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EXPLICIT BOUNDS AND HEURISTICS ON CLASS NUMBERS
IN HYPERELLIPTIC FUNCTION FIELDS

ANDREAS STEIN AND EDLYN TESKE

Abstract. In this paper, we provide tight estimates for the divisor class num-
ber of hyperelliptic function fields. We extend the existing methods to any
hyperelliptic function field and improve the previous bounds by a factor pro-
portional to g with the help of new results. We thus obtain a faster method
of computing regulators and class numbers. Furthermore, we provide experi-
mental data and heuristics on the distribution of the class number within the
bounds on the class number. These heuristics are based on recent results by
Katz and Sarnak. Our numerical results and the heuristics imply that our
approximation is in general far better than the bounds suggest.

1. Introduction

Two important invariants of a hyperelliptic function field are the regulator and
the divisor class number. Since the divisor class number and the regulator represent
the size of the key space of the hyperelliptic cryptosystems in [Kob88] and [SSW96],
respectively, they are of cryptographic relevance, and it is of major interest to have
fast algorithms for computing them. Since there exist effective subexponential
methods for large genus hyperelliptic function fields (see [ADH94, MST99]), one
restricts the cryptographic applications to the case that the genus of the hyper-
elliptic function field is relatively small. For a survey on hyperelliptic curves and
function fields we refer to [Poo96].

For a general hyperelliptic function field K over a finite field k, the fastest effec-
tive algorithms in current implementations make use of a method of approximating
the divisor class number h of K by truncated Euler products. The basic idea of
these techniques is to find integers E and L such that |h−E| < L2 , i.e., an interval
such that h ∈ ]E−L2, E+L2[. Having found such an interval of length 2L2−1, we
can search for h in this interval by a baby step–giant step method [SW99, SW98] or
by Pollard’s kangaroo method [STb] in O(L) operations. In this paper, we provide
considerably better bounds on |h − E| than in [SW99]. For instance, let K/Fq be
a hyperelliptic function field of odd genus g, where g ≡ 3 (mod 5). Then our new
bound on |h − E| is by a factor of (2g + 3)(2g + 4)/(5(2g + 1)) smaller than the
bound in [SW99] assuming that q is large compared to g. The improved bounds,
which are given in Theorem 4.1 and Theorem 4.3, can be derived from
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Theorem 1.1. Let K = k(X)(
√
D) be a hyperelliptic function field of genus g

over the finite field k of odd characteristic, where D ∈ k[X ] is squarefree. Then the
following statements are true for all integers n ≥ 1:

1. If deg(D) = 2g+ 2 and the leading coefficient of D is a square in k∗, then we
have ∑

ν|n
ν

∑
deg(P )=ν

χ(P )n/ν = −1−
2g∑
i=1

ωni .(1.1)

2. If deg(D) = 2g + 1, then we have

∑
ν|n

ν
∑

deg(P )=ν

χ(P )n/ν = −
2g∑
i=1

ωni .(1.2)

3. If deg(D) = 2g+2 and the leading coefficient of D is not a square in k∗, then
we have ∑

ν|n
ν

∑
deg(P )=ν

χ(P )n/ν = (−1)n+1 −
2g∑
i=1

ωni .(1.3)

Here, the complex numbers ωi (i = 1, . . . , 2g) are the reciprocals of the roots of the
zeta-function Z(u,K) in u = q−s. Further, χ(P ) denotes the polynomial Legendre
symbol [D/P ] and P runs through all monic prime polynomials of degree ν.

Furthermore, via Möbius inversion, this theorem relates the reciprocals of the
roots of Z(u,K) to the character sums of the form

∑
deg(P )=n χ(P ).

We now proceed as follows. We first summarize results on the ζ-functions of al-
gebraic function fields. In Section 3, we apply these results to hyperelliptic function
fields and prove Theorem 1.1. The improved bounds on |h− E| and the estimates
are discussed in Section 4. Hereby, we present two possible approximations for
the divisor class number h. The first approximation is theoretically better than
the second one. However, numerical results show that the second approximation
is in general more accurate. In Section 5, we show how the improved bounds can
be used to produce a faster algorithm for computing the regulator and the divisor
class number of a hyperelliptic function field. In Section 6, we present experimental
and heuristic results on the distribution of |h−E|/L2 in the case of real quadratic
function fields and we provide an explanation of these results. Our conclusions and
further discussions can be found in Section 7.

2. ζ-function and l-polynomial in algebraic function fields

For an introduction to function fields, we refer to [Sti93, Deu73]. Let K/k be
an algebraic function field of genus g over the finite field k = Fq. We denote by
Div0(K) the group of divisors of degree 0. The group of principal divisors P (K)
is a subgroup of Div0(K) and the factor group Cl0(K) = Div0(K)/P (K) is called
the divisor class group (of degree 0) of K. Its order h = |Cl0(K)| is said to be the
divisor class number of K. If P is a prime divisor of K, then the absolute norm of
P is defined by the integer N(P) = qfP , where fP is the degree of P. The absolute
norm of a divisor A =

∑
aPP is defined to be N(A) = qfA , where fA =

∑
aPfP
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denotes the degree of A. The ζ-function of K is defined by

ζ(s,K) =
∑
A

1
N(A)s

(<(s) > 1) ,

where the summation is over all integral divisors A of K. We set u = q−s. Then,
the Euler product for ζ(s,K) reads

ζ(s,K) =
∏
P

1

1− 1
N(P)s

=
∏
P

1

1− ufP
,

where the product is over all prime divisors of K. It is well-known that ζ(s,K) is a
rational function in u that is periodic with period 2πi/log q and analytic in the whole
plane with the exception of simple poles at s = l ·2πi/log q and s = 1 + l ·2πi/log q
(l ∈ Z). More precisely, we have (see, for instance, [Sti93, Theorem V.1.15 and
V.2.1])

ζ(s,K) = Z(u,K) =
L(u,K)

(1− u) (1− qu)
=

2g∏
i=1

(1− ωiu)

(1− u) (1− qu)
,(2.1)

where |ωi| =
√
q for i = 1, 2, . . . , 2g. Furthermore, we know that

h = L(1,K) =
2g∏
i=1

(1− ωi) = qgL(1/q,K) .(2.2)

It immediately follows that

(
√
q − 1) 2g ≤ h ≤ (

√
q + 1) 2g .(2.3)

Let X ∈ K be a transcendental element such that K/k(X) is a separable extension
of degree n. Denote by RX , hX , respectively, the regulator and the number of
ideal classes in the corresponding order O(X), i.e., the integral closure of k[X ] in
K. If ∞1, . . . ,∞r denote the infinite places of K with respect to O(X) of degree
f1, . . . , fr, then we derive from [Sch31] (see also [MM80]) that

fX · h = hX ·RX ,(2.4)

where fX = gcd(f1, . . . , fr). Furthermore, we have

ζ(s,K) = ζ∞(s,K) · ζX(s,K) ,(2.5)

where

ζ∞(s,K) = Z∞(u,K) =
r∏
i=1

1
1− ufi

and

ζX(s,K) = ZX(u,K) =
∏
p

1

1− 1
|N(p)|s

=
∏
p

1
1− ufp

.

Here, p runs through all prime ideals of K with respect to O(X) and fp = deg p.
Clearly, if ei denotes the ramification index of ∞i over k(X) (i = 1, . . . , r), then
n =

∑r
i=1 eifi.
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3. ζ-function and l-polynomial in hyperelliptic function fields

In this section, let K be a hyperelliptic function field over a finite field k = Fq of
odd characteristic. Then, there exists X ∈ K such that K is a quadratic extension
of k(X), i.e., K = k(X)(

√
D), where D = D(X) ∈ k[X ] is squarefree. We have

O(X) = k[X ][
√
D]. Let P = P (X) represent any prime polynomial in k[X ] and let

χ(P ) be the quadratic character χ(P ) = [D/P ], where [D/P ] denotes the Legendre
symbol for polynomials of D over P . We then have (see [Art24]) that

ζX(s,K) = ZX(u,K) =
1

(1− qu)
·
∏
P

1
1− χ(P )udeg(P )

,(3.1)

where P runs through all monic prime polynomials of k[X ]. Now, since [K : k(X)] =
2, we distinguish between three cases (see [Art24, WZ91]) which correspond to 1,
2, and 3 in Theorem 1.1. In the first case, there are two conjugate places at infinity
of degree one, r = 2, f1 = f2 = 1, e1 = e2 = 1, and D is a squarefree polynomial
of degree 2g + 2 whose leading coefficient is a square in k∗. Then K = k(X)(

√
D)

is called a real quadratic function field over k. In the remaining two cases, we call
K an imaginary quadratic function field over k. In the second case, there is one
ramified place at infinity of degree one, r = 1, f1 = 1, e1 = 2, and D is a squarefree
polynomial of degree 2g + 1. In the last case, r = 1, f1 = 2, e1 = 1, and D is a
squarefree polynomial of degree 2g + 2 whose leading coefficient is not a square in
F∗q . It follows that

ζ∞(s,K) = Z∞(u,K) =
1

(1 − u)r
· 1

(1 + u)r2
,

where r2 is the number of infinite places of degree 2. By combining this result with
(2.5) and (3.1), we obtain

2g∏
i=1

(1− ωiu) = L(u,K) =
1

(1 − u)r−1
· 1

(1 + u)r2
∏
P

1
1− χ(P )udeg(P )

.(3.2)

If we put

Sν(j) =
∑

deg(P )=ν

χ(P )j (ν, j ≥ 1) ,

then Theorem 1.1 reads∑
ν|n

ν Sν

(n
ν

)
= −1−

2g∑
i=1

ωni (n ≥ 1) ,(3.3)

in the case that deg(D) = 2g + 2 and the leading coefficient of D is a square in k∗,
i.e., r = 2 and r2 = 0.

