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ERROR INDICATORS
FOR THE MORTAR FINITE ELEMENT DISCRETIZATION

OF THE LAPLACE EQUATION

CHRISTINE BERNARDI AND FRÉDÉRIC HECHT

Abstract. The mortar technique turns out to be well adapted to handle mesh
adaptivity in finite elements, since it allows for working with nonnecessarily
compatible discretizations on the elements of a nonconforming partition of the
initial domain. The aim of this paper is to extend the numerical analysis of

residual error indicators to this type of methods for a model problem and to
check their efficiency thanks to some numerical experiments.

1. Introduction

The mortar element method [6], [7] is a domain decomposition technique which
allows for working with completely independent discretizations on the subdomains
of a partition of the domain without overlapping. So it seems ideally suited for mesh
adaptivity. Indeed, nonmatching grids can be used on the different subdomains of
a partition, and this leads to highly reducing the number of degrees of freedom
in order to satisfy the adaptivity criteria since no further node must be added for
conformity reasons. Also, the regularity properties of the initial grid are preserved.

The a priori analysis of the corresponding discrete problem—note that the mor-
tar method is most often nonconforming—has already been performed for the
Laplace equation in the case of finite element discretizations [5] or spectral dis-
cretizations [1] and also for the Stokes problem [3]. However, the a posteriori
analysis still seems unsufficient for this method. We refer to [10] and [19] for the
extension of residual type error indicators to the case of nonconforming finite ele-
ments but on conforming triangulations, and also to [8] and [23] for first estimates
concerning these indicators in the mortar framework. However, in most of these
papers saturation assumptions are made, and we think that they could be avoided
in a large number of cases.

The aim of this paper is to extend the estimates concerning the residual type
indicators to the mortar finite element discretization of a model problem, more
precisely of the Laplace equation in a polygon Ω

−∆u = f in Ω,

u = 0 on ∂Ω.
(1.1)
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We first explain how mesh adaptivity can be performed in this case and present
the corresponding discrete problems. Relying on [5] for some basic results, we per-
form the a priori analysis of these problems. Next, we introduce the residual error
indicators related to the discretization. In contrast to most standard definitions
(see [20] and the references therein) and as already suggested in [10], two kinds
of indicators are defined: the first ones are associated with all elements of the
triangulation and deal with the finite element discretization, the second ones are
associated with the edges contained in the skeleton of the partition and deal with
the nonconformity of the discretization. The main results of this paper consist in
deriving estimates which allow for comparing them with the error. These results do
not require any saturation assumption and they are optimal, in the sense that the
constants involved in the estimates are independent of the discretization parame-
ter. We conclude with some numerical experiments which turn out to be in good
coherency with the analysis.

An outline of the paper is as follows:

• In Section 2, we describe the successive refined meshes, together with the
corresponding discrete spaces and problems. We prove their well-posedness
together with some a priori error estimates.
• In Section 3, we introduce the two kinds of residual type error indicators.

Next, we perform the a posteriori analysis, by proving upper bounds first for
the error, second for the indicators.
• Section 4 is devoted to some numerical tests of adaptivity.
• A technical proof is given in an Appendix.

2. The refined meshes and the discrete problems

Let Ω be a connected and bounded open set in R2, with a Lipschitz-continuous
boundary. In order to avoid curved elements, we assume that Ω is a polygon.

2.a. The family of refined triangulations. Let (T 0
h )h0 be a family of “coarse”

triangulations of the domain Ω in the usual sense: each T 0
h is a finite set of triangles

such that Ω is the union of these triangles and the intersection of two different
elements of T 0

h , if not empty, is a vertex or a whole edge of both of them. As usual,
h0 denotes the maximal diameter of the elements of T 0

h . We make the further
assumption that this family is regular, i.e., there exists a positive constant σ such
that, for all h0 and for all K in T 0

h , the ratio of the diameter of K to the diameter
of its inscribed circle is smaller than σ.

Starting from this family (T 0
h )h0 , we build iteratively new families of refined

triangulations as follows. Assuming that the family (T n−1
h )hn−1 is known, for each

value of the parameter hn−1:
• for arbitrary positive integers `, we cut some elements of T n−1

h into 22` sub-
triangles by iteratively joining the midpoints of the edges of these elements;
• we denote by T n,kh the set of triangles which have area equal to 2−2k the area

of the triangle K of T 0
h in which they are contained;

• we denote by Ωn,k the open subdomain of Ω such that Ω
n,k

is the union of
the triangles of T n,kh ;
• we call T nh the union of the T n,kh .

Figure 1 presents an example of triangulation T nh .
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Figure 1.

Clearly, for each n, there exists a nonnegative integer Kn such that

Ω =
Kn⋃
k=0

Ω
n,k

and Ωn,k ∩ Ωn,k
′

= ∅, 0 ≤ k < k′ ≤ Kn,(2.1)

which means that for each n the Ωn,k, 0 ≤ k ≤ Kn, form a partition of the domain
Ω without overlapping. Moreover, the parameters hn,k and hn are defined in an
obvious way as the maximal diameters of the triangles of T n,kh and T nh , respectively.
So they satisfy

hn,k ≤ 2−k h0 and hn = max
0≤k≤Kn

hn,k.(2.3)

Remark. Even if the technique we propose for refining the mesh is rather general, it
can be extended in several ways, for instance by cutting the triangles into (m+1)2`

subelements for any nonnegative integerm instead of 22` or starting from an a priori
decomposition of the domain Ω and using independent family of triangulations on
each subdomain. It can also be extended to three-dimensional triangulations into
tetrahedra if a technique for cutting a tetrahedron is fixed. Moreover, coarsening
the mesh is also easy to perform by keeping in memory the previous triangulation
and going back to it where necessary.

To conclude, at each step n, we define the skeleton

Sn =
Kn⋃
k=0

∂Ωn,k \ ∂Ω,(2.3)

and, as standard in the mortar method [6], we fix a decomposition of it into disjoint
(open) mortars

Sn =
Mn⋃
m=1

γm and γm ∩ γm′ = ∅, 1 ≤ m < m′ ≤Mn.(2.4)
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Figure 2.

We make the final assumption that each γm, 1 ≤ m ≤ Mn, is a whole edge of a
triangle of one of the triangulations T n,kh , located on one side of γm, and that on
the other side it is the union of edges of triangles in T n,k1

h ∪ · · · ∪ T n,kph , where
all ki are > k. We agree to denote by k(m), k1(m), . . . , kp(m), the corresponding
exponents k, k1, . . . , kp, and by p(m) the number p. This is illustrated in Figure 2,
with two mortars and p(m) equal to 1 and 2, respectively.

2.b. The mortar discrete spaces. The discretization parameter δ is now the
pair (n, hn). We fix a positive integer ` and, with each value of δ, we associate the
local discrete spaces, for 0 ≤ k ≤ Kn,

Xn,k =
{
vk ∈ C0(Ω

n,k
); ∀K ∈ T n,kh , vk |K ∈ P`(K)

}
,(2.5)

where P`(K) stands for the space of restrictions to K of polynomials with total
degree ≤ `.

Now let γm, 1 ≤ m ≤ Mn, be one of the mortars. Then, two possible choices
exist for defining the discrete space on γm which is used to enforce the matching
conditions. With the previous notation:

• The coarse space W̃m
C is the space P`−1(γm) of polynomials with degree≤ `−1

on γm. In this case, we agree to denote by Em the set {γm}.
• Otherwise, we define Em as the set of the open connected components of the

intersections γm ∩ ∂Ωn,ki(m), 1 ≤ i ≤ p(m). The fine space W̃m
F is chosen as

W̃m
F =

{
ϕδ ∈ L2(γm); ∀e ∈ Em, ϕ|e ∈ W̃m(e)

}
,

where each W̃m(e) is the space of continuous functions on e such that their
restrictions to each edge e′ = e∩ ∂K for all K in T n,kih belongs to P`−1(e′) if
e′ contains an endpoint of e, to P`(e′) if not.

Note that these choices are rather standard in the mortar framework [6].
The discrete space Xδ is now defined in the usual way (see [7]). It is the space

of functions vδ such that:

• their restrictions to each Ωn,k, 0 ≤ k ≤ Kn, belong to Xn,k;
• they vanish on ∂Ω;
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• the following matching condition holds on any γm, 1 ≤ m ≤Mn,

∀χ ∈ W̃m,

∫
γm

[vδ](τ)χ(τ) dτ = 0,(2.6)

where W̃m is one of the two spaces W̃m
C or W̃m

F .

