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FULLY ADAPTIVE
MULTIRESOLUTION FINITE VOLUME SCHEMES

FOR CONSERVATION LAWS

ALBERT COHEN, SIDI MAHMOUD KABER, SIEGFRIED MÜLLER,
AND MARIE POSTEL

Abstract. The use of multiresolution decompositions in the context of finite
volume schemes for conservation laws was first proposed by A. Harten for the
purpose of accelerating the evaluation of numerical fluxes through an adaptive
computation. In this approach the solution is still represented at each time
step on the finest grid, resulting in an inherent limitation of the potential gain
in memory space and computational time. The present paper is concerned with
the development and the numerical analysis of fully adaptive multiresolution
schemes, in which the solution is represented and computed in a dynamically
evolved adaptive grid. A crucial problem is then the accurate computation of
the flux without the full knowledge of fine grid cell averages. Several solutions
to this problem are proposed, analyzed, and compared in terms of accuracy
and complexity.

1. Introduction

1.1. The background. The present work is concerned with the numerical solution
of the Cauchy problem for hyperbolic systems of conservation laws of the form

∂tu+ Divx(f(u(t, x))) = 0, u ∈ Rm, x ∈ Rd, t > 0,(1)

with initial value u(t = 0, x) = u0(x). It is well known that the exact solution to
such equations may develop singularities in finite time even when u0 is smooth, so
that one needs to consider weak solutions. In the scalar case, uniqueness of such
solutions in L∞t ([0,+∞[, L1

x) is ensured by appending certain entropy conditions.
It is also well known that the presence of singularities results in numerical difficul-
ties when it comes to the standard discretization of (1). In the case of the most
commonly used finite volume schemes, this is reflected by the fact that convergence
to the entropy solution can only easily be proved for low order monotone schemes,
and that even for high order schemes, the rate of convergence of the approximate
solution uh associated to a mesh size h is inherently limited by the lack of global
smoothness of the solution: since it is at most in BV , one can certainly not expect a
better global estimate than ‖u−uh‖L1 ≤ C(t)h, and moreover the existing schemes
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can only be proved to converge with the suboptimal rate h1/2. We refer to [25] and
[26] for a general account on these theoretical and numerical difficulties.

In this context, the use of adaptive methods appears as a natural idea to improve
the computational efficiency. Intuitively, a good adaptive method should combine
high order approximation in the smooth regions of the solution together with mesh
refinement near the singularities. In the finite element setting, this is typically
illustrated by h-p methods (see e.g., [4]) in which one seeks an equilibrium between
the high order rate CHp in the smooth regions and the low order rate chq, where
h � H and q � p. For nonstationary problems such as (1), a specific difficulty is
that the singularities move as time progresses, so that the adapted mesh should be
updated at each time step. Such “moving mesh techniques” are feasible (see e.g.,
[27]), but the numerical analysis of their performance is delicate, as well as their
practical implementation in more than one dimension.

In this paper, we shall present an alternative strategy for adaptive discretizations,
based on a coupling of multiresolution representation and finite volume schemes,
which allows a relatively simple implementation and a rigorous error analysis.

1.2. Multiresolution methods. The use of multiresolution methods in numeri-
cal simulation has long been associated with multigrid techniques for the optimal
preconditioning of elliptic operator equations. In recent years, the emergence of
wavelet bases, and the observation of their dramatic compression properties for
fairly general functions, has motivated the development of multiresolution methods
for the purpose of adaptive computations for PDE’s (see [10] and [15] for surveys on
wavelets in the context of numerical simulation). In the context of hyperbolic con-
servation laws, the use of adaptive multiresolution methods was initially proposed
in the pioneering work by Berger and Collela [3] and Harten [21, 22]. Harten’s ap-
proach, which is closer in spirit to the present work, can be summarized as follows
(more details will be given in Section 2). Given a finite volume scheme which op-
erates on a fine mesh, the multiresolution representation of the numerical solution
in terms of cell averages on a coarse mesh and wavelet coefficients at intermediate
scales is used at each time step to indicate the local smoothness of the solution.
This information is used to accelerate the scheme by saving on the evaluation of the
numerical flux, which is exactly computed on the finest mesh only in the regions of
poor smoothness (or high gradients), otherwise computed approximately from its
exact computation on coarser meshes. While this strategy was initially developed
for one-dimensional structured grids, several contributions have made it operational
for various types of multivariate finite volume meshes (Cartesian [5, 8], curvilinear
[16, 30], triangular [13, 31] and unstructured [1]). Several remarks should be made
concerning such a strategy:
• The goal is not to improve the accuracy but rather to gain computational

time while staying within the same accuracy as the reference finite volume
scheme. One of the most attractive features of this approach is that it can be
thought as an “accelerating” device that can be superimposed on an existing
code without requiring significant changes to the existing structure.
• This strategy is particularly effective for high resolution methods (such as the

ENO schemes introduced in [23]) in which the flux computations are heavy
and dominate the overall computational cost. In such a case, the observed
gain in computational time can typically reach up to 5, depending on the
test configuration at hand. However, this gain is inherently limited by the
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fact that the evolution still takes place at the finest resolution level: the
multiresolution structure is not used to compute and represent the solution
in a compressed form, but only to accelerate the flux computations. In turn,
both the computational cost and the memory storage size remain proportional
to the cardinality of the finest mesh. In this sense Harten’s approach should
be qualified as “semi-adaptive”.
• The numerical analysis of the error produced by the approximate flux com-

putation is not fully understood. In particular, it typically relies on heuristic
arguments of the following type: if Λn(ε) is the set of wavelet coefficients
above some threshold ε for the numerical solution at time step n, one is able
to “predict” a set Λ̃n+1(ε) which both contains Λn(ε) and Λn+1(ε). To our
knowledge, the existing strategies for constructing the set Λ̃n+1(ε) have not
yet been fully justified by rigorous analysis.

1.3. Objectives and outline of the paper. The objectives of the present paper
are twofold. First, we shall provide a fully adaptive algorithm in which both the
computational cost of one time step and the memory storage are proportional to
the number of wavelet coefficients describing the solution. Second, we shall provide
an error analysis for this scheme, which in particular includes a rigorous proof of
the above heuristics.

The general form of the algorithm can be roughly summarized in the following
way, which is typical of wavelet-based schemes. Given un the numerical solution
at time n∆t, represented in a compressed form by a set Λn of wavelets (i.e., un =∑
λ∈Λn

dnλψλ), we produce un+1 and Λn+1 at time (n+ 1)∆t by three basic steps:

• Refinement: We produce from Λn a larger set Λ̃n+1 such that Λn ⊂ Λ̃n+1,
which is potentially adapted to describe both un and un+1 with the required
accuracy.
• Evolution: We compute from un an approximate solution

ũn+1 =
∑

λ∈Λ̃n+1

dn+1
λ ψλ

at the next time step.
• Thresholding: We use a thresholding procedure on ũn+1 to obtain the set

Λn+1 ⊂ Λ̃n+1 and approximate solution un+1 =
∑

λ∈Λn+1
dn+1
λ ψλ.

An important feature of the scheme is that the wavelet coefficients of Λn or
Λ̃n+1 are always organized in a tree structure: whenever an index λ is included
in such a set, all other indices corresponding to the same spatial locations and to
coarser resolutions are also included. With this particular structure, the data of the
coefficients dnλ for λ ∈ Λn turns out to be equivalent to the discretization of un by its
cell averages on an adaptive discretization S(Λn) (with the same cardinality as Λn).
As in Harten’s approach we impose a maximal resolution level, and our goal is to
remain within the order of accuracy achieved by the reference finite volume scheme
on this finest mesh, while saving the maximal amount of computational time and
memory space. However, the saving is potentially much more substantial since it
is now proportional to the compression rate of the solution which is often smooth
except at isolated singularities. It is also interesting to note that, in contrast to
Harten’s approach, the savings can be very effective in the context of a low order
finite volume scheme. A first algorithm of this type was proposed in [20], and is
currently being tested for 2D problems with tensor product type discretizations and
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parametric patches to adapt the geometry of the domain. Since one of the main
goals of the present paper is to come out with a rigorous error analysis of such
adaptive algorithms, we had to reconsider, in detail, the three basic steps of the
scheme.

While the error produced by the thresholding step is easily analyzed, provided
that the multiscale reconstruction algorithm has some stability properties, the two
other steps deserve more attention. The refinement step is meant to guarantee the
accuracy of approximation at the next time step. Our analysis will reveal that this
is indeed possible by exploiting certain features of the finite volume scheme as well
as the characterization of local Hölder smoothness from the decay properties of
wavelet coefficients. The resulting refinement strategy is slightly different from the
one proposed in [22], which was mostly based on heuristic arguments. It is actually
more severe and thus more costly. As we shall see in the numerical examples section,
Harten’s refinement strategy is, in practice, sufficient to guarantee the accuracy of
approximation at the next time except in certain pathological situations where
our refinement strategy seems necessary. Concerning the evolution step, the main
difficulty is to obtain an accurate flux evaluation in order to update correctly the cell
average on the adaptive mesh S(Λ̃n+1) associated to Λ̃n+1, without the knowledge
of the fine grid cell averages. Note that this problem does not occur in Harten’s
approach, since these fine grid data are used to describe the solution and are thus
available during the computation. A first idea could be to apply on the adaptive
mesh the same finite volume scheme which is used at the finest level. Unfortunately,
this results in an important loss of accuracy in the case of low order finite volume
schemes, since the error is then dominated by the size of the coarsest cell which
appears in the adaptive mesh S(Λ̃n+1) (see e.g., [29] for this type of error estimate).
We shall propose several strategies in order to obtain a sharper evaluation of the
flux, as well as the desired error estimate. In turn we shall derive a rigorous error
analysis, in the sense that we are able to tune the thresholding and refinement
strategy in order to ensure a prescribed distance between the numerical solutions
obtained by the reference finite volume scheme and by the adaptive algorithm. For
the sake of simplicity we present this analysis in the 1D scalar case. Its extension
to the case of systems and multidimensional Cartesian grids is essentially technical,
while it is probably much more delicate for unstructured grids. Note that such an
analysis provides an a priori error estimate between the adaptive solution and the
exact solution, only if such an estimate is available for the reference finite volume
scheme, i.e., essentially in the case of low order schemes for scalar equations.

The resulting scheme will meet the above mentioned objectives of adaptivity,
combining a low order scheme on the finest mesh in the regions of large variations
with higher order approximations on coarser meshes in the regions of smoothness.
As it will be demonstrated on some benchmark numerical tests, the gain in compu-
tational time and memory size can reach very large values (above 30 in some of our
examples), while remaining within the order of accuracy of the reference finite vol-
ume scheme. These tests also allowed us to notice that our analysis is satisfactory
in terms of estimating the error produced at each time step by thresholding and
estimating the grid from the previous time step, but becomes much too pessimistic
in large time since these errors do not fully accumulate.

The paper is organized as follows. In Section 2, we give an account on mul-
tiresolution representations in the context of finite volume discretizations, and we
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discuss the issue of data compression. In Section 3, we recall Harten’s multiresolu-
tion scheme for conservation laws, and we present the fully adaptive scheme with
different strategies for an accurate flux computation. The core of the numerical
analysis of this scheme is given in Section 4. Numerical tests for 1D and 2D (scalar
and system) problems are presented in Section 5 together with a discussion con-
cerning the practical relevance of the refinement strategy and error estimate. We
end by listing some remaining trends and perspectives in Section 6.

Acknowledgment. The authors are grateful to the anonymous referee who greatly
helped improve the initial version of this paper, in particular the discussion on the
relevance of the error estimates.

2. Multiresolution meets finite volumes

2.1. Finite volume schemes. In the context of finite volume schemes, the natural
discretization of the solution to (1) is by its cell averages: the spatial domain being
partitioned into “cells” (Ωγ)γ∈S—typically intervals in 1D, triangles or quadrangles
in 2D—one is interested in computing approximations unγ of the exact averages of
u at discrete times n∆t, i.e.,

unγ ≈ unγ := |Ωγ |−1

∫
Ωγ

u(x, n∆t)dx.(2)

By the divergence theorem, the exact average satisfies

un+1
γ = unγ − |Ωγ |−1

∫ (n+1)∆t

n∆t

∫
∂Ωγ

f(u(x, t)).nγ(x)dx dt,(3)

where nγ(x) is the outer normal vector to Ωγ . This can be rewritten as

un+1
γ = unγ −

∆t
|Ωγ |

∑
µ

|Γγ,µ|F
n

γ,µ,(4)

where the sum is over all µ 6= γ such that the interface Γγ,µ = Ωγ ∩ Ωµ is not
trivial and where F

n

γ,µ denotes the average flux across this interface between n∆t
and (n+ 1)∆t, i.e.,

F
n

γ,µ := |∆t|−1|Γγ,µ|−1

∫ (n+1)∆t

n∆t

∫
Γγ,µ

f(u(x, t)).nγ(x)dx dt.(5)

The conservative structure of the equation is expressed by the balance F
n

γ,µ+F
n

µ,γ =
0. A finite volume scheme has the form

un+1
γ = unγ −

∆t
|Ωγ |

∑
µ

|Γγ,µ|Fnγ,µ,(6)

where the numerical fluxes Fnγ,µ are approximations of F
n

γ,µ computed from the
values unλ, λ ∈ S. The scheme is said to be conservative if these approximations
also satisfy Fnγ,µ + Fnµ,γ = 0. In the simplest (low order) schemes, Fγ,µ is typically
a function of unγ and unµ, while higher order schemes require additional values unν
corresponding to neighboring cells Ων .

In the context of nonsmooth solutions of scalar conservation laws, certain finite
volume schemes—mostly first order accurate—can be proved to converge to the
entropy solution of (1) in the L1 norm, with rate O(h1/2) for Cartesian grids [29]
and O(h1/4) for unstructured grids [9], where h := maxγ∈S diam(Ωγ). The use of
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higher order schemes is both limited by the theoretical difficulties in analyzing their
convergence to the entropy solution and by the important computational cost of
evaluating the fluxes Fnγ,µ. This last difficulty was the initial motivation for the use
of multiresolution techniques in the context of finite volume schemes.