If deg(D) = 2g + 1, i.e., r = 1 and r2 = 0, then Theorem 1.1 reads∑
ν|n

ν Sν

(n
ν

)
= −

2g∑
i=1

ωni (n ≥ 1) .(3.4)

In the final case, we have r = 1 = r2, and Theorem 1.1 states that∑
ν|n

ν Sν

(n
ν

)
= (−1)n+1 −

2g∑
i=1

ωni (n ≥ 1) .(3.5)
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Proof of Theorem 1.1. By (3.2), we have

(1 − u)r−1(1 + u)r2
2g∏
i=1

(1− ωiu) =
∏
P

1
1− χ(P )udeg(P )

.

Taking formal logarithms yields

∞∑
n=1

un

n

(
1− r + (−1)n+1r2 −

2g∑
i=1

ωni

)
=

∞∑
n=1

∑
P

χ(P )n
undeg(P )

n

=
∞∑
n=1

un

n

∑
ν|n

ν Sν

(n
ν

)
,

where ν runs through all positive divisors of n. If we equate coefficients at un for
any n ≥ 1, then we obtain

1− r + (−1)n+1r2 −
2g∑
i=1

ωni =
∑
ν|n

ν Sν

(n
ν

)
.(3.6)

This gives the desired results, since

1− r + (−1)n+1r2 =


−1 if r = 2 and r2 = 0
0 if r = 1 and r2 = 0
(−1)n+1 if r = 1 and r2 = 1.

(3.7)

With the help of this theorem, we are able to provide improved bounds on the
error in our approximations of h. Hereby, it is essential to estimate nSn(1) for any
positive integer n. For n = 1, we know immediately from Theorem 1.1 that

S1(1) =
∑

deg(P )=1

χ(P ) = −
2g∑
i=1

ωi +


−1 if r = 2 and r2 = 0
0 if r = 1 and r2 = 0
1 if r = 1 and r2 = 1.

(3.8)

Corollary 3.1. We have for n ≥ 2

nSn(1) = n
∑

deg(P )=n

χ(P ) = ρ(n)−
∑
ν|n

n/ν odd

µ
(n
ν

) 2g∑
i=1

ωνi −
∑
ν|n

n/ν=2l, l≥1

ν Sν(2) ,

where ρ(n) = 0, if n is not a power of 2, and for t ≥ 1

ρ(2t) =


−1 if r = 2 and r2 = 0
0 if r = 1 and r2 = 0
−1 if r = 1 and r2 = 1.

Proof. Let n ≥ 2. First note that∑
ν|n

n/ν odd

µ
(n
ν

)
=

∑
ν|n

n/ν odd

µ
(n
ν

)
(−1)ν =

{
1 if n = 2t, t ≥ 1 ,
0 otherwise .
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From (3.6), we derive that∑
ν|n

n/ν odd

ν Sν(1) = 1− r + (−1)n+1r2 −
2g∑
i=1

ωni −
∑
ν|n

n/ν even

ν Sν(2) .

By special Möbius inversion,1 we see that

nSn(1) =
∑
ν|n

n/ν odd

µ
(n
ν

)(
1− r − (−1)νr2 −

2g∑
i=1

ωνi −
∑
ν|n

n/ν even

ν Sν(2)
)

= ρ(n)−
∑
ν|n

n/ν odd

µ
(n
ν

) 2g∑
i=1

ωνi −
∑
ν|n

n/ν odd

µ
(n
ν

) ∑
j|ν

ν/j even

j Sj(2) .

The assertion then follows from the fact that∑
ν|n

n/ν odd

µ
(n
ν

) ∑
j|ν

ν/j even

j Sj(2) =
∑
ν|n

n/ν=2l, l≥1

ν Sν(2) .

Before we provide bounds on nSn(1), we mention two special cases. If n > 1 is
odd, then

nSn(1) = −
∑
ν|n

µ
(n
ν

) 2g∑
i=1

ωνi ,

and if n > 1 is a power of 2, then

nSn(1) = −
2g∑
i=1

ωni −
∑
ν|n2

ν Sν(2) −


1 if r = 2 and r2 = 0
0 if r = 1 and r2 = 0
1 if r = 1 and r2 = 1.

4. New improved estimates for h

4.1. The idea. One wants to find integers E and L such that

|h− E| < L2 .

Of course, L should be as small as possible so that the approximation is as accurate
as possible. Assume h to be given in the form

h = E′ · eB (E′, B ∈ R) ,

and put E = round(E′), where round(y) denotes the nearest integer to y.2 Thus,

B = log h− logE′

and

|h− E| ≤ E′|eB − 1|+ 1
2 .

1If f is an arithmetic function and F (n) =
∑
ν|n

n/ν odd

f(ν), then f(n) =
∑
ν|n

n/ν odd

µ(n/ν)F (ν).

2round(y) is the unique integer such that − 1
2
< y − round(y) ≤ 1

2
.
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If ψ ∈ R such that ψ > |B|, then |eB − 1| < eψ − 1; notice that if B < 0, by this
estimate we lose a factor of eψ, even if ψ is a good upper bound for |B|. However, it
turns out that our values for ψ are significantly smaller than 1, and then eψ ∼ 1+ψ,
i.e., eψ − 1 ∼ ψ. So let ψ be a bound on |B|. Then

|h− E| < E′(eψ − 1) + 1
2 ,

so that we can put

L =
⌈√

E′(eψ − 1) + 1
2

⌉
to receive a good upper bound L2 on |h − E|. The main idea is to make use of
the analogue of the analytic class number formula for hyperelliptic function fields.
Namely, from (2.2) and (3.2), we derive that

h = qgL(1/q,K) = qg
∏
P

1
1− χ(P )q− deg(P )

·


q

q − 1
if r = 2 and r2 = 0

1 if r = 1 and r2 = 0
q

q + 1
if r = 1 and r2 = 1.

As in the proof of Theorem 1.1, it follows that

log h = A(D) +
∞∑
n=1

1
nqn

∑
ν|n

ν Sν

(n
ν

)
,(4.1)

where A(D) = (g + r − 1 + r2) log q − (r − 1) log(q − 1)− r2 log(q + 1). Note that

A(D) =


(g + 1) log q − log(q − 1) if r = 2 and r2 = 0
g log q if r = 1 and r2 = 0
(g + 1) log q − log(q + 1) if r = 1 and r2 = 1.

We now consider two possible choices for the approximation of h dependent on
a parameter λ ∈ N.3 We will determine λ later to obtain an optimal overall
complexity of the baby step–giant step algorithm. The first possibility is to define
E′1 = E′1(λ,D) and B1 = B1(λ,D) by

logE′1(λ,D) := A(D) +
λ∑
n=1

1
nqn

∑
ν|n

ν Sν

(n
ν

)
(4.2)

and

B1(λ,D) :=
∞∑

n=λ+1

1
nqn

∑
ν|n

ν Sν

(n
ν

)
.(4.3)

If we put E1(λ,D) := round(E′1(λ,D)), then E1(λ,D) is an approximation of h.
Note that B1(λ,D) = log h − logE′1(λ,D). To estimate the error in this approxi-
mation, we have to bound B1(λ,D). Below, we will show that

|B1(λ,D)| < 2gq−
(λ+1)

2

λ+ 1
+O

(
gq−

(λ+2)
2

λ

)
.