Remark. As proposed in the first version of the mortar method [6], some further
matching conditions can be added; more precisely, the functions in Xδ can be
enforced to be continuous at the endpoints of all γm. These conditions are satisfied
in the numerical experiments of this paper, but they are not necessary for the a
priori analysis.

Note that the choice of W̃m is local, i.e., independent choices of W̃m
C or W̃m

F are
possible according to the mortars. Each choice W̃m

C results in ` matching conditions,
while each choice W̃m

F results in at least 2`−1 and often more matching conditions.
However, in this case, the matching condition (2.6) can be enforced separately on
each e in Em and the jump here is equal to vδ |Ωn,k(m) − vδ |Ωn,ki(m) , hence only
requires the knowledge of vδ on two subdomains.

Remark. The local spaces Xn,k are conforming in the sense that they are contained
in H1(Ωn,k) and, moreover, the nullity conditions on ∂Ω are exactly taken into
account in Xδ. However, the global space Xδ is not contained in H1(Ω), except for
some very special geometries of the decomposition and when all the W̃m are chosen
equal to W̃m

F .

2.c. The discrete problems. The discrete problems associated with equation
(1.1) are now built from its variational formulation by the Galerkin method. For
fixed data f in L2(Ω), they read as follows:

Find uδ in Xδ such that

∀vδ ∈ Xδ, aδ(uδ, vδ) =
∫

Ω

f(x)vδ(x) dx,(2.7)

where the bilinear form aδ(·, ·) is defined by

aδ(uδ, vδ) =
Kn∑
k=0

∫
Ωn,k

graduδ · grad vδ dx.(2.8)

We must now check the well-posedness of problem (2.7). Since the space Xδ is not
contained in H1(Ω) in the general case, we introduce the decomposition-dependent
norm, indexed by δ:

‖v‖H1
δ (Ω) =

(Kn∑
k=0

‖v‖2H1(Ωn,k)

) 1
2
.

The form aδ(·, ·) is obviously continuous with respect to this norm, and its ellipticity
can be checked by exactly the same arguments as in [5, Prop. 2.1] where only
two families of triangulations are considered (another proof, relying on a duality
argument, is due to [14]). So we state the result without proof, in a slightly more
general form which is needed later on. It requires the following assumption.

Assumption A.1. For 1 ≤ m ≤Mn, either the space W̃m coincides with W̃m
F or

p(m) is equal to 1.
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Lemma 2.1. If Assumption A.1 is satisfied, there exists a constant α only depend-
ing on the geometry of Ω and the parameter σ that measures the regularity of the
family (T 0

h )h0 such that the following ellipticity property holds for any value of the
parameter δ:

∀v ∈ Xn, aδ(v, v) ≥ α ‖v‖2H1
δ (Ω),(2.9)

where Xn is the space of functions v such that

• their restrictions to each Ωn,k, 0 ≤ k ≤ Kn, belong to H1(Ωn,k),
• they vanish on ∂Ω,
• the following matching condition holds on any γm, 1 ≤ m ≤Mn,

∀e ∈ Em,
∫
e

[v](τ) dτ = 0.(2.10)

Since Xδ is contained in Xn for all δ (this follows from its definition), using this
lemma leads to the well-posedness and stability properties of the problem.

Corollary 2.2. If Assumption A.1 is satisfied, for any data f in L2(Ω) and for
any value of the parameter δ, problem (2.7) has a unique solution. Moreover, this
solution satisfies, for a constant c independent of δ,

‖uδ‖H1
δ (Ω) ≤ c ‖f‖L2(Ω).(2.11)

2.d. A priori analysis. The numerical analysis of problem (2.7) has been per-
formed in [5] in the simpler case of one coarse and one fine triangulations; however,
most results extend to the present case. So we briefly recall them and make precise
the evaluation of the approximation error, which is more technical in our framework.

If Assumption A.1 holds, we derive from Lemma 2.1 the following Strang’s lemma

‖u− uδ‖H1
δ (Ω) ≤ (1 + α−1) inf

vδ∈Xδ
‖u− vδ‖H1

δ (Ω) + α−1 sup
wδ∈Xδ

∫
Sn ∂nu [wδ] dτ
‖wδ‖H1

δ (Ω)

,

(2.12)

where ∂n denotes the normal derivative on Γ and [ · ] the jump through Sn with the
appropriate sign. It can be observed that, in the right-hand side of (2.12),

• the first term represents the approximation error,
• the second term, due to the nonconformity of the discretization, represents

the consistency error.

Evaluating the consistency error relies on the matching condition (2.6), which im-
plies for all m, 1 ≤ m ≤Mn,

∀χ ∈ W̃m
C ⊂ W̃m,

∫
γm

∂nu [wδ] dτ =
∫
γm

(∂nu− χ) [wδ] dτ.

Hence, by the the same arguments as in [5, Prop. 2.4], we derive, with the appro-
priate smoothness assumptions on u and for sk ≤ `+ 1,

sup
wδ∈Xδ

∫
Sn ∂nu [wδ] dτ
‖wδ‖H1

δ (Ω)

≤ c
(Kn∑
k=0

(hn,k)2(sk−1) ‖u‖2Hsk (Ωn,k)

) 1
2
,(2.13)

for a constant c independent of δ.
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Figure 3.

We now evaluate the approximation error, which is much more complex. We
introduce the following parameter, which is equal to the maximal ratio of the di-
ameters of two adjacent triangles:

µδ = sup
1≤m≤Mn

sup
1≤i≤p(m)

2ki(m)−k(m).(2.14)

For each m, the intersection of γm and ∂Ωn,ki(m), 1 ≤ i ≤ p(m), has a finite
number of (open) connected components, which we denote by γmij , 1 ≤ j ≤ q(i)
(this is illustrated in Figure 3, where q(i) is equal to 2). Let ∆k(m) denote the
triangle of T n,k(m)

h such that γm is an edge of ∆k(m) and ∆ki(m)
j denote the union

of triangles in T n,ki(m)
h that intersect γmij . Lemma 2.3 requires the existence of

a lifting operator Lmij , from the space of traces on γmij of functions in Xn,ki(m)

vanishing at the endpoints of γmij , with values in Xn,ki(m), such that, for such a

trace ϕ, Lmijϕ vanishes on ∂∆ki(m)
j \ γm and satisfies

‖Lmijϕ‖H1(∆
ki(m)
j )

≤ c µ
1
2
δ |ϕ|

H
1
2
00(γmij )

,(2.15)

where, as standard, H
1
2
00(γmij ) denotes the interpolate of order 1

2 between H1
0 (γmij )

and L2(γmij ) (see [17, Chap. 1, Th. 11.7]). Such an operator is constructed in [4,
form. (5.1)], according to an idea of [22], on a fixed polygon by combining the
use of Clément’s regularization operator [13] with a “continuous” lifting operator

from H
1
2
00(γmij ) into H1(∆ki(m)

j ). The extension to domains ∆ki(m)
j when taking into

account their aspect ratios (which are bounded by µδ) can be performed as in [5,
Cor. 3.6] by going to a reference trapezium.

Lemma 2.3. Let us assume the solution u of problem (1.1) such that, for all n,
each u|Ωn,k, 0 ≤ k ≤ Kn, belongs to Hsk(Ωn,k), 1 < sk ≤ ` + 1. There exists a
constant c independent of δ such that

inf
vδ∈Xδ

‖u− vδ‖H1
δ (Ω) ≤ c µ

1
2
δ

(Kn∑
k=0

(hn,k)2(sk−1) ‖u‖2Hsk(Ωn,k)

) 1
2
.(2.16)

Proof. The construction of an appropriate vδ is performed in two steps.
1) With each Ωn,k, we associate the set Vn,k of its corners a which are inside

a γm (then Ωn,k coincides with an Ωn,ki(m)). For each a in Vn,k, we consider the
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Lagrange function ϕa in Xn,k associated with a. If In,k denotes the standard
Lagrange interpolation operator with values in Xn,k, the idea is to define a first
function v1

δ by

(v1
δ )|Ωn,k = In,ku+

∑
a∈Vn,k

[Iδu](a)ϕa, 0 ≤ k ≤ Kn.

where, if Ωn,k coincides with Ωn,ki(m), the jump [Iδu](a) means In,k(m)u−In,ki(m)u.
Standard results [12, Thm. 16.2] yield that

‖u− In,ku‖H1(Ωn,k) ≤ c (hn,k)sk−1 ‖u‖Hsk (Ωn,k).