2.2. Finite volume multiresolution and wavelets. Finite volume multiresolu-
tion is based on considering nested finite volume discretizations: for j = 0, 1, · · · , J ,
we are given regular disjoint partitions (Ωγ)γ∈Sj of Rd (or of a domain of interest)
such that each Ωγ , γ ∈ Sj , is the union of a finite number of cells Ωµ, µ ∈ Sj+1.
The index j refers to the scale level in the sense that there exist fixed constants
c, C such that

c2−j ≤ diam(cγ) ≤ diam(Cγ) ≤ C2−j, γ ∈ Sj ,(7)

where cγ (resp. Cγ) are balls contained in (resp. containing) Ωγ . In order to keep
track of the scale j associated to an index γ, we shall make use of the notation

|γ| := j if γ ∈ Sj .(8)

Basic example: For sake of simplicity we shall often refer to the most basic
example of the univariate dyadic intervals

Ωγ = Ωj,k := [2−jk, 2−j(k + 1)], γ ∈ Sj := {(j, k) ; k ∈ Z},(9)

which clearly fulfills all the above prescriptions.

2.2.1. Projection. Consider a vector Uj := (uγ)γ∈Sj of discrete data on the grid
Sj. If we think of this vector as representing the cell-averages of some function
u ∈ L1(Rd), i.e.,

uγ := |Ωγ |−1

∫
Ωγ

u(x)dx,(10)

it is natural to introduce a straightforward projection operator P jj−1, which maps
Uj to Uj−1, by the simple remark that since the partitions Sj are nested, we obtain
the averages at the coarser level by

uγ = |Ωγ |−1
∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|uµ.(11)

In the univariate dyadic case this amounts in half-summing the averages at the finer
level, i.e., uj−1,k = (uj,2k + uj,2k+1)/2. It is clear that from the data of UJ one can
derive UJ−1, UJ−2, · · · , U0 by iterative application of the operators P jj−1.

2.2.2. Prediction. We next introduce a prediction operator P j−1
j , which maps Uj−1

to an approximation Ûj of Uj. In contrast to the projection operator, there is an
infinite number of choice for definition of P j−1

j , but we impose at least two basic
constraints:
• The prediction is local, i.e., ûµ depends on the values uγ on a finite stencil
Rµ surrounding Ωµ, i.e., such that

Rµ ⊂ {γ ; |γ| = |µ| − 1 and dist(Ωγ ,Ωµ) ≤M2−|µ|},(12)

for some fixed M .
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• The prediction is consistent with the projection in the sense that

|Ωγ |uγ =
∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|ûµ,(13)

i.e., it is conservative with respect to the coarse grid cell averages, or equiv-
alently P jj−1P

j−1
j = Id. Note that this property implies that the stencil Rµ

must contain the unique index γ such that |µ| = |γ|+ 1 and Ωµ ⊂ Ωγ .
A trivial example of such a reconstruction operator is by simply taking

ûµ = ûγ , if Ωµ ⊂ Ωγ.(14)

Note that we do not a priori impose the linearity of the prediction operator. How-
ever, this property will be helpful in the subsequent numerical analysis, together
with other additional assumptions on P j−1

j (stability and accuracy) that we shall
address further.

2.2.3. Multiresolution decomposition. We can define the prediction error at level j
as the differences between the exact and predicted values, i.e.,

dµ := uµ − ûµ.(15)

From the consistency assumption, we see that this error satisfies the dependence
relations ∑

|µ|=|γ|+1,Ωµ⊂Ωγ

|Ωµ|dµ = 0.(16)

This redundancy suggests that we select a set ∇j ⊂ Sj obtained by removing for
each γ ∈ Sj−1 one µ ∈ Sj such that Ωµ ⊂ Ωγ . Then, defining the detail vector
Dj = (dµ)µ∈∇j , it is clear that there is a one-to-one correspondence between Uj

and (Uj−1, Dj) which can be implemented using the operators P jj−1 and P j−1
j . In

the univariate dyadic case the detail vector can be simply defined as Dj = (dj,k)k∈Z
with dj,k = (uj,2k − ûj,2k).

By iteration of this decomposition, we obtain a multiscale representation of UJ
in terms of MJ = (U0, D1, D2, · · · , DJ). Using the local structure of the projection
and prediction operators, we can implement the multiscale transformation

M : UJ 7→MJ(17)

and its inverse M−1 with optimal complexity O(NJ ), where NJ := #(SJ ) repre-
sents the dimension of UJ .

2.2.4. Wavelets. In the case where P j−1
j is linear, i.e.,

ûµ :=
∑
γ

cµ,γuγ ,(18)

M and M−1 are simple changes of bases. If the Uj are given by (10), using the
wavelet terminology, we can write

uγ := 〈u, ϕ̃γ〉,(19)

where the dual scaling function ϕ̃γ is simply

ϕ̃γ := |Ωγ |−1χΩγ ,(20)
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and

dµ = uµ − ûµ = 〈u, ϕ̃µ〉 −
∑
γ

cµ,γ〈u, ϕ̃γ〉 = 〈u, ψ̃µ〉,(21)

where the dual wavelet ψ̃µ is given by

ψ̃µ := ϕ̃µ −
∑
γ

cγ,µϕ̃γ .(22)

In the rest of this paper, in order to describe in a simple way the multiresolution
vector, we define ∇J :=

⋃J
j=0∇j with ∇0 := S0 and write

MJ = (dλ)λ∈∇J = (〈u, ψ̃λ〉)λ∈∇J ,(23)

where we have set dλ = uλ and ψ̃λ = ϕ̃λ if λ ∈ ∇0.
In the case of a structured grid, e.g., in the univariate dyadic case, it is natural

to impose a simple translation invariant structure on the prediction operator, i.e.,
a rule of the form

ûj,k =
∑
m

ck−2muj−1,m,(24)

with some possible additional adaptations near the boundary of the domain. Since
we have ϕ̃j,k = |Ωj,k|−1χΩj,k = 2jϕ̃(2j · −k) with ϕ̃ := χ[0,1], this results in the
usual structure ψ̃j,k := 2jψ̃(2j · −k) for the wavelets. Note that the dual scaling
functions and wavelets are here normalized in L1. In more general situations, we
also have ‖ϕ̃γ‖L1 = 1 by (20) and ‖ψ̃λ‖L1 ≤ C independently of λ in view of (22), if
we assume a uniform bound on the prediction coefficients cµ,γ (which always exists
for the prediction operators which have been used for our schemes).

In the univariate dyadic setting, note that the simple prediction operator defined
by (14) leads to the well-known Haar system

ψ̃j,k := 2j(χΩj+1,2k − χΩj+1,2k+1 ).(25)

2.3. Compression. One of the main interests in decomposing UJ into MJ is that
this new representation is often more appropriate for data compression. This prop-
erty will be crucial for the practical efficiency of our scheme.

Given a set Λ ⊂ ∇J of indices λ, we define a truncation operator TΛ acting
on multiscale representations that leaves unchanged the component dλ if λ ∈ Λ
and replaces it by 0, otherwise. In practice, we are typically interested in sets Λ
obtained by thresholding: given a set of level-dependent threshold (ε0, ε1, · · · , εJ),
we set

Λ = Λ(ε0, ε1, · · · , εJ) := {λ s.t. |dλ| ≥ ε|λ|}(26)

and define the corresponding thresholding operator TΛ.
Applying TΛ on the multiscale decomposition of UJ amounts to building a non-

linear approximation AΛUJ , where the operator AΛ is given by

AΛ :=M−1TΛM.(27)

Here AΛ is a nonlinear operator since Λ depends of UJ according to (26). When
Λ is fixed independently of UJ , it is a standard linear projection. A substantial
survey on nonlinear approximation—in particular by thresholding procedures—can
be found in [18]. One of its main interests to us is the ability to resolve adaptively
piecewise smooth functions with a small number of parameters, since we expect
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that the unthresholded details in the finest scale are only concentrated near the
isolated singularities. Such compression properties are however tied to additional
assumptions on the prediction operator P j−1

j : polynomial accuracy and multiscale
stability.

2.3.1. Accuracy. This first assumption means that the prediction has some pre-
scribed order N > 0 of accuracy or equivalently is exact for polynomials of degree
N − 1, i.e., if u ∈ ΠN−1, then uγ = ûγ for all γ. In other words, for all u ∈ ΠN−1

and for all λ ∈ ∇J , we have

〈u, ψ̃λ〉 = dλ = 0,(28)

i.e., the first N moments of the dual wavelets are zero. Such a property has an
immediate consequence on the size of the dλ in the smooth regions: if u has Cs

smoothness within the support Σ̃λ of ψ̃λ for some s ≤ N , we can use that dλ =
〈u− p, ψ̃λ〉 for all p ∈ ΠN−1 to estimate this coefficient by

|dλ| ≤ infp∈ΠN−1 ‖u− p‖L∞(Σ̃λ)‖ψ̃λ‖L1

≤ C infp∈ΠN−1 ‖u− p‖L∞(Σ̃λ)

≤ C2−s|λ||u|Cs(Σ̃λ).

(29)

Here we have used the properties of local polynomial approximation on Σ̃λ which
has size of order O(2−|λ|) and the fact that the ψ̃λ are normalized in L1. The fast
decay of the detail coefficients in the smooth regions will thus be ensured if N is
sufficiently large.

Note that the prediction operator (14) associated with the Haar system is only
exact for constants, i.e., the multiresolution is “first order accurate”. A possible way
to raise accuracy is to define P jj+1 through a procedure of polynomial reconstruction,
which is easy to operate for structured grids. For the sake of simplicity, let us restrict
to the univariate dyadic case: consider the centered stencil (uj,k−M , · · · , uj,k+M )
and define the unique polynomial pj,k of degree 2M such that

2j
∫

Ωj,l

pj,k(x)dx = uj,l, l = k −M, · · · , k +M.(30)

Then we simply define the prediction in the two half intervals of Ωj,k by using the
averages of pj,k, i.e.,

ûj+1,2k = 2j+1

∫
Ωj+1,2k

pj,k(x)dx and ûj+1,2k+1 = 2j+1

∫
Ωj+1,2k+1

pj,k(x)dx.(31)

Clearly this process is exact for polynomials of degree 2M , i.e., has accuracy order
N = 2M + 1. It is also clear that raising the order imposes larger stencils. In
our 1D simulations, we have used the case M = 1, i.e., a third order accurate
multiresolution. In this case, the prediction is explicitly given by

ûj+1,2k = uj,k +
1
8

(uj,k−1 − uj,k+1) and ûj+1,2k+1 = uj,k +
1
8

(uj,k+1 − uj,k−1).

(32)

2.3.2. Multiscale stability. The second assumption means that we are able to con-
trol the effect of thresholding on the resulting approximation error between UJ
and AΛUJ , in some prescribed norm. If the prediction is linear, this amounts
to understanding the individual contribution of each detail coefficient dλ to the
reconstruction on the fine mesh by M−1. This contribution is given by dλΨJ,λ,
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where ΨJ,λ is the corresponding (discrete) vector of the basis associated to the
multiscale decomposition, which is obtained by applying M−1 to the Dirac vector
Mλ := (δλ,µ)µ∈∇J .

Such a reconstruction can be decomposed in two steps: one first reconstructs
from Mλ a cell-average vector on the grid S|λ|, then iteratively applies on this
vector the prediction operator P j−1

j for j = |λ| + 1, · · · , J without adding details.
For example, in the univariate dyadic case if λ = (j, k), then ΨJ,λ = Ψj,k is explicitly
defined by

Ψj,k = P J−1
J P J−2

J−1 · · ·P
j
j+1(0, · · · , 0, 1,−1, 0, · · · , 0),(33)

with 1 at position 2k and −1 at position 2k+ 1, or equivalently by Ψj,k := Φj,2k −
Φj,2k+1, where

Φj,k = P J−1
J P J−2

J−1 · · ·P
j
j+1(0, · · · , 0, 1, 0, · · · , 0),(34)

with 1 at position k. We are thus interested in the stability of the iterative appli-
cations of the prediction operators P j−1

j .
This problem is particularly well understood for structured grids, e.g., in the

univariate dyadic case, which allows a similar refinement process from scale to
scale. In such cases, a natural way to address this problem is by analyzing the
convergence of ΨJ,λ (viewed as piecewise constant functions on the grid SJ) to
limit functions ψλ as the refinement level J goes to +∞. We thus consider an
infinite hierarchy of discretizations (Sj)j≥0, and we define the full set of indices

∇ :=
⋃
j≥0

∇j .(35)

The study of the limit functions to such refinement processes (or subdivision algo-
rithms) is a well-known task in computer-aided geometric design and wavelet theory,
and it is particularly understood in the case of uniform refinements on structured
grids. We refer to [19] or [7] for general surveys on subdivision algorithms and to
[17] or [10] for their relations to wavelets, and we simply recall here some basic facts.
If the subdivision process converges at least in L1, then one can check that the limit
functions (ψλ)λ∈∇ constitute together with (ψ̃λ)λ∈∇ a biorthogonal wavelet system
similar to those introduced in [12]: an arbitrary function u ∈ L1 can be synthesized
according to

u =
∑
j≥0

∑
|λ|=j
〈u, ψ̃λ〉ψλ,(36)

and we have the duality relations

〈ψ̃λ, ψµ〉 = δλ,µ.(37)

The synthesis and analysis functions ψλ and ψ̃λ are called the primal and dual
wavelets.