3N denotes the set of positive integers.
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The second possibility is to proceed as in [SW99] and define E′2 = E′2(λ,D) and
B2 = B2(λ,D) by

logE′2(λ,D) := A(D) +
λ∑
n=1

1
nqn

∑
ν|n

ν Sν

(n
ν

)
+

∞∑
n=λ+1

1
nqn

∑
ν|n
ν≤λ

ν Sν

(n
ν

)
,(4.4)

or, equivalently,

E′2(λ,D) = qg
∏
P

deg(P )≤λ

1
1− χ(P )q− deg(P )

·



q

q − 1
if r = 2 and r2 = 0

1 if r = 1 and r2 = 0

q

q + 1
if r = 1 and r2 = 1

and

B2(λ,D) :=
∞∑

n=λ+1

1
nqn

∑
ν|n
ν>λ

ν Sν

(n
ν

)
.(4.5)

We then let E2(λ,D) := round(E′2(λ,D)) and obtain that E2(λ,D) is an approx-
imation of h. Note that B2(λ,D) = log h − logE′2(λ,D), i.e., B2(λ,D) is the
logarithm of the tail of the truncated Euler product. Our aim is to find a good
upper bound on |B2(λ,D)|. We will improve results in [SW99] by proving that

|B2(λ,D)| < (2g + ε(λ))q−
(λ+1)

2

λ+ 1
+O

(
gq−

(λ+2)
2

λ

)
,

where ε(n) = 0 or 1, respectively, depending on whether n ∈ N is even or odd. It
turns out that the second choice of the approximation is more accurate in practice,
although the bound on |B1(λ,D)| is smaller than the one on |B2(λ,D)|.

4.2. A first estimate. Here, we investigate the approximation E′1(λ,D) of h as
defined in (4.2) for any λ ≥ 1. From (4.1)-(4.3) it follows that

B1(λ,D) = log h− logE′1(λ,D) =
∞∑

n=λ+1

1
nqn

∑
ν|n

ν Sν

(n
ν

)
.

In order to find a good upper bound for |B1(λ,D)|, we make use of Theorem 1.1
and find that ∣∣∣∑

ν|n
ν Sν

(n
ν

) ∣∣∣ ≤ 1 +
∣∣∣ 2g∑
i=1

ωni

∣∣∣(4.6)

≤ 1 + 2gq
n
2 ,

since |ωi| =
√
q. Putting

ψ1(λ,D) = 2g
∞∑

n=λ+1

1
nq

n
2

+
∞∑

n=λ+1

1
nqn

,(4.7)
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we obtain that |B1(λ,D)| < ψ1(λ,D). Moreover,

ψ1(λ,D) <
2gq−

(λ+1)
2

λ+ 1
+

2g
λ+ 2

∞∑
n=λ+2

q−
n
2 +

1
λ+ 1

∞∑
n=2λ+2

q−
n
2

≤ 2gq−
(λ+1)

2

λ+ 1
+

2gq−
(λ+1)

2

(λ+ 2)(
√
q − 1)

+
q−

(2λ+1)
2

(λ+ 1)(
√
q − 1)

≤ 2gq−
(λ+1)

2

λ+ 1

(
1 +

1
√
q − 1

)
=

2g
(λ + 1)

√
q

(
√
q − 1)

q−
(λ+1)

2 ,

where in the last inequality we used that 2gq
λ
2 ≥ λ + 2 for λ ≥ 1. We summarize

this in the following

Theorem 4.1. For any λ ∈ N, let E1(λ,D) = round(E′1(λ,D)) and

L1(λ,D) =
⌈√

E′1(λ,D)(eψ1(λ,D) − 1) + 1
2

⌉
,

where E′1(λ,D), ψ1(λ,D) are defined in (4.2) and (4.7), respectively. Then, we
have

|h− E1(λ,D)| < L2
1(λ,D) .

Furthermore, we have

| log h− logE′1(λ,D)| < 2g
(λ+ 1)

√
q

(
√
q − 1)

q−
(λ+1)

2 .

For the computation of ψ1(λ,D) we notice that

ψ1(λ,D) = 2g
(

log
( √

q
√
q − 1

)
−

λ∑
n=1

1
nq

n
2

)
+ log

( q

q − 1

)
−

λ∑
n=1

1
nqn

.

Finally, we have to show that E1(λ,D) does not become too large in order to
guarantee that our algorithm is effective. Since we are mainly interested in the case
that q is large and g is small, the following theorem is sufficient.

Theorem 4.2. For any λ ∈ N, we have

E′1(λ,D) ≤ qg
( q

q − 1

)r( q

q + 1

)r2( √
q

√
q − 1

)2g

.

Proof. From (4.6), it follows that∣∣∣ λ∑
n=1

1
nqn

∑
ν|n

ν Sν

(n
ν

) ∣∣∣ ≤ λ∑
n=1

2gq
n
2 + 1
nqn

< 2g
∞∑
n=1

1
nq

n
2

+
∞∑
n=1

1
nqn

= 2g log
( √

q
√
q − 1

)
+ log

( q

q − 1

)
.

Thus, by (4.2),

logE′1(λ,D) ≤ A(D) + 2g log
( √

q
√
q − 1

)
+ log

( q

q − 1

)
= g log q + r log

( q

q − 1

)
+ r2 log

( q

q + 1

)
+ 2g log

( √
q

√
q − 1

)
,

and the assertion is proved.
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It follows that if g is not too large compared to q, we have E1(λ,D) = O(qg),
since q/(q+1) ≤ 1, q/(q−1) ≤ 3/2, and

√
q/(
√
q−1)→ 1, if q →∞. In particular,

if 2g ≤ √q − 1, then

2g log
( √

q
√
q − 1

)
= 2g

∞∑
n=1

1
nq

n
2
≤ 2g
√
q − 1

≤ 1 .

In this case, we have E′1(λ,D) ≤ e(3/2)r · qg . Also, notice that if ψ1(λ,D) < 1,
then eψ1(λ,D) − 1 ∼ ψ1(λ,D) and for sufficiently small values of g it follows that
L1(λ,D) = O(qg/2−(λ+1)/4).

4.3. A second estimate. Let λ ∈ N and let E′2(λ,D) be the approximation of h
as in (4.4). By (4.5), we have

B2(λ,D) =
Sλ+1(1)
qλ+1

+
∞∑

n=λ+2

1
nqn

∑
ν|n
ν>λ

ν Sν

(n
ν

)
.(4.8)

We denote by nν the number of monic prime polynomials of degree ν. We know
that ∑

l|ν
lnl = qν(4.9)

and that νnν =
∑
l|ν
µ(ν/l)ql. It is easy to see that 0 ≤ Sν(2) ≤ nν , and nν and

Sν(2) differ only by the number of prime factors of D of degree ν, i.e.,

Sν(2) = nν +O(g) .(4.10)

Lemma 4.1. We have for n ∈ N, n ≥ 2,

n|Sn(1)| < (2g + ε(n− 1))q
n+1

2

√
q − 1

,

where ε(n) = 0 or 1, respectively, depending on whether n is even or odd.

Proof. Let n ∈ N, n ≥ 2. By Corollary 3.1, we know that

nSn(1) = ρ(n)−
∑
ν|n

n/ν odd

µ
(n
ν

) 2g∑
i=1

ωνi −
∑
ν|n

n/ν=2l, l≥1

ν Sν(2) ,

where |ρ(n)| ≤ 1. Note that the last sum on the right hand side of this equation is
zero if n is odd. If n is even, we calculate∣∣∣ ∑

ν|n
n/ν=2l, l≥1

ν Sν(2)
∣∣∣ ≤ ∑

ν|n
n/ν=2l, l≥1

ν nν ≤
∑

ν|(n/2)

ν nν = q
n
2 .

Since |ωi| =
√
q, it follows that∣∣∣ ∑
ν|n

n/ν odd

µ
(n
ν

) 2g∑
i=1

ωνi

∣∣∣ ≤ ∑
ν|n

n/ν odd

2gq
ν
2 ≤ 2g

n∑
ν=1

q
ν
2 <

2gq
n+1

2

√
q − 1

− 1 .
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Summarizing, we obtain

n|Sn(1)| < 2gq
n+1

2

√
q − 1

+ ε(n− 1)q
n
2 <

(2g + ε(n− 1))q
n+1

2

√
q − 1

.

Note that the bound in the above lemma can be minimally improved by considering
only the odd factors in the sum. But, for our purposes the estimate is sufficient,
since for large values of q there is no noticeable difference.