Also it is readily checked by going to a reference triangle that ‖ϕa‖H1(Ωn,k) is
bounded independently of δ. In order to bound [Iδu](a), we introduce a continuous
one-to-one mapping F from the union ∆

k(m) ∪∆
ki(m)

j onto a reference subdomain

∆̂, which is affine on each triangle of T nh contained in ∆
k(m) ∪ ∆

ki(m)

j and maps

the edge e of the triangle of ∆ki(m)
j containing a and contained in γm onto an edge

ê with length 1, the edge e′ in ∆
k(m)

that contains e onto an edge ê′. Then, if ŵ
stands for the function w ◦ F−1 for all functions w, we have

|[Iδu](a)| ≤ ‖ ̂In,k(m)u− ̂In,ki(m)u‖L∞(ê) ≤ ĉ‖ ̂In,k(m)u− ̂In,ki(m)u‖L2(ê)

≤ ĉ
(
‖û− ̂In,k(m)u‖L2(ê) + ‖û− ̂In,k(m)u‖L2(ê′)

)
≤ c

(
|u− In,k(m)u|H1(∆k(m)) + |u − In,k(m)u|

H1(∆
ki(m)
j )

)
.

Summing the square of this inequality on all a in Vn,k (the support of a function
ϕa only intersects a finite number of supports of other ones) and applying once
more the previous interpolation property leads to

‖u− v1
δ‖H1

δ (Ω) ≤ c
(Kn∑
k=0

(hn,k)2(sk−1) ‖u‖2Hsk(Ωn,k)

) 1
2
.(2.17)

2) Since the function v1
δ does not belong to Xδ, the idea consists in adding a

correction v2
δ defined by

v2
δ =

Mn∑
m=1

p(m)∑
i=1

q(i)∑
j=1

Lmij
(
(v1
δ )|Ωn,k(m) − (v1

δ )|Ωn,ki(m)

)
.

From (2.15), we have

‖v2
δ‖2H1

δ (Ω) ≤ c µδ
Mn∑
m=1

p(m)∑
i=1

q(i)∑
j=1

|(v1
δ )|Ωn,k(m) − (v1

δ )|Ωn,ki(m) |2
H

1
2
00(γmij )

.

Next, we set

u1
|Ωn,k = u|Ωn,k +

∑
a∈Vn,k

[Iδu](a)ϕa, 0 ≤ k ≤ Kn,

where, as previously, if Ωn,k coincides with Ωn,ki(m), the jump [Iδu](a) means
In,k(m)u − In,ki(m)u. Note that u and In,ki(m)u coincide in this point a. Hence,
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the function u1 coincides with both (v1
δ )|Ωn,k(m) and (v1

δ )|Ωn,ki(m) at the endpoints
of all γmij , so that

‖v2
δ‖2H1

δ (Ω) ≤ c µδ
Mn∑
m=1

p(m)∑
i=1

q(i)∑
j=1

(
|u1 − (v1

δ )|Ωn,k(m) |2
H

1
2
00(γmij )

+ |u1 − (v1
δ )|Ωn,ki(m) |2

H
1
2
00(γmij )

)
≤ c µδ

Mn∑
m=1

p(m)∑
i=1

q(i)∑
j=1

(
‖u1 − v1

δ‖2H1(∆̃
k(m)
ij )

+ ‖u1 − v1
δ‖2H1(∆

ki(m)
j )

)
,

where ∆̃k(m)
ij is a triangle contained in ∆k(m) such that γmij is an edge of it. By

noting that two different ∆̃k(m)
ij do not intersect for all i and j, we derive

‖v2
δ‖H1

δ (Ω) ≤ c µ
1
2
δ

(
‖u− v1

δ‖H1
δ (Ω) + ‖u− u1‖H1

δ (Ω)

)
.

Moreover, the quantity ‖u − u1‖H1
δ (Ω) can be bounded by exactly the same argu-

ments as in the first part of the proof, which gives

‖v2
δ‖H1

δ (Ω) ≤ c µ
1
2
δ

(Kn∑
k=0

(hn,k)2(sk−1) ‖u‖2Hsk (Ωn,k)

) 1
2
.(2.18)

Taking vδ = v1
δ +v2

δ , noting that it belongs to Xδ and using (2.17) and (2.18), yields
the desired estimate.

Inserting (2.13) and (2.16) into (2.12) leads to the a priori error estimate.

Theorem 2.4. Let us assume the solution u of problem (1.1) such that, for all n,
each u|Ωn,k , 0 ≤ k ≤ Kn, belongs to Hsk(Ωn,k), 1 < sk ≤ `+ 1. If Assumption A.1
is satisfied, there exists a constant c independent of δ such that the following error
estimate holds between this solution u and the solution uδ of problem (2.7):

‖u− uδ‖H1
δ (Ω) ≤ c µ

1
2
δ

(Kn∑
k=0

(hn,k)2(sk−1) ‖u‖2Hsk(Ωn,k)

) 1
2
.(2.19)

Remark. Note that, in practice, µδ is most often bounded independently of δ. More-
over, since it only involves local ratios, this independency can easily be enforced in
the refinement process.

Since Ω is a polygon, a minimal value of the regularity exponent sk is known
as a function of the regularity of the data when Ωn,k contains no vertex of Ω, as
a function of the regularity of the data and the maximal angles of the vertices
contained in ∂Ωn,k ∩ ∂Ω if not. So, estimate (2.19) allows for a first, a priori,
adaptivity of the mesh. But this is not sufficient in most practical situations. So,
we must perform the a posteriori analysis of the problem in order to exhibit error
indicators which allow for better adaptivity.

3. The error indicators and the a posteriori analysis

In a first step, we introduce some notation in order to define the two kinds
of error indicators, linked respectively to the finite elements and to the edges of
the skeleton. In a second step, we prove the a posteriori error estimates, first by
exhibiting an upper bound for the global error ‖u − uδ‖H1

δ (Ω) as a function of the
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indicators, second by estimating each indicator as a function of the local error. We
conclude with some remarks.

3.a. The error indicators. Let `∗ stand for a fixed nonnegative integer. For
each value of the parameter δ, we introduce the space

Zδ =
{
gδ ∈ L2(Ω); ∀K ∈ T nh , gδ |K ∈ P`∗(K)

}
.(3.1)

And we fix an approximation fδ of the function f in Zδ.

Error indicators linked to the finite elements. For each K in T nh , we denote by EK
the set of edges of K which are not contained in ∂Ω. In what follows, hK stands
for the diameter of K and he for the length of any e in EK .

The residual error indicator ηK associated with any triangle K in T nh is now
defined in a completely standard way (see [20, (1.18)]:

ηK = hK ‖fδ + ∆uδ‖L2(K) +
1
2

∑
e∈EK

h
1
2
e ‖ [∂nuδ] ‖L2(e),(3.2)

where, as in Section 2, ∂n denotes the normal derivative on e and [ · ] the jump
through e. Note that the term “residual” here means that, when suppressing all
the δ in the previous line, the quantity in the right-hand side is zero.

Error indicators linked to the edges of the skeleton. As previously, we denote by
Em either the edge γm when W̃m is chosen equal to W̃m

C or the set of the open
connected components of the γm ∩ ∂Ωn,ki(m), 1 ≤ i ≤ p(m), when W̃m is chosen
equal to W̃m

F .
As in [10, (3.3)], for 1 ≤ m ≤Mn, we associate with each e in Em the indicator

ηe defined as

ηe = h̃
− 1

2
e ‖ [uδ] ‖L2(e),(3.3)

where h̃e denotes the length of e if W̃m is equal to W̃m
C , the largest length of

e′ = e ∩ ∂K for K in T n,ki(m)
h , 1 ≤ i ≤ p(m), if W̃m is equal to W̃m

F . There also,
the quantity [uδ] vanishes when suppressing the δ.