In the univariate dyadic case, assuming that the prediction operator has the
Toeplitz structure (24), the primal wavelets have the general form

ψj,k = ψ(2j · −k).(38)

In more general cases, we also have the L∞ normalization, i.e., ‖ψλ‖L∞ ≤ C
independently of λ, provided that the subdivision process converges in L∞.
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At the discrete level J , for |λ| ≤ J , the vector ΨJ,λ coincides with the cell-
averages of ψλ at level J , i.e., ΨJ,λ = (〈ψλ, ϕ̃γ〉)γ∈SJ . Defining at level J the
normalized `1 metric by

‖UJ‖ := 2−dJ
∑
λ∈SJ

|uλ|,(39)

which is equivalent to the L1 norm of the corresponding piecewise constant function,
we see that

‖ΨJ,λ‖ ≤ C‖ψλ‖L1 ≤ C2−d|λ|.(40)

We can therefore control the effect of thresholding by the following estimate

‖UJ −AΛUJ‖ =

∥∥∥∥∥∑
λ/∈Λ

dλΨJ,λ

∥∥∥∥∥ ≤ C∑
λ/∈Λ

|dλ|2−d|λ| = C
∑

|dλ|<ε|λ|

|dλ|2−d|λ|.(41)

In the following, we shall always use a threshold of the type

εj := 2djη,(42)

which amounts to keeping the largest L1 contributions ‖dλΨλ‖ (or ‖dλψλ‖L1).
This strategy—which was already proposed by Harten in [22]—finds some rigorous
justification in the theory of nonlinear approximation: roughly speaking, for a large
variety of norms ‖ · ‖X , one can prove that an approximation of a function u by an
N -term combination of wavelets uN which is nearly optimal when measured in X
(i.e., ‖u − uN‖X ≤ C‖u − vN‖X for any other N -term combination vN ) is simply
obtained as the truncated expansion of u, keeping only the N largest ‖dλψ̃λ‖X
(see e.g., [18] or [10] for such types of results). Since we are targeting an L1 error
estimate, it is thus natural to use such a level dependent threshold in order to
minimize the number N of degrees of freedom for the prescribed L1 accuracy, and
it is thus also crucial to use prediction operators such that the primal wavelets are
at least in L1.

If we work on a finite domain, we can then go further by deriving the estimate

‖UJ −AΛUJ‖ ≤ C#(∇J )η = C#(SJ )η ≤ C2Jdη.(43)

This last estimate led Harten to the more specific choice η = 2−dJε, i.e.,

εj := 2d(j−J)ε,(44)

in order to ensure a thresholding error of prescribed order ε.
Note however that (43) is very crude since it bounds all the thresholded L1

components by η while many of them might be much smaller. In other words
the choice of Λ by (26) and (44) might keep too many coefficients for the target
accuracy. A smarter thresholding strategy, which also ensures an error of order ε
while minimizing the number of preserved coefficients, is the following: sort the
indices λ into a sequence (λ(n))n≥0 such that the sequence d∗n := 2−|λ(n)||dλ(n)| is
nondecreasing, find the largest N such that

∑N
n=0 d

∗
n ≤ ε, and then define Λ :=

{(λ(n)) ; n > N}. Note that this still amounts to defining Λ according to (26)
with εj = 2djη but with η possibly much larger than 2−dJε. In the schemes that
will be presented further, we shall nevertheless use (44). One of the specificities of
this threshold is that it also ensures an error estimate of order ε in the sup-norm
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(and by interpolation in all other discrete `p norms) if the primal wavelets ψλ are
in L∞. Indeed, we have

‖UJ −AΛUJ‖`∞ = ‖
∑
|dλ|≤ελ dλΨJ,λ‖`∞

≤
∑J

j=0 ‖
∑
|dλ|≤ελ,|λ|=j dλΨJ,λ‖`∞

≤ C
∑J

j=0 sup|dλ|≤ελ,|λ|=j ‖dλΨJ,λ‖`∞
≤ C

∑J
j=0 εj ≤ Cε,

(45)

where we have used the fact that the ψλ and ΨJ,λ are normalized in the sup-norm,
and that at fixed level |λ| = j, the ΨJ,λ do not overlap too much in the sense that

‖
∑
|λ|=j

dλΨJ,λ‖`∞ ≤ C sup
|λ|=j

‖dλΨJ,λ‖`∞ .(46)

The integrability of the primal scaling functions and wavelets is in some sense a
minimal requirement for controlling the effect of thresholding. However, the analy-
sis of our scheme will also rely on stronger smoothness properties of these functions,
in relation with the following fact: if the ψλ are in Cr, there is a converse to (29)
which says that such a decay property is an effective local smoothness indicator.
More precisely, if Σ is a given domain and if for some s < r we have the estimate
|〈u, ψ̃λ〉| ≤ C2−s|λ| for all λ ∈ ∇ such that the support of ψλ intersects Σ, then u
has Cs smoothness on Σ. Here Cs is the usual Hölder class when s is fractional,
and when s is an integer it should be replaced by the Besov space Bs∞,∞ (which is
then slightly larger than Cs; see e.g., [28, 24, 10, 17] for such results). We shall use
a discrete counterpart of such a result (Lemma 4.3) in the analysis of the adaptive
schemes that we shall develop in Secton 3.

Note that in the case of the prediction operator (14) associated with the Haar
system, we have ψ̃ = ψ and therefore the primal wavelet has no Hölder smoothness.
In contrast, it is known that the limit functions associated with (32) have Cr

smoothness for all r < 1.

2.3.3. Tree-structured compression. In our particular context, we shall be interested
in that the set of preserved indices Λ has a tree structure. In order to define
such structures properly, we introduce the following terminology: if Ωµ ⊂ Ωγ with
|γ| = |µ| − 1, we say that µ is a “child” of γ and that γ is the “parent” of µ. Note
that by the definition of ∇j , if γ has N(γ) children, N(γ) − 1 of them are in ∇,
i.e., represent a detail. We call these the “detail children” of γ.

Definition 2.1. A set of indices Λ ∈ ∇ is a tree if it holds that:
(i) the fundamental level ∇0 = S0 is contained in Λ.
(ii) if µ and ν are detail children of the same γ, then µ ∈ Λ if ν ∈ Λ.
(iii) if γ is such that its detail children are in Λ, then the parent of γ has the same

property.

In the univariate dyadic case, this definition can be rewritten in the following
simpler form: ∇0 ∈ Λ and

(j, k) ∈ Λ ⇒ (j − 1, [k/2]) ∈ Λ.(47)

In particular, assumption (ii) is useless since each γ = (j, k) has only one detail
child, corresponding to the detail dj,k.

The importance of tree structures is in that they are associated in a natural way
to a “hybrid” discretization by cells of various levels. We first define the leaves L(Λ)
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Figure 1. Example of (nongraded) tree Λ and corresponding
adaptive mesh S(Λ).

Figure 2. Smallest graded tree (with respect to (32)) containing Λ.

of a tree Λ as those λ ∈ Λ which have no children in Λ. Clearly the Ωλ, λ ∈ L(Λ),
are disjoint but they do not form a partition, i.e., they do not tile the whole domain.
For example, in the case where the leaves are all at level j, i.e., L(Λ) = ∇j , we do
not have a partition since ∇j was built as a strictly smaller subset of Sj in order to
have a nonredundant detail vector. In order to have a partition, we need to add to
L(Λ) all those µ which have a common parent with some λ ∈ L(Λ) but are not in ∇
(in the case L(Λ) = ∇j , this corresponds to complete ∇j into Sj). The resulting set
S(Λ) corresponds to an adaptive partition of the space domain (Ωλ)λ∈S(Λ), which
can also be obtained by an iterative refinement process: starting from the coarse
partition (Ωλ)λ∈S0 , we subdivide a cell Ωλ of the current partition whenever the
detail children of λ are in Λ. We also define the larger set R(Λ), corresponding to
all the Ωλ produced by the adaptive refinement process even at intermediate stages,
i.e., all the Ωλ which are unions of Ωµ with µ ∈ S(Λ). One easily checks that

#(S(Λ)) = #(Λ) ≤ #(R(Λ)) ≤ 2#(Λ).(48)

We present in Figure 1 an example of a tree Λ together with the corresponding
adaptive mesh S(Λ) in the univariate dyadic case.

A family of prediction operators P j−1
j being fixed, we shall also be interested in

the following elaboration of a tree structure which corresponds to a certain amount
of grading in the hybrid mesh.

Definition 2.2. A tree Λ is graded if for all µ ∈ Λ, the prediction stencil Rµ is
contained in R(Λ).

Note that in the case of the predictions operators (14), a tree is always graded.
We present in Figure 2 an example of a graded tree in the univariate dyadic case,
with respect to the prediction operator (32), which is the smallest graded tree
containing the tree in Figure 1. In this case, the grading property takes the simpler
form

(j, k) ∈ Λ ⇒ (j − 1, [k/2] + l) ∈ Λ, l = −1, 0, 1.(49)

The interest of the grading assumption is due to the following result.

Proposition 2.3. If Λ is a graded tree, there exists an isomorphism MΛ which
maps the cell averages (uλ)λ∈S(Λ) of any function u to its detail coefficients (dλ)λ∈Λ.
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Both adaptive decomposition and reconstruction operators (i.e., MΛ andM−1
Λ ) can

be implemented in O(#(Λ)) operations.

Proof. Given (dλ)λ∈Λ, we compute (uλ)λ∈R(Λ) by a coarse-to-fine algorithm. We
first observe that (dλ)λ∈Λ contains (uλ)λ∈∇0 and that ∇0 = R(Λ) ∩ S0. At some
step j ≥ 0, we assume that we have computed the (uλ)λ∈R(Λ)∩∇j . Then, us-
ing the assumption that Λ is a graded tree, we can compute (uλ)λ∈R(Λ)∩Sj from
(uλ)λ∈R(Λ)∩Sj−1 and (dλ)λ∈Λ∩Sj in O(#(R(Λ) ∩ Sj)) operations. The complete
reconstruction of (uλ)λ∈R(Λ)—and in particular of (uλ)λ∈S(Λ)—is thus performed
in O(#(R(Λ))) = O(#(Λ)) operations.

Conversely, given (uλ)λ∈S(Λ), we compute together (uλ)λ∈R(Λ) and (dλ)λ∈Λ by
a fine-to-coarse algorithm. We first remark that for the maximal level J = J(Λ) =
maxλ∈Λ |λ|, we always have R(Λ) ∩ ∇J = S(Λ) ∩ ∇J . Assume that we have com-
puted (uλ)λ∈R(Λ),|λ|>j−1 and (dλ)λ∈Λ,|λ|>j . Then, we obtain (uλ)λ∈R(Λ)∩∇j−1 as
the union of (uλ)λ∈S(Λ)∩∇j−1 and of the projection of (uλ)λ∈R(Λ)∩∇j . We then
compute the prediction (ûλ)λ∈R(Λ)∩∇j , and thus the details (dλ)λ∈Λ∩∇j . The cost
of this step is O(#(R(Λ)∩Sj)) operations. The complete decomposition algorithm
is thus performed in O(#(R(Λ))) = O(#(Λ)) operations.

Remark 2.4. For a nongraded tree Λ, one can still easily prove the following: if
u has all its details dλ = 0 for λ /∈ Λ, then there exists an isomorphism between
the cell averages (uλ)λ∈S(Λ) and the coefficients (dλ)λ∈Λ. However, the complexity
of implementing this isomorphism is O(#(Λ̃)), where Λ̃ is the smallest graded tree
containing Λ. This is due to the fact that the reconstruction of a uλ always requires
the knowledge of the uγ for γ ∈ Rλ.

In all the following, we shall always consider data compression on graded trees,
which we obtain by possibly enlarging the set of nonthresholded coefficients: we
define Λε to be the smallest graded tree containing the set {λ ; |dλ| ≥ ε|λ|}, where
εj is given by (44). We define the corresponding tree approximation operator
Aε := AΛε . It is clear that we have

‖UJ −AεUJ‖ ≤ Cε,(50)

since we are using a larger set of coefficients than with a simple thresholding.

3. From Harten’s scheme to fully adaptive schemes

Both Harten’s multiresolution scheme and the fully adaptive scheme that we
shall develop to numerically solve (1) rely on a finite volume scheme (6) which
operates on the finest resolution level. We rewrite (6) as

V n+1
J = V nJ −BnJ ,(51)

where V nJ := (unγ )γ∈SJ is the vector representing the numerical solution at time
n∆t and BnJ := (bnγ )γ∈SJ with bnγ := ∆t

|Ωγ |
∑

µ |Γγ,µ|Fnγ,µ the numerical flux balance
for the cell Ωγ . The increment bnγ depends locally on the numerical solution, i.e., it
can be expressed as

bnγ :=
∆t
|Ωγ |

F (unµ ; µ ∈ I(γ)),(52)
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where I(γ) represents the finite volume stencil attached to γ and F the numerical
flux balance function.

We denote by EJ the corresponding discrete (nonlinear) evolution operator as-
sociated to this standard scheme, so that, assuming that we initialize the scheme
on the exact cell average vector U

0

J of u0, we have

V nJ = EJV
n−1
J = · · · = EnJU

0

J .(53)

If U
n

J is the cell average vector of the exact solution u at time n∆t, we define the
error by

en := ‖V nJ − U
n

J‖.(54)

For low order schemes applied to scalar conservation laws, it is usually possible to
derive an a priori error estimate en ≤ Cn∆t2−J/2 in 1D and en ≤ Cn∆t2−J/4 in
several space dimensions, while in more general situations we can only rely on the
practical application of the scheme to evaluate this quantity. Note that the time
step is typically limited by a CFL condition

∆t ≤ C2−J ,(55)

where the constant C typically depends on the supremum of the first order space
derivatives of the flux function over the range |v| ≤ ‖u0‖L∞ .

The goal of the multiresolution schemes that we shall now investigate is to com-
pute a numerical solution UnJ with a significant CPU gain over the reference finite
volume scheme, while the additional error

an := ‖UnJ − V nJ ‖(56)

remains within a prescribed accuracy. It is of course natural that this accuracy
should be chosen of the same order as the error estimate available for en.