Lemma 4.2. For λ, β ∈ N such that β > λ ≥ 1, we have∣∣∣ ∞∑
n=β

1
nqn

∑
ν|n
ν>λ

ν Sν

(n
ν

) ∣∣∣ < (2g + 2)
β

( √
q

√
q − 1

)3

q−
β
2 .

Proof. First, we see that∣∣∣ ∑
ν|n
ν>λ

n/ν even

ν Sν

(n
ν

) ∣∣∣ ≤ ∑
ν|n

n/ν even

ν Sν(2) ≤
∑

ν|(n/2)

ν nν = q
n
2 .(4.11)

Then we make use of Lemma 4.1 to find that∣∣∣ ∑
ν|n
ν>λ

n/ν odd

ν Sν

(n
ν

) ∣∣∣ ≤ ∑
ν|n
ν>λ

n/ν odd

ν|Sν(1)| <
n∑
ν=1

(2g + ε(n− 1))q
n+1

2

√
q − 1

<
(2g + 1)q

n+2
2

(
√
q − 1)2

= (2g + 1)
( √

q
√
q − 1

)2

q
n
2 .

Thus, ∣∣∣∑
ν|n
ν>λ

ν Sν

(n
ν

) ∣∣∣ < (2g + 2)
( √

q
√
q − 1

)2

q
n
2 .

Summing up we can conclude that∣∣∣ ∞∑
n=β

1
nqn

∑
ν|n
ν>λ

ν Sν

(n
ν

) ∣∣∣ < (2g + 2)
( √

q
√
q − 1

)2 ∞∑
n=β

1
nq

n
2

<
(2g + 2)

β

( √
q

√
q − 1

)3

q−
β
2 .

Lemmas 4.1 and 4.2 provide us with improved bounds on B2(λ,D) as follows.
We define ψ2(λ,D) as

ψ2(λ,D) =
(2g + ε(λ))q−

λ
2

(λ + 1)(
√
q − 1)

+
(2g + 2)q−

λ−1
2

(λ+ 2)(
√
q − 1)3

(4.12)
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and find that |B2(λ,D)| < ψ2(λ,D) since

|B2(λ,D)| ≤ (λ+ 1)|Sλ+1(1)|
(λ+ 1)qλ+1

+
∣∣∣ ∞∑
n=λ+1

1
nqn

∑
ν|n
ν>λ

ν Sν

(n
ν

) ∣∣∣
<

(2g + ε(λ))q−
λ
2

(λ+ 1)(
√
q − 1)

+
(2g + 2)
(λ+ 2)

( √
q

√
q − 1

)3

q−
λ+2

2

= ψ2(λ,D) .

We proved the following

Theorem 4.3. For any λ ∈ N, let E2(λ,D) = round(E′2(λ,D)) and

L2(λ,D) =
⌈√

E′2(λ,D)(eψ2(λ,D) − 1) + 1
2

⌉
,

where E′2(λ,D), ψ2(λ,D) are defined in (4.4) and (4.12), respectively. Then, we
have

|h− E2(λ,D)| < L2
2(λ,D) .

Furthermore, we have

| log h− logE′2(λ,D)| < (2g + ε(λ))q−
λ
2

(λ + 1)(
√
q − 1)

+
(2g + 2)q−

λ−1
2

(λ+ 2)(
√
q − 1)3

.

How accurate is the bound on |B2(λ,D)| = | log h−logE′2(λ,D)|? We notice that
Sλ+1(1)/qλ+1 is the dominant term for B2(λ,D). For instance, let K = k(X)(

√
D),

where D is a monic, squarefree polynomial of degree 2g + 2 with no linear factors
in k[X ], and let λ = 1. Then, r = 2, r2 = 0, S1(2) = q, and

2S2(1) = −
2g∑
i=1

ω2
i − 1− S1(2) = −

2g∑
i=1

ω2
i − q − 1 .

It follows that
|Sλ+1(1)|
qλ+1

=
|S2(1)|
q2

≤ (2g + 1)
2

q−1 +O(q−2) =
(2g + 1)
λ+ 1

q−
λ+1

2 +O(q−2) .

If it happens that ωi = −√q for i = 1, . . . , 2g, i.e., K is a maximal function field
(see [Sti93, pp. 182, 197]), then we even have 2S2(1) = −(2g + 1)q − 1, and

|S2(1)|
q2

=
(2g + 1)
λ+ 1

q−
λ+1

2 +O(q−
λ+3

2 ) .

This means that, in this case, the bound on |B2(λ,D)| is sharp.
Again, we have to guarantee that E2(λ,D) does not become too large. In es-

sentials, this was already proved in [SW99]. It was shown that E2(λ,D) = O(λqg)
and if ψ2(λ,D) < 1, then eψ2(λ,D) − 1 ∼ ψ2(λ,D). For sufficiently small values of
g and w it follows that L2(λ,D) = O(qg/2−(λ+1)/4). For completeness, we mention
a similar result as in Theorem 4.2.

Theorem 4.4. For any λ ≥ 1, we have

E′2(λ,D) ≤ qg
( q

q − 1

)r( q

q + 1

)r2( √
q

√
q − 1

)2g

eψ2(λ,D) .
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Proof. By (4.4), we have

logE′2(λ,D) = A(D) +
λ∑
n=1

1
nqn

∑
ν|n

ν Sν

(n
ν

)
+

∞∑
n=λ+1

1
nqn

∑
ν|n
ν≤λ

ν Sν

(n
ν

)
.

If we use that
∞∑

n=λ+1

1
nqn

∑
ν|n
ν≤λ

ν Sν

(n
ν

)
=

∞∑
n=λ+1

1
nqn

(∑
ν|n

ν Sν

(n
ν

)
−
∑
ν|n
ν>λ

ν Sν

(n
ν

))
,

we can proceed as in the proof of Theorem 4.2 to obtain

logE′2(λ,D) <g log q + r log
( q

q − 1

)
+ r2 log

( q

q + 1

)
+ 2g log

( √
q

√
q − 1

)
+

∞∑
n=λ+1

1
nqn

∣∣∣∑
ν|n
ν>λ

ν Sν

(n
ν

) ∣∣∣ .
The last sum on the right side can be bounded by ψ2(λ,D) which gives the desired
result.

If ψ2(λ,D)<1 and g is sufficiently small compared to q, it follows that E2(λ,D)=
O(qg) and L2(λ,D) = O(qg/2−(λ+1)/4). For instance, if 2g ≤ √q − 2, then
ψ2(λ,D) < 1 and E′2(λ,D) < e2(3/2)r · qg. In the next section, we apply the
improved bounds to get a faster method for computing the regulator RX and the
divisor class number h of hyperelliptic function fields.

5. Computation of RX and h

Let K = k(X)(
√
D) be an imaginary quadratic function field over the finite

field k = Fq of odd characteristic. We then know that RX = 1, and we only
need to compute h. In the case that D is a squarefree polynomial of even degree
whose leading coefficient is not a square in k∗, we have hX = 2h. Furthermore, a
constant field extension of degree 2 over k leads to a real quadratic function field.
In the second imaginary case, D = D(X) is a squarefree polynomial of odd degree.
Without loss of generality, we may assume that D is monic. For convenience, we
also assume that q � g2. Then K can be represented as a real quadratic function
field K = k(T )(

√
F ) over the same finite field k by applying the following birational

transformation:

T =
1

X − β , F (T ) = T 2g+2D
(
β + 1

T

)
,

where β is a suitable element of k such that the leading coefficient of F (T ) is
a square in k∗. For further discussions, we refer to [CF96, PR99]. Note that
deg(F ) = 2g + 2 and that the divisor class number h does not change under this
transformation. Here and throughout the remainder of this paper, we therefore
consider K = k(X)(

√
D) to be a real quadratic function field over the finite field

k = Fq of odd characteristic with q elements, where D is a squarefree polynomial of
degree 2g+ 2 whose leading coefficient is a square in k∗. We now sketch the idea of
computing the regulator RX of K. Hereby, we proceed in three steps and provide
an analysis of the complexity. Mainly, we follow the ideas in [SW98, SW99].
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5.1. The idea of the algorithm. In the first step, we compute an approximation
E of h such that |h − E| < L2 for some integer L. If g ≤ 2, we make use of (2.3)
and we immediately obtain a good estimate. For g ≥ 3, we put E′ = E′2(λ,D),
E = round(E′2(λ,D)), and L = L2(λ,D) as in (4.4) and Theorem 4.3. Thus, E
and L can be computed in O(qλ) operations in k. In the second step, we compute
a multiple h0 = h∗RX of RX in the interval ]E − L2, E + L2[. Here, we may use
a baby step–giant step method as in [SW98, SW99] or Pollard’s kangaroo method
(see [STb]). Since the length of the interval ]E − L2, E + L2[ is 2L2 − 1, and we
do not know a priori how much better the approximation of h is in practice, the
search for a multiple of the regulator can be done in O(L(λ,D)) = O(qg/2−(λ+1)/4)
baby steps and giant steps. If g = 1 or 2, respectively, then a multiple of the
regulator can be found in O(q 1/4), O(q 3/4) baby steps and giant steps. In the
final step, one determines h∗ by factoring h0 in subexponential running time and
performing a simple test with all the prime divisors of h0. Once having computed
h∗, one knows RX = h0/h

