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MACRO-ELEMENTS AND STABLE LOCAL BASES
FOR SPLINES ON POWELL-SABIN TRIANGULATIONS

MING-JUN LAI AND LARRY L. SCHUMAKER

Abstract. Macro-elements of arbitrary smoothness are constructed on
Powell-Sabin triangle splits. These elements are useful for solving boundary-
value problems and for interpolation of Hermite data. It is shown that they
are optimal with respect to spline degree, and we believe they are also op-
timal with respect to the number of degrees of freedom. The construction
provides local bases for certain superspline spaces defined over Powell-Sabin
refinements. These bases are shown to be stable as a function of the smallest
angle in the triangulation, which in turn implies that the associated spline
spaces have optimal order approximation power.

1. Introduction

Let 4 be the triangulation of a polygonal domain Ω in R2. In this paper we are
interested in polynomial spline spaces of the form

Srd(4) := {s ∈ Cr(Ω) : s|T ∈ Pd for all T ∈ 4},
where d > r ≥ 0 are given integers and Pd is the space of bivariate polynomials of
degree d. A basis {Bi}ni=1 for a spline space S is called a stable local basis provided
that there exist constants `,K1,K2 depending only on the smallest angle in 4 such
that

1) for each 1 ≤ i ≤ n, there is a vertex vi of 4 for which supp(Bi) ⊆ star`(vi),
2) for all choices of the coefficient vector c = (c1, . . . , cn),

K1‖c‖∞ ≤ ‖
n∑
i=1

ciBi‖∞ ≤ K2‖c‖∞.(1.1)

Here star0(v) is defined to be the set of all triangles surrounding a vertex v, and
star`(v) is defined to be the union of all star0(w) where w is a vertex of star`−1(v).

It is known that if a space of splines S of degree d contains Pd and has a stable
local basis, then it provides optimal order approximations of smooth functions (see
Remark 11.3). Such spaces are of particular importance in applications, including
data fitting and the solution of boundary-value problems.

Finding stable local bases for spline spaces Srd(4) is a nontrivial task for r > 0,
and for general triangulations can only be done when d ≥ 3r+2 (see Remark 11.4).
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The first constructions were for very special superspline subspaces of Srd(4) and
can be found in [2], [16]. A construction for arbitrary spline spaces Srd(4) and
corresponding superspline subspaces was discovered only very recently (see [3]).

To get stable bases for spline spaces with d < 3r + 2, we have to restrict our-
selves to classes of triangulations with a special structure. In this paper we work
with Powell-Sabin triangulations 4PS which are obtained from an arbitrary tri-
angulation 4 by splitting each triangle into six subtriangles (see Section 2). The
main result of this paper is an explicit construction of stable local bases for certain
superspline subspaces of Srd(r)(4PS), where

d(r) :=


(9m+ 1)/2, if r = 2m and m is odd,
(9m+ 2)/2, if r = 2m and m is even,
(9m+ 4)/2, if r = 2m+ 1 and m is even,
(9m+ 5)/2, if r = 2m+ 1 and m is odd,

(1.2)

for all r > 1. As a by-product of the construction, we obtain certain useful macro-
elements which can be used in the numerical solution of boundary-value problems
and to solve Hermite interpolation problems. These elements are improvements on
similar elements obtained earlier in [8], [20]–[24] (see Section 9 for details).

The paper is organized as follows. In Section 2 we discuss Powell-Sabin refine-
ments and in Section 3 the Bernstein-Bézier technique. In Sections 4 and 5 we
treat the case r = 2m, while Sections 6 and 7 are devoted to the case r = 2m+ 1.
In Section 8 we show how our constructions yield interesting new macro-elements
for all choices of smoothness r, and in Section 9 we compare them with previously
available macro-elements on Powell-Sabin splits. In Section 10 we show that our
choices of degrees and supersmoothness are optimal in a certain sense. The last
section is devoted to remarks.

2. Powell-Sabin refinements

Definition 2.1. Given a triangulation 4 of a set Ω, the Powell-Sabin refinement
of 4 is the triangulation obtained as follows:

1) connect the incenter vT of each triangle T in 4 to the three vertices of T ;
2) connect incenters of neighboring triangles of 4 to each other;
3) if T is a triangle with an edge e on the boundary of Ω, connect the incenter

of T to the center of e.

In the special case where this refinement process is applied to a single triangle
T := 〈v1, v2, v3〉 with incenter v, we call the resulting Powell-Sabin refinement a
Powell-Sabin cell. We denote such a cell by 4v and suppose that its boundary
vertices are {v1, w1, v2, w2, v3, w3} in counterclockwise order.

The following lemma shows that the Powell-Sabin refinement process is well
defined and that the smallest angle in 4PS can be bounded below by a constant
depending on the smallest angle in 4 (see also [23]).

Lemma 2.2. Suppose 4PS is the Powell-Sabin refinement of a given triangulation
4. Then θPS ≥ θ4 sin(θ4)/4, where θPS is the smallest angle in 4PS and θ4 is
the smallest angle in 4. Moreover, for each edge e := 〈v1, v2〉 of 4, the point w1

obtained from step 2 of Definition 2.1 lies in the interior of e. More precisely, there
exist constants 0 < K1 < K2, depending only on the minimum θ4 of the interior
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Figure 1. The geometry of incenters

angles of 4 and the exterior angles of the polygonal set Ω at boundary vertices of
4, such that

0 < K1 ≤
h1

h2
≤ K2,(2.1)

where h1 = |〈v1, w1〉| and h2 = |〈w1, v2〉|.