3.1. Harten’s heuristics. Both Harten’s multiresolution scheme and our fully
adaptive scheme are based on the intuitive idea, introduced in [22], that the set of
significant wavelet coefficients of the numerical solution evolves “slowly” from one
time step to the other. More precisely, if Λnε is the graded tree obtained from the
application of Aε to some numerical approximation UnJ of U

n

J , one can summarize
this idea as follows.

Assumption 3.1 (Harten’s heuristics). One can enlarge Λnε into a graded tree
Λ̃n+1
ε which contains both Λnε and Λn+1

ε so that, if Un+1
J = EJU

n
J , we have

‖UnJ −AΛ̃n+1
ε

UnJ ‖ ≤ Cε and ‖Un+1
J −AΛ̃n+1

ε
Un+1
J ‖ ≤ Cε,(57)

i.e., Λ̃n+1
ε is adapted for describing the solution at both n∆t and (n+ 1)∆t.

Some comment should be made about the meaning of “enlarge” in the above
statement. Clearly this statement is true if we simply define Λ̃n+1

ε as the full set
∇J , but such a choice has no interest from the point of view of adaptivity: the
set Λ̃n+1

ε should not be substantially larger than Λnε . The enlargement strategy
proposed by Harten in [22] typically consists in “growing” the tree according to the
size of the current detail coefficients. More precisely, in the univariate dyadic case,
Harten proposes the following rules:
• If (j, k) is in Λnε , then its neighbors at the same scale (j, k + 1) and (j, k − 1)

are included in Λ̃n+1
ε .
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• If (j, k) is in Λnε and if |dj,k| > 2Nε, where N is the order of accuracy of
the prediction operator (i.e., the number of vanishing moments of the dual
wavelets), then its children (j + 1, 2k + k′), k′ = 0, 1, are also included.

The first rule takes into account the finite velocity transport of the solution, as-
suming that some CFL condition is imposed on the time step. The second rule
aims to foresee the formation of discontinuities, using the detail coefficients as nu-
merical smoothness indicators and assuming that the future loss of this numerical
smoothness can be detected on the coarse scales.

The above heuristics plays a crucial role in the error analysis of dynamically
adaptive multiresolution schemes. We shall devote part of Section 4 to providing
a rigorous proof of (57), which will necessitate some changes in the growing rules.
In particular, we shall possibly need several levels of refinement when |dj,k| is very
large, and the number of these levels will also depend on the degree of Hölder
smoothness of the synthesis wavelets ψλ.

3.2. Harten’s multiresolution scheme. By (51), we see that Assumption 3.1
also implies

‖BnJ −AΛ̃n+1
ε

BnJ‖ ≤ Cε,(58)

i.e., the flux balance is also well represented by Λ̃n+1
ε . Here we have used the fact

that, once Λ̃n+1
ε is fixed, AΛ̃n+1

ε
is a linear operator. Given a prescribed tolerance

ε > 0, the scheme proposed by Harten in [22] consists in using the compressed
vector AΛ̃n+1

ε
BnJ in place of BnJ : the cell averages are now evolved according to

Un+1
J = UnJ −AΛ̃n+1

ε
BnJ .(59)

Of course, BnJ is now the numerical flux balance computed from UnJ which differs
from V nJ . As explained in the introduction, the goal of this modification is to save
computational cost through a smaller number of numerical flux evaluation. For this
purpose, we notice that according to Proposition 2.3, we can reconstruct AΛ̃n+1

ε
BnJ

from the averages (bnλ)µ∈S(Λ̃n+1
ε ) of BnJ on the corresponding adaptive discretization.

Such averages are defined from BnJ by

bnλ :=
∑

|γ|=J,Ωγ⊂Ωλ

|Ωγ |
|Ωλ|

bnγ ,(60)

but in view of the definition of bγ as a numerical flux balance, they can also be
defined as the global numerical flux balance for Ωλ, i.e.,

bnλ :=
∆t
|Ωλ|

∑
|γ|=|µ|=j,Ωγ⊂Ωλ,Γγ,µ⊂∂Ωλ

|Γγ,µ|Fnγ,µ.(61)

In other words, the computation of AΛ̃n+1
ε

BnJ only requires the evaluation of the
numerical fluxes Fnγ,µ corresponding to the edges Γγ,µ at the finest level which are
contained in the edges of the adaptive mesh S(Λ̃n+1

ε ). Some remarks are in order
at this point:
• In the one dimensional case where edges are reduced to points, the number of

numerical flux evaluation is directly proportional to #(Λ̃n+1
ε ). This is no more

true in several dimensions, since a coarse cell Ωλ in the adaptive mesh might
have a large number of fine grid edges Γγ,µ contained in its boundary ∂Ωλ.
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The number of flux evaluation is nevertheless substantially reduced since we
do not need to compute the fluxes for all the edges Γγ,µ which are inside Ωλ.

• Once the (bnλ)µ∈S(Λ̃n+1
ε ) are computed, the reconstruction of AΛ̃n+1

ε
BnJ on the

finest grid is performed by iterating the prediction operator without adding
details. In the one dimensional case it can be shown that this is equivalent to
computing the remaining fluxes Fnγ,µ by an iterative point value interpolation
process derived from the prediction operator (see, e.g., [22]).
• The tolerance parameter ε monitors the loss of accuracy of the scheme when

compared to the standard finite volume scheme which corresponds to ε = 0.
In particular, it can be easily shown (see Section 4) that if the reference finite
volume scheme is `1-contractive, i.e., ‖EJU − EJV ‖ ≤ ‖U − V ‖, and under
Assumption 3.1, then the additional error an can be estimated by Cnε. In
principle, raising ε is beneficial for the computational cost since it reduces
#(Λ̃n+1

ε ). However, note that this also modifies the numerical solution at the
next time step, which could possibly lead to larger sets of coefficients if the
new numerical solution is less smooth.
• As already mentioned in the Introduction, the computational savings remains

inherently limited by the fact that the evolution by (59) takes place on the
finest discretization SJ and therefore the complexity of one time step is still
O(NJ ). In particular, the numerical solution UnJ is stored at the finest dis-
cretization level rather than in a compressed form, which is also a limitation
in terms of memory space. Note that the knowledge of UnJ at the finest level
is needed to compute the bλ according to (61).

We shall now turn to the development, analysis, and practical testing of fully
adaptive schemes which aim to circumvent these limitations, while preserving the
interesting features of Harten’s scheme, such as controlling the accuracy with re-
spect to a reference finite volume scheme.

3.3. General structure of the fully adaptive scheme. The adaptive scheme
operates on a compressed representation of the numerical solution UnJ : at time
step n∆t, the nonzero detail coefficients in the multiscale decomposition of UnJ are
confined to a graded tree Λn ⊂ ∇J so that UnJ is exactly represented by its coeffi-
cients (dnλ)λ∈Λn or by its cell averages (unλ)λ∈S(Λn) on the corresponding adaptive
discretization.

Before discussing the derivation of (Un+1
J ,Λn+1) from (UnJ ,Λn), a few words are

in order concerning the initialization of the scheme: ideally, we would like to start
from the exact cell-averages U

0

J of u0 and define U0
J by a first thresholding step

U0
J := AεU

0

J .(62)

This first step thus obliges us to consider the full vector U
0

J in order to decompose it
and find the set Λ0. In practice, it might happen that this is not feasible due to the
size of U

0

J , and that one needs a more direct access to a compressed representation.
This is typically done through some a priori analysis of the initial value u0. In
particular, if u0 is provided by an analytic expression or if we have some information
on the local size of its derivatives, the estimate (29) can be used to avoid the
computation of most details which are below threshold. With such a strategy, we
expect to obtain Λ0 and (d0

λ)λ∈Λ0 or (u0
λ)λ∈S(Λ0) with a memory and computational

cost which remains proportional to #(Λ0).
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Given Λn and UnJ (represented by (dnλ)λ∈Λn or (unλ)λ∈S(Λn)), we derive Λn+1 and
Un+1
J by the following steps:

• Refinement. A new set Λ̃n+1 containing Λn is constructed based on the mag-
nitude of the coefficients |dnλ|, λ ∈ Λn, according to some growing rules that we
shall describe below. The vector (dnλ)λ∈Λn is extended by setting dnλ = 0 for
λ ∈ Λ̃n+1\Λn. ApplyingM−1

Λ̃n+1
, we derive the refined averages (unλ)λ∈S(Λ̃n+1).

• Computation. A first numerical solution Ũn+1
J at time (n+ 1)∆t, discretized

on S(Λ̃n+1), is computed by

ũn+1
λ = unλ − b̃nλ, λ ∈ S(Λ̃n+1).(63)

The adaptive flux balance vector (b̃nλ)λ∈S(Λ̃n+1) is directly computed from
(unλ)λ∈S(Λ̃n+1) according to one of the strategies that we shall describe in
subsection 3.5.
• Thresholding. Applying MΛ̃n+1

to (ũn+1
λ )λ∈S(Λ̃n+1), we derive (d̃n+1

λ )λ∈Λ̃n+1
.

We define Un+1
J by thresholding Ũn+1

J according to

Un+1
J = AεŨn+1

J ,(64)

and the new set Λn+1 ⊂ Λ̃n+1 to be the corresponding set Λε of preserved
coefficients.

In contrast to the multiresolution scheme described in the previous section, all
these steps only involve the compressed representation. Two crucial aspects are the
refinement rules that define Λ̃n+1 and the computation of the adaptive flux balance
vector (b̃nλ)λ∈S(Λ̃n+1) without the knowledge of UnJ at the finest resolution level. We
address these issues in the next two subsections.

3.4. The refinement process. In order to define Λ̃n+1, we introduce several
notations. First, assuming that the wavelets ψλ has Cr Hölder smoothness (in
the case where r is an integer we mean by this that the r − 1 derivative of ψλ is
Lipschitz continuous) and that the dual wavelets ψ̃λ have N vanishing moments,
we fix some s > 1 such that s < r + 1. Note that in the classical constructions of
wavelets on structured grid, one always has r < N , so that we also have s < N + 1.
If λ ∈ Λn, we define an index n(λ) as the unique integer such that

2n(λ)sε|λ| < |dnλ| ≤ 2(n(λ)+1)sε|λ|.(65)

Recall that ε|λ| is given by (44). Our growing procedure will take into account
the size of dnλ in the sense that we shall typically perform max{n(λ); 0} iterative
refinements of the adaptive mesh in the neighborhood of Ωλ. The index n(λ) is
thus a measure of the “pollution effect” induced in the finer scales (if n(λ) > 0) at
the next time step by dnλ. We also need that Λ̃n+1 takes into account a pollution
effect in space, which corresponds to the propagation of singularities between time
n∆t and (n+ 1)∆t.

In order to describe this growing procedure in a more precise way, we define Σλ
as the union of the cells of SJ which constitutes the support of the discrete wavelet
ΨJ
λ. In other words, Σλ is the region of the finest grid where UnJ is influenced by

the coefficient dnλ. Note that this support is in general contained in (not necessarily
equal to) the support of the continuous primal wavelet ψλ which is obtained by
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letting J go to infinity in the subdivision process. We recall that Σ̃λ denotes the
support of ψ̃λ, i.e., the space region which influences the coefficient dλ.

In order to take into account the influence of the evolution operator, we use the
following notation: if Σ is a set of cells, we define by Σ− the set of µ in SJ such that
µ ∈ I(γ) for some γ ∈ Σ. Recall that I(γ) is the finite volume stencil attached to γ.
In other words Σ− is the backward influence domain of Σ for one time step of the
reference finite volume scheme. Similarly, we define the forward influence domain
Σ+ of Σ as the set of µ in SJ such that I(µ) ∩ Σ is not empty. These influence
domains are typically the union of Σ and a layer of fine grid cells, the width of
which depends on the size of the finite volume stencil.

For λ ∈ Λn, we define the influence set of λ by

Λλ := {µ ∈ ∇J s.t. |µ| ≤ |λ|+ n(λ) and Σ̃−µ ∩Σλ 6= ∅},(66)

i.e., all the µ of scale level less than |λ| + n(λ) such that the detail dµ of EJUnJ is
influenced by dnλ. Note that the property Σ̃−µ ∩Σλ 6= ∅ is equivalent to Σ̃µ∩Σ+

λ 6= ∅.
We then define Λ̃n+1 by adding to Λn all the influence trees:

Λ̃n+1 := Λn ∪
[ ⋃
λ∈Λn

Λλ

]
.(67)

In Section 4, we shall see that with such a definition for Λn+1, one can rigorously
prove Harten’s heuristics expressed by Assumption 3.1 (in the context of multires-
olution decomposition based on structured grids).

Remark 3.2. One can easily check that from its definition the influence set Λλ is
necessarily a graded tree. Therefore Λ̃n+1 defined by (66) automatically inherits
the structure of a graded tree.

Remark 3.3. In view of (65), we shall reduce the number of refinements n(λ) if we
take s as large as possible, with the limitation s < r + 1. This is slightly different
from the heuristic strategy of Harten described in subsection 3.1, which corresponds
to taking s = N + 1 and to limit the refinements to at most one level. It is thus
important that the smoothness r of the primal wavelets is not too small. Recalling
that r < N in all wavelet constructions, we see that our strategy introduces more
refinements than Harten’s strategy. As we shall see in Section 5, Harten’s refinement
strategy is in practice sufficient to guarantee the needed accuracy of approximation
at the next time. However, we shall exhibit particular initial data for which our
strategy becomes necessary.

3.5. Computing the numerical flux accurately. When computing the flux
balance vector (b̃nλ)λ∈S(Λ̃n+1), we are facing the difficulty that we do not have at
our disposal the representation of UnJ by the finest cell averages (unγ )γ∈SJ , which
would allow us to compute the exact vector (bnλ)λ∈S(Λ̃n+1) according to (61). Several
strategies are available to cope with this difficulty.