Remark. It is readily checked that, for all m, 1 ≤ m ≤Mn, such that p(m) is equal
to 1, and for all e in Em, thanks to an inverse inequality [12, Thm. 17.2],

‖ [uδ] ‖
H

1
2 (e)
≤ c µ

1
2
δ ηe,(3.4)

where µδ is introduced in (2.14). Conversely, thanks to the matching conditions
(2.6), we also have ( ∑

e∈Em
η2
e

) 1
2 ≤ c′ ‖ [uδ] ‖

H
1
2 (γm)

.(3.5)

However, the quantity ‖ [uδ] ‖
H

1
2 (γm)

is not necessarily defined when p(m) is > 1,

since the jump [uδ] has no reason to be continuous on γm. Moreover, the norm
‖ · ‖L2(e) is easier to compute that the norm ‖ · ‖

H
1
2 (e)

.

As a consequence of definitions (3.2) and (3.3), once the discrete solution uδ is
known and the approximation fδ is fixed, all the error indicators can be computed
easily.
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3.b. An upper bound for the error. Since both H1
0 (Ω) and Xδ are contained

in the space Xn introduced in Lemma 2.1, we deduce from the ellipticity property
(2.9) that, if Assumption A.1 holds,

α ‖u− uδ‖2H1
δ (Ω) ≤ aδ(u− uδ, u− uδ).

Next, we set v = u − uδ and we fix an approximation vδ of v in Xδ. Note that
multiplying the first line in (1.1) by vδ and integrating by parts yields

aδ(u, vδ) =
∫

Ω

f(x)vδ(x) dx+
∫
Sn
∂nu [vδ] dτ.

Subtracting (2.7) and inserting this into the previous line, we obtain

α ‖u− uδ‖2H1
δ (Ω) ≤ aδ(u− uδ, v − vδ) +

∫
Sn
∂nu [vδ] dτ.

Next, we integrate by parts the first term in the right-hand side on each element K
of T nh . If ∂n denotes the derivative with respect to the unit outward normal vector
of K, this leads to

α ‖u− uδ‖2H1
δ (Ω) ≤

∑
K∈T nh

(∫
K

(f + ∆uδ) (v − vδ) dx+
∫
∂K

∂n(u − uδ) (v − vδ) dτ
)

+
∫
Sn
∂nu [vδ] dτ.

Adding and subtracting fδ and introducing the jump of ∂n(u−uδ) (v− vδ) on each
edge e of ∂K gives

α ‖u− uδ‖2H1
δ (Ω)

≤
∑
K∈T nh

(∫
K

(fδ + ∆uδ) (v − vδ) dx

+
∫
K

(f − fδ) (v − vδ) dx+
1
2

∑
e∈EK

∫
e

[∂n(u− uδ) (v − vδ)] dτ
)

+
∫
Sn
∂nu [vδ] dτ.

Consider now an e in EK . If e is not contained in the skeleton Sn, it is easy to
check that ∫

e

[∂n(u− uδ) (v − vδ)] dτ = −
∫
e

[∂nuδ] (v − vδ) dτ.

But, when e is contained in Sn, a further term appears:∫
e

[∂n(u− uδ) (v − vδ)] dτ = −
∫
e

[∂nuδ] (v − vδ) dτ +
∫
e

∂n(u− uδ) [v − vδ] dτ.



1382 CHRISTINE BERNARDI AND FRÉDÉRIC HECHT

Combining all this leads to

α ‖u− uδ‖2H1
δ (Ω) ≤

∑
K∈T nh

(∫
K

(fδ + ∆uδ) (v − vδ) dx+
∫
K

(f − fδ) (v − vδ) dx

− 1
2

∑
e∈EK

∫
e

[∂nuδ] (v − vδ) dτ
)

+
Mn∑
m=1

∑
e∈Em

(∫
e

∂nu [vδ] dτ +
∫
e

∂n(u− uδ) [v − vδ] dτ
)
.

In view of this last result, we decide to choose a conforming approximation vδ of
v, in the sense that vδ belongs to Xδ ∩H1

0 (Ω). In this case, the previous estimate
writes

α ‖u− uδ‖2H1
δ (Ω) ≤

∑
K∈T nh

(∫
K

(fδ + ∆uδ) (v − vδ) dx+
∫
K

(f − fδ) (v − vδ) dx

− 1
2

∑
e∈EK

∫
e

[∂nuδ] (v − vδ) dτ
)

−
Mn∑
m=1

∑
e∈Em

∫
e

∂n(u − uδ) [uδ] dτ.

Using three times the Cauchy–Schwarz inequality yields

α ‖u− uδ‖H1
δ (Ω) ≤ c

( ∑
K∈T nh

(
‖fδ + ∆uδ‖L2(K)

‖v − vδ‖L2(K)

‖v‖H1
δ (Ω)

+ ‖f − fδ‖L2(K)

‖v − vδ‖L2(K)

‖v‖H1
δ (Ω)

+
1
2

∑
e∈EK

‖[∂nuδ]‖L2(e)

‖v − vδ‖L2(e)

‖v‖H1
δ (Ω)

)

+ |
Mn∑
m=1

∑
e∈Em

∫
e

∂n(u− uδ) [uδ] dτ |
1
2

)
.

(3.6)

It remains to evaluate the ratios and the last term in the right-hand side.
The first three ratios are linked with the local approximation of nonsmooth

functions. So in evaluating them, we rely on the construction of an appropriate
operator of Clément’s type. We refer to [13] and [4] for previous works on this
subject, to [18] and [21] for slightly different operators.

For a while, we consider the coarse approximation space, made of continuous
piecewise affine functions

Xδ− =
{
vδ ∈ H1

0 (Ω); ∀K ∈ T nh , vδ |K ∈ P1(K)
}
.(3.7)

The proof of the following proposition is very similar to that of Lemma 2.3, but
more technical, so we have written it in the Appendix instead.
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Proposition 3.1. There exist an operator Rδ from Xn into Xδ− and a constant c
independent of δ such that the following estimates hold for all functions v in Xn∑

K∈T nh

(
h−2
K ‖v −Rδv‖2L2(K) +

∑
e∈EK

h−1
e ‖v −Rδv‖2L2(e)

)
≤ c µδ ‖v‖2H1

δ (Ω).(3.8)

We now evaluate the last term in the right-hand side of (3.6); however, this
requires Assumption A.1 and, in a first step, a further condition that we now state
(as already hinted, it does not induce any modification in the previous analysis)

Assumption A.2. The further condition is enforced in the definition of Xδ: any
function vδ of Xδ is continuous at the endpoints of all e in Em, 1 ≤ m ≤Mn.

Proposition 3.2. If Assumptions A.1 and A.2 are satisfied, the following estimate
holds for 1 ≤ m ≤Mn and for all e in Em:

|
∫
e

∂n(u− uδ) [uδ] dτ | ≤ c µδ ηe(
|u− uδ|H1(Ke) + µδ (

∑
K∈T nh ,K⊂Ke

h2
K (‖fδ + ∆uδ‖2L2(K) + ‖f − fδ‖2L2(K)))

1
2

)
,

(3.9)

where Ke is a triangle and e is an edge of Ke.

Proof. Thanks to Assumption A.2, [uδ] vanishes at the endpoints of e, hence belongs

to H
1
2
00(e). So, setting v = u− uδ, we have∫

e

∂nv [uδ] dτ ≤ ‖∂nv‖
H

1
2
00(e)′

‖ [uδ]‖
H

1
2
00(e)

.(3.10)

We evaluate separately the two terms in the right-hand side.
1) Going to the reference element and using the Poincaré-Friedrichs inequality

on e, we have

‖ [uδ]‖
H

1
2
00(e)

≤ c h
1
2
e ‖ [uδ] ‖H1(e).

Since [uδ] is polynomial on either one or several intervals of same length h̃e and the
ratio he/h̃e is smaller than µδ, another inverse inequality leads to

‖ [uδ] ‖
H

1
2
00(e)

≤ c h
1
2
e h̃
−1
e ‖ [uδ] ‖L2(e) ≤ c µδ h̃

− 1
2

e ‖ [uδ] ‖L2(e).