Proof. We consider the case where e := 〈v1, v2〉 is an edge between two triangles
T1 and T2 (see Figure 1). The case where e is a boundary edge of 4 and w1 is its
center is similar. Let θ be the minimum of the interior angles of T1 ∪ T2 and the
exterior angles at v1 and v2. Suppose u1 and u2 are the incenters of T1 and T2.
Let α1 and α2 be the angles at v1 of T1 and T2, and α̃1 and α̃2 the angles at v2.
These angles are bounded below by θ/2. Consider the triangles T := 〈u1, v1, u2〉
and T̃ := 〈u1, u2, v2〉 with angles β1, β, β2 and β̃1, β̃2, β̃, where β := (α1 + α2)/2
and β̃ := (α̃1 + α̃2)/2. It is easy to see that

θ ≤ β, β̃ ≤ π − θ.
Let r1 := |〈v1, u1〉|, r2 := |〈v1, u2〉|, r̃1 := |〈v2, u1〉|, r̃2 := |〈v2, u2〉|, l1 := |〈u1, w1〉|,
and l2 := |〈u2, w1〉|. Then using the law of sines, we see that

β1 ≥ sin(β1) ≥ r2 sin(β)
l1 + l2

, β2 ≥ sin(β2) ≥ r1 sin(β)
l1 + l2

β̃1 ≥ sin(β̃1) ≥ r̃2 sin(β̃)
l1 + l2

, β̃2 ≥ sin(β̃2) ≥ r̃1 sin(β̃)
l1 + l2

.

We claim that the ratios ri/(l1 + l2) and r̃i/(l1 + l2) are bounded below by θ/4.
Indeed, it is clear that the ri’s and r̃i’s are bounded below by the radius of the

inscribed circles of T1 and T2, which in turn are bounded below by
|e|
2

tan(θ) ≥
|e|θ/2. Since the li are bounded above by the length |e| of e, we have

ri/(l1 + l2) ≥ |e|θ
2(|e|+ |e|) = θ/4,

for i = 1, 2. Similar bounds hold for r̃1 and r̃2. It thus follows that the βi and β̃i
are bounded below by θ sin(θ)/4. Now applying the law of sines again, we find that

sin(β1)
h1

=
sin(α1

2 )
l1

,
sin(β̃1)
h2

=
sin( α̃1

2 )
l1

.

Combining these facts leads to (2.1).
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3. Constructing local bases by the Bernstein-Bézier technique

Our main tool for constructing stable local bases is the well-known Bernstein-
Bézier technique used in most of the papers in our list of references. For any given
d and triangulation 4, let

Dd,4 :=
⋃
T∈4
Dd,T

be the set of domain points, where

Dd,T := {ξTijk :=
(iv1 + jv2 + kv3)

d
, i+ j + k = d}

and T := 〈v1, v2, v3〉. As observed in [1], there is a 1-1 correspondence between
the set of splines S0

d(4) and the set of coefficients {cξ}ξ∈Dd,4 . We recall that a
set M ⊆ Dd,4 is a minimal determining set (MDS) for a linear space S ⊆ S0

d(4)
provided that all coefficients of s ∈ S are uniquely determined from its coefficients
{cξ}ξ∈M. If M is such a set, then there exists a corresponding set {Bξ}ξ∈M of
dual splines satisfying

ληBξ = δξ,η, all η ∈ M.(3.1)

The splines {Bξ}ξ∈M are linearly independent and form a basis for S. In general,
considerable care is needed in choosing S and M to ensure that the dual basis is
stable and local.

We now recall some standard notation concerning domain points. Given a tri-
angle T := 〈v1, v2, v3〉, the ring of radius n around v1 is defined by

RTn (v1) := {ξTijk : i = d− n},

and the disk of radius n around v1 is defined by

DT
n (v1) := {ξTijk : i ≥ d− n}.

We have similar definitions at the other vertices of T . If v is a vertex of a triangu-
lation 4, we define

Rn(v) :=
⋃
RTn (v),

Dn(v) :=
⋃
DT
n (v),

where the union is taken over all triangles attached to v.
We close this section by introducing the class of supersplines of interest here.

Given a triangulation 4 with vertices V , let 4PS be its Powell-Sabin refinement.
Let W be the set of incenters used to form the refinement, and let E be the set
of edges e of 4PS such that neither end of e belongs to V . These are the edges
obtained by connecting incenters to other incenters, or to midpoints of boundary
edges. Then given any integers 0 ≤ r1, r2, r3, we define

Sr1,r2,r3d (4PS) := {s ∈ Sr1d (4PS) : s ∈ Cr2(v) for all v ∈ V ,

s ∈ Cr3(v) for all v ∈ W , and s is Cr3 across all edges in E}.
(3.2)

Note that this is not a classical superspline space since here we have enforced
additional continuity across certain (but not all) interior edges of 4PS .
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4. The case r = 2m with m odd

In this section we work with the superspline spaces

Sm(4PS) := S2m,3m,3m
9m+1

2
(4PS).

To describe a minimal determining set whose corresponding set of dual splines
form a stable local basis for Sm(4PS), we first examine the space Sm(4v) on
the Powell-Sabin cell 4v. Recall that we number the boundary vertices of 4v as
v1, w1, v2, w2, v3, w3 and set T [i] := 〈v, vi, wi〉 for i = 1, 2, 3.

Theorem 4.1. Let M be the union of the following sets of domain points:

1) DT [i]

3m (vi) for i = 1, 2, 3;
2) for i = 1, 2, 3,

a) {ξT [i]

j,j−(3m+3)/2,d−2j+(3m+3)/2, . . . , ξ
T [i]

j,0,d−j} for j = (3m+ 3)/2, . . . , 2m,

b) {ξT [i]

j,(5m−3)/2−j,d−(5m−3)/2, . . . , ξ
T [i]

j,0,d−j} for j = 2m+ 1, . . . , (5m− 3)/2,

c) ξT
[i]

j,d−j,0 for j = 3m+ 1, . . . , (7m− 1)/2;

3) ξT
[1]

d,0,0.