3.5.1. Exact local reconstruction. This first strategy is based on the remark that
according to (61) the computation of the exact vector (bnλ)λ∈S(Λ̃n+1) does not require
the knowledge of all the finest cell averages (unγ )γ∈SJ , but only of those which are
involved in the evaluation of the fluxes Fγ,µ for the Γγ,µ which are part of the
edges of the adaptive mesh S(Λ̃n+1

ε ). We denote by T (Λ̃n+1
ε ) the subset of SJ

corresponding to these particular cells.
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The idea is then simply to reconstruct (unγ )γ∈T (Λ̃n+1
ε ) from the available data, i.e.,

(dnλ)λ∈Λ̃n+1
or (unλ)λ∈S(Λ̃n+1). Using the local structure of the prediction operator,

this can be performed with much less computational cost than the reconstruction
of the full (unγ )γ∈SJ .

This idea is particularly effective in the univariate case. As an example, consider
the univariate dyadic case with the third order accurate prediction (32). Suppose
that the adaptive grid S(Λ̃n+1) coincides with the coarsest grid Z on [−2, 2], i.e., UnJ
is given by its averages un0,k on the intervals [k, k + 1], k ∈ {−2,−1, 0, 1}, and that
we want to compute the exact numerical flux at the point x = 0. If the numerical
flux function in EJ only depends on a two-cell stencil surrounding the point of
interest, then we need to reconstruct the cell averages unJ,−1 on [−2−J , 0] and unJ,0
on [0, 2−J ]. From (32), we see that the cell averages unJ,k, k ∈ {−2,−1, 0, 1}, can
be locally reconstructed by J iterations of the linear equations

unj,−2 = unj−1,−1 + 1
8 (unj−1,−2 − unj−1,0),

unj,−1 = unj−1,−1 + 1
8 (unj−1,0 − unj−1,−1),

unj,0 = unj−1,0 + 1
8 (unj−1,−1 − unj−1,1),

unj,1 = unj−1,0 + 1
8 (unj−1,1 − unj−1,−1),

(68)

i.e., J applications of a simple 4 × 4 matrix M . More generally, we see that if the
adaptive mesh is locally refined up to some level j in the neighborhood of one of
its points x, the computation of the flux at x will require J − j applications of
M . Therefore, it will be sufficient to store the powers (M,M2, · · · ,MJ) in order
to have direct access to the fine grid cell averages which are needed for the flux
computation. In turn, the computational cost of the local reconstruction is optimal
with respect to the adaptive discretization since #(T (Λ̃n+1

ε )) is of the same order
as #(Λn+1

ε ) in the one dimensional case.

Remark 3.4. The case where the adaptive grid is not locally uniform around x is not
a real problem since the graded tree assumption ensures that at most two adjacent
levels (j, j + 1) are represented in the four cells of the adaptive grid surrounding
this point. Therefore, by one application of the prediction operator, we immediately
recover the four cell averages at the uniform level j+1 which are needed to initialize
the local reconstruction.

Remark 3.5. With such a local reconstruction process, our scheme meets the gen-
eral requirements of adaptivity which were raised in the introduction, namely com-
bining high order approximation in the smooth regions together with mesh refine-
ment near the singularities, even if the reference finite volume scheme is low order
accurate. Indeed, high order approximation in the smooth regions is here ensured
by the polynomial exactness in the multiresolution prediction operator rather than
by the finite volume scheme itself.

As we shall see in Section 4, the error produced by the adaptive scheme with
such local reconstructions can be analyzed in a relatively simple way under the
assumption that the reference finite volume scheme is `1-contractive.

In the multivariate case this strategy is still feasible but the computational cost
and memory storage are no more optimal since in this case #(T (Λ̃n+1

ε )) might be
substantially larger than #(Λn+1

ε ) (and yet still substantially smaller than NJ) as
noticed in subsection 3.2. A possibility is then to renounce the exact computation
of the adaptive flux balance vector and use an approximation (b̃nλ)λ∈S(Λ̃n+1) which
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can be constructed from the available data with an optimal computational cost and
memory storage. In the following we briefly describe two strategies of that type.

3.5.2. Direct evaluation. An obvious possibility for the computation of (b̃nλ)λ∈S(Λ̃n+1)

from the (unλ)λ∈S(Λ̃n+1) is to apply the numerical flux function of the reference fi-
nite volume scheme directly to the values unλ in order to directly evaluate the flux
on the edges of the adaptive discretization. This approach is very inaccurate in
comparison to the previous one in the case where the numerical flux function is low
order accurate, e.g., first order, since it generates errors in O(H) where H is the
mesh size in the coarsest regions of the adaptive grid S(Λ̃n+1).

Therefore, this second strategy can only be successful if a high order scheme,
such as an ENO scheme, is applied in the coarse regions. In this context, a rigorous
error analysis seems more difficult due to the lack of available results concerning the
stability and convergence of high order ENO schemes on uniform grids. In practice,
we have observed that such a strategy essentially exhibits the same performances
as the exact local reconstruction strategy, with an optimal computational cost and
memory storage, proportional to #(Λn+1

ε ).
We end by describing a third hybrid strategy which can be viewed as a combina-

tion of the two previous ones. The idea is to associate to each edge E of S(Λ̃n+1) a
fixed finite number of fine grid edges Γγ,µ contained in E and to reconstruct exactly
the fine scale averages only on the subset T̃ (Λ̃n+1

ε ) ⊂ T (Λ̃n+1
ε ) which is needed to

evaluate the fluxes Fγ,µ corresponding to these Γγ,µ. The next step consists in
evaluating the flux across the edges of S(Λ̃n+1) from these exact values by means
of high order quadrature, which can also be thought of as a high order interpolation
of the flux along the edges. Since the cardinality of T̃ (Λ̃n+1

ε ) is of the same order as
#(Λn+1

ε ), the cost of the local reconstruction is optimal even in several dimensions.

4. Error analysis

For the analysis of Harten’s multiresolution scheme and of our fully adaptive
scheme, we are interested in controlling the additional error an by some prescribed
accuracy. For this, we shall need the following assumption on the reference finite
volume scheme.

Assumption 4.1. There exists some fixed C ≥ 0 such that the reference scheme
satisfies

‖EJU − EJV ‖ ≤ (1 + C∆t)‖U − V ‖,(69)

for all U, V .

In the case where C = 0, this assumption means that the scheme is `1-contractive,
a property which is achieved by several first order accurate schemes. Recall that
even for such schemes, we expect that the fully adaptive scheme provides a high
order decay of the error with respect to the number of degrees of freedom.

4.1. Cumulative error analysis. Let us first consider Harten’s multiresolution
scheme as described in subsection 3.2. In this case, following the analysis in [22], we
can bound the error with respect to the reference finite volume scheme according
to

an ≤ ‖EJUn−1
J − EJV n−1

J ‖+ ‖EJUn−1
J − UnJ ‖

≤ (1 + C∆t)an−1 + cn,
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where

cn := ‖Bn−1
J −AΛ̃nε

Bn−1
J ‖(70)

represents the cumulative error at each time step, which can be thought of as a
“refinement error” since it measures how well the flux vector Bn−1

J is approximated
by the adaptive set AΛ̃nε

which was refined from Λn−1
ε . Under Assumption 3.1,

which we shall rigorously prove in subsection 4.3 based on the refinement rule of
subsection 3.4, this cumulative error is bounded by Cε. In the case where the
reference scheme is `1-contractive, this immediately leads to the estimate

an ≤
n∑
k=1

ck ≤ Cnε.(71)

At fixed time T = n∆t, this leads to

an ≤ C
T

∆t
ε,(72)

Under the more general Assumption 4.1, we derive

an ≤
n−1∑
k=0

Cε(1 + C∆t)k = Cε[(1 + C∆t)n − 1]/∆t ≤ C ε

∆t
[eCT − 1],(73)

and thus the same estimate as (72) if T is not large. Note that based on (55), we
typically take ∆t proportional to 2−J so that these estimates are in O( T

2J
ε). This

suggests that we take ε of order 2−(1+γ)J if the error estimate available between
the reference finite volume scheme and the exact solution is in CT 2−γJ .

Let us now turn to the fully adaptive scheme that was proposed in subsection 3.3.
We shall only consider here the version of this scheme where the flux is computed
by exact local reconstruction as proposed in subsection 3.5.1. In order to compare
the fully adaptive scheme with the reference scheme, we shall still evaluate an :=
‖UnJ −V nJ ‖, where UnJ corresponds to the solution produced by the adaptive scheme
reconstructed on the finest mesh SJ . One should keep in mind that the adaptive
scheme really operates on the compressed representation of UnJ , i.e., on the (dnλ)λ∈Λn

or (unλ)λ∈S(Λn). For the purpose of error analysis, we may yet summarize the action
of the adaptive scheme on UnJ by the following simple observation.

Proposition 4.2. If UnJ is the result of the adaptive scheme based on exact local
reconstruction, we have

Un+1
J := AεAΛ̃n+1

EJU
n
J ,(74)

where AΛ̃n+1
:= M−1TΛ̃n+1

M is the linear approximation operator based on dis-
carding the coefficients not in Λ̃n+1 and Aε is the tree-structured compression op-
erator.

Proof. Since we use the exact numerical flux in the evolution of the averages
(unλ)λ∈S(Λ̃n) by (63), this step amounts to transforming UnJ into Ũn+1

J :=
AΛ̃n+1

EJU
n
J . After the thresholding step, Un+1

J is thus given by (74).

Using this observation, we can perform a cumulative error analysis of the same
type as for Harten’s scheme. We now have

an ≤ ‖EJUn−1
J − EJV n−1

J ‖+ ‖EJUn−1
J − UnJ ‖

≤ (1 + C∆t)an−1 + dn.
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The new cumulative error dn := ‖EJUn−1
J − UnJ ‖ can be further estimated by

dn ≤ ‖EJUn−1
J − ŨnJ ‖+ ‖ŨnJ − UnJ ‖ = cn + tn,(75)

where we have

cn := ‖EJUn−1
J −AΛ̃n

EJU
n−1
J ‖ = ‖Bn−1

J −AΛ̃nε
Bn−1
J ‖,(76)

since AΛ̃nε
Un−1
J = Un−1

J , and

tn := ‖ŨnJ − UnJ ‖ = ‖ŨnJ −AεŨnJ ‖.(77)

The term cn is thus exactly the same refinement error as in Harten’s scheme and, as
already explained, will be bounded by Cε if we apply the refinement rule proposed
in subsection 3.4. The additional term tn corresponding to the thresholding error
is always bounded by Cε according to (50). Therefore the fully adaptive scheme
satisfies exactly the same error bounds as Harten’s scheme, i.e., (72) in the case of
an `1-contractive reference scheme or (73) for a more general scheme which satisfies
Assumption 4.1.

It remains for us to show how the refinement strategy proposed in subsection
3.4 ensures the validity of Harten’s heuristics or equivalently the estimate of the
cumulative error cn by Cε. This is the purpose of the next subsection.

4.2. A rigorous setting for Harten’s heuristic. According to (41), in order to
bound cn by Cε, it suffices to show that for µ /∈ Λ̃n+1 with Λ̃n+1 defined by (67)
we have the estimate

|dµ(BnJ )| ≤ Cε|µ| = C2d(|µ|−J)ε,(78)

where dµ(BnJ ) is the detail coefficient of the numerical flux balance vector BnJ com-
puted from UnJ .

In order to prove this estimate, we shall restrict our discussion to multireso-
lution representations based on structured finite volume meshes. For the sake of
simplicity, we shall present the proof in the univariate dyadic case, i.e., Sj defined
by (9). The generalization of the proof to the multivariate structured meshes is
straightforward but involves much heavier notation. Much more difficult seems to
be the generalization of our results to unstructured meshes. In particular, our way
of proof, through Lemma 4.3, 4.4 and 4.5 below, involve three ingredients: (i) the
smoothness of the primal wavelets ψλ, (ii) finite difference operators of possibly
high order, and (iii) the shift invariance of the discrete evolution operator EJ . All
these ingredients are essentially well defined in the case of structured meshes, and
a proper generalization of them to the unstructured case is not clearly available.

In the simple univariate dyadic case, we can identify a vector of fine grid data
UJ = (uγ)γ∈SJ to a uniform sampling:

uγ ∼ UJ(k) for γ = (J, k).(79)

We define the finite difference of order M and step K of a vector UJ at the sampling
point k on the finest grid by

∆M
K UJ(k) =

M∑
m=0

(−1)m
(
M

m

)
UJ(k +mK),(80)
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and the corresponding finite difference stencil as the union of those cells contributing
to this quantity, i.e.,

S(M,K, k) := {γ = (J, k +mK) ; m = 0, · · · ,M}.(81)

Recall that the refinement process proposed in subsection 3.4 involves some s > 0
such that s < r + 1, assuming that the wavelets ψλ have Cr Hölder smoothness
and that the dual wavelets ψ̃λ have N vanishing moments (N > r). We also define
R as the unique integer such that

R− 1 < r ≤ R.(82)

In particular, we have R ≤ N . We can estimate the details dµ(UJ) of a vector UJ
from its finite differences of order N and step 2J−|µ| which stencil is contained in
the support Σ̃µ of ψ̃µ according to the following result.