∗. In general, we expect RX to be greater than 2L2 − 2,
in which case h0 = h and h∗ = hX . If RX ≤ 2L2 − 2, some additional steps will
produce the values of h and hX . We see that the complexity of this algorithm4

is max{O(qλ), O(qg/2−(λ+1)/4)}, since it is mainly determined by the first and the
second step. It follows that the optimal choice of λ is

λ =

{
b(2g − 1)/5c if g ≡ 2 (mod 5) ,
round((2g − 1)/5) otherwise ,

(5.1)

which yields a total running time of

O(qround((2g−1)/5)+η) , g ≥ 3 ,

where

η =


− 1

4 if g ≡ 2 (mod 5) ,
0 if g ≡ 0, 3 (mod 5) ,
1
4 if g ≡ 1 (mod 5) ,
1
2 if g ≡ 4 (mod 5) .

Notice that this choice of λ is in fact different from the choice in [SW99]. If g = 1
or 2, respectively, then the total running time is O(q 1/4), O(q 3/4).

5.2. Using divisors of hX . We now assume that we have computed an approx-
imation E′ of h such that h = E′eB and |h − E| < L2 for some integers E and

L, where E = round(E′), |B| < ψ, and L = d
√
E′(eψ − 1) + 1

2e. First, we show

how to lower the bound given that we know a divisor h̃ of the ideal class number
hX . Second, we discuss how one might obtain such a divisor. Let h̃|hX , and let
hX = h̃ H for some positive integer H , i.e., h = h̃ HRX . We put

E′′ =
E′

h̃
, L′′ =

⌈
L√
h̃

⌉
.

Then,

|HRX − E′′| =
|h− E′|

h̃
<
L2

h̃
≤ (L′′)2

4Note that if one uses Pollard’s kangaroo method in the second step of the algorithm, then we
have a probabilistic algorithm of expected running time as indicated.
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and HRX = E′′eB, where |B| < ψ. Thus, we can search for a multiple (that might
be HRX) of the regulator RX in a new interval of length 2(L′′)2 − 1 which is by a
factor of approximately h̃ smaller than the interval ]E − L2, E + L2[. Note that if
RX ≥ 2(L′′)2, then H = round(E′′/RX). Moreover, we put H̃ = round(E′′/RX)
and F = E′′/RX − round(E′′/RX). If ψ < log((H̃ + 1)/(H̃ + |F |)), then H = H̃.
To find a divisor of hX we may apply a theorem of Zhang [Zha87]. Let D be a
product of s distinct prime polynomials in k[X ]. Then the 2-rank of the ideal class
group of k(X)(

√
D) is s− 2, if D contains a prime factor of odd degree, and s− 1

otherwise. It follows that if D is not a prime polynomial or not a product of two
odd degree prime polynomials, then a power of 2 divides the ideal class number
hX . Another way of finding a divisor of hX is to randomly pick reduced ideals and
determine the order of the subgroup of the ideal class group generated by these
ideals (see [DW85]).

6. Experimental results and heuristics

We first discuss the results of experiments we did to compare our estimates for h
and |h−E| with the actual respective values. Since any hyperelliptic function field
can be represented as a real quadratic function field, and since the corresponding
birational transformation preserves h, E and L, we restrict ourselves to real qua-
dratic function fields. From now on, let λ be defined as in (5.1) (with the exceptions
as mentioned in Table 1). The approximation E′2(λ,D) from (4.4) turned out to
be a better approximation of h than E′1(λ,D) from (4.2). Hence, in the following
let E2 = E2(λ,D), L2 = L2(λ,D), and we consider only the estimate for |h − E2|
in Theorem 4.3. This estimate is very good. Indeed, for k = F10009 and

D(X) =X8 + 4527X7 + 3555X6 + 7911X5 + 5059X4 + 10005X3

+ 3823X2 + 1276X + 9036

(hence, g = 3 and λ = 1) we find that E2 = 984388508397, L2 = 18721 and
h = 984086389784. That is, |h − E2|/L2

2 > 0.862. However, in the large majority
of cases, the actual value of |h − E2| is much smaller than L2

2. For example, for
characteristic q = 10009 and genus g = 3 we found that among 100000 distinct
monic, squarefree polynomials D = D(X) of degree eight, 99% of all values |h−E2|
were smaller than 0.5L2

2, and 50% were even smaller than 0.15L2
2. The average

value of |h − E2|/L2
2 was 0.161. Similar results were obtained with various other

values for q between 17 and 100003 and g between 3 and 9. In fact, the higher the
genus was, the smaller |h−E2|/L2

2 tended to be; for example, for q = 17 and g = 9,
the average value of |h− E2|/L2

2 was only 0.055.
On the other hand, we found that there exists no lower bound on |h − E2| in

Theorem 4.3. For every value of q and g, we computed examples, where h and E2

were very close together, i.e., |h−E2| was very small. For instance, for characteristic
q = 97 and

D(X) =X8 + 40X7 + 11X6 + 42X5 + 35X4 + 62X3 + 76X2 + 17X + 16

we observed that h = E2 = 819035, i.e., |h− E2| = 0.
The detailed experimental results are shown in Table 1. Here, the first and

second columns indicate the characteristic q of the constant field and the genus
g, while the last column shows how many distinct monic squarefree polynomials
have been considered. In the third and forth columns, µ and σ denote the average
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Table 1. On the distribution of |h− E2|/L2
2

q g µ σ/µ min. max. 0.05 0.1 0.2 50% 95% 99% #
97 3 0.13 0.73 0 0.611 23.4 45 78 0.11 0.31 0.4 100000
199 3 0.141 0.74 0.16e-3 0.584 22.2 42.3 73.8 0.12 0.33 0.44 1000
991 3 0.161 0.72 0.55e-3 0.608 18.9 36 67.1 0.14 0.38 0.49 1000

10009 3 0.157 0.76 0.2e-4 0.733 20.6 38.3 67.4 0.13 0.39 0.5 1000
10009 3 0.161 0.73 0.312e-5 0.862 18.8 37.1 67.4 0.14 0.38 0.49 100000
100003 3 0.16 0.72 0.12e-3 0.741 17.8 36.2 67.3 0.14 0.37 0.5 1000
1000003 3 0.165 0.72 0.32e-3 0.602 18 35.6 66.3 0.14 0.39 0.5 1000

37 4 0.116 0.73 0.9e-4 0.395 27.2 51.4 82.2 0.1 0.28 0.35 1000
97 4 0.136 0.76 0.1e-3 0.566 23 45.6 76.9 0.12 0.33 0.45 1000
199 4 0.147 0.74 0.47e-3 0.59 21.4 40.6 71.3 0.13 0.35 0.45 1000
991 4 0.116 0.77 0.14e-3 0.584 26.8 52.3 83 0.1 0.29 0.39 1000
37 5 0.94e-1 0.76 0.4e-4 0.391 32.6 59.4 90.8 0.8e-1 0.23 0.3 1000
97 5 0.107 0.75 0.26e-3 0.445 27.9 54.5 86 0.9e-1 0.26 0.34 1000
199 5 0.119 0.75 0.5e-4 0.544 24.4 50.9 82.7 0.1 0.29 0.39 1000
991 5 0.133 0.75 0.266e-5 0.6 22.3 45 77.9 0.11 0.34 0.43 1000
37 6 0.81e-1 0.75 0.9e-4 0.328 37.5 69.4 94.6 0.7e-1 0.2 0.26 1000
97 6 0.96e-1 0.76 0.7e-4 0.44 31.2 58.2 90.4 0.8e-1 0.23 0.32 1000
199 6 0.1 0.75 0.13e-3 0.36 31 57.4 88.2 0.8e-1 0.25 0.31 1000
37 7 0.74e-1 0.74 0.3e-4 0.298 39.6 71.7 97.1 0.6e-1 0.18 0.23 1000
97 7 0.89e-1 0.71 0.24e-3 0.371 33.1 62.4 93.8 0.8e-1 0.21 0.27 1000
17 8 0.52e-1 0.73 0.7e-4 0.199 54.1 88.6 100 0.5e-1 0.13 0.16 1000
17 9 0.55e-1 0.73 0.9e-4 0.244 52.4 84.9 99.7 0.5e-1 0.13 0.16 1000

value and the standard deviation of |h−E2|/L2
2, respectively. Notice that the ratio

σ/µ was essentially the same for all pairs (q, g), which suggests that the probability
distribution of |h − E2|/L2

2 is qualitatively independent of q and g. The next two
columns show the minimum and maximum values for |h− E2|/L2

2. Then columns
7–9 show the percentage of cases for which |h− E2|/L2

2 was bounded by 0.05, 0.1
and 0.2, respectively, while columns 10 – 12 show which bound B was the smallest
possible such that 50%, 95% and 99%, respectively, of all values |h−E2|/L2

2 were less
than or equal to B. In general, we hence find that the large majority of the values
for |h−E2|/L2

2 are much smaller than one, and that large values for |h−E2|/L2
2 are

very rare. We remark that, different from the definition in (5.1), we used λ = 3 for
g = 7 and λ = 4 for g = 9, since for the given values of q we were able to compute
a better approximation.