Then M is a minimal determining set for Sm(4v), and the corresponding dual
basis {Bξ}ξ∈M is a stable basis for Sm(4v). Moreover,

dim Sm(4v) =
57m2 + 54m+ 13

4
.(4.1)

Proof. We first show that M is a minimal determining set. Suppose s is a spline
in Sm(4v) whose B-coefficients corresponding to points inM are set to prescribed
values. We claim that all remaining coefficients are uniquely determined. First we
observe that the coefficients corresponding to domain points in the disks D3m(vi)
can be uniquely computed from those corresponding to domain points in item 1
by the classical smoothness conditions. This is a stable computation (cf. [16])
since by Lemma 2.2 the barycentric coordinate values entering into the smoothness
conditions are bounded by a constant depending on the smallest angle in 4v.

For each edge ei := 〈vi, vi+1〉 of T , we compute the coefficients associated with
domain points in the rows 0, . . . , 2m parallel to ei by using the smoothness con-
ditions across the edges 〈v, wi〉. Then for each edge ei, we compute coefficients
corresponding to domain points in the rows 2m + 1, . . . , (5m− 1)/2 parallel to ei
by alternately using the smoothness conditions across the edges 〈v, vi〉 and 〈v, vi+1〉
(see Lemma 6.2 of [16]) and then across the edge 〈v, wi〉. The lemma shows that
this is a stable computation. At this point we have computed the coefficients of s
in the disks D(7m−1)/2(vi).

To complete the proof, we note that by the supersmoothness at v, we can regard
the coefficients of s in the disk D3m(v) as the coefficients of a polynomial p of degree
3m on the triangle T̃ := 〈u1, u2, u3〉, where ui := ξT

[i]

3m+1
2 , 6m2 ,0

for i = 1, 2, 3. These

coefficients uniquely determine all of the derivatives Dα
xD

β
y p(ui) for 0 ≤ α + β ≤

4m−2
2 and i = 1, 2, 3. We now expand p in terms of the Bernstein polynomials B̃3m

ijk

on the triangle T̃ . Using Lemma 2.2, it follows that these derivatives uniquely and
stably determine all of the B-coefficients c̃ijk of p except for the coefficient c̃mmm.
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Figure 2. The macro-element S2,3,3
5 (4v)

We compute this coefficient from the equation

c̃mmmB̃
3m
mmm(v) = s(v)−

∑
ν+µ+κ=3m

(ν,µ,κ) 6=(m,m,m)

c̃νµκB̃
3m
νµκ(v).

Note that B̃3m
mmm(v) is bounded below by a constant depending on θ in view of

Lemma 2.2, and so c̃mmm can also be stably computed. We can now apply the de
Casteljau algorithm (cf. [4], [5]) to subdivide the polynomial into a spline of degree
3m on the Powell-Sabin split of T̃ . It is well known that this is a stable process.
Finally, we transfer the computed coefficients back to the B-net for the spline s.

To compute the dimension of Sm(4v), we observe that

#M = 3
[(

3m+ 2
2

)
+
(m−1

2 + 1
2

)
+
(m−3

2 + 1
2

)
+
m− 1

2

]
+ 1,

which reduces to the number in (4.1).

Example 4.2. The stable local MDS of Theorem 4.1 for S2,3,3
5 (4v) is shown in

Figure 2. It contains 31 domain points. There are 10 points in each of the disks
D3(vi) (marked with dark circles), and one at the incenter (marked with a larger
dark circle).

Discussion. We have shaded the disks D3(vi) and D3(v). Once the points in
the MDS are set, we use the C3 smoothness conditions across the edges 〈v, wi〉 to
compute the coefficients marked with an x. The remaining coefficients in D3(v) are
then computed by the method described in the proof of Theorem 4.1.

Example 4.3. The stable local MDS of Theorem 4.1 for S6,9,9
14 (4v) is shown in

Figure 3. It contains 172 domain points. There are 55 points in each of the
disks D9(vi) (marked with dark circles), and one at the incenter (marked with a
larger dark circle). In addition, there are three points corresponding to item 2c of
Theorem 4.1 (marked with diamonds), and three points corresponding to item 2a
(marked with triangles). In this case there are no points corresponding to item 2b.
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Figure 3. The macro-element S6,9,9
14 (4v)

Discussion. Here we have shaded the disks D9(vi) and D9(v). Once the points
in the MDS are set, we use the C9 smoothness conditions across the edges 〈v, wi〉
to compute the coefficients marked with an x. The C8 smoothness conditions
across the edge ei := 〈v, wi〉 are then used to compute the coefficients in the 6-th
row parallel to ei. Using the smoothness conditions across the edges 〈v, vi〉, we
then compute the remaining coefficients on the rings R10(vi) for i = 1, 2, 3. The
remaining coefficients in D9(v) are then computed by the method described in the
proof of Theorem 4.1.

We can now use the construction of Theorem 4.1 to create a stable local basis
for Sm(4).

Theorem 4.4. Let M be the following set of domain points:
1) for each v ∈ V, choose a triangle T of 4PS attached to v and include DT

3m(v);
2) for each edge e = 〈v1, v2〉 of 4, let w1 be the vertex of 4PS on e, and let

T = 〈v, v1, w1〉 be a triangle of 4PS containing the edge 〈v1, w1〉. Then
include the points
a) {ξTj,j−(3m+3)/2,d−2j+(3m+3)/2, . . . , ξ

T
j,0,d−j} for j = (3m+ 3)/2, . . . , 2m,

b) {ξTj,(5m−3)/2−j,d−(5m−3)/2, . . . , ξ
T
j,0,d−j} for j = 2m+ 1, . . . , (5m− 3)/2,

c) ξTj,d−j,0 for j = 3m+ 1, . . . , (7m− 1)/2;
3) for each triangle T in 4, include the domain point at its incenter.

