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THE IGUSA LOCAL ZETA FUNCTIONS OF ELLIPTIC CURVES

DIANE MEUSER AND MARGARET ROBINSON

Abstract. We determine the explicit form of the Igusa local zeta function as-
sociated to an elliptic curve. The denominator is known to be trivial. Here we
determine the possible numerators and classify them according to the Kodaira–
Néron classification of the special fibers of elliptic curves as determined by
Tate’s algorithm.

1. Introduction

In this paper we determine the explicit form of the Igusa local zeta function

ZK(s) =
∫
O

(2)
K

|f(x, y)|sK |dxdy|K ,

when K is a local field and f(x, y) = 0 is the Weierstrass equation of an elliptic
curve. The zeta function is determined using a stationary phase formula that was
developed by Igusa in [1]. We classify the possibilities according to the Kodaira–
Néron classification of the special fibers of elliptic curves as determined by Tate’s
algorithm [4].

It is known for general polynomial f and char K = 0 that the Igusa local
zeta function is a rational function of t = q−s, where q is the cardinality of the
residue field and indeed setting u = q−1 it is a rational function of u and t with
integer coefficients. When f(x, y) = 0 is nonsingular, it is easily seen that the
denominator of the Igusa local zeta function is just (1 − ut). For general curves
f(x, y) and char K = 0, the denominator of the Igusa local zeta function has
been explicitly determined using the fact that there is an explicit desingularization
of the singularities of f(x, y) = 0 over K. This has been done in [2], [5] and
shows that the denominator depends upon certain numerical data associated to the
exceptional divisors in the resolution. However, the explicit form of the numerator
is more difficult to determine and, apart from some specific examples of curves
such as those in the form f(x, y) = xm ± yn, has not been determined. Since the
cases where f(x, y) = 0 is an elliptic curve have the simplest possible form of the
denominator, it is a natural class of examples in which to study the numerator. We
also note that if P (t) is the Poincaré series defined by P (t) =

∑∞
e=0 Neq

−nete with
Ne = Card{x (mod P eK)|f(x) ≡ 0 (mod P eK)} and PK the maximal ideal of the
ring of integers OK of K, there is the relation P (t) = (1 − tZK)/(1 − t). Hence,
one can obtain explicit formulas for Ne from the explicit form of ZK .
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2. Preliminaries

As mentioned above, K will denote a local field. We let OK denote the ring
of integers in K and PK its maximal ideal. We denote the residue field OK/PK
by k and q = Card k. We let the image of an element a under the canonical
homomorphism OK → k be denoted by ā. We choose a uniformizer π ∈ PK − P 2

K .
Let | |K denote an absolute value on K, which is normalized so that |π|K = q−1.
Let ν be the corresponding valuation on K. We write x = πν(x)ac(x), and let ac(x)
denote the image of ac(x) in k. We denote by |dx dy|K the Haar measure on O

(2)
K

normalized so that the measure of O(2)
K is one. The Igusa local zeta function for a

curve f(x, y) is

ZK(s) =
∫
O

(2)
K

|f(x, y)|sK |dxdy|K ,

where s ∈ C,Re(s) > 0. Since it is a rational function in t = q−s and u = q−1, we
will also write ZK(u, t).

In [1] Igusa introduced what he called a stationary phase formula, which can be
an effective method for computing the local zeta function. In particular we let S̄
denote the set of singular points of f̄ = 0 ∈ k(2). For each ζ̄ = (ζ̄1, ζ̄2) ∈ S̄ we
choose a point ζ = (ζ1, ζ2) ∈ O

(2)
K which reduces to ζ̄ under the homomorphism

O
(2)
K → k(2) and denote the resulting set of points by S. Then the formula is

ZK(u, t) = 1−N0u
2 + u2t(N0 − S0)(1− u)/(1− ut)

+
∑

(ζ1,ζ2)∈S

∫
(ζ1+PK)×(ζ2+PK)

|f(x, y)|sK |dxdy|K ,

where N0 = Card{f̄ = 0} and S0 = Card S.
We shall assume f(x, y) = 0 is given by a Weierstrass equation y2 +a1xy+a3y−

x3− a2x
2 − a4x− a6 = 0, where ai ∈ OK . We let f̄ ∈ k[x, y] denote the image of f

obtained by applying the canonical homomorphism OK → k to the coefficients of
f . In the case where f̄ = 0 is nonsingular, Igusa’s stationary phase formula gives

ZK(u, t) = 1−N0u
2 +N0(1− u)u2t/(1− ut).