2) LetKe denote the triangle in T n,k(m)
h such that e is an edge ofKe if W̃m = W̃m

C

or the triangle on the other side of γm such that e is an edge of Ke if not. In order
to estimate

‖∂nv‖
H

1
2
00(e)′

= sup
g∈H

1
2
00(e)

〈∂nv, g〉
‖g‖

H
1
2
00(e)

,

we note that, for any g in H
1
2
00(e), there exists a lifting wg of g in H1(Ke) which

moreover vanishes on ∂Ke \ e and satisfies (this is proven by going to a reference
element)

|wg|H1(Ke) + h−1
Ke
‖wg‖L2(Ke) ≤ c ‖g‖

H
1
2
00(e)

.
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We have

〈∂nv, g〉 =
∫
Ke

grad v · gradwg dx+
∫
Ke

∆v wg dx,(3.11)

whence

‖∂nv‖
H

1
2
00(e)′

≤ c
(
(|v|H1(Ke) + µδ (

∑
K⊂Ke

h2
K (‖fδ + ∆uδ‖2L2(K) + ‖f − fδ‖2L2(K)))

1
2
)
.

Combining all this and using the definition (3.3) of ηe yield the desired result.
Assumptions A.1 and A.2 are necessary in order to avoid working with quantities

that do not belong to H
1
2
00(e). However, Assumption A.2 is sometimes restrictive

for very complex mesh partitions, so we now prove an analogous result when it does
not hold. The proof is very similar to that of Proposition 3.2, so we only sketch
it.

Corollary 3.3. If Assumption A.1 is satisfied, for any s, 0 < s < 1
2 , the following

estimate holds for 1 ≤ m ≤Mn and for all e in Em:

|
∫
e

∂n(u− uδ) [uδ] dτ |

≤ c µδ ηe (h̃se |u− uδ|H1+s(Ke)(3.12)

+ µδ (
∑

K∈T nh ,K⊂Ke

h2
K (‖fδ + ∆uδ‖2L2(K) + ‖f − fδ‖2L2(K)))

1
2
)
,

where Ke is a triangle and e is an edge of Ke.

Proof. For each e in Em, setting as previously v = u− uδ, we have∫
e

∂nv [uδ] dτ ≤ ‖∂nv‖
Hs−

1
2 (e)
‖ [uδ] ‖

H
1
2−s(e)

.

1) Thanks to an inverse inequality, we have

‖ [uδ] ‖
H

1
2−s(e)

≤ µδ h̃
s− 1

2
e ‖ [uδ] ‖L2(e).

2) It remains to evaluate

‖∂nv‖
Hs−

1
2 (e)

= sup
g∈H

1
2−s(e)

〈∂nv, g〉
‖g‖

H
1
2−s(e)

.

For any g in H
1
2−s(e), there exists a lifting wg of g in H1−s(Ke) which moreover

vanishes on ∂Ke \ e and satisfies

|wg|H1−s(Ke) + hs−1
Ke
‖wg‖L2(Ke) ≤ c ‖g‖H 1

2−s(e)
.

We deduce from (3.11) that

‖∂nv‖
H

1
2−s(e)

≤ c|v|H1+s(Ke)

+ c′ µδ
( ∑
K⊂Ke

h
2(1−s)
K (‖fδ + ∆uδ‖2L2(K) + ‖f − fδ‖2L2(K))

) 1
2 .

This gives the desired result.
Inserting (3.8) and (3.9) (or (3.12)) into (3.6) leads to the a posteriori error

estimate.
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Theorem 3.4. If Assumptions A.1 and A.2 hold, there exists a constant c indepen-
dent of δ such the following error estimate holds between the solution u of problem
(1.1) and the solution uδ of problem (2.7):

‖u− uδ‖H1
δ (Ω) ≤ c µδ

( ∑
K∈T nh

(
η2
K + h2

K ‖f − fδ‖2L2(K)) +
Mn∑
m=1

∑
e∈Em

η2
e

) 1
2
.(3.13)

Corollary 3.5. If Assumption A.1 holds, for any s, 0 < s < 1
2 , let λδs(u) be the

smallest constant, depending on the solution u of problem (1.1) and the solution uδ
of problem (2.7), such that( ∑

K∈T nh

h2s
K |u− uδ|2H1+s(K)

) 1
2 ≤ λδs(u) ‖u− uδ‖H1

δ (Ω).(3.14)

There exists a constant c independent of δ such the following error estimate holds
between these solutions:

‖u− uδ‖H1
δ (Ω) ≤ c µδ

( ∑
K∈T nh

(
η2
K + h2

K ‖f − fδ‖2L2(K)) + (1 + λδs)
Mn∑
m=1

∑
e∈Em

η2
e

) 1
2
.

(3.15)

Assume that the µδ are bounded independently of δ, which is most often the
case in practical situations. Then, when Assumption A.2 holds, we obtain estimate
(3.13), which is fully optimal. When it does not hold, we only derive estimate (3.15)
which is not optimal. Note however that the constant λδs(u) tends to 1 when s
tends to 0.

3.c. An upper bound for the indicators. The idea is now to bound both the
ηK and the ηe as a function of the norm of the error u − uδ, both locally and
globally.

In a first step, we fix a function w in H1
0 (Ω) and we compute by integration by

parts ∑
K∈T nh

∫
K

grad(u − uδ) · gradw dx

=
∑
K∈T nh

(∫
K

(f + ∆uδ)w dx+
∫
∂K

∂n(u− uδ)w dτ
)
,

whence

∑
K∈T nh

∫
K

grad(u− uδ) · gradw dx

=
∑
K∈T nh

(∫
K

(fδ + ∆uδ)w dx+
∫
K

(f − fδ)w dx−
1
2

∑
e∈EK

∫
e

[∂nuδ]w dτ
)
.

(3.16)

Indeed, as is standard for residual type indicators, proving the first estimates relies
on appropriate choices of the function w in (3.16).

With each triangle K in T nh , we associate the bubble function ψK equal to the
product of the three barycentric coordinates on K. For each edge e in EK , we also
introduce the bubble function ψe related to e, i.e., equal to the product of the two
barycentric coordinates corresponding to the endpoints of e. Finally, on a reference
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K
e

K

e

K
e

Figure 4.

triangle K̂, we fix a lifting operator P̂ from polynomial traces on an edge ê of K̂
that vanish at the endpoints of ê into polynomials on K̂ that vanish on ∂K̂ \ ê. A
similar operator PK,e is then built from P̂ by affine transformation for all triangles
K and all edges e of K.

Proposition 3.6. There exists a constant c independent of δ such that the follow-
ing estimate holds for all K in T nh :

ηK ≤ c
(
‖u− uδ‖H1

δ (ΞK) + µδ (
∑

K′⊂ΞK

h2
K′ ‖f − fδ‖2L2(K′))

1
2
)
,(3.17)

where ΞK is the union of at most four triangles that contain an edge of K.

Proof. Bounding the first term in ηK is fully standard (see [20, §1.2]): taking w in
(3.16) equal to

w =

{
(fδ + ∆uδ)ψK on K,

0 elsewhere,

and using standard inverse inequalities lead to the estimate

hK ‖fδ + ∆uδ‖L2(K) ≤ c
(
|u− uδ|H1(K) + hK ‖f − fδ‖L2(K)

)
.(3.18)

Now let e be an edge in EK . Three cases occur, as illustrated in Figure 4.
1) If e is not contained in Sn, it is the edge of two triangles K and K ′ of the

same T n,kh . We then take w in (3.16) equal to

w =


PK,e

(
[∂nuδ]ψe

)
on K,

PK′,e
(
[∂nuδ]ψe

)
on K ′,

0 elsewhere.
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This gives

‖ [∂nuδ]ψ
1
2
e ‖2L2(e)

≤
∑

κ∈{K,K′}

(
|u− uδ|H1(κ)|Pκ,e([∂nuδ]ψe])|H1(κ)

+ (‖fδ + ∆uδ‖L2(κ) + ‖f − fδ‖L2(κ))‖Pκ,e([∂nuδ]ψe])‖L2(κ).

There also, we prove the following inequalities by going to a reference element

‖ [∂nuδ] ‖L2(e) ≤ c ‖ [∂nuδ]ψ
1
2
e ‖L2(e),

|Pκ,e([∂nuδ]ψe])|H1(κ) + h−1
e ‖Pκ,e([∂nuδ]ψe])‖L2(κ) ≤ c h

− 1
2

e ‖ [∂nuδ] ‖L2(e).

By noting that c hκ ≤ he ≤ hκ, we obtain

h
1
2
e ‖[∂nuδ]‖L2(e)

≤ c
∑

κ∈{K,K′}

(
|u− uδ|H1(κ) + hκ ‖f − fδ‖L2(κ) + hκ ‖fδ + ∆uδ‖L2(κ)

)
.