Then M is a minimal determining set for Sm(4), and the corresponding dual basis
{Bξ}ξ∈M forms a stable star-supported basis for Sm(4). Moreover,

dim Sm(4) =
(

3m+ 2
2

)
V +

(m−1
2 + 1

2

)
E +

[
3
(m−3

2 + 1
2

)
+

(3m− 1)
2

]
N,

(4.2)

where V,E,N are the number of vertices, edges, and triangles in 4.

Proof. Following the arguments used in the proof of Theorem 4.1, it is easy to verify
thatM is a minimal determining set and that the construction of a dual basis can
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be carried out in a stable way. It is also easy to see that each dual basis spline has
support on star(v) for some vertex v. To get the dimension, we simply count the
number of points in M.

5. The case r = 2m with m even

In this section we work with the superspline spaces

Sm(4PS) := S2m,3m,3m+1
9m+2

2
(4PS).

We begin with a result for a Powell-Sabin cell 4v.

Theorem 5.1. Let M be the union of the following sets of domain points:

1) DT [i]

3m (vi) for i = 1, 2, 3;
2) for i = 1, 2, 3,

a) {ξT [i]

j,j−(3m+2)/2,d−2j+(3m+2)/2, . . . , ξ
T [i]

j,0,d−j} for j = (3m+ 2)/2, . . . , 2m,

b) {ξT [i]

j,(5m−2)/2−j,d−(5m−2)/2, . . . , ξ
T [i]

j,0,d−j} for j = 2m+ 1, . . . , (5m− 2)/2,

c) ξT
[i]

j,d−j,0 for j = 3m+ 1, . . . , 7m/2.

Then M is a minimal determining set for Sm(4v), and the corresponding dual
basis {Bξ}ξ∈M is a stable basis for Sm(4v). Moreover,

dim Sm(4v) =
57m2 + 60m+ 12

4
.(5.1)

Proof. The proof that M is a minimal determining set follows along the same
lines as in the proof of Theorem 4.1. In particular, setting all coefficients of a spline
s ∈ Sm(4v) corresponding toM, we can stably compute all coefficients in the disks
D3m(vi) using the smoothness conditions. Then we use the smoothness conditions
across the edges 〈v, wi〉 and those across the edges 〈v, vi〉 to stably compute all
coefficients of s in the rows 0, . . . , (5m−2)/2 parallel to edges of T and in the disks
D7m/2(vi).

The computation of the remaining coefficients follows along the lines of the proof
of Theorem 4.1, but is slightly different since the MDS M does not contain the
point ξT

[1]

d,0,0. We now regard the coefficients of s in the disk D3m+1(v) to be the
coefficients of a polynomial p of degree 3m+1 on the triangle T̃ := 〈u1, u2, u3〉 with
ui := ξT

[i]

3m
2 , 6m+2

2 ,0
for i = 1, 2, 3. These coefficients uniquely determine Dα

xD
β
y p(ui)

for 0 ≤ α+β ≤ 2m. These derivatives uniquely and stably determine all coefficients
of p in the expansion in terms of Bernstein polynomials B̃3m+1

ijk on the triangle T̃ .
We then apply the de Casteljau algorithm to subdivide p into a spline of degree
3m+ 1 on the Powell-Sabin split of T̃ , and then transfer the computed coefficients
back to the B-net for the spline s.

To compute the dimension of Sm(4v), we observe that

#M = 3
[(

3m+ 2
2

)
+
(m

2 + 1
2

)
+
(m−2

2 + 1
2

)
+
m

2

]
,

which reduces to the number in (5.1).

Example 5.2. The stable local MDS for S4,6,7
10 (4v) of Theorem 5.1 is shown in

Figure 4. It contains 90 domain points. There are 28 points in each of the disks
D6(vi) (marked with dark circles). In addition there are three points corresponding
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Figure 4. The macro-element S4,6,7
10 (4v)

to item 2c (marked with diamonds), and three points corresponding to item 2a
(marked with triangles).

Discussion. We have shaded the disks D6(vi) and D7(v). Once the points in
the MDS are set, we use the C7 smoothness conditions across the edges 〈v, wi〉 to
compute the coefficients marked with an x. The C6 smoothness condition across
the edges 〈v, wi〉 are used to computed coefficients in the 4-th rows parallel to the
outer edges of 4v. Then the smoothness conditions across the edges 〈v, vi〉 are
used to compute the remaining coefficients on the rings R7(vi) for i = 1, 2, 3. The
remaining coefficients in D7(v) are then computed by the method described in the
proof of Theorem 5.1.

Example 5.3. The stable local MDS for S8,12,13
19 (4v) of Theorem 5.1 is shown in

Figure 5. It contains 291 domain points. There are 91 points in each of the disks
D12(vi) (marked with dark circles), In addition, there are six points corresponding
to item 2c of Theorem 4.1 (marked with diamonds), nine points corresponding to
item 2a (marked with triangles), and three points corresponding to item 2b (marked
with squares).

Discussion. We have shaded the disks D12(vi) and D13(v). Once the points in
the MDS are set, we use the C13 smoothness conditions across the edges 〈v, wi〉 to
compute the coefficients marked with an x. Smoothness conditions across 〈v, wi〉
are also used to computed coefficients in rows 7 and 8 parallel to the outer edges
ei of T . Then the C8 smoothness conditions across the edges 〈v, vi〉 are used to
compute the remaining coefficients on the rings R13(vi) for i = 1, 2, 3. Then we
compute coefficients in the 9-th rows parallel to ei, and finally the the remaining
coefficients on the rings R14(vi) for i = 1, 2, 3. The remaining coefficients in D19(v)
are then computed by the method described in the proof of Theorem 4.1.