Lemma 4.3. Let µ ∈ ∇j for j ∈ {1, · · · , J} and let K = 2J−|µ|. Then we have

|dµ(UJ)| ≤ C sup{|∆N
KUJ(k)| ; k s.t. S(N,K, k) ⊂ Σ̃µ}.(83)

Proof. The support Σ̃µ is of the form

Σ̃µ = {Ωγ , γ = (J, 2J−|µ|p+ k) ; k = 0, · · · , 2J−|µ|m− 1},(84)

where p is an integer that indicates the space position of µ and m is a fixed integer
which depends on the size of the prediction stencil. From its definition dµ is a linear
combination of cell averages at scale 2−µ of the form

dµ =
m−1∑
j=0

ρj

2|µ|−J
∑

0≤k<2J−|µ|−1

UJ(2J−|µ|(p+ j) + k)

 .(85)

In the case of a prediction operator of the type (24), the coefficients ρj are indepen-
dent of µ. In fact we shall only make use of the fact that

∑
j |ρj | is bounded

independently of µ. We remark that since the dual wavelets have N vanish-
ing moments, dµ = 0 if UJ(k) represents the cell averages of some polynomial
of degree N − 1. Equivalently, dµ = 0 if UJ(k) = p(k) with p ∈ ΠN−1, and
the vector ρ = (ρj)j=0,··· ,m−1 is thus orthogonal to the vectors (jk)j=0,··· ,m−1 for
k = 0, · · · , N − 1. Therefore, we can express this vector as

ρ :=
m−1−N∑
l=0

σlel,(86)

where (el)j=0,··· ,m−1−N is a basis of the orthogonal complement to such vectors. A
natural choice is given by defining

e0(j) :=
(
R

j

)
(−1)j , j = 0, · · · , N, e0(j) = 0, j > N or j < 0,(87)

and taking for el its shifted versions el(j) = e0(j − l). Therefore a combination of
the type

∑m−1
j=0 ρjf(j) can be rewritten in terms of Nth order differences according

to
m−1∑
j=0

ρjf(j) =
m−1−N∑
j=0

σj∆N
1 f(j),(88)
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where
∑
j |σj | is also bounded independently of µ. Combining (85) and (88) gives

|dµ| = |
∑m−1−N

j=0 σj

(
2|µ|−J

∑
0≤k<2J−|µ|−1 ∆N

KUJ(2J−|µ|(p+ j) + k)
)
|

≤ (
∑

j |σj |) sup{|∆N
KUJ(k)| ; k = 2J−|µ|n, · · · , 2J−|µ|(p+mN)− 1},

(89)

i.e., (83) with C =
∑
j |σj |.

Such a result can be viewed as a discrete counterpart to (29) (one can actually
derive (29) from (83) since the finite differences of order R can be controlled by the
local Hölder smoothness). Note that (83) also holds for all M ≤ N in place of N ,
in particular since R ≤ N , we have

|dµ(UJ)| ≤ C sup{|∆R
KUJ(k)| ; k s.t. S(R,K, k) ⊂ Σ̃µ}.(90)

In view of (90), the estimate (78) on dµ(BnJ ) will be ensured if we can bound by
Cε|µ| the differences ∆R

KB
n
J (k) for k such that S(R,K, k) ⊂ Σ̃µ, K := 2J−|µ|. Our

first step will be to estimate these differences in terms of the differences ∆M
K U

n
J (k)

for 1 ≤M ≤ R and k such that S(M,K, k) is contained in the backward influence
set Σ̃−µ of Σ̃µ. In the univariate dyadic case, BnJ (k) is related to UnJ by a formula
of the type

BnJ (k) = F (UnJ (k − a), · · · , UnJ (k + b)),(91)

where {k−a, · · · , k+b} is the computation stencil associated to k. We thus need to
understand the interplay between the difference operator ∆R

K and the numerical flux
balance function F (v0, · · · , va+b). For this we shall need two additional assumptions
on the reference scheme. The first one expresses a control of the sup-norm.

Assumption 4.4. There exists some fixed C ≥ 0 such that the reference scheme
satisfies

‖EJV ‖`∞ ≤ (1 + C∆t)‖V ‖`∞ ,(92)

for all V .

In many instances we have C = 0, i.e., the sup-norm is diminished by the scheme.
More generally, at fixed time T = n∆t, the above assumption leads to

‖V nJ ‖`∞ ≤ (1 + CT/n)n‖V 0
J ‖`∞ ≤ C(T )‖u0‖L∞ ,(93)

with C(T ) behaving like eCT . We can also control the sup-norm ‖UnJ ‖`∞ in a similar
manner for Harten’s scheme and for the fully adaptive scheme in the following sense:
assuming that the estimates (78) hold at the previous time steps 0, 1, · · · , n − 1,
we have committed at each of these time steps an additional error in the sup-norm
which is bounded by Cε according to (45). Therefore we still have

‖UnJ ‖`∞ ≤ C(T )‖u0‖L∞ + Cnε.(94)

Note that since ε will be chosen in such a way that nε is of the same order as the
error estimate en, this additional term is negligible in comparison to C(T )‖u0‖L∞ .
In brief, we can assume that ‖UnJ ‖`∞ is bounded by a constant depending on ‖u0‖L∞
and time T = n∆t in order to prove the estimate (78) for the next time step. The
second assumption concerns the smoothness of the numerical flux balance function
F .
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Assumption 4.5. The numerical flux function F (v0, · · · , va+b) is CR−1 with
DR−1F Lipschitz continuous, and its derivatives DkF , k = 1, · · · , R, are bounded
in the sense that

sup
|vi|≤C(T )‖u0‖L∞

|DkF (v0, · · · , va+b)| ≤ Ck,(95)

where the constant Ck depends on C(T ), and possibly of ‖u0‖L∞, but not of the
finest resolution level J .

For practically all classical schemes, these assumptions are at least fulfilled at
order R = 1, i.e., F is Lipschitz continuous and the left hand side of (95) is typically
bounded by sup|u|≤sup |u0| |Df |

∆t
∆x , which is controlled independently of the time

and space step, as well as of ‖u0‖L∞ , due to the CFL condition. Only a few
numerical schemes for conservation laws have a numerical flux function which has
more than C1 smoothness. An typical example is the Lax-Friedrich scheme (see,
e.g., [26]) in which F has the same smoothness as f . For this type of scheme, (95)
holds for values of k which depend on the smoothness of f itself. Note that in
the case of a flux function given by a quadratic polynomial, e.g., Burgers equation,
the Ck then become trivial for k > 2. With these additional assumptions, we can
estimate the |∆R

KB
n
J (k)| for k such that S(R,K, k) ⊂ Σµ in terms of the finite

differences of UnJ of lower order, according to the following result.

Lemma 4.6. Define DM (UJ ,K,Σµ) := sup{|∆M
K U

n
J (k)| ; S(M,K, k) ⊂ Σµ}.

Then have

DR(BnJ ,K,Σµ) ≤ C sup

{
R∏
j=1

[Dj(UnJ ,K,Σ
−
µ )]lj ;

= (l1, · · · , lR) ∈ NR s.t.
∑
j

jlj = R

}
,

(96)

where the constant C depends on the derivative bounds Ck in (95).

Proof. We want to evaluate ∆R
KB

n
J (k) = ∆R

KF (UnJ (· − a), · · · , UnJ (· + b))(k) for
any k such that S(R,K, k) ⊂ Σµ in terms of the finite differences of UnJ at lower
order. For this purpose we introduce the vector P = (p0, · · · , pa+b) of Lagrange
polynomials of degree R defined by the interpolation conditions

pi(m) = UnJ (k − a+ i+mK), m = 0, · · · , R,(97)

and the function

G(x) := F (P (x)) = F (p0(x), · · · , pa+b(x)).(98)

With such a definition, note that we have

∆R
KB

n
J (k) = ∆R

1 G(0),(99)

and therefore

|∆R
KB

n
J (k)| ≤ C sup

x∈[0,R]

|G(R)(x)|.(100)
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Using the chain rule for differentiation, we remark that the Rth derivative GR has
the general expression

G(R)(x) =
R∑
k=1

∑
ji≥1, j1+···+jk=R

c(j1,··· ,jk)D
kF (P (x))[P (j1)(x), · · · , P (jk)(x)].(101)

Therefore, we obtain that

sup
x∈[0,R]

|G(R)(x)| ≤ C sup
x∈[0,R]

sup

{
R∏
j=1

|P (j)(x)|lj ; lj > 0 s.t.
∑
j

jlj = R

}
,(102)

where the constant C depends on the c(j1,··· ,jk) above and on

sup
x∈[0,R],k=1,··· ,R

|DkF (P (x))|.

With P (x) defined by (97), we have supx∈[0,R] |P (x)| ≤ C‖UJn ‖`∞ and therefore C
only depends of the derivative bounds Ck in (95).

We then remark that a polynomial p of degree R always satisfies p(R)(x) =
∆R

1 p(0) and more generally, for j ≤ R,

sup
x∈[0,R]

|p(j)(x)| ≤ C sup
m=0,··· ,R−j

|∆j
1p(m)|.(103)

Combined with (102) and (100) this implies that |∆R
KB

n
J (k)| is bounded by

sup

{
R∏
j=1

|∆j
KU

n
J (k − a+ i+mK)|lj ;

0 ≤ i ≤ a+ b, 0 ≤ m ≤ R− j, lj > 0 s.t.
∑
j

jlj = R

}
,

(104)

up to a multiplicative constant C which only depends on the derivative bounds Ck
in (95). Taking the supremum over all k such that S(R,K, k) ⊂ Σµ, we thus obtain
(96).

We are thus interested in estimating the right hand side of (96) under the assump-
tion that µ /∈ Λ̃n+1. For this purpose, we shall use the following result expressing
that the finite differences are controlled from the size of the wavelet coefficients.

Lemma 4.7. Let K = 2J−|µ| and let r be such that ψλ ∈ Cr. Then, for M > 0
we have

|∆M
K UJ(k)| ≤ C

J∑
l=0

2−min{M,r}(|µ|−l)+

× sup{|dλ|;λ s.t. |λ| = l,Σλ ∩ S(M,K, k) 6= ∅},
(105)

where (|µ| − l)+ := max{0; |µ| − l}.

Proof. We can expand UJ in terms of the discrete wavelets ΨJ
λ

UJ =
∑
λ∈∇J

dλΨJ
λ,(106)
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so that we have

|∆M
K UJ (k)| ≤

∑
λ∈∇J

|dλ∆M
K ΨJ

λ(k)|.(107)

Note that the ∆M
K ΨJ

λ(k) are zero if Σλ and S(M,K, k) are disjoint, i.e., the sum-
mation only carries over those λ such that |Σλ ∩ S(M,K, k)| 6= 0. Recall that the
discrete wavelets ΨJ

λ are exactly the cell averages of the continuous wavelets ψλ,
i.e.,

ΨJ
λ(k) = 2J

∫ 2−J (k+1)

2−Jk

ψλ(x)dx.(108)

In particular, at some fixed level |λ| = j, the ΨJ
λ do not overlap too much in the

sense of (46).
A similar property clearly holds with ∆M

K ΨJ
λ in place of ΨJ

λ so that (107) implies
the estimate

|∆M
K UJ(k)| ≤

J∑
l=0

sup{|dλ|‖∆M
K ΨJ

λ‖`∞ ; λ s.t. |λ| = l,Σλ ∩ S(M,K, k) 6= ∅}.

(109)

Since the primal wavelets are in Cr, we have the standard inverse estimates

‖∆M
h ψλ‖L∞ ≤ C‖ψλ‖L∞ [min{1, h2|λ|}]min{M,r}(110)

(recall that the primal wavelets are normalized in L∞) and thus, if |λ| = l and
h = 2−|µ|,

‖∆M
h ψλ‖L∞ ≤ C2−min{M,r}(|µ|−l)+ .(111)

By averaging this estimate on the cells of SJ , we obtain a similar estimate for
∆M
K ΨJ

λ, i.e.,

‖∆M
K ΨJ

λ‖`∞ ≤ C2−min{M,r}(|µ|−l)+ ,(112)

if |λ| = l. Combined with (109), this leads to (105).

Using this lemma, we shall evaluate the differences |∆M
K U

n
J (k)| involved in the

right hand side of (96), according to the following result.

Lemma 4.8. Let µ /∈ Λ̃n+1, K := 2J−|µ|, and let k be such that S(M,K, k) ⊂ Σ̃−µ .
If M ≥ R, we have the estimate

|∆M
K U

n
J (k)| ≤ Cε|µ|,(113)

while if M < R, we have the estimate

|∆M
K U

n
J (k)| ≤ C[ε|µ|]M/R.(114)

In the second case (114), the constant C depends on C(T ) and ‖u0‖L∞.

Proof. Since S(M,K, k) ⊂ Σ̃−µ , we can derive from (105) the estimate

|∆M
K U

n
J (k)| ≤ C

J∑
l=0

2−min{M,r}(|µ|−l)+ sup{|dλ(UnJ )| ; λ s.t. |λ| = l, Σλ ∩ Σ̃−µ 6= ∅}.