(3.19)

2) If e is contained in a γm and K is contained in T n,k(m)
h , we denote by K ′ the

triangle on the other “side” of γm, i.e., the triangle obtained by cutting an element
of T 0

h into 22k(m) subtriangles. The same proof as above leads to (3.19); however, a
further µδ appears when comparing hK′ with the diameters of the triangles of the
T n,ki(m)
h contained in it.

3) If e is contained in a γm and K is contained in a T n,ki(m)
h , we denote by

K ′ the triangle in T k(m)
h such that e is contained in an edge e′ of K ′. We extend

without change of notation [∂nuδ]ψe by zero to e′ and we make the same choice as
previously, which gives (3.19).

As a conclusion, combining (3.18) and (3.19) gives the desired bound for ηK .

Taking the sum of the square of estimate (3.17) and summing up on the K that
have no edges on Sn leads to a global estimate (indeed, parts of the ΞK appear a
finite number of times in the sum), and this is also true for the K that have an
edge in γm but belong to T n,k(m)

h . For the remaining triangles, we must make a
more global choice of w, with support in a neighbourhood of γm, in order to bound
the quantity ∑

e⊂γm
he ‖ [∂nuδ] ‖2L2(e).

This leads to the following corollary.

Corollary 3.7. There exists a constant c independent of δ such that the following
estimate holds : ∑

K∈T nh

η2
K ≤ c

(
‖u− uδ‖2H1

δ (Ω) + µ2
δ

∑
K∈T nh

h2
K ‖f − fδ‖2L2(K)

)
.(3.20)

It remains to bound the ηe. The argument here is much simpler.
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Proposition 3.8. If Assumption A.1 is satisfied, there exists a constant c inde-
pendent of δ such that the following estimate holds for all m, 1 ≤ m ≤ Mn, and
for all e in Em:

ηe ≤ c ‖u− uδ‖H1
δ (Ξe),(3.21)

where Ξe is the union of the triangle K in Ωn,k(m) and a triangle K ′ on the other
side of γm such that e is an edge of K and K ′.

Proof. We first consider the case where W̃m is taken equal to W̃m
F , so that e

coincides with a connected component of the intersections γm∩∂Ωn,ki(m). Denoting
by ue the projection of [uδ] onto W̃m(e), thanks to the matching condition (2.6)
we have

‖ [uδ] ‖2L2(e) =
∫
e

([uδ]− ue)2 dτ ≤ c h̃e | [uδ] |2
H

1
2 (e)

.

This yields

h̃
− 1

2
e ‖ [uδ] ‖L2(e) ≤ c | [u− uδ] |H 1

2 (e)
.

It is readily checked by going to a reference triangle that the trace operator is
continuous from H1(K) into H

1
2 (e), with norm bounded independently of K, where

e is a part of its boundary. So, we derive, with obvious notation for K and K ′,

h̃
− 1

2
e ‖ [uδ] ‖L2(e) ≤ c

(
|u− uδ|H1(K) + |u− uδ|H1(K′)

)
.

When W̃m is taken equal to W̃m
C , p(m) is equal to 1 by assumption, so that the

same arguments as above still work.

There, the global estimate is directly derived from the local ones.

Corollary 3.9. If Assumption A.1 is satisfied, there exists a constant c indepen-
dent of δ such that the following estimate holds :

Mn∑
m=1

∑
e∈Em

η2
e ≤ c ‖u− uδ‖2H1

δ (Ω).(3.22)

3.d. Concluding remarks. When combining estimates (3.20) and (3.22) and
comparing with (3.13), if µδ are bounded independently of δ (which is most often
the case and can be enforced in the algorithm if not), we observe that, up to the
terms hK ‖f−fδ‖L2(K), the error ‖u−uδ‖H1

δ (Ω) is equivalent to the Hilbertian sum
of the indicators. When the data are locally smooth, the terms hK ‖f − fδ‖L2(K)

can be neglected for an appropriate value of `∗, so that this sum provides an optimal
global representation of the error. Moreover, from the local estimates (3.17) and
(3.21), it can be hoped that the family of error indicators provides a correct local
representation of it, hence is an appropriate tool for adaptivity. This is checked in
the following numerical experiments.

4. Some numerical experiments

We first explain how problem (2.7) can be solved efficiently. Next we describe an
adaptivity algorithm relying on the indicators ηK and ηe. We conclude with some
numerical tests.
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4.a. A way for solving the discrete problem. The key idea for solving the
mortar discrete problem (2.7) is due to [2]: it consists in enforcing the matching
conditions (2.6) by introducing a Lagrange multiplier. More precisely, let Yδ stand
for the space of functions vδ such that

• their restrictions to each Ωn,k, 0 ≤ k ≤ Kn, belong to Xn,k,
• they vanish on ∂Ω.

Next, for simplicity, we assume that the γm for which W̃m is equal to W̃m
C are

numbered from 1 to Mn
∗ and we set:

Mδ =
(Mn

∗∏
m=1

W̃m
C

)
×
( Mn∏
m=Mn

∗ +1

∏
e∈Em

W̃m(e)
)
.(4.1)

We now consider the problem:
Find (uδ, λδ) in Yδ ×Mδ such that

∀vδ ∈ Yδ, aδ(uδ, vδ) + bδ(vδ, λδ) =
∫

Ω

f(x)vδ(x) dx,

∀µδ ∈Mδ, bδ(uδ, µδ) = 0,
(4.2)

where the bilinear form bδ(·, ·) is defined by

bδ(vδ, µδ) =
Mn
∗∑

m=1

∫
γm

[vδ](τ)µm(τ) dτ +
Mn∑

m=Mn
∗ +1

∑
e∈Em

∫
e

[vδ](τ)µm,e(τ) dτ,

with µδ = (µm, µm,e).

(4.3)

Then it can be checked [2] that if uδ denotes the solution of problem (2.7), then
there exists a unique λδ such that the pair (uδ, λδ) is the solution of (4.2).

Remark. The definition (4.3) of bδ(·, ·) seems rather complicated. However, if As-
sumption A.1 holds, the jump [vδ] in each integral appearing in this definition only
involves the values of vδ on two subdomains Ωn,k.

Problem (4.2) is of saddle-point type. Hence, with obvious notation, it is equiv-
alent to a square linear system of the type(

A B
BT 0

) (
U
Λ

)
=
(
F
0

)
.(4.4)

The matrix A is square and symmetric positive definite. It is block diagonal, made
of Kn + 1 blocks. The matrix B is much smaller since it only involves the traces
on one-dimensional edges, and BT stands for its transposed matrix. So the global
matrix is symmetric.

To solve problem (4.2) or equivalently (4.4), for simplicity and since we only treat
academic problems, we use a direct Gauss factorization of Crout type of the global
matrix (see [16, Prop. 5.10.1]). However, for more realistic situations, system (4.4)
can be solved via Uzawa’s algorithm combined with the preconditioned conjugate
gradient method.
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4.b. The adaptivity algorithm. On the “coarse” conforming triangulation T 0
h ,

we solve system (4.4) in the simpler case B = 0. Next we compute the ηK , K ∈ T 0
h ,

their mean value η0, and we perform Step 1 of adaptivity (with n = 0). Let ρ be a
fixed constant.

Step 1. For all K in T nh , there exists an integer k such that

2k ρ ηn ≤ ηK < 2k+1 ρ ηn.(4.5)

If k is nonnegative, we cut the triangle K into 22(k+1) equal subtriangles by iter-
atively joining the middle of the edges. This allows for defining an intermediary
skeleton Sn∗ .

This leads to a nonconforming triangulation T 1
h with skeleton S1 = S0

∗ . Next,
assuming that the triangulation T nh is known, we solve the corresponding system
(4.4). We compute the ηK , K ∈ T nh , and their mean value ηn, next the ηe, e ∈ Em,
1 ≤ m ≤ Mn, and their mean value ηn∗ . Finally, we perform Steps 1 and 2 of
adaptivity.

Step 2. We only consider the e in Em, 1 ≤ m ≤Mn, such that

ηe ≥ 2 max {ηn, ηn∗
}
.(4.6)

If this edge remains in Sn∗ after Step 1, we cut the triangles on both sides of e, such
that e becomes “conforming”, i.e., it is no longer contained in the next skeleton
Sn+1.