We can now use the construction of Theorem 5.1 to create a stable local basis
for Sm(4). The following result is the analog of Theorem 4.4 and is proved in the
same way.
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Figure 5. The macro-element S8,12,13
19 (4v)

Theorem 5.4. Let M be the following set of domain points:

1) for each v ∈ V, choose a triangle T of 4PS attached to v and include DT
3m(v);

2) for each edge e = 〈v1, v2〉 of 4, let w1 be the vertex of 4PS on e, and let
T = 〈v, v1, w1〉 be a triangle of 4PS containing the edge 〈v1, w1〉. Then
include the points
a) {ξTj,j−(3m+2)/2−j,d−2j+(3m+2)/2, . . . , ξ

T
j,0,d−j} for j = (3m+2)/2, . . . , 2m,

b) {ξTj,(5m−2)/2−j,d−(5m−2)/2, . . . , ξ
T
j,0,d−j} for j = 2m+ 1, . . . , (5m− 2)/2,

c) ξTj,d−j,0 for j = 3m+ 1, . . . , 7m/2.

Then M is a minimal determining set for Sm(4), and the corresponding dual basis
{Bξ}ξ∈M forms a stable star-supported basis for Sm(4). Moreover,

dim Sm(4) =
(

3m+ 2
2

)
V +

(m
2 + 1

2

)
E + 3

[(m−2
2 + 1

2

)
+
m

2

]
N.(5.2)

6. The case r = 2m+ 1 with m even

In this section we work with the superspline spaces

Sm(4PS) := S2m+1,3m+1,3m+1
9m+4

2
(4PS).

First we consider the case of a Powell-Sabin cell 4v.

Theorem 6.1. Let M be the union of the following sets of domain points:

1) DT [i]

3m+1(vi) for i = 1, 2, 3;
2) for i = 1, 2, 3,

a) {ξT [i]

j,j−(3m+4)/2,d−2j+(3m+4)/4, . . . , ξ
T [i]

j,0,d−j} for j = (3m + 4)/2, . . . ,
2m+ 1,

b) {ξT [i]

j,5m/2−j,d−5m/2, . . . , ξ
T [i]

j,0,d−j} for j = 2m+ 2, . . . , 5m/2.
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Then M is a minimal determining set for Sm(4v), and the corresponding dual
basis {Bξ}ξ∈M is a stable basis for Sm(4v). Moreover,

dim Sm(4v) =
57m2 + 90m+ 36

4
.(6.1)

Proof. Setting all coefficients of a spline s ∈ Sm(4v) and using the smoothness
conditions, we can stably compute all coefficients in the disks D3m+1(vi). Then we
use the smoothness conditions across the edges 〈v, wi〉 and those across the edges
〈v, vi〉 to stably compute all coefficients of s in the rows 0, . . . , 5m/2 parallel to
edges of T and in the disks D(7m+2)/2(vi).

The computation of the remaining coefficients is similar to that in the proof
of Theorem 5.1. We regard the coefficients of s in the disk D3m+1(v) to be the
coefficients of a polynomial p of degree 3m+1 on the triangle T̃ := 〈u1, u2, u3〉 with
ui := ξT

[i]

3m+2
2 , 6m+2

2 ,0
for i = 1, 2, 3. These coefficients uniquely determine all of the

derivatives Dα
xD

β
yp(ui) for 0 ≤ α+ β ≤ 2m. These derivatives uniquely and stably

determine all B-coefficients of p in terms of Bernstein polynomials B̃3m+1
ijk on the

triangle T̃ . We then apply the de Casteljau algorithm to subdivide p into a spline
of degree 3m + 1 on the Powell-Sabin split of T̃ , and then transfer the computed
coefficients back to the B-net for the spline s.

The dimension of Sm(4v) is given by

#M = 3
[(

3m+ 3
2

)
+
(m

2 + 1
2

)
+
(m−2

2 + 1
2

)]
,

which reduces to the number in (6.1).

Example 6.2. The stable local MDS of Theorem 6.1 for S5,7,7
11 (4v) is shown in

Figure 6. It contains 111 domain points. There are 36 points in each of the disks
D6(vi) (marked with dark circles). In addition, there are three points corresponding
to item 2a (marked with triangles).

Discussion. We have shaded the disks D7(vi) and D7(v). Once the points in the
MDS are set, we use the smoothness conditions across the edges 〈v, wi〉 to compute
the coefficients marked with an x and the coefficients in the 5-th rows parallel to
the outer edges of 4v. Then the smoothness conditions across the edges 〈v, vi〉
are used to compute the remaining coefficients on the rings R8(vi). Finally, the
remaining coefficients in D7(v) are computed by the method described in the proof
of Theorem 6.1.

Example 6.3. The stable local MDS of Theorem 6.1 for S9,13,13
20 (4v) is shown in

Figure 7. It contains 327 domain points. There are 105 points in each of the disks
D13(vi) (marked with dark circles). In addition, there are nine points corresponding
to item 2a (marked with triangles), and three points corresponding to item 2b
(marked with squares).