(115)



FULLY ADAPTIVE MULTIRESOLUTION FINITE VOLUME SCHEMES 211

Note that the above sum is also restricted to the λ which belong to Λn since
otherwise dλ(UnJ ) = 0. From the definition of Λ̃n+1, we know that if µ /∈ Λ̃n+1 and
if λ ∈ Λn is such that Σλ ∩ Σ̃−µ 6= ∅, then necessarily |µ| > |λ|+ n(λ), i.e.,

|dλ(UnJ )| ≤ ε|λ|2(|µ|−|λ|)s = 2|λ|−J+(|µ|−|λ|)sε.(116)

We first consider the case where M ≥ R, i.e., min{M, r} = r. Combining (115)
and (116) we obtain

|∆M
K U

n
J (k)| ≤ Cε2−J

J∑
l=0

2−r(|µ|−l)+2(|µ|−l)s+l = Cε2−J [A+B],(117)

with

A = 2(s−r)|µ|
|µ|−1∑
l=0

2l(1−s+r)(118)

and

B = 2|µ|s
J∑

l=|µ|
2l(1−s).(119)

Since 1 < s < r + 1, both terms get estimated by C2|µ|, which proves (113).
Let us now turn to the case where M < R, i.e., min{M, r} = M . In this case we

use the additional estimate

|dλ(UnJ )| ≤ C‖UnJ ‖`∞ .(120)

If p > 1 we can combine this with (116) to obtain the estimate

|dλ(UnJ )|p ≤ Cε|λ|2(|µ|−|λ|)s = 2|λ|−J+(|µ|−|λ|)sε,(121)

where C is proportional to [C(T )‖u0‖L∞ ]p−1. We set p := R/M and take some
β > 0 such that 1+β < s < 1+R−β (which is always feasible since 1 < s < 1+R).
We then elevate (115) to the power p and use Hölder’s inequality to obtain

|∆M
K U

n
J (k)|p

≤ C
[

J∑
l=0

2−M(|µ|−l)+ sup{|dλ(UnJ )| ; λ s.t. |λ| = l, Σλ ∩ Σ̃−µ 6= ∅}
]p

≤ C
J∑
l=0

2−R(|µ|−l)+2β||µ|−l| sup{|dλ(UnJ )|p ; λ s.t. |λ| = l, Σλ ∩ Σ̃−µ 6= ∅}

≤ Cε2−J
J∑
l=0

2−R(|µ|−l)+2β||µ|−l|2(|µ|−l)s+l

= Cε2−J [A+B]

(122)

with

A = 2(s−R+β)|µ|
|µ|−1∑
l=0

2l(1−s+R−β)(123)
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and

B = 2|µ|(s−β)
J∑

l=|µ|
2l(1−s+β).(124)

Since 1 + β < s < 1 + R − β, both terms get estimated by C2|µ|, which proves
(114).

Clearly, the above result combined with Lemma 4.6 and (90) yields the desired
result that we summarize below.

Theorem 4.9. If µ /∈ Λ̃n+1, then (78) holds with the constant C depending on
C(T ), ‖u0‖L∞ and on the bounds Ck in (95).

5. Numerical tests

One originality and difficulty in the actual implementation of the algorithm pre-
sented in subsection 3.3 is the fulfillment of the graded tree property. In order to
design an efficient data structure that is well suited for our purposes there are four
basic criteria that should be taken into account:

(i) fast random access, e.g., check whether an element already exists;
(ii) fast insert and delete of elements, i.e., avoid copying and sorting of elements

within the data structure;
(iii) fast dynamic memory allocation and extension, because the memory require-

ment changes during the computation; and
(iv) support of group information, i.e., the connection of data corresponding to a

common refinement level should be maintained.

The numerical simulations presented in this section have been performed using a
C++ code which answers the previous requirements through two main data struc-
tures: the cells and the edges. Each one contains references to parent and children.
The cells also refer to their neighbors and their edges and the edges refer to their
neighboring cells. The recursiveness is another important ingredient in the graded
tree algorithm. Other types of data structures (see for instance [35]) can be used
based on hash tables instead of trees.

5.1. Tests for 1D scalar equations. The first set of numerical tests aims to
compare different versions of the adaptive algorithm. For this purpose we consider
Burgers equation with smooth initial data{

∂tu+ ∂xu
2/2 = 0,

u(x, 0) = 2 + sin(πx).(125)

With such an initial data, a shock develops at time t = 1/π. The simulations
are performed on the [0, 1] interval with periodic boundary conditions. The mul-
tiresolution simulations are performed on a hierarchy of eight nested uniform grids
S0 ⊂ S1 ⊂ · · · ⊂ S7, similar to (9) up to a rescaling: the coarsest level j = 0 al-
ready includes 20 cells. The coarse-to-fine prediction operator is given by (32). The
reference finite volume scheme operates on the finest level uniform grid S7 which
contains 20× 27 = 2560 cells.
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Figure 3. Performance of multiresolution on eight levels. First
order flux on the top, second order flux on the bottom using fine
grid data (◦) or available data (•).

We consider two types of reference schemes corresponding to two different nu-
merical fluxes: a first order Roe scheme Fλ,µ = f̄(uλ, uµ) = 1

2 [f(uλ) + f(uµ)− |ā(uλ, uµ)| (uµ − uλ)] ,

ā(uλ, uµ) =
{

[f(uλ)− f(uµ)] /(uλ − uµ), uλ 6= uµ,
f ′(uλ), uλ = uµ;

(126)

and a second order scheme where the input to the previous f̄ function are the point
values of an ENO reconstruction (based on the mean values on four neighboring
cells), evaluated at the left and right side of the interface point between Ωλ and
Ωµ.

The adaptive algorithm based on these two reference schemes as described in
subsection 3.3, are implemented with two different strategies for the computation
of the adaptive flux balance b̃nλ in (63): exact local reconstruction as explained
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in subsection 3.5.1 or direct evaluation applying the above flux functions on the
available data as explained in subsection 3.5.2. We thus test four different adaptive
schemes.

In order to estimate the error produced by the different algorithms, we compute
an “exact solution” at t = 0.5 with a second order finite volume scheme on a very
fine grid of 10240 cells and ∆t = 6.25 10−6. The performances are summarized in
Figure 3.

The performances of the four adaptive schemes are reflected by the four curves
which relate the evaluated L1 error with the CPU cost. The plotted points on each
of these curves correspond to different values of the threshold ε, from 10−2 down
to 0. The horizontal straight line indicates the error for the reference finite volume
solution on S7, while the vertical line indicates its CPU cost. Several comments
can be made:

• Certain points are sitting on the right of the vertical line, in which case
the adaptive scheme costs more—in terms of CPU cost—than the uniform
reference scheme. They correspond to very small threshold values (10−5,
10−6, and 0) for which the over cost due to the bookkeeping and the dynamic
memory allocation is not compensated for by adaptivity. The points on the
left of the vertical line correspond to computations which are faster than the
uniform reference scheme.
• When the fluxes are computed with the first order Roe scheme, the strategy

of direct evaluation gives bad results in the sense that the deterioration of
the accuracy when raising the threshold is such that the error of the adaptive
scheme is several orders of magnitude above the error of the reference scheme
whenever some CPU saving is achieved. On the other hand the exact local
flux evaluation allows us to preserve the accuracy of the reference scheme with
CPU savings up to a factor 20.
• When the fluxes are computed with the second order scheme, both strategies

give good results. It appears that the local reconstruction has a cost which is
higher if the compression parameter ε is large. More precisely, the direct eval-
uation curve is slightly below the local reconstruction one for a small CPU.
This means that one can get a given—but poor—precision faster, using the
direct evaluation rather than local reconstruction. In the “safe region” (i.e.,
when ε is small enough so that an is close to en) both algorithms exhibit the
same performances. Since the error analysis relies on the local reconstruction
step, we will always perform it in the subsequent 1D computations. On the
other hand it is reassuring to see that from the practical point of view it is
not absolutely necessary. This somehow justifies the use of the direct evalu-
ation in the 2D case where so far we have no easy way of performing local
reconstruction.

5.2. Sharpness of the error analysis. Before proceeding further with more nu-
merical tests, we shall use the first set of numerical tests in order to check the
reliability of our error analysis. Recall that this analysis was based on estimating
the cumulative error dn := ‖EJUn−1

J − UnJ ‖ by the sum of a thresholding error
tn := ‖ŨnJ −AεŨnJ ‖ and a grid refinement error cn := ‖Bn−1

J −AΛ̃nε
Bn−1
J ‖, both of

which are controlled by an estimate in O(ε). We can address two questions:
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• How sharp is the estimate of dn at each time step? In particular, do we have
that tn and cn are indeed behaving like O(ε), and do these two errors really
accumulate in dn?
• How sharp is the estimate of the error an between the numerical solutions

based on the adaptive and reference scheme? In particular do the errors
(dn)n≥0 really accumulate as time grows, i.e., is an of the same order as∑n

k=0 dk?
In order to answer these questions, we have made the exact computation of the
quantities an, dn, cn, and tn for various values of ε and n for a fixed number of
refinement levels (six levels besides the coarse one). Our observations will also allow
us to discuss the refinement strategy.

5.2.1. Thresholding and prediction error at each time step. We begin by address-
ing the first question. Computing dn, cn, and tn, we observed that while these
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Figure 4. Error estimates dn, cn, and tn as a function of ε.
Harten strategy (top) and our more severe strategy (bottom).
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quantities fluctuate very rapidly with time, they keep the same order of magni-
tude. In order to compare this order of magnitude with ε, we have considered
averages of these quantities over 20 time steps around the time of interest tn:
d̄n := 1

20

∑n+10
i=n−10 di, c̄n := 1

20

∑n+10
i=n−10 ci, and t̄n := 1

20

∑n+10
i=n−10 ti. For the sake

of simplicity, we will use the original notation an for ān from now on. Figure 4
displays the dependence of these quantities with respect to ε, when using Harten’s
refinement strategy and our refinement strategy which guarantees an estimate of
c by O(ε), respectively. We choose a time when the shock is completely formed,
tn = 0.5, reached after n = 2000 time steps.

Two observations can be made. We first observe that these error terms indeed
behave like O(ε), and that the thresholding term cn and the prediction term tn do
indeed accumulate in dn. In this sense our analysis was sharp.

Second, we notice that the error is dominated by the thresholding term t even
when using Harten’s refinement strategy. For this reason, it does not seems worth-
while to apply our refinement strategy, which is too severe and costly, and we have
continued to use Harten’s strategy in subsequent numerical tests. We can give
an intuitive explanation of why Harten’s strategy is sufficient here. The piecewise
smooth structure of the numerical (and exact) solution implies a specific numerical
organization of the coefficients dnλ in the trees Λn: these coefficients decrease with
scale and are close to the threshold level ε|λ| when λ belongs to the leaves of the tree,
i.e., λ ∈ L(Λn). Therefore, at the next time step, large coefficients are not created
more than one refinement level above these leaves. In subsection 5.2.3, we shall yet
provide an example where this organization is violated and where our refinement
strategy becomes strictly necessary to ensure the estimate of the refinement error
term by O(ε).

5.2.2. Accumulation of the error with time. Next we address the second question,
i.e., comparing the error an with the sum ãn :=

∑n
k=1 dk. For various values of

ε our observation is essentially the following: an and ãn are only comparable for
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i di for ε =
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Figure 6. Prediction error dn after one time step for Harten strat-
egy and our more severe strategy as a function of ε

small n, i.e., small time. This is illustrated in Figure 5 which shows that for large
n, the behavior of an is not linear anymore. The unreliability of our estimate for
large time is not surprising in this example. Since in any case we expect that the
error remains bounded by 2‖u0‖L∞ , the dk cannot really accumulate when reaching
large values of k.

5.2.3. A case where Harten’s refinement is not enough. We last want to show that
Harten’s refinement strategy can be however “defeated”, yet in rather pathological
situations. We consider here an initial data V 0

J such that its multiscale decompo-
sition vector M0

J = MV 0
J has all its coordinates equal to zero except for a single

index λ in the coarsest scale: dλ = 1 with λ ∈ ∇0. The adaptive algorithm will
thus be initialized with the singleton Λ0 = {λ}. For small values of ε, i.e., when
|dλ| is much larger than ε, both refinement strategies differ for the first time step:
our strategy will refine a number of levels proportional to the order of magnitude
separating 1 and ε, while Harten’s strategy will refine at most one level.

Figure 6 displays the dependence of the prediction error c1 with respect to ε for
both refinement strategies. We can see that as ε gets smaller, Harten’s refinement
strategy is not sufficient to guarantee an estimate in O(ε). This example is yet
pathological, and after a small number of time steps, we are back in the situation
which was encountered in our first test: the organization of the numerically signifi-
cant multiscale coefficients of the solution is such that Harten’s refinement strategy
can be applied without threatening the estimate on cn.

5.3. Tests for 1D systems. The next set of numerical tests consists in apply-
ing the adaptive multiresolution to the classical “shock-tube” problem of 1D gas
dynamics modeled by the Euler equations with initial piecewise constant data

∂tω + ∂xf(ω) = 0,

ω(x, 0) =
{
ωL, x < 0,
ωR, x > 0.

(127)
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Here

ω =

 %
m
E

 , f(ω) =

 %u
%u2 + p
u(E + p)

 ,

where %,m,E are the density, momentum and energy, respectively. The velocity
u = m/% and the pressure p are related through the equation of state for a polytropic
gas,

p = (γ − 1)(E − %u2/2), γ = 1.4.

The reference finite volume scheme uses Roe’s numerical flux along with a minmod
type slope limiter interpolation computed independently on each physical compo-
nent (see [33] for details). We present the performance of the multiresolution scheme
on the classical Sod’s benchmark case on the interval [−1, 1]:

ωL =

 1
0

2.5

 , ωR =

 0.125
0
.25

 .

The coarsest grid S0 consists in 200 cells. The reference finite volume solution is
computed on S6 which has 12800 cells. The CPU cost for this solution is tcpu =
6647 seconds. Here we apply the adaptive algorithm only with the exact local
reconstruction strategy, and compute the L1 error between the adaptive solution
and the reference solution. We also study the effect of limiting the maximal scale
level to J = 4 or J = 5 in the adaptive algorithm. The time step for these
simulations depends on the finest grid step size ∆x = 2−J

100 and on the solution
itself. It is computed on the reference solution so that at each time iteration it
ensures the CFL condition

∆t < NCFL
∆x

max
i=1,2,3

(|λi|)
,

where the λi for i = 1, 2, 3 are the three eigenvalues of the Jacobian matrix of the
flux function. In our case, maxi=1,2,3(|λi|) = |c|+ |u| with

c =

√
(γ − 1)

(
(e + p)/%− 1

2
u2

)
.