We denote by α(g, q) the average value for |h − E2|/L2
2 for fixed values of g

and q. Our aim is to find α(g) = limq→∞ α(g, q). For instance, our experimental
results suggest that α(3) ≈ 0.161. Having determined the correct value of α(g), we
then know that the bound L2

2 is, on average, by a factor of 1/α(g) too large. We
try to explain these observations, and go back to Theorem 4.3 where we derived
the bound ψ2(λ,D) on |B2(λ,D)| = | log h − logE2|. As noted at the beginning
of Section 4, a sharp bound ψ2(λ,D) on |B2(λ,D)| leads to a sharp value of L2

2 if
ψ2(λ,D)� 1; in general, for B2(λ,D) < 0, we lose a factor of eψ2(λ,D). From (4.12)
we see that the largest values for ψ2(λ,D) occur for small values of q. This explains
why the average and maximum values for |h− E2|/L2

2 in Table 1 have a tendency
to grow for q increasing and g fixed. In our examples above, the largest value for
ψ2(λ,D) occurs for g = 4, q = 37: then λ = 1 and ψ2(λ,D) = 0.15476, so that
for B2(λ,D) < 0 the bound L2

2 on |h−E2| is by at least a factor of approximately
1.167 too large. For most of our examples, however, we have ψ2(λ,D) < 0.05 so
that we do not lose much at that step of the estimate.

From (4.8) and Lemma 4.2 we see that

B2(λ,D) =
Sλ+1(1)
qλ+1

+O(q−
λ+2

2 ) ,
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where we recall that

Sλ+1(1) =
∑

deg(P )=λ+1

χ(P ) .

Now, from Corollary 3.1 we see that Sλ+1(1) contains at least one term of magnitude
q(λ+1)/2, namely

1
(λ+ 1)

2g∑
j=1

ωλ+1
j .

If λ is even, this is the only term of this magnitude. If λ is odd, we also have to
consider the term

1
λ+ 1

∑
ν|(λ+1)

(λ+1)/ν=2l, l≥1

ν Sν(2) .

From (4.11), (4.10) and (4.9) it is easy to see that

1
λ+ 1

∑
ν|(λ+1)

(λ+1)/ν=2l, l≥1

ν Sν(2) =
S(λ+1)/2(2)

2
+O(q

λ+1
4 ) =

q
λ+1

2

λ+ 1
+O(q

λ+1
4 ) .

Hence, with ωj = q1/2eiϕj , ϕj ∈ [0, 2π[, j = 1, . . . , 2g,

|B2(λ,D)| =
∣∣∣∣q−λ+1

2

λ+ 1

(
ε(λ) +

2g∑
j=1

ei(λ+1)ϕj
)∣∣∣∣+O(max{q−λ+2

2 , q−
3(λ+1)

4 }) ,

where ε(λ) = 0 if λ is even and ε(λ) = 1 if λ is odd. Recall that λ + 1 ≥ 2. To
derive the bound ψ2(λ,D) on |B2(λ,D)|, we estimated∣∣∣ 2g∑

j=1

ei(λ+1)ϕj
∣∣∣ ≤ 2g ,(6.1)

which led to the bounds in Theorem 4.3. We have equality in (6.1) if and only if
ϕj = 0 for j = 1, . . . , 2g or ϕj = π for j = 1, . . . , 2g. For the latter case, this means
that the ωj satisfy the condition

ωj = −√q, j = 1, . . . , 2g ,

which happens for maximal function fields (see [Sti93]). (However, such function
fields do not occur if q is a prime.) Looking at (6.1), we do not find it surprising
that large values for |h − E2|/L2

2 are so rare: we simply do not expect all ϕj to
be close to 0, or all of them to be close to π. On the other hand, our definition
α(g, q) = Mean(|h− E2|/L2

2) for fixed values of g and q reads as

Mean
(
|Sλ+1(1)|/q λ+1

2

)
≈ α(g, q) · 2g + ε(λ)

λ+ 1
,(6.2)

where Mean(Y ) stands for the mean value of Y . Notice that, clearly, the ϕj
cannot be viewed as random numbers in the interval [0, 2π[: The ωj occur
as pairs (ωj, ωj+g) (j = 1, . . . , g), where ωj+g = ωj . Therefore, we put
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ϕj+g = −ϕj (mod 2π) for j = 1, . . . , g and henceforth assume that 0 ≤ ϕj ≤ π for
j = 1, . . . , g. For any n ≥ 1 we define

Fn(ϕ1, . . . , ϕg ) =
∣∣∣ε(n) +

2g∑
j=1

ei(n+1)ϕj
∣∣∣ =

∣∣∣ε(n) + 2
g∑
j=1

cos((n+ 1)ϕj)
∣∣∣ .

Taking q →∞, (6.2) is equivalent to saying that

Mean(Fλ ) ≈ α(g) · (2g + ε(λ)) .(6.3)

Notice that for even λ, i.e., ε(λ) = 0, the last equation is a statement about the
distribution of the reciprocals of the roots of the zeta-function Z(u,K) in u = q−s,
i.e., about the absolute value of the trace of the Frobenius in a constant field
extension of degree λ+ 1 (see [Sti93]).

By evaluating
∑

deg(P )=1 χ(P ) and
∑

deg(P )=2 χ(P ) for various choices of q and

g and D = D(X), we computed the average values of |Sλ+1(1)|/q λ+1
2 , for λ = 0

and λ = 1. In these cases, we know from (3.8) and Corollary 3.1 that
2g∑
j=1

ωj = −1−
∑

deg(P )=1

χ(P )

and
2g∑
j=1

ω2
j = −1− q + θ(D) − 2

∑
deg(P )=2

χ(P ) ,

where θ(D) denotes the number of linear factors of D. Using these equations,
we simultaneously determined the corresponding average values for |

∑2g
j=1 ωj

ν | for
ν = 1, 2. A selection of our results is shown in Table 2. All average values are
taken over 1000 examples with the exception of g = 3 and q = 10009, where only
100 distinct monic, squarefree polynomials D have been considered. For instance,
if g = 3, computation of Mean(|

∑
ωνj |)/q ν/2 via Riemann sums [Ser99] yield the

values 0.80 and 1.40, respectively, for ν = 1 and 2. Note that these theoretical
mean values fit with our numerical experiments. Although we included the average
values of |S1(1)|/√q for various values of q and g, we remark that S1(1) is irrelevant
in our application, since B2(λ,D) is only defined for λ ≥ 1.

In the remainder of this section we discuss our experimental observations. In par-
ticular, we explain (6.3) and show how to find the correct values for α(g). Hereby,
we make use of recent results of Katz and Sarnak [KS99b, KS99a]. We remark that
our explanation is basically due to [Ser99].