Discussion. We have shaded the disks D13(vi) and D13(v). Once the points in
the MDS are set, we use the C13 smoothness conditions across the edges 〈v, wi〉 to
compute the coefficients marked with an x. The smoothness conditions are then
used to compute the coefficients in rows number 8, 9, 10 parallel to the outer
edges of 4v and in the disks D15(vi). The remaining coefficients in D7(v) are then
computed by the method described in the proof of Theorem 6.1.
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Figure 6. The macro-element S5,7,7
11 (4v)

Figure 7. The macro-element S9,13,13
20 (4v)

Theorem 6.4. Let M be the following set of domain points:
1) for each v ∈ V, choose a triangle T of 4PS attached to v and include

DT
3m+1(v);

2) for each edge e = 〈v1, v2〉 of 4, let w1 be the vertex of 4PS on e, and let
T = 〈v, v1, w1〉 be a triangle of 4PS containing the edge 〈v1, w1〉.Then include
the points
a) {ξTj,j−(3m+4)/2,d−2j+(3m+4)/4, . . . , ξ

T
j,0,d−j} for j = (3m + 4)/2, . . . ,

2m+ 1,
b) {ξTj,5m/2−j,d−5m/2, . . . , ξ

T
j,0,d−j} for j = 2m+ 2, . . . , 5m/2.
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Then M is a minimal determining set for Sm(4), and the corresponding dual basis
{Bξ}ξ∈M forms a stable star-supported basis for Sm(4). Moreover,

dim Sm(4) =
(

3m+ 3
2

)
V +

(m
2 + 1

2

)
E + 3

(m−2
2 + 1

2

)
N.(6.2)

7. The case r = 2m+ 1 with m odd

In this section we work with the superspline spaces

Sm(4PS) := S2m+1,3m+1,3m+2
9m+5

2
(4PS).

We begin by examining a Powell-Sabin cell 4v.

Theorem 7.1. Let M be the union of the following sets of domain points:

1) DT [i]

3m+1(vi) for i = 1, 2, 3;
2) for i = 1, 2, 3,

a) {ξT [i]

j,j−(3m+3)/2,d−2j+(3m+3)/2, . . . , ξ
T [i]

j,0,d−j} for j = (3m + 3)/2, . . . ,
2m+ 1,

b) {ξT [i]

j,(5m+1)/2−j,d−(5m+1)/2, . . . , ξ
T [i]

j,0,d−j} for j = 2m+ 2, . . . , (5m+ 1)/2.

Then M is a minimal determining set for Sm(4v), and the corresponding dual
basis {Bξ}ξ∈M is a stable basis for Sm(4v). Moreover,

dim Sm(4v) =
57m2 + 96m+ 39

4
.(7.1)

Proof. Setting all coefficients of a spline s ∈ Sm(4v) and using the smoothness
conditions, we can stably compute all coefficients in the disks D3m+1(vi). Then we
use the smoothness conditions across the edges 〈v, wi〉 and those across the edges
〈v, vi〉 to stably compute all coefficients of s in the rows 0, . . . , (5m+ 1)/2 parallel
to edges of T and in the disks D(7m+3)/2(vi).

The computation of the remaining coefficients follows in the same way as in the
proof of Theorem 5.1. We regard the coefficients of s in the disk D3m+2(v) as the
coefficients of a polynomial p of degree 3m+2 on the triangle T̃ := 〈u1, u2, u3〉 with
ui := ξT

[i]

3m+1
2 , 6m+4

2 ,0
for i = 1, 2, 3. These coefficients uniquely determine all of the

derivatives Dα
xD

β
y p(ui) for 0 ≤ α+ β ≤ 2m+ 1. We now expand p in terms of the

Bernstein polynomials B̃3m+2
ijk on the triangle T̃ . These derivatives uniquely and

stably determine all of the B-coefficients c̃ijk of p. We then apply the de Casteljau
algorithm to subdivide the polynomial into a spline of degree 3m+2 on the Powell-
Sabin split of T̃ , and then transfer the computed coefficients back to the B-net for
the spline s.

The dimension of Sm(4v) is given by

#M = 3
[(

3m+ 3
2

)
+
(m+1

2 + 1
2

)
+
(m−1

2 + 1
2

)]
,

which reduces to the number in (7.1).

Example 7.2. The stable local MDS of Theorem 7.1 for S3,4,5
7 (4v) is shown in

Figure 8. It contains 48 domain points. There are 15 points in each of the disks
D4(vi) (marked with dark circles). In addition there are three points corresponding
to item 2a (marked with triangles).
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Figure 8. The macro-element S3,4,5
7 (4v)

Figure 9. The macro-element S7,10,11
16 (4v)

Discussion. We have shaded the disks D4(vi) and D5(v). Once the points in
the MDS are set, we use the C5 smoothness conditions across the edges 〈v, wi〉 to
compute the coefficients marked with an x. The C4 smoothness condition across
the edges 〈v, wi〉 are used to computed coefficients in the 3-rd rows parallel to the
outer edges of 4v. Then we use the smoothness conditions across the edges 〈v, vi〉
to determine the remaining coefficients on the rings R5(vi). Finally, the remaining
coefficients in D5(v) are then computed by the method described in the proof of
Theorem 7.1.

Example 7.3. The stable local MDS of Theorem 7.1 for S7,10,11
16 (4v) is shown in

Figure 9. It contains 210 domain points. There are 66 points in each of the disks
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D10(vi) (marked with dark circles). In addition, there are nine points corresponding
to item 2a (marked with triangles), and three points corresponding to item 2b
(marked with squares).

Discussion. We have shaded the disks D10(vi) and D11(v). The smoothness con-
ditions are used to determine all coefficients in the first 8 rows parallel to the outer
edges of T and in the disks D12(vi). The remaining coefficients in D11(v) are then
computed by the method described in the proof of Theorem 7.1.

Theorem 7.4. Let M be the following set of domain points:
1) for each v ∈ V, choose a triangle T of 4PS attached to v and include

DT
3m+1(v);

2) for each edge e = 〈v1, v2〉 of 4, let w1 be the vertex of 4PS on e, and let
T = 〈v, v1, w1〉 be a triangle of 4PS including the edge 〈v1, w1〉. Then include
the points
a) {ξTj,j−(3m+3)/2,d−2j+(3m+3)/2, . . . , ξ

T
j,0,d−j} for j = (3m + 3)/2, . . . ,

2m+ 1,
b) {ξTj,(5m+1)/2−j,d−(5m+1)/2, . . . , ξ

T
j,0,d−j} for j = 2m+ 2, . . . , (5m+ 1)/2.

