])
which is exact for third-order polynomials.

The error in the approximation is computed as

ε =

√∫
2

|∇u −∇uh|2d2,

where u is the exact solution and uh the approximation.
The results are shown in the figures for 1 ≤ h ≤ 2−5 and 1 ≤ ω ≤ 2−5. Numerical

results with smaller ω are practically the same as those with ω = 2−5, within the
picture resolution.

Figures 5.3–5.5 show that ε decreases linearly with h if ω is fixed, as we expect.
When h is fixed, decreasing ω appears to cause ε to approach a limiting value. The
exact solution, as well as the approximate solution, approach limits when ω → 0.
Our numerical tests with ω = 1

32 and ω as small as 10−6 demonstrate that the
error, ε, approaches a limit as ω decreases.
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Figure 5.3. Error in Case I
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Figure 5.4. Error in Case II

In our other set of numerical tests, the solution u is chosen to be independent of
ω. We noticed that for some functions u, the FEM solutions uh are also independent
of ω, and, trivially, the approximation error does not depend on ω either. We finally
found a simple function

u = (x+ y)x(2 − x)y(2− y)

which in Case I led to the FEM solution uh changing with ω. The approximation
error for this case is given in Table 5.1.
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Table 5.1. Error for Case I, exact solution u = (x+ y)x(2 − x)y(2− y).

ω = 1 ω = 10−1 ω = 10−2 ω = 10−3 ω = 10−4 ω = 10−5

h = 1 3.9470 3.9858 4.0025 4.0046 4.0048 4.0048
h = 1/2 2.3012 2.3086 2.3118 2.3122 2.3122 2.3122
h = 1/4 1.2034 1.2044 1.2049 1.2050 1.2050 1.2050
h = 1/8 0.60877 0.60891 0.60897 0.60898 0.60898 0.60898
h = 1/16 0.30529 0.30531 0.30531 0.30532 0.30532 0.30532
h = 1/32 0.15276 0.15276 0.15276 0.15276 0.15276 0.15276
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