When f̄ = 0 is singular, since it is in Weierstrass form it has at most one singular
point. After changing coordinates we can assume the singularity is at the origin.
We note that this change of coordinates does not affect the value of the integral.
In the algorithm below we will frequently use this fact and assume the singularity
is at the origin. Let ζ̄ denote the singular point and ζ = (ζ1, ζ2) denote a lifting of
ζ̄ to O(2)

K . Then the stationary phase formula becomes

ZK(u, t) = 1−N0u
2 + u2t(N0 − 1)(1− u)/(1− ut)

+
∫
P 2
K

|f(ζ1 + x, ζ2 + y)|sK |dxdy|K .

We change variables so that ζ is the origin, then set (x, y) = (πx1, πy1). We then
factor out the highest possible power of π, πk0 for k0 > 0 from f(πx1, πy1). Writing
f1(x1, y1) = π−k0f(πx1, πy1) we then write the first application of the stationary
phase formula as

ZK(u, t) = (1 −N0u
2) + u2t(N0 − 1)(1− u)/(1− ut) + u2tk0 Ĩ1
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with

Ĩ1 =
∫
O

(2)
K

|f1|sK |dx1dy1|K .

The stationary phase formula can be applied again to Ĩ1. If

Ĩi =
∫
O

(2)
K

|fi|sK |dxidyi|K

with f̄i for i ≥ 1 a polynomial in two variables, the procedure is identical to the
above with

fi+1(xi+1, yi+1) = π−kifi(πxi+1, πyi+1).

However at this and subsequent stages it is possible to have f̄i a polynomial in
one variable. In that case we proceed as follows. Suppose f̄i is a polynomial
in x alone. Change variables so the singularity of f̄i is at the origin, then set
(xi, yi) = (πxi+1, yi+1). We again factor out the highest possible power of π, πki
for ki > 0 from fi(πxi+1, yi+1) and write fi+1(xi+1, yi+1) = π−kifi(πxi+1, yi+1).
Then with Ni = Card{f̄i = 0} ∈ k(2) and Si the cardinality of the set of singular
points of f̄i in k(2) we have Si = q, so the stationary phase formula gives

Ĩi = 1−Niu2 + u2t(Ni − u−1)(1 − u)/(1− ut) + utki Ĩi+1.

In the case where f̄i = 0 is a polynomial in the single variable, y is handled similarly
with fi+1(xi+1, yi+1) = π−kifi(xi+1, πyi+1).

In order to describe the numerator of ZK(u, t), we let Ĩ0 denote the original
defining integral, f0 = f and Pi = Pi(u, t) the contribution to the numerator of Ĩi
from the first two terms of the stationary phase formula applied to Ĩi, i.e.,

Pi = (1−Niu2)(1 − ut) + u2t(Ni − Si)(1 − u)
= (1−Niu2) + (−u+ (Ni − Si)u2 + Siu

3)t,

and let Q denote the contribution to the numerator of Ĩi+1 when f̄i+1 = 0 is
nonsingular, i.e.,

Q = (1 −Ni+1u
2)(1− ut) + u2tNi+1(1− u)

= (1 −Ni+1u
2) + (−u+Ni+1u

2)t .

With the above notation subsequent applications of the stationary phase formula
are written as

Ĩi = Pi(u, t)/(1− ut) + uδitki Ĩi+1,

when f̄i+1 = 0 is singular with δi the number of variables of f̄i, Ni = Card{f̄i = 0}
and Si the cardinality of the set of singular points of f̄i where both of these are
counted in k(2). When f̄i+1 = 0 is nonsingular, the algorithm terminates with

Ĩi = Pi(u, t)/(1− ut) + uδitkiQ(u, t)/(1− ut) .
Using the above formulas and notation, we can explicitly determine the zeta func-

tion of any elliptic curve f(x, y) = 0 in Weierstrass form and classify the numerators
according to the Kodaira–Néron classification of the special fibers of elliptic curves
as determined by Tate’s algorithm [4]. In fact the application of the above sta-
tionary phase formula closely follows that in Tate’s algorithm (see for instance the
description of this algorithm given in [3]). In this paper we explicitly describe the
process that determines the numerators for the two infinite families In and I∗n.
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All of the other cases in Tate’s algorithm corresponding to the Kodaira–Néron
classification of the special fibers are similarly determined after a finite number
of applications of the stationary phase formula and are listed in the final section.
We wish to point out that we were assisted with these calculations by the stu-
dents Mariana Campbell, Ed DuBois, Michael Joyce, Anushka Krishnachander,
Kim Schneider, and Jason Slemons who participated in the 1999 Mount Holyoke
Number Theory Research Experience for Undergraduates.