We set NCFL = 0.3, which leads to ∆t = 4.10−5 for J = 7. In this case 6500
time iterations are necessary to reach t = 0.26. For J = 5 and J = 4 we need,
respectively, 3250 and 1625 iterations. In each case, we try several values for the
threshold parameter ε. In Figure 7, we show the density at time t = 0.26 computed
with the reference scheme on S6, along with the adaptive solution with maximal
level J = 4 and threshold ε = 10−3 on the top and ε = 10−4 on the bottom.
The adaptive solution is represented on the adaptive grid S(Λn) as a step function
(we did not plot its reconstruction on the finest level since it cannot be visually
distinguished from the reference solution). In both figures we also show the varying
depth of the multiresolution analysis which reads on the bottom y-axis. In order to
understand the effectiveness of adaptivity, it is natural to compare these solutions
with the one obtained by application of the reference scheme on S4, i.e., taking
ε = 0, in terms of CPU saving and of the L1 error with respect to the uniform
solution on S6 (viewed here as the exact solution). For this solution on S4 the CPU



FULLY ADAPTIVE MULTIRESOLUTION FINITE VOLUME SCHEMES 219

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1
0

1

2

3

4

rh
o L

x

eps=10E-3

ref
MR

level

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1
0

1

2

3

4

rh
o L

x

eps=10E-4

ref
MR

level

Figure 7. Multiresolution solution on at most five levels. Density
on top y-axis and MR grid on bottom y-axis. Threshold ε = 10−3

and 10−4.

time is 693 seconds and the L1 error is 0.00151. For ε = 10−4, the error is 0.00158
which is barely above the previous one, while the CPU time drops down to 121
seconds. For ε = 10−3, the error is 0.00297 while the CPU time drops down to 86
seconds. In this last case, the finest level of resolution J = 4 is very seldom used in
the adaptive mesh—in fact exclusively at the four locations of highest gradient for
the density %. This induces some slight oscillation near the contact discontinuity,
around x = 0.25. For ε = 10−4, the oscillations near the discontinuities have
disappeared. We summarize all the tests in Figure 8: for each of the three curves
corresponding to the maximal levels J = 4, 5, and 6, we plot the error with the
reference solution versus the CPU and memory requirement. A vertical straight line
indicates the CPU and memory required to compute the reference solution. Similar
to the experiment on Burgers equation, we observe that these curves exhibit a flat
region corresponding to the range of ε that ensures an error of the same order as
the error of the uniform scheme on SJ , i.e., taking ε = 0. It is of interest to choose
the largest threshold in this range in order to minimize the CPU time as well as
the memory. We also see that raising ε above this range has a dramatic effect on
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Figure 8. Performance of multiresolution for J = 4 (?), J = 5
(◦) and J = 6 (•). Error vs. CPU and memory. The vertical lines
indicates the CPU and memory required by the reference solution
for J = 7.

the error while not reducing much more the CPU and memory since the left part
of the curves are almost vertical.

5.4. Tests in 2D. We end with some numerical tests in 2D based on hierarchical
triangular meshes. Here we use the prediction operator introduced in [13] and the
direct evaluation strategy for the adaptive algorithm. Some first numerical tests
for a linear advection problem have been presented in [14] together with a detailed
description of the algorithm. Here, we consider the 2D version of Burgers equation

∂tu+
1
2
∂xu

2 1
2
∂yu

2 = 0(128)

with initial condition

u0(x, y) = 0.3 + 0.7 sin
(π

2
(x+ y)

)
(129)

and periodic boundary conditions. The numerical flux in that case is

Fλ,µ =
1
2
(
uµ(auµ)+ − uλ(−auλ)+

)
,

where a = n.(1, 1)t, with n the conveniently oriented normal.
The computing domain is the square [−1, 1]2 meshed at the coarsest level by 800

triangles, and we use five levels of multiresolution. The occupancy of the different
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Figure 9. Initial and final hybrid grids for 2D Burgers equation
on 3 levels. The threshold ε = 0.02.

levels varies with time, and depends of course on the thresholding parameter. Be-
cause the initial condition is very smooth, the finest level of resolution is hardly
used at time t = 0, except for very small thresholding ε = 0.001 and of course for
the finite volume reference solution. At final time t = 1, the shock has developed
and finer triangles are created in this region. This is clear in Figure 9, which rep-
resents the two hybrid grids at initial and final time for ε = 0.02. For clarity of the
figure, only the first 3 levels of resolution are represented. Table 1 compares the
performances of the adaptive and reference finite volume scheme for different values
of the threshold. For each value of ε, the solution at final time is reconstructed on
the finest level to allow the computation of the error with the reference solution.
As expected, the error increases with the threshold value with the predicted O(ε)
behavior. The CPU times as well as the number of triangles on the initial and final
hybrid grids are also listed.

It is interesting to note that for a large threshold, the number of triangles has
increased at final time, while for a small threshold this feature is reversed. This can
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Table 1. Performances of the adaptive scheme for 2D Burgers equation

ε error CPU # tri. t = 0 # tri. t = 1

0.02 0.0176698 1636 3680 13162
0.01 0.00668124 2401 11040 14506

0.005 0.00468717 2728 13600 15209
0.001 0.00114192 6078 51360 20840

0.0005 0.000800985 8207 59040 25451
FV 0 10098 204800 204800

be explained as follows. At time t = 1, the shock is completely formed and the exact
solution of (128)–(129) is almost piecewise affine. Since the prediction operator is
exact for affine functions, all wavelet coefficients are either almost zero away from
the shock or large near the shock. Therefore, as we lower the threshold, the number
of triangles at final time N(ε, 1) grows slower than the number of triangles at initial
time N(ε, 0). For ε ≤ 10−3, N(ε, 1) becomes smaller than N(ε, 0).

6. Conclusions and perspectives

The adaptive multiresolution scheme we have developed allows on several bench-
mark tests some substantial memory and CPU savings while remaining within the
same accuracy as the reference finite volume scheme. In the case of multiresolution
based on a structured grid, the underlying wavelet framework provides the appro-
priate tools for a rigorous error analysis of this scheme. We end by listing a number
of remaining trends which are currently under investigation.
Trend 1: Multiresolution in several dimensions. There exist many ways of
building finite volume multiresolution and wavelets in several dimensions. How-
ever, many restrictions appear if one wishes to guarantee the accuracy, stability,
and smoothness properties in the sense described in subsection 2.3. In the par-
ticular case of a uniform rectangular discretization, one inherits these properties
from a given univariate finite volume multiresolution by means of tensor product
strategies. This approach was recently extended in [16] to curvilinear discretiza-
tion obtained from uniform meshes by smooth parametric maps. In this context,
particular adaptations of the prediction operator (based on stable completion tech-
niques introduced in [6]) are needed to preserve accuracy. In the case of uniform
triangular discretization, finite volume multiresolution with accuracy, stability, and
smoothness properties has been obtained in [13]. In the case of unstructured meshes
much less is known: while finite volume multiresolution can be designed with ac-
curacy properties (see [1]), a general strategy to achieve stability and smoothness
properties is still an open question.
Trend 2: Nonlinear multiresolution. As we pointed out in Section 2, the
prediction operator need not be linear. The idea of allowing a nonlinear prediction
operator was inspired by the ENO schemes of [23] which involve a data dependent
selection of the computation stencil in order to avoid spurious oscillations in the
neighborhood of shocks while preserving high order accuracy. Similarly, a nonlinear
multiresolution will use a data dependent selection of the prediction stencil. One
of the objectives of this approach is to improve on the accuracy and compression
properties by avoiding the presence of singularities within the prediction stencil.
Many open problems remain concerning the stability of such decompositions which
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can no longer be thought of as a change of basis. We refer to [2] for an introduction
to nonlinear multiresolution and to error control algorithms, which cope with the
possible lack of stability of such representations.

Trend 3: Implicit schemes. The adaptive multiresolution techniques that we
have developed in this paper should be adaptable to implicit time discretization
which are more appropriate for a certain class of problems, in particular convergence
to a steady state solution. In addition, if one applies linearization techniques on
the implicit part according to

Un+1
J = UnJ + F (Un+1

J ) ≈ UnJ + F (UnJ ) +DF (UnJ )[Un+1
J − UnJ ],(130)

the multiresolution representation might turn out to be useful to precondition the
system

(I −DF (UnJ ))Un+1
J = UnJ + F (UnJ )−DF (UnJ )UnJ ,(131)

which needs to be solved at each time step. The adaptive multiscale concept has
recently been incorporated to an implicit solver for the numerical simulation of
steady state problems arising in aviation (see [36]).

Trend 4: Super-resolution and time-space adaptivity. The accuracy of the
adaptive scheme we have developed is inherently limited by the finest resolution
level J which is supposed to be fixed. In an adaptive context, it is tempting
to remove this constraint in order to improve accuracy by additional refinements
near the singularities. If such refinements are only local, this should not affect
the memory cost as well as the complexity of one time step. However, this would
clearly affect the overall computational cost since the time step is tied to the finest
discretization level according to the CFL condition. A natural way to cope with
this difficulty should be by introducing time-space adaptivity, i.e., using local time
steps which depend on the level of refinement. In this perspective, the property of
graded trees which we have imposed should play a crucial role, since it imposes a
slow variation of the time step (at most by a factor two) between two adjacent cells
on the adaptive mesh.

Trend 5: Optimality analysis. Nonlinear approximation theory provides a nat-
ural benchmark for adaptive schemes. In the context of multiresolution or wavelet
schemes, this is expressed in the following way: if we knew the exact solution u(x)
at some time T , a nearly optimal adaptive approximation by N wavelet coefficients
in a prescribed error norm ‖ · ‖ could be obtained by its truncated expansion

uN =
∑

λ∈EN (u)

dλψλ, dλ := 〈u, ψ̃λ〉,(132)

where EN (u) is the set of indices corresponding to the N largest ‖dλψλ‖ (see
[18] for this type of result). An optimal adaptive scheme should thus produce
approximate solutions ũN (where the number N of nonzero wavelet coefficients
depends on the choice of the tolerance ε) such that ‖u− ũN‖ behaves like ‖u−uN‖
as N grows. Some optimality results of this type have recently been obtained in
[11] for adaptive wavelet schemes in the context of linear elliptic problems. In the
case of our algorithm, we expect to be further from this benchmark due to the
accumulation of error with time, and the inherent limitation of the accuracy by the
finest level.
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References

1. Abgrall, R. (1997) Multiresolution analysis on unstructured meshes: applications to CFD, in
Chetverushkin and al. eds. Experimentation, modeling and computation in flow, turbulence
and combustion, vol.2, John Wiley & Sons.

2. Arandiga, F. and R. Donat (1999) A class of nonlinear multiscale decomposition, to appear
in Numerical Algorithms.

3. Berger, M. J. and P. Collela (1989) Local adaptive mesh refinement for shock hydrodynamics,
Journal of Computational Physics, 82, pp 64-84.

4. Babuska, I. and B. Guo (1998) The h-p version of the finite element method for domains with
curved boundaries, SIAM J. Numer. Anal. 25, 837-861. MR 89i:65111

5. Bihari, B. and A. Harten (1997) Multiresolution schemes for the numerical solution of 2-D
conservation laws, SIAM J. Sci. Comput. 18(2), 315-354. MR 98f:65092

6. Carnicer, J.M., W. Dahmen and J.M. Peña (1996) Local decomposition of refinable spaces and
wavelets Appl. Comput. Harmon. Anal. 3, 127-153. MR 97f:42050

7. Cavaretta, A., W. Dahmen and C.A. Micchelli (1991), Stationary subdivision, Memoirs of
AMS 453. MR 92h:65017

8. Chiavassa, G. and R. Donat (1999) Numerical experiments with point value multiresolution
for 2d compressible flows, Technical Report GrAN-99-4, University of Valencia.

9. Cockburn, B., F. Coquel and P. Lefloch (1994) An error estimate for finite volume methods
for multidimensional conservation laws, Math. Comp. 63, 77-103. MR 95d:65078

10. Cohen, A. (2000) Wavelet methods in numerical analysis, Handbook of Numerical Analysis,
vol. VII, P.G. Ciarlet and J.L. Lions, eds., North-Holland, Amsterdam, pp. 417–711. CMP
2001:08

11. Cohen, A., W. Dahmen and R. DeVore (2001) Adaptive wavelet methods for elliptic operator
equations: convergence rates, Math. Comp. 70, 27–75. CMP 2001:06

12. Cohen, A., I. Daubechies and J.-C. Feauveau (1992) Biorthogonal bases of compactly supported
wavelets, Comm. Pure and Applied Math. 45, 485-560. MR 93e:42044

13. Cohen, A., N. Dyn, S.M. Kaber and M. Postel (2000) Multiresolution schemes on triangles
for scalar conservation laws, J. Comp. Phys. 161, 264-286. MR 2000m:65168

14. Cohen, A., S.M. Kaber and M. Postel (1999) Multiresolution analysis on triangles: applica-
tion to conservation laws, in Finite volumes for complex applications II, R. Vielsmeier, F.
Benkhaldoun and D. Hänel eds., Hermes, Paris.

15. Dahmen, W. (1997) Wavelet and multiscale methods for operator equations, Acta Numerica
6, 55-228. MR 98m:65102

16. Dahmen, W., B. Gottschlich-Müller and S. Müller (2000) Multiresolution Schemes for Con-
servation Laws, Numerische Mathematik DOI 10.1007/s00210000222

17. Daubechies, I. (1992) Ten Lectures on Wavelets, SIAM, Philadelphia. MR 93e:42045
18. DeVore, R. (1998) Nonlinear Approximation, Acta Numerica, 51-151. MR 2001a:41034
19. Dyn, N. (1992) Subdivision algorithms in computer-aided geometric design, in: Advances in

Numerical Analysis II, W.A. Light ed., Clarendon Press, Oxford.
20. Gottschlich-Müller, B. and S. Müller (1999) Adaptive finite volume schemes for conservation

laws based on local multiresolution techniques, in M. Fey and R. Jeltsch eds., Hyperbolic
Problems: Theory, Numerics, Applications, Birkhäuser, Basel, pp. 385–394. MR 2000f:65112
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30. Sjögreen, B. (1995) Numerical experiments with the multiresolution scheme for the compress-
ible Euler equations, J. Comp. Phys., 117, 251-261.
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