The main idea is to find a measure µg such that for any n ≥ 1 we have

Mean(Fn ) =
∫
A

Fn dHaar =
∫

[0,π]g
Fn(ϕ1, . . . , ϕg )µg(dϕ1, . . . , dϕg) ,

where Haar denotes the Haar measure of a subgroup of the symplectic group Sp(2g),
and the latter integral is a Riemann integral which can be evaluated. We see that
it is important to find the measure µg, i.e., to find the correct equidistribution. For
instance, numerically, we find that the ϕ1, . . . , ϕg are not uniformly distributed at
random in the interval [0, 2π[. Since, otherwise, the expected value of Mean(Fλ )
would grow with

√
g for even n rather than staying close to one.
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Table 2. On the average values of |Sλ+1(1)|/q(λ+1)/2 for λ = 0, 1

q g
Mean(|

∑
ωj |)√

q
Mean(|S1(1)|)√

q

Mean(|
∑
ω2
j |)

q
Mean(|S2(1)|)

q

97 3 0.773 0.770 0.138e1 0.572

97 4 0.795 0.792 0.142e1 0.575

97 5 0.790 0.784 0.138e1 0.559

97 6 0.824 0.821 0.139e1 0.586

97 7 0.779 0.776 0.138e1 0.547

97 8 0.806 0.802 0.145e1 0.566

97 9 0.789 0.787 0.137e1 0.572

199 3 0.801 0.806

199 4 0.792 0.793

199 7 0.797 0.794

991 3 0.802 0.801

991 4 0.790 0.791

991 7 0.800 0.801

10009 3 0.853 0.853 0.148e1 0.549

10009 4 0.778 0.778

10009 7 0.806 0.806

100003 3 0.773 0.773

100003 4 0.759 0.759

100003 7 0.810 0.810

Fortunately, there exist results on such equidistributions, from which we can de-
rive results on Mean(Fn ) for any n, and, in particular, for n = λ as defined in (5.1).
For g = 1 Birch [Bir68] (see also [Yos73]) proved that ϕ1 is equidistributed relative
to the Sato-Tate measure (see [Tat65]), which is given as µ1(dϕ1) = 2

π sin2(ϕ1)dϕ1.
We then have that

Mean(F1 ) =
∫ π

0

F1(ϕ1 )µ1(dϕ1)

= 2
π

∫ π

0

|1 + 2 cos(2ϕ1)| sin2(ϕ1)dϕ1

= 3
√

3/2π ≈ 0.82699 . . . .

The case g > 1 was done more recently, when Katz and Sarnak [KS99a, Theorem
10.8.2, p.321] showed that the equidistribution of ϕ1, . . . , ϕg takes place relative to
the measure µg which is basically the Haar measure of a maximal compact subgroup
of the symplectic group Sp(2g). The explicit formula for µg is provided in [KS99a,
5.0.4, p.107] and is due to Weyl [Wey68, p.591]: If 0 ≤ ϕj ≤ π and ϕj+g = −ϕj for
j = 1, . . . , g, then

µg(dϕ1, . . . , dϕg) = ( 1
g! )

g∏
j=1

( 2
π ) sin2(ϕj)

∏
i<j

4(cos(ϕi)− cos(ϕj))2dϕ1 · · · dϕg .
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Table 3. Approximate values of Mean(Fλ) and α(g) for 3 ≤ g ≤ 7

g λ N Mean(Fλ) α(g)

3 1 150 1.144 0.163

4 1 70 1.128 0.125

5 2 50 1.389 0.139

6 2 40 1.382 0.115

7 2 30 1.381 0.099

Note that we may remove the factor 1/(g!) if we arrange the ϕi in increasing order:
0 ≤ ϕ1 ≤ . . . ≤ ϕg ≤ π. We thus have that

Mean(Fn) = 1
g!

(
2g

π

)g ∫ π

0

∫ π

0

. . .

∫ π

0

Gn(ϕ1, . . . , ϕg) dϕ1 dϕ2 . . . dϕg

=
(

2g

π

)g ∫ π

ϕg=0

∫ ϕg

ϕg−1=0

. . .

∫ ϕ2

ϕ1=0

Gn(ϕ1, . . . , ϕg) dϕ1 dϕ2 . . . dϕg

where

Gn(ϕ1, . . . , ϕg)

=
∣∣∣ε(n) + 2

g∑
j=1

cos((n+ 1)ϕj)
∣∣∣ g∏
j=1

sin2(ϕj)
∏
i<j

(cos(ϕi)− cos(ϕj))2 .

One way to approximate the integral is to use Riemann sums. We choose a
positive integer N and divide the interval [0, π] in multiples of π/N . For rea-
sonably large values of N this will give an approximation of the integral, i.e.,
Mean(Fn) = limN→∞ Fn,N with

Fn,N (ϕ1, . . . , ϕg) =
(

2g

N

)g N−1∑
ϕg=0

ϕg∑
ϕg−1=0

. . .

ϕ2∑
ϕ1=0

Gn
(
ϕ1π
N , . . . ,

ϕgπ
N

)
.

In Table 3, we summarize the approximate values of Mean(Fλ) and α(g), where
λ is defined in (5.1) and g takes values between 3 and 7. We also computed the
approximate value of Mean(F3) in the case g = 7, which is 1.600 for N = 30,
yielding an approximate value of 0.107 for Mean(|h− E2|/L2

2).
Our approximation seems to be quite reasonable for our values ofN . For compar-

ison, we mention that in the case g = 3 we obtained for Mean(F1) the value 1.144,
1.143, 1.143, and 1.144, respectively, when N = 20, 30, 50, and 100. This yields
the value α(3) = 0.163 for each such N and suggests that |α(3)− 0.163| < 10−3.

7. Discussion, outlook, conclusion

7.1. Speeding up baby step–giant step and Pollard kangaroo methods.
Our improved bounds and heuristics are useful to speed up the computation of the
regulator and divisor class number in hyperelliptic function fields when using the
baby step–giant step method or the Pollard kangaroo method. In both cases we
assume that we know an approximation E for the divisor class number h, and a
number L such that |h − E| < L2. We then use one of the two aforementioned
methods to find the actual value of h in the interval ]E − L2, E + L2[.
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An important parameter in the baby step–giant step method is the number M
of baby steps that are computed. Usually, in the case of hyperelliptic function
fields, one chooses M = L. But since the distribution of |h− E| seems to have an
increasing hazard rate, the average total number of baby steps and giant steps is
minimal when choosing M = d

√
2α(g)L2e (see [BT00]), where α(g) is as in Table

3; this choice reduces the average number of baby steps and giant steps by a factor
of (1 + α(g))/(3

√
α(g)/2)). For example, if g = 3 and α(3) = 0.163, this factor

is 1.92, while for g = 4 and α(4) = 0.125, we get a factor of 2.12. Notice that
a further improvement can be achieved by exploiting the different computational
costs of baby steps and giant steps (see [STa]).

In the Pollard kangaroo method, an important parameter is given by the mean
value of the jump distances in the set of jumps. The optimal choice for this mean
value is, among other things, determined by the expected value for |h−E|. Without
heuristics, we would assume this value to be L2/2. If we work with α(g)L2 instead,
we can speed up the algorithm by a factor of 1.16 for g = 3 and 1.25 for g = 4. See
[STb] for details.

7.2. The case of characteristic 2. In this section we show that the same results
of the paper hold for fields of even characteristic. In fact, we only need to derive
a formula as in (3.1) with an appropriate symbol χ and explain how to evaluate
this symbol. Then, the same estimates and bounds as in Section 3 and Section 4
hold. We mention that explicit ideal arithmetic in hyperelliptic function fields of
even characteristic can be found in [Zuc97].

At first, we do not need to restrict ourselves to finite fields of even characteristic.
Let k = Fq be a finite field of characteristic p, i.e., q = pt, t ≥ 1. Let K =
k(X)(ρ) be a hyperelliptic function field over k, where ρ ∈ K is a zero of the
irreducible polynomial ϕ(X,Y ) = Y 2 +h(X)Y − f(X) ∈ k[X,Y ], i.e., ϕ(X, ρ) = 0.
Furthermore, we assume that h(X), f(X) are polynomials in k[X ] such that the
hyperelliptic curve C : Y 2 + h(X)Y = f(X) is nonsingular. Note that K =
k(X)(ρ) = k(C) and [K : k(X)] = 2. Then the integral closure O(X) of k[X ] in K
is given by O(X) = k[X, ρ] = k[X,Y ]/(ϕ(X,Y )), and O(X) is a Dedekind domain.

We now proceed as follows. First, we discuss the splitting behavior of the infinite
place of k(X) and prime ideals of k(X) in K. Hereby, we introduce the symbol
χ(P ) for a monic, irreducible polynomial P = P (X) ∈ k[X ], and mainly apply
[Lor96, Prop. 4.3, p.99] to derive formula (3.1) for any hyperelliptic function field.
Then, we explain how to compute χ(P ) efficiently.