However, in our numercial tests, we choose to take W̃m equal to W̃m
F , so that the

ηe are most often neglectable with respect to the ηK and inequality (4.6) is never
satisfied. We refer to [11] for a recent experiment in a different context, where the
two choices of W̃m are compared and lead to nearly the same global error.

We take ρ equal to 1.1. We stop the algorithm either after a finite number of
iterations (for instance 2 or 3) or when the following condition is satisfied∑

K∈T nh

η2
K +

Mn∑
m=1

∑
e∈Em

η2
e ≤ ε2,(4.7)

for a given tolerance ε.

Remark. In view of (4.5), Step 1 of our algorithm can be improved as follows, when
keeping in memory a finite number of previous triangulations T n−1

h , . . . , T n−qh :
when k is negative for all K contained in a larger triangle K ′ of one of these
triangulations, these triangles are replaced by K ′ in the new triangulation.

4.c. Numerical experiments. The following tests are implemented on a mortar
extension of the finite element code FreeFem+, written in C++ language (see [15]).
Piecewise quadratic functions are used in all the tests (` = 2).

We first work with the L-shaped domain Ω =]0, 1[2\[1
4 , 1[2, with data f = 1.

Figure 5 represents the successive meshes T nh , for n = 0, . . . , 5. Note that the
dimension of Xδ increases from 89 for n = 0 to 1671 for n = 5.

Figure 6 represents the curves of isovalues of the error indicators associated with
the elements K of the six meshes T nh , n = 0, . . . , 5.

In Table 1, we present, for n = 0, . . . , 5, the number Nn
T of triangles in T nh , the

number Mn of mortars, the dimension dimXδ of the corresponding space Xδ and
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Figure 5.

the quantity

ηnnorm =
( ∑
K∈T nh

η2
K +

Mn∑
m=1

∑
e∈Em

η2
e

) 1
2
.

Figure 7 presents the curves of isovalues of the discrete solution, computed on
the mesh T 5

h .
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Figure 6.

In a second step, we work with the square Ω =]− 1, 1[2. The function f here is
of Heaviside’s type:

f(x, y) =

{
100 if (x, y) ∈]0, 1

2 [2,
0 elsewhere.

Figure 8 represents the successive meshes T nh , for n = 0, . . . , 5.
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Figure 7.

Table 1.

n 0 1 2 3 4 5
Nn
T 60 135 147 243 495 741

Mn 0 11 21 33 63 129
dimXδ 89 261 297 499 1065 1671
ηnnorm 0.0323 0.0114 0.0102 0.0073 0.0042 0.0023

Table 2.

n 0 1 2 3 4 5
Nn
T 178 481 496 538 652 820

Mn 0 43 45 54 97 126
dimXδ 321 1027 1058 1155 1468 1869
ηnnorm 5.1412 1.1833 0.9704 0.7629 0.5419 0.4155

Table 3.

n 0 1 2 3 4 5
Nn
T 178 456 499 663 669 1158

dimXδ 321 877 960 1286 1298 2269
ηnnorm 5.1412 1.3882 1.1368 0.6987 0.6906 0.4256

In order to compare the convergence results with those obtained by conforming
discretizations, we give in Figure 9 the conforming meshes T nh , for n = 0, . . . , 5,
where the adaptivity relies on the same indicators as above and the following
technique:

• The initial mesh T 0
h is the same as before.
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Figure 8.

• Once the indicators for T nh are known, the corners of the new triangles are
derived from Steps 1 and 2 of adaptivity and a conforming mesh T n+1

h based
on these corners is built by Delaunay’s algorithm.

We give values of the same parameters Nn
T , Mn, dimXδ and ηnnorm as before for

the mortar case in Table 2, the values of Nn
T , dimXδ and ηnnorm for the conforming

case in Table 3.
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Figure 9.

The curves of isovalues of the discrete solution computed on the triangulation
T 5
h are presented in Figure 10 for the mortar case. Indeed, their analogues in the

conforming case are exactly the same.
The dimension of the final spaces Xδ associated with T 5

h are very close, even
if the number of triangles is larger in the conforming case. The quantities ηnnorm

and the associated discrete solutions are very similar. It can be noted that the
complexity of mortar adaptivity comes from the structure of the data while the
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Figure 10.

complexity of the conforming method is linked to the use of a mesh generator at
each iteration.

We conclude with a slightly more difficult equation, where problem (1.1) is re-
placed by 

− div(a grad u) = f in Ω,

u = 0 on ∂Ω.
(4.8)

Here, Ω is the square ]− 1, 1[2, the coefficient a is piecewise constant given by

a(x, y) =

{
1 if (x, y) ∈ Ω1 = ]− 1, 0[×]− 1, 1[,
100 if (x, y) ∈ Ω2 = ]0, 1[×]− 1, 1[,

and the data f is equal to

f(x, y) = cos(πx) cos(2πy).

The definition of the ηe remains unchanged. However, as explained in [9, Thm. 2.9]
and in order that the constants in the a posteriori estimates do not depend on the
variation of the function a, we replace the definition of the ηK with

ηK = hKa
− 1

2
K ‖fδ + div (a grad uδ)‖L2(K) +

1
2

∑
e∈EK

h
1
2
e a
− 1

2
e ‖ [a ∂nuδ] ‖L2(e),(4.9)

where aK denotes the (constant) value of a on K and ae is equal to the value of a on
e if e is contained in Ω1 or Ω2, the largest value of a if e is contained in ∂Ω1 ∩ ∂Ω2.
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Figure 11.

Figure 11 represents the successive meshes T nh , for n = 0, . . . , 5.
The same parameters as in the previous experiments, namely Nn

T , Mn, dimXδ
and ηnnorm, are given in Table 4.
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Table 4.

n 0 1 2 3 4 5
Nn
T 84 141 186 231 261 306

Mn 0 28 25 28 34 54
dimXδ 145 308 386 480 554 675
ηnnorm 0.2526 0.1290 0.0808 0.0601 0.0531 0.0466

Figure 12.

Finally the curves of isovalues of the discrete solution computed on the triangu-
lation T 5

h are presented in Figure 12.

Appendix

The aim of this Appendix is to prove the result stated in Proposition 3.1, namely
to construct an operator Rδ from the space Xn introduced in Lemma 2.1 into the
space Xδ− defined in (3.7) which satisfies the estimates, for all functions v in Xn∑

K∈T nh

(
h−2
K ‖v −Rδv‖2L2(K) +

∑
e∈EK

h−1
e ‖v −Rδv‖2L2(e)

)
≤ c µδ ‖v‖2H1

δ (Ω).(A.1)

We first recall from [13] (see also [4, Thm. 4.3]) the existence of an operator Rn,k

from the space of functions in H1(Ωn,k) vanishing on ∂Ω ∩ ∂Ωn,k into the space
Xn,k
− of restrictions of functions of Xδ− to Ωn,k such that, for such a function v,

• the value of Rn,kv at a corner a of a triangle K in T n,kh that does not belong
to ∂Ω, is equal to the meanvalue of v on the union ∆

k

a of all triangles K in
T n,kh that contain a,
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Figure 13.

• the following estimates hold for all K in T n,kh and all e in EK ,

‖v −Rn,kv‖L2(K) ≤ c hK ‖v‖H1(∆k
K), ‖v −Rn,kv‖L2(e) ≤ c h

1
2
e ‖v‖H1(∆k

e),

(A.2)

where ∆
k

K , resp. ∆
k

e , stand for the union of the ∆
k

a such that a is a corner
of K, resp. an endpoint of e.

Moreover, the operator Rn,k is continuous from H1(∆k
K) into H1(K) with norm

bounded independently of δ. So the next estimate is easily derived by an interpo-
lation argument (see [17, Chap. 1, Th. 5.1]): for 0 < s < 1,

‖v −Rn,kv‖Hs(K) ≤ c h1−s
K ‖v‖H1(∆k

K).(A.3)

The operator Rδ is built in four steps, more precisely we take

Rδ = R1
δ +R2

δ +R3
δ +R4

δ .(A.4)

We now describe the four steps successively.

Step 1. Local approximation. The operator R1
δ is defined by

(R1
δv)|Ωn,k = Rn,kv, 0 ≤ k ≤ Kn.

When multiplying the first estimate in (A.2) by h−1
K and summing its square on

all K in T nh , we obtain the first part of (A.1) with Rδ replaced by R1
δ (note that

triangles contained in ∆k
K appear at most a finite number of times in the sum, and

that this number is bounded as a function of the regularity parameter σ of the
initial family of triangulations). Similarly, we prove the second part.