3. The determination of the local zeta function for the cases In

In the I0 case, ν(∆) = 0, where ∆ is the discriminant of f . Thus f̄ is nonsingular
and a single application of the stationary phase formula gives the numerator in the
I0 case is

(1 −N0u
2) + (−u+N0u

2)t,(I0:)

where N0 = Card{f̄ = 0}.
To explain the algorithm in the cases n > 0 we recall the definitions of the

following quantities associated to the Weierstrass equation of an elliptic curve:

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

= (b2b6 − b24)/4,
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 .

For our purposes it is also important to note that ∆ remains invariant under changes
of coordinates x = x′ + r, y = y′ + s. The polynomial fi will have form fi =
c1y

2
i + a

(i)
1 xiyi + a

(i)
3 yi − c2x3

i − a
(i)
2 x2 − a(i)

4 x1 − a(i)
6 and we let b(i)8 be the above-

defined b8 with ak replaced by a(i)
k .

When f̄ has a singularity, we can assume it is at the origin. Then π|a3, π|a4 and
π|a6. In the In case ν(b2) = 0 and n = ν(∆). When char k 6= 2 by making the
change of variables replacing y by (y − ā1x)/2, one can also see that

N0 =
{
q − 1 if b̄2 ∈ k2,
q + 1 if b̄2 6∈ k2 .

We shall use the notation ai,j = π−jai as in Tate’s algorithm.
If ν(a6) = 1, the first application of the stationary phase formula gives

ZK(u, t) = P0/(1− ut) + u2tĨ1

with

P0 = (1 −N0u
2) + (−u+ (N0 − 1)u2 + u3)t

and f1 = πy2
1 + a1πx1y1 + a3y1 − π2x3

1 − a2πx
2
1 − a4x1 − a6,1. Then f̄1 = −ā6,1.

Using the above formulas combined with our assumptions on ν(a3), ν(a4), ν(a6) and
ν(b2) we have that ν(a6) = 1 is equivalent to ν(b8) = 1, which in turn is equivalent
to ν(∆) = 1. We have N1 = 0, hence Q = (1 − ut). For the remainder of this
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section we let Q1 = u2t(1− ut). Thus in the I1 case we have that the numerator of
ZK(u, t) equals

P0 +Q1 = (1−N0u
2) + (−u+N0u

2 + u3)t− u3t2.

If n > 1, then ν(a6) > 1 and the first application of the stationary phase formula
gives

ZK(u, t) = P0/(1− ut) + u2t2Ĩ1

with f1 = y2
1 + a1x1y1 + a3,1y1 − πx3

1 − a2x
2
1 − a4,1x1 − a6,2. We have that f̄1 is

nonsingular if and only if ν(b(1)
8 ) = 0. But one easily sees that ν(b(1)

8 ) = ν(b8)− 2.
With our current assumptions one sees ν(∆) = ν(b8); hence, when f̄1 is nonsingular
we are in the I2 case. We now let f̄ (ns)

1 denote f̄1 in this case and N
(ns)
1 denote

Card {f̄ (ns)
1 = 0}. Then

Q = (1−N (ns)
1 u2)(1− ut) + u2tN

(ns)
1 (1− u)

= (1−N (ns)
1 u2) + (−u+N

(ns)
1 u2)t,

and for the remainder of this section we let Q2 = u2t2Q.
When char k 6= 2, one can make Q2 more explicit by calculating

N
(ns)
1 =

{
q − 1 if b̄2 ∈ k2,
q + 1 if b̄2 6∈ k2,

and further note that N (ns)
1 = N0 in this case. When char k = 2, we shall leave Q2

in terms of N (ns)
1 . With this notation the numerator in the I2 case equals P0 +Q2.

If n > 2, f̄1 is singular. Again assuming the singularity is at the origin we have
π|a3,1, π|a4,1 and π|a6,2. Thus

f̄1 = y2
1 + ā1x1y1 − ā2x

2
1,

where we note that the possible change of coordinates leaves ā1, ā2 and hence also
b̄2 invariant. As in Tate’s algorithm let P (T ) = T 2 + ā1T − ā2. Then recalling that
ν(b2) = 0, we have P (T ) = 0 has 0 or 2 solutions in k depending on whether or not
b̄2 ∈ k2. Thus

N1 =
{

2q − 1 = 2u−1 − 1 if b̄2 ∈ k2,
1 if b̄2 6∈ k2,

and two applications of the stationary phase formula give

Z(u, t) = P0/(1− ut) + u2t2Ĩ1,

Ĩ1 = P1/(1− ut) + u2tk1 Ĩ2,

with

P1 = (1−N1u
2) + (−u+ (N1 − 1)u2 + u3)t.