Then M is a minimal determining set for Sm(4), and the corresponding dual basis
{Bξ}ξ∈M forms a stable star-supported basis for Sm(4). Moreover,

dim Sm(4) =
(

3m+ 3
2

)
V +

(m+1
2 + 1

2

)
E + 3

(m−1
2 + 1

2

)
N.(7.2)

8. Macro-elements

The constructions of minimal determining sets for superspline spaces Sm(4v)
on the Powell-Sabin split 4v of a single triangle T given in Theorems 4.1, 5.1,
6.1, and 7.1 can all be regarded as defining macro-elements. In the finite-element
literature, such macro-elements are typically defined in terms of nodal parameters,
i.e., derivatives. Here we have described them in terms of minimal determining sets
of B-coefficients, but it is easy to translate to derivatives. We give three examples.
Given a triangle T = 〈v1, v2, v3〉, let4v be the corresponding Powell-Sabin cell with
center v and boundary vertices {v1, w1, v2, w2, v3, w3} in counterclockwise order.

Example 8.1. Any element in the superspline space S1
2 (4v) of Theorem 6.1 with

m = 0 is uniquely defined by the the derivatives {Dα
xD

β
y s(vi)} for 0 ≤ α + β ≤ 1

and i = 1, 2, 3.

Proof. It is well known from the Bernstein-Bézier theory that specifying this set
of derivatives for an s ∈ S1

2 (4PS) is equivalent to setting the B-coefficients of s
corresponding to the domain points in the disks D1(vi), i = 1, 2, 3.

Given any point u in T , let D〈u,v〉 denote the directional derivative in the direc-
tion from u to v.

Example 8.2. Any element in the superspline space S3,4,5
7 (4v) of Theorem 7.1

with m = 1 is uniquely defined by the following set of 48 data (cf. Example 7.2
and Figure 8):

1) the derivatives {Dα
xD

β
y s(vi)} for 0 ≤ α+ β ≤ 4 and i = 1, 2, 3;

2) the derivatives D3
〈wi,v〉s(wi) for i = 1, 2, 3.
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Example 8.3. Any element in the space S6,9,9
14 (4v) of Theorem 4.1 with m = 3 is

uniquely defined by the following set of 172 data (cf. Example 4.3 and Figure 3):
1) the derivatives {Dα

xD
β
y s(vi)} for 0 ≤ α+ β ≤ 9 and i = 1, 2, 3;

2) the derivatives D6
〈wi,v〉s(wi) for i = 1, 2, 3;

3) the derivatives D10
〈vi,v〉s(wi) for i = 1, 2, 3;

4) the value s(v).

9. Comparison with earlier Powell-Sabin macro-elements

Macro-elements based on Powell-Sabin splits have been proposed in several ear-
lier papers. For r = 2, see [15], [21], [22], and for general r, see [8], [20], [24]. The
following formulae (which can be easily verified using the above Bernstein-Bézier
techniques) can be found in [24]:

dim S2m,3m,4m−1
5m (4PS) = (31m2 + 25m+ 6)/2,

dim S2m+1,3m+1,4m+1
5m+2 (4PS) = (31m2 + 47m+ 18)/2.

(9.1)

Our macro-elements have two advantages over these macro-elements:
• they use lower degree polynomials,
• they use a smaller number of degrees of freedom,

for r ≥ 5. Table 1 shows a comparison of the macro-elements in (9.1) with our new
macro-elements for 1 ≤ r ≤ 10. The columns d and n give the degree and number
of degrees of freedom for our macro-elements, while the columns d̃ and ñ give the
same information for the earlier elements.

Table 1. Comparison of macro-elements

r d n d̃ ñ
1 2 9 2 9
2 5 31 5 31
3 7 48 7 48
4 10 90 10 90
5 11 111 12 118
6 14 172 15 180
7 16 210 17 219
8 19 291 20 301
9 20 327 22 351
10 23 427 25 453

10. Optimality of the macro-elements

In this section we explore to what extent the macro-elements discussed here are
optimal with respect to

1) stability of dimension,
2) degree of the splines,
3) number of degrees of freedom used,

for a given smoothness r. The best elements will have the lowest degree possible,
will have stable dimensions, and will use the least number of degrees of freedom.
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We begin by examining the dimension of the superspline space

S := {s ∈ Srd(4v) : s ∈ Cρv (v)}
defined on a Powell-Sabin cell. By Lemma 3.2 of [6],

dimS =
(
ρv + 2

2

)
+ 6
[(
d− r + 1

2

)
−
(
ρv − r + 1

2

)]
+ σ,

where

σ :=
d−r∑

j=ρv−r+1

(r + j + 1− je)+

and e is the number of edges attached to the center vertex v with different slopes.
Since 3 ≤ e ≤ 6 for a Powell-Sabin split, we conclude that a necessary condition
for σ to be zero for all configurations is that ρv + 2 − 3(ρv − r + 1) ≤ 0, which is
equivalent to

ρv ≥
⌈3r − 1

2

⌉
=

{
3m, if r = 2m,
3m+ 1, if r = 2m+ 1.

(10.1)

We now show that in order for a Powell-Sabin macro-element to be capable of
meshing with neighboring macro-elements without incompatibilities, we also have
to enforce a certain supersmoothness at each of the vertices v1, v2, v3.