Step 2. Enforcing the continuity at common corners. Let Ṽn,k denote the
set of all corners of triangles of T n,kh that belong to Sn and are also corners of
triangles of another T n,k

′

h (see Figure 13, where these corners are represented by

black dots). So, each a in Ṽn,k belongs to several Ω
n,k′

, we denote by k(a) the
largest of such k′. Denoting by ϕa the Lagrange function associated with a, we set:

(R2
δv)|Ωn,k =

∑
a∈Ṽn,k

(
(Rn,k(a)v)(a)− (Rn,kv)(a)

)
ϕa |Ωn,k , 0 ≤ k ≤ Kn.
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a a

Figure 14.

Since the image of each K in T n,kh by ϕa is contained in [0, 1], this yields for each
K and each e in EK ,

‖R2
δv‖L2(K) ≤ hK

∑
a∈Ṽn,k∩K

|(Rn,k(a)v)(a)− (Rn,kv)(a)|,

‖R2
δv‖L2(e) ≤ h

1
2
e

∑
a∈Ṽn,k∩e

|(Rn,k(a)v)(a)− (Rn,kv)(a)|.

So, we must now bound the quantities |(Rn,k(a)v)(a) − (Rn,kv)(a)|. As described
in Figure 14 (where the ∆k

a are coloured in grey), two situations may occur:

• When ∆k
a and ∆k(a)

a are adjacent (where the term “adjacent” means that they
share at least an edge e of a triangle of T n,k(a)

h containing a), we introduce a

continuous one-to-one mapping F from the union ∆
k

a∪∆
k(a)

a onto a reference
subdomain ∆̂, which is affine on each triangle of T nh contained in ∆

k

a ∪∆
k(a)

a

and maps the edge e onto an edge ê with length 1, the edge e′ of ∆
k

a that
contains e onto an edge ê′. Then, if ŵ stands for the function w ◦ F−1 for all
functions w, we have

|(Rn,k(a)v)(a)− (Rn,kv)(a)|

≤ ‖ ̂Rn,k(a)v − R̂n,kv‖L∞(ê)

≤ ĉ‖ ̂Rn,k(a)v − R̂n,kv‖L2(ê)

≤ ĉ
(
‖v̂ − ̂Rn,k(a)v‖L2(ê) + ‖v̂ − R̂n,kv‖L2(ê′)

)
≤ c

(
|v|

H1(∆
k(a)
e )

+ |v|H1(∆k
e′)

)
,

which concludes the proof.
• When ∆k

a and ∆k(a)
a are not adjacent, there exists a finite number of triangles

K1, . . . , Kr, such that K1 is adjacent to ∆
k(a)

a , Kr is adjacent to ∆
k

a and
each Ki, 1 ≤ i ≤ r − 1, is adjacent to Ki+1 (the number of such triangles is
bounded as a function of σ). Then, we write

|(Rn,k(a)v)(a)− (Rn,k)v(a)|
≤ |(Rn,k(a)v)(a)− vK1 |+ |vK1 − vK2 |+ · · ·+ |vKr − (Rn,kv)(a)|,
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where each vKi stands for the meanvalue of v on Ki, and we apply the same
arguments as previously to each of these differences.

Noting that the support of ϕa is a finite number of triangles, bounded as a
function of σ, we obtain (A.1) with Rδ raplaced by R1

δ +R2
δ .

Step 3. Enforcing the continuity at corners inside mortars. Exactly as for
the proof of Lemma 2.3, with the same notation for Vn,k, we take

(R3
δv)|Ωn,k =

∑
a∈Vn,k

[R1
δv +R2

δv](a)ϕa, 0 ≤ k ≤ Kn,

where, if Ωn,k coincides with Ωn,ki(m), the jump [R1
δv +R2

δv](a) means

(R1
δv +R2

δv)|Ωn,k(m) − (R1
δv +R2

δv)|Ωn,ki(m) .

The same arguments as in the proof of Lemma 2.3 allow for proving that (A.1)
holds with Rδ raplaced by R1

δ +R2
δ + R3

δ.

Step 4. Enforcing the continuity through mortars. As in the proof of
Lemma 2.3 and for the same operators Lmij (restricted to the case ` = 1 of piecewise
affine functions), the final idea consists in defining R4

δ by

R4
δv =

Mn∑
m=1

p(m)∑
i=1

q(i)∑
j=1

Rmij v,

with

Rmij v = Lmij
(
(R1

δv +R2
δv + R3

δv)|Ωn,k(m) − (R1
δv +R2

δv +R3
δv)|Ωn,ki(m)

)
.

Here, we use a slightly different estimate for the Lmij , which can be derived by exactly
the same arguments as in [4, Thm. 5.1]: with the same notation as in Section 2, for
1
2 < s < 1,

‖Lmijϕ‖Hs(∆ki(m)
j )

≤ c µs−
1
2

δ |ϕ|
Hs−

1
2 (γmij )

.(A.5)

It can also be checked by going to a reference element that∑
K⊂∆

ki(m)
j

h−2
K ‖Rmij v‖2L2(K) ≤ c

∑
K⊂∆

ki(m)
j

h2s−2
K ‖Rmij v‖2Hs(K).

So, using (A.5) yields∑
K⊂∆

ki(m)
j

h−2
K ‖Rmij v‖2L2(K)

≤ c ( sup
K⊂∆

ki(m)
j

h2s−2
K ) ‖Rmij v‖2Hs(∆ki(m)

j )

≤ c µ2s−1
δ ( sup

K⊂∆
ki(m)
j

h2s−2
K )

× ‖(R1
δv +R2

δv +R3
δv)|Ωn,k(m) − (R1

δv +R2
δv +R3

δv)|Ωn,ki(m)‖2
Hs−

1
2 (γmij )

.
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Adding and subtracting v in the previous difference and using the trace theorem
(obtained by going to a reference element), we derive∑

K⊂∆
ki(m)
j

h−2
K ‖Rmij v‖2L2(K)

≤ c µ2s−1
δ ( sup

K⊂∆
ki(m)
j

h2s−2
K )

×
(
‖v − (R1

δv +R2
δv +R3

δv)‖2
Hs(∆̃

ki(m)
j )

+ ‖v − (R1
δv +R2

δv +R3
δv)‖2

Hs(∆̃
ki(m)
j )

).

Next, we derive from (A.3) and the fact that the norm of each function ϕa in Hs(K)
is bounded by h1−s

K that, for all K of T n,kh ,

‖v − (R1
δv +R2

δv +R3
δv)‖Hs(K) ≤ h1−s

K ‖v‖H1(∆k
K).(A.6)

Since all triangles in ∆ki(m)
j have the same diameter, we obtain∑

K⊂∆
ki(m)
j

h−2
K ‖Rmij v‖2L2(K)

≤ c µ2s−1
δ ( sup

K⊂∆
ki(m)
j

h2s−2
K ) ‖v − (R1

δv + R2
δv +R3

δv)‖2
Hs(∆̃

ki(m)
j )

+ c′ µ2s−1
δ ‖v‖2

H1(∆
ki(m)
j∗ )

,

where ∆ki(m)
j∗ is a neighbourhood of ∆ki(m)

j in Ωn,ki(m). Finally, we sum up the
previous inequality on the j, i and m and note that the diameter of the triangles
contained in ∆ki(m)

j are smaller than µδ times the diameter of the triangle of T n,k(m)
h

that contains ∆̃ki(m)
j , so that∑

K∈T nh

h−2
K ‖R4

δv‖2L2(K)

≤ c µδ
∑
K∈T nh

h2s−2
K ‖v − (R1

δv +R2
δv +R3

δv)‖2Hs(K) + c′ µ
s− 1

2
δ ‖v‖2H1

δ (Ω).

Using (A.6) once more yields the desired result. The second estimate in (A.1) is
obtained by similar arguments.

It is now readily checked that the operator Rδ defined in (A.4) takes its values
into Xδ− and that estimates (A.1) are satisfied, which concludes the proof.
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Analyse Numérique, C.N.R.S. et Université Pierre et Marie Curie, B.C. 187, 4 place

Jussieu, 75252 Paris Cedex 05, France

E-mail address: bernardi@ann.jussieu.fr

Analyse Numérique, C.N.R.S. et Université Pierre et Marie Curie, B.C. 187, 4 place
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