If ν(a6,2) = 1, then k1 = 1, f̄2 = −a6,3, and Ĩ2 = 1. With our current assump-
tions, ν(a6,2) = 1 is equivalent to ν(a6) = ν(b8) = 3, which in turn is equivalent
to ν(∆) = 3. Thus we are in the I3 case. We have Q = (1 − ut) and the following
expression for the numerator of the zeta function

P0 + u2t2(P1 +Q1).
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If n > 3, then ν(a6,2) > 1 and k1 = 2. If f̄2 is nonsingular, then ν(b(2)
8 ) = 0,

but this is equivalent to ν(b8) = ν(∆) = 4. Now f̄2 has the same form as f̄ (ns)
1 so

N2 = N
(ns)
1 . Thus in the I4 case the numerator of the zeta function is

P0 + u2t2(P1 +Q2).

In the n > 4 case, k1 = 2, f̄2 is singular, and the process continues.
For the general In case, we let m = [(n− 1)/2] and write n = 2m+ l with l = 1

or l = 2 with n being odd or even, respectively. Then the In case is determined
after m + 1 iterations of the stationary phase formula. For 1 ≤ i ≤ m we have
f̄i = y2

i + ā1xiyi − ā2x
2
i with our original ā1 and ā2; hence, Ni = N1 and Pi = P1

for 0 ≤ i ≤ m. Thus the application of the stationary phase formula to Ĩi gives a
contribution of u2it2iP1 to the numerator. If n is odd we get f̄m+1 = −ā6,n with
ν(a6) = ν(∆) = n. Thus the final contribution to the numerator is u2mt2mQ1. If
n is even we get f̄m+1 is nonsingular since ν(b(m+1)

8 ) = 0 which implies ν(b8) =
ν(∆) = 2m + 2 = n. We have Nm+1 = N

(ns)
1 and thus the final contribution is

u2mt2mQ2.
Then from the above description we obtain

Theorem 3.1. The numerator of the Igusa local zeta function associated to an
elliptic curve f(x, y) = 0 in the In case for n ≥ 1 is

P0 + (u2t2 + u4t4 + · · ·+ u2mt2m)P1 + u2mt2mQl,

where n = 2m+ l and we recall that

P1 = (1 −N1u
2) + (−u+ (N1 − 1)u2 + u3)t,

Ql =
{
u2t− u3t2 if l = 1,
u2(1−N (ns)

1 u2)t2 + u2(−u+N
(ns)
1 u2)t3 if l = 2.

The above expression can be made more explicit by noting that when char k 6= 2,

N0 = N
(ns)
1 = u−1 − 1 and N1 = 2u−1 − 1 if b̄2 ∈ k2,

N0 = N
(ns)
1 = u−1 + 1 and N1 = 1 if b̄2 6∈ k2 .

4. The determination of the local zeta function for the cases I∗n.

In the I∗n cases we can assume after a change of coordinates that π divides a1

and a2, π2 divides a3 and a4, and π3 divides a6. Two applications of the stationary
phase formula give

Z(u, t) = P0/(1− ut) + u2t2Ĩ1,

Ĩ1 = P1/(1− ut) + utĨ2,

with N0 = q, S0 = 1, N1 = S1 = q; hence,

P0 = (1− u) + (−u2 + u3)t,
P1 = (1− u) + (−u+ u2)t .

We now have −f̄2 = x3
2 + ā2,1x

2
2 + ā4,2x2 + ā6,3.

We first consider the I∗0 case. In this case f̄2 has three distinct roots in k̄, the
algebraic closure of k. Hence f̄2 has either three distinct roots in k, one root in k, or
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no roots in k. We then get Ĩ2 = Q2/(1−ut) with Q2 = (1−N2u
2) + (−u+N2u

2)t.
Thus, the numerator in the I∗0 case is P0 + u2t2P1 + u3t3Q2, which is equal to

(1− u) + (−u2 + u3)t+ (u2 − u3)t2 + (u4 −N2u
5)t3 + (−u4 +N2u

5)t4I∗0 :

with

N2 =


3q = 3u−1 if f̄2 has 3 roots in k,
q = u−1 if f̄2 has 1 root in k,
0 if f̄2 has no roots in k.

In the cases I∗n, n > 0, we have that f̄2 has one simple root and one double root
in k̄. By considering the derivative of f̄2, we conclude that the double root must
be in k. We change coordinates so the double root is at the origin.

We apply the stationary phase formula again to get Ĩ2 = P2/(1−ut) +utĨ3 with
N2 = 2q, S2 = q; hence,

P2 = (1− 2u) + u2t.