In analogy to the cases in Theorem 1.1 and Section 3, we can distinguish between
three possible situations depending on how the infinite place ∞ of k(X) splits in
K. Let r denote the number of infinite places of K and let r2 be the number of
infinite places of degree 2. In the first case, ϕ(X,Y ) factors in k(( 1

X ))[Y ] into two
linear factors so that Y ∈ k(( 1

X )). K is then called a real quadratic function field
over k. We then have r = 2, i.e., ∞ splits completely in K, and r2 = 0. Otherwise
K is called imaginary quadratic. In the second case, the infinite place ∞ of k(X)
is ramified in K. It follows that r = 1 and r2 = 0. In the last case, ∞ is inert in K
which means that r = 1 and r2 = 1.

Prime ideals p of O(X) arise from prime ideals of k[X ], which are principal ideals
given by prime polynomials. Let P = P (X) be any monic, irreducible (prime) poly-
nomial in k[X ] such that P (X)k[X ] is a prime ideal of k[X ]. Then the factoriza-
tion of P (X)O(X) is determined by the factorization of the quadratic polynomial
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ϕ(X,Y ) (mod P (X)) in (k[X ]/P (X)k[X ])[Y ]. Equivalently, we ask whether the
equation

ϕ(X,Y ) = Y 2 + h(X)Y − f(X) ≡ 0 (mod P (X))(7.1)

has 0, 1, or 2 solutions Y (mod P (X)). The case p > 2 is described in detail in
[Art24, p.170–171]. In this case, we may assume that h(X) = 0, and the solvability
of Y 2 ≡ f(X) (mod P (X)) can be easily expressed in terms of the polynomial
Legendre symbol [f(X)/P (X)].

Now, let q = 2t, i.e., p = 2. For a monic, irreducible polynomial P (X) in F2t [X ]
of degree ν = degP (X), we denote by χ(P ) the following symbol

χ(P ) =


1 if (7.1) has 2 solutions
0 if (7.1) has 1 solution
−1 if (7.1) has no solution.

(7.2)

We can proceed as in [Art24, p.170–171] and make use of [Lor96, Prop. 4.3, p.99]
(e.g.). Recall that (F2t [X ]/P (X)F2t[X ]) can be identified with the finite field F2νt .
Then (7.1) is equivalent to

Y 2 + bY − c = 0

in F2νt , where b, c ∈ F2νt , respectively, denote the elements h(X) (mod P (X)), and
f(X) (mod P (X)).

Case 1. P (X) | h(X). Then ϕ(X,Y )≡Y 2−f(X)≡(Y −f(X) 2νt−1
)2 (mod P (X))

and (7.1) has 1 solution so that χ(P ) = 0. This means that b = 0, and in F2νt we
have Y 2 + bY − c = (Y + c 2νt−1

)2. It follows that P (X)O(X) = p2 for some prime
ideal p of degree fp = 1 in O(X) and |N(p)| = q fp = q. In this case, p is ramified.

Case 2. P (X) does not divide h(X) and (7.1) has no solution. Then χ(P ) = −1,
and ϕ(X,Y ) is irreducible (mod P (X)). It follows that P (X)O(X) = p for some
prime ideal p of degree fp = 2 in O(X), and |N(p)| = q fp = q2. In this case, p is
inert.

Case 3. P (X) does not divide h(X) and (7.1) is solvable. Then χ(P ) = 1, since
if B(X) (mod P (X)) is a solution, then −B(X) − h(X) 6≡ B(X) (mod P (X))
is the other solution. Furthermore, ϕ(X,Y ) ≡ (Y − B(X))(Y + B(X) + h(X))
(mod P (X)). Thus, P (X)O(X) = p p for prime ideals p and p of degree fp = 1 =
fp, and |N(p)| = |N(p)| = q.

By following the lines of [Art24, pp. 208-209], we immediately derive (3.1) for
the even characteristic case.

It remains to show how to evaluate χ(P ) for a monic, prime polynomial P (X)
of degree ν. If P (X) divides h(X), then we surely know that χ(P ) = 0. Suppose
that P (X) does not divide h(X). We only need to decide whether (7.1) is solvable
or not. In case that it is solvable, we do not need to compute the explicit solutions.
Since h(X) 6≡ 0 (mod P (X)), (7.1) is solvable if and only if

Y 2 + Y − a = 0(7.3)

is solvable in F2νt , where a denotes the element f(X) · h(X)−2 (mod P (X)) in
F2νt . By [LN83, Theorem 2.25] we know that (7.3) has a solution if and only if
TrF2νt/F2(a) =

∑νt−1
i=0 a2i = 0.



EXPLICIT BOUNDS AND HEURISTICS 859

A method for computing χ(P ) is then given as follows. If P (X) divides h(X),
then χ(P ) = 0. Otherwise, determine h(X)−1 (mod P (X)) and put A(X) =
f(X) ·h(X)−2 (mod P (X)). Finally, compute TrF2νt/F2(A(X)) =

∑νt−1
i=0 (A(X))2i ,

which is either 0 or 1. If it is 0, then χ(P ) = 1, and if it is 1, then χ(P ) = −1.

7.3. Minimally better bounds. We remark here that some of the bounds in
Section 4 can be minimally improved. We also could have used the Serre bound or
the asymptotic Drinfeld-Vladut bound to estimate

∑2g
i=1 ω

ν
i for ν ∈ N (see [Ser83,

Sti93]). For our algorithmic applications of the bounds it is completely sufficient to
use |

∑2g
i=1 ω

ν
i | ≤ 2gqν/2. The Serre bound yields |

∑2g
i=1 ω

ν
i | ≤ gb2qν/2c, which gives

a negligible improvement in our context. The Drinfeld-Vladut bound is effective
only for very large genus and we cannot apply this bound, since we are mainly
interested in hyperelliptic function fields of small genus.

7.4. Real or imaginary? We have seen in Section 5 that any hyperelliptic func-
tion field K can be represented as a real quadratic function field. If one uses a
baby step–giant step strategy to search for a multiple of the regulator, then one
should definitely use the arithmetic in real quadratic function fields. One obtains
a considerable speed-up by making use of the comparably inexpensive baby steps
and a convenient parameter choice. This is of particular interest if one has to deal
with space restrictions. For a discussion of the optimal choice of the parameters,
we refer to [STa].

7.5. Generalizations. We extended the previous methods of Stein and Williams
to any hyperelliptic function field in a way that can be generalized to arbitrary
algebraic function fields. Once we are given an equation as in (3.1), we can combine
it with (2.5) to obtain an expression similar to (3.2). Of course, the exponents of
(1− u) and (1 + u) in (3.2) have to be adjusted. With slight modifications we are
then able to proceed as in Section 3 and 4.

7.6. Choice of the approximation. In Section 4, we presented two possible
approximations E1(λ,D) and E2(λ,D) for the divisor class number h. The bound
on |B1(λ,D)| and thus the bound on |h − E1(λ,D)| is smaller than the bound on
|B2(λ,D)|, if the genus of the hyperelliptic function field is odd. But, numerical
experiments showed that the second approximation is more accurate. This is at
first sight surprising. However, it follows from (4.2) and (4.4) that the second
approximation contains more information about the hyperelliptic function field than
the first one. Therefore, the result seems to be natural. For our purposes, we used
E2(λ,D) and L2(λ,D). Still, there might be applications in which E1(λ,D) and
L1(λ,D) are more useful.

7.7. Applying Bach’s method? Bach’s method [Bac95] of weighted averages of
truncated Euler products in the number field case seems not to apply ad hoc in
the function field situation. This method was investigated by Jacobson, Lukes, and
Williams [JLW95] for the computation of class numbers and regulators of quadratic
number fields and turned out to be a huge improvement over the truncated product
method of Lenstra [Len82]. Unfortunately, the method is based on the fact that the
size of the prime numbers constitutes an ordering of them. Instead of computing all
Euler product terms for primes between 0 and an upper bound Q, one computes the
terms for primes between 0 and 2Q, where one multiplies the terms between Q and
2Q with a certain weight. In the function field case, the monic prime polynomials



860 ANDREAS STEIN AND EDLYN TESKE

are ordered with respect to their degree. An ordering of prime polynomials of equal
degree seems to be difficult. For instance, let g = 3 and thus λ = 1. Then the
analogue of Bach’s method would imply to consider all monic prime polynomials of
degree 1 and in addition the ones of degree 2. For the q(q−1)/2 monic prime poly-
nomials P of degree 2, one then evaluates the character values χ(P ) and multiplies
the Euler product terms of degree 2 with certain weights. But, this means that
one has to perform at least q(q− 1)/2 = O(q2) operations. Since the complexity of
the algorithm described in Section 5 for hyperelliptic function fields of genus 3 is
only O(q) polynomial operations, the weighted average of truncated Euler products
would worsen the complexity of the algorithm.
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