Theorem 10.1. Suppose that T := 〈v1, v2, v3〉 is a triangle, and that 4T is a
refinement such that there are n ≥ 0 interior edges connected to the vertex v1.
Let s be a spline of degree d and smoothness r defined on 4T . Then the cross
derivatives of s up to order r on the edges e1 := 〈v1, v2〉 and e2 := 〈v1, v3〉 can be
specified independently only if we require s ∈ Cρ(v1), with

ρ ≥
⌈ (n+ 2)r − n

n+ 1

⌉
.(10.2)

Proof. We examine the ring Rρ+1(v1) with r ≤ ρ. The number of coefficients of s
on this ring is (n+ 1)(ρ+ 1) + 1. Now setting cross-derivatives up to order r on the
edges e1 and e2 determines 2(r+ 1) of these coefficients. It follows that a necessary
condition for the number of undetermined coefficients in these equations to be at
least equal to the number of conditions is

(n+ 1)(ρ+ 1) + 1− 2(r + 1) ≥ nr,
or equivalently,

(n+ 2)r − n
n+ 1

≤ ρ.

Thus, to avoid incompatible systems, we have to enforce supersmoothness of order
ρ at least equal to the integer (10.2).

Choosing n = 1, it follows that to define macro-elements on the Powell-Sabin
split of a triangle T , we must enforce supersmoothness of order

ρ ≥
⌈3r − 1

2

⌉
=

{
3m, if r = 2m,
3m+ 1, if r = 2m+ 1

(10.3)

at each vertex vi of T .
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We are now ready to show that the degrees of our Powell-Sabin macro-elements
are minimal. Suppose

s ∈ {s ∈ Srd(4v) : s ∈ Cρv (v) and s ∈ Cρ(vi) for i = 1, 2, 3}
is a superspline defined on a Powell-Sabin cell which has supersmoothness ρ at each
of the vertices vi of the triangle T , and supersmoothness ρv at the incenter v of
4v, where ρ and ρv satisfy (10.2) and (10.3). We now examine the coefficients of
s associated with domain points lying on the ring Rρv (v). In particular, we focus
on the points in the (d − ρv)-th row parallel to the edge 〈v1, v2〉 of T . If we set
the coefficients corresponding to the disks Dρ(v1) and Dρ(v2), then there remain
2ρv + 1− 2(ρ+ ρv − d+ 1) unset coefficients in the middle of this row. They must
satisfy ρv conditions for Cρv continuity across the edge 〈v, w1〉. In general this will
lead to an incompatibility unless the number of unset coefficients is at least ρv. It
follows that such macro-elements exist only if

d ≥
⌈ρv + 2ρ+ 1

2

⌉
.(10.4)

Now inserting the minimal possible value (10.3) for both ρ and ρv and examining
the resulting four cases corresponding to r = 2k and r = 2k + 1 with k both even
and odd, we see that the dimensions of our Powell-Sabin macro-elements are indeed
minimal.

Finally, we briefly discuss the question of degrees of freedom. By the above, we
know that the minimal determining set for any Powell-Sabin macro-element must
include the disks Dρ(vi) for i = 1, 2, 3, where ρ satisfies (10.3). This means that
the lowest possible number of degrees of freedom for such an element is

nm :=

{
3
(
3m+2

2

)
= 27m2+27m+6

2 , r = 2m,
3
(
3m+3

2

)
= 27m2+45m+18

2 , r = 2m+ 1.

These numbers are only slightly smaller than the dimensions of our Powell-Sabin
macro-elements. There are two ways in which the number of degrees of freedom of
our elements could be lowered:

1) increase ρv (subject to (10.4));
2) enforce some additional smoothness across certain interior edges of 4v.
We have examined various possible modifications of this type to our macro-

elements, but so far have not found any elements with fewer degrees of freedom.

11. Remarks

Remark 11.1. Powell-Sabin splits were introduced in [19].

Remark 11.2. The degrees of the spline spaces dealt with in this paper are sub-
stantially smaller than 3r + 2, as shown in Table 2.

Remark 11.3. It was shown in Section 10 of [16] that if a space of splines S of
degree d contains Pd and has a stable local basis, then it provides optimal order
approximations of smooth functions. In particular, for every 0 ≤ k ≤ d, there exists
a quasi-interpolation operator Qk such that for every function f ∈W k+1

p (Ω),

‖Dα
xD

β
y (f −Qkf)‖p ≤ K|4|k+1−α−β |f |k+1,p(11.1)

for 0 ≤ α + β ≤ k, where |4| is the mesh size of 4 (i.e., the diameter of the
largest triangle), and |f |k+1,p is the usual Sobolev semi-norm. If Ω is convex, then
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Table 2. Comparison of d(r) with 3r + 2

m r d(r) 3r + 2
0 1 2 5
1 2 5 8
1 3 7 11
2 4 10 14
2 5 11 17
3 6 14 20
3 7 16 23
4 8 19 26
4 9 20 29

the constant K depends only on d, p, k, and on the smallest angle θ4 in 4. If Ω
is nonconvex, it also depends on the Lipschitz constant L∂Ω associated with the
boundary of Ω. In view of our construction of stable local bases for the spaces
Sm(4PS) in Sections 4–7 for general m ≥ 0, we can conclude that all of these
spaces have full approximation power.

Remark 11.4. For d < 3r+ 2, it is known [7] that the spaces Srd(4) do not possess
optimal order approximation order for arbitrary triangulations. This means that
neither they (nor any subspace S containing Pd) has a stable local basis.

Remark 11.5. Macro-elements and stable local bases can be constructed for several
other refinement methods. In [18] we do this for the well-known Clough-Tocher
split. For results on quadrangulations, see [14], [17].

Remark 11.6. For special results on Powell-Sabin elements associated with uniform
three-direction (type-I) meshes, see [9]–[12].
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