When f̄3 = y2
3 + ā3,2y3− ā6,4 has distinct roots in k̄, we are in the I∗1 case. Hence, f̄3

has distinct roots in k or no roots in k. Thus, in the I∗1 case, we have Ĩ3 = Q3/(1−ut)
with

Q3 = (1−N3u
2) + (−u+N3u

2)t,

and the numerator in the I∗1 case is equal to P0 + u2t2P1 + u3t3P2 + u4t4Q3 with

N3 =
{

2u−1 if f̄3 has 2 roots in k,
0 if f̄3 has no roots in k.

If f̄3 has a double root in k̄, but not in k, the above applies with N3 = 0.
If f̄3 has a double root in k we apply the stationary phase formula again to get

Ĩ3 = P3/(1− ut) + utĨ4, where we note that N3 = N1 and S3 = S1, hence P3 = P1.
When −f̄4 = ā2,1x

2
4 + ā4,3x4 + ā6,5 has distinct roots in k̄ we are in the I∗2 case.

Thus, f̄4 has either distinct roots in k or no roots in k. Then Ĩ4 = Q4/(1−ut) with

Q4 = (1−N4u
2) + (−u+N4u

2)t,

and thus we obtain that the numerator in the I∗2 case is

P0 + u2t2P1 + u3t3P2 + u4t4P1 + u5t5Q4

with

N4 =
{

2u−1 if f̄4 has 2 roots in k,
0 if f̄4 has no roots in k.

If f̄4 has a double root in k̄ but not in k, the above applies with N4 = 0.
If f̄4 has a double root in k, the process continues. For general i we have

Ĩi = Pi/(1− ut) + utĨi+1, if f̄i has a double root in k or Ĩi = Qi/(1− ut) with

Qi = (1 −Niu2) + (−u+Niu
2)t

and

Ni =
{

2u−1 if f̄i has 2 roots in k,
0 if f̄i has no roots in k.
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The process terminates when

f̄n+2 =

{
−(ā2,1x

2
n+2 + ā4,n2 +2xn+2 + ā6,n+3) if n is even,

y2
n+2 + ā

3, (n−1)
2 +2

yn+2 − ā6,n+3 if n is odd

has distinct roots in k or no roots in k, which eventually occurs and corresponds to
the I∗n case of the Kodaira–Néron classification. The numerator for the I∗n case for
n ≥ 2 is

P0 + u2t2P1 + u3t3P2 + (u4t4 + u5t5 + · · ·+ un+2tn+2)P1 + un+3tn+3Qn+2

with

Nn+2 =
{

2u−1 if f̄n+2 has 2 roots in k,
0 if f̄n+2 has no roots in k.

An inductive argument using the above formula shows

Theorem 4.1. The numerator of the Igusa local zeta function for an elliptic curve
f(x, y) in the I∗n case for n ≥ 1 is

(1− u) + (−u2 + u3)t+ (u2 − u3)t2 − u4t3 + u4t4 − un+4tn+3 + un+4tn+4

when f̄n+2 has distinct roots, i.e., when

ac(a2
4 − 4a2a6) ∈ k2 if n is even,

ac(b6) ∈ k2 if n is odd

and

(1− u) + (−u2 + u3)t+ (u2 − u3)t2 − u4t3 + u4t4 + un+4tn+3 − un+4tn+4

when f̄n+2 has no roots, i.e., when

ac(a2
4 − 4a2a6) 6∈ k2 if n is even,

ac(b6) 6∈ k2 if n is odd.

5. The numerators of the local zeta function

for all the remaining cases

according to their Kodaira–Néron classification

The remaining cases are denoted II, III, IV, IV∗, III∗, II∗ and their numerators
are as follows:

1− u+ u3t− u3t2,II

1− u+ (−u2 + u3)t+ (u2 − u3)t2 + u6t5 − u6t6,II∗

(1− u)(1− u2t+ u2t2).III, III∗

Case IV:

1− u+ (−u2 + u3)t+ (u2 − 2u3)t2 + u3t3 if ac(b6) ∈ k2,IV a)

1− u+ (−u2 + u3)t+ u2t2 − u3t3 if ac(b6) 6∈ k2.IV b)

Case IV∗:

1− u+ (−u2 + u3)t+ (u2 − u3)t2 − u5t4 + u5t5 if ac(b6) ∈ k2,IV∗ a)

1− u+ (−u2 + u3)t+ (u2 − u3)t2 + u5t4 − u5t5 if ac(b6) 6∈ k2.IV∗ b)
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