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QUADRATIC FINITE ELEMENT APPROXIMATION
OF THE SIGNORINI PROBLEM

Z. BELHACHMI AND F. BEN BELGACEM

Abstract. Applying high order finite elements to unilateral contact varia-
tional inequalities may provide more accurate computed solutions, compared
with linear finite elements. Up to now, there was no significant progress in
the mathematical study of their performances. The main question is involved
with the modeling of the nonpenetration Signorini condition on the discrete
solution along the contact region. In this work we describe two nonconform-
ing quadratic finite element approximations of the Poisson-Signorini problem,
responding to the crucial practical concern of easy implementation, and we
present the numerical analysis of their efficiency. By means of Falk’s Lemma
we prove optimal and quasi-optimal convergence rates according to the regu-
larity of the exact solution.

1. Introduction and functional tools

Contact problems are in the heart of a high number of mechanical structures
and also have a great importance in hydrostatics and thermostatics. Among them,
unilateral contact, typically represented by Signorini’s model, causes some specific
difficulties, on both theoretical and approximation grounds. We refer to [11], [13]
and [19] for mathematical foundation. Much attention has been devoted to the nu-
merical simulation of variational inequalities modeling unilateral contact, by finite
elements, either from the accuracy point of view (see [16], [18], [24] and refer-
ences therein) or for developing efficient algorithms to solve the final minimization
problem (see [13], [2]). The hardest task is the discrete modeling of the Signorini
unilateral condition, which, most often, is not fulfilled exactly by the computed
solution (the normal displacement)—even though for linear finite elements the con-
forming method is also used by practitioners, because it is easy to implement, and
turns out to be reliable. Then, the construction of the finite dimensional closed con-
vex cone, on which the approximated inequality is set, results in a nonconforming
approach. Nevertheless, the numerical analysis realized on the linear finite element
methods and under reasonable regularity assumptions on the exact solution yields
satisfactory convergence rates when compared to those expected for the general
finite element theory. We refer in particular to [3] and to [4] for quasi-optimal
studies.

When high accuracy is needed, a possible way to respond to such a request con-
sists in refining the mesh used with linear finite elements. An alternative is to resort
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to quadratic finite elements, which proved to perform for linear partial differential
equations governing the temperature diffusion within a conducting body or the elas-
tic displacement of a deformable structure. The difference between conforming and
nonconforming methods becomes, here, very important for practical facts. Indeed,
the exact unilateral condition is not at all easy to take into account in a computing
code, and it is better to enforce such a condition on the computed solution at only
a finite number of degrees of freedom. The purpose of this contribution is to de-
scribe two efficient ways to satisfy (in a weak sense) the unilateral condition, ways
that are easily handled in a practical context. The numerical analysis detailed here
provides the desired asymptotic convergence rates.

An outline of the paper is as follows. In Section 2 we write a variational for-
mulation of the Poisson-Signorini problem. Section 3 is a description of the first
quadratic finite element approximation of the resulting inequality; the contact con-
dition is enforced on the discrete solution values at the vertices of the elements that
are located in the contact region and on its momenta in each of these elements.
The numerical analysis of this discretization is detailed in Section 4, where opti-
mal convergence rates are exhibited when reasonable regularity is assumed on the
exact solution. Section 5 is dedicated to the study of the more natural numerical
contact model, where nonpenetration is imposed at all the Lagrange nodes of the
contact zone. This second method performs as well as the first one. The main
difference between them is that the first method is suitable when we are interested
in checking the contact condition on the normal constraint, while the second is
more appropriate when we prefer to check the Signorini condition on the normal
displacement.

Notation. Let Ω ⊂ R2 be a Lipschitz domain with generic point x. The Lebesgue
space Lp(Ω) is endowed with the norm: ∀ψ ∈ Lp(Ω),

‖ψ‖Lp(Ω) =
( ∫

Ω

|ψ(x)|p dx
) 1
p .

We make a constant use of the standard Sobolev space Hm(Ω), m ≥ 1, provided
with the norm

‖ψ‖Hm(Ω) =
( ∑

0≤|α|≤m
‖∂αψ‖2L2(Ω)

) 1
2
,

where α = (α1, α2) is a multi-index in N2 and the symbol ∂α represents a partial
derivative (H0(Ω) = L2(Ω)). The fractional order Sobolev spaceHν(Ω), ν ∈ R+\N,
is defined by the norm

‖ψ‖Hν(Ω) =
(
‖ψ‖2Hm(Ω) +

∑
|α|=m

∫
Ω

∫
Ω

(∂αψ(x)− ∂αψ(y))2

|x− y|2+2θ

) 1
2
,

where ν = m + θ,m is the integer part of ν and θ ∈ ]0, 1[ is the decimal part (see
[1], [14], [21]). The closure in Hν(Ω) of D(Ω) is denoted Hν

0 (Ω), where D(Ω) is the
space of infinitely differentiable functions whose support is contained in Ω.

For any portion γ of the boundary ∂Ω and any ν > 0, the Hilbert space Hν(γ)
is defined as the range of Hν+ 1

2 (Ω) by the trace operator; it is then endowed with
the image norm

‖ψ‖Hν(γ) = inf
χ∈Hν+ 1

2 (Ω),χ|γ=ψ

‖χ‖
Hν+ 1

2 (Ω)
.
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When γ is sufficiently regular, one can directly write down an explicit norm of
Hν(γ), while for polygonal lines—which will be the situation of interest in this
work—it turns out to be more complicated to have an explicit norm, especially for
ν ≥ 3

2 . Nevertheless, we can use the results given in Theorem 1.4.6 in [14] to obtain
an explicit norm; some compatibility conditions should be taken into account at
the vicinity of the corner point of γ. The space Hν(γ)′ stands for the topological
dual space of Hν(γ) and the duality pairing is denoted 〈., .〉ν,γ . Moreover, if an
interval γ is the disjoint union of subintervals γk (1 ≤ k ≤ k∗), then, ∀ψ ∈ Hν(γ),

k∗∑
k=1

‖ψ‖2Hν(γk) ≤ ‖ψ‖2Hν(γ).

The inequality is still valid when the norm Hν(γ) is replaced by the semi-norm.
To be complete with the Sobolev functional tools used hereafter, recall that for
ν > 3

2 , the trace operator

T : ψ 7→ (ψ|∂Ω, (
∂ψ

∂n
)|∂Ω)

is continuous from Hν(Ω) onto Hν− 1
2 (∂Ω) × Hν− 3

2 (∂Ω) (see [14]). Otherwise, if
1 ≤ ν ≤ 3

2 , define the space Xν(Ω) to be

Xν(Ω) =
{
ψ ∈ Hν(Ω), ∆ψ ∈ L2(Ω)

}
,

equipped with the graph norm

‖ψ‖Xν(Ω) =
(
‖ψ‖2Hν(Ω) + ‖∆ψ‖2L2(Ω)

) 1
2 .

Then the trace operator T is continuous from Xν(Ω) onto Hν− 1
2 (∂Ω)×H 3

2−ν(∂Ω).
Sometimes, we need to use the Hölder space C0,α(γ), 0 < α ≤ 1, defined as

C0,α(γ) =
{
ψ ∈ C0(γ), ‖ψ‖C0,α(γ) = sup

x∈γ
|ψ(x)|+ sup

x,y∈γ

|ψ(x)− ψ(y)|
|x− y|α <∞

}
.

2. The continuous Poisson-Signorini problem

Let Ω be a Lipschitz bounded domain in R2. The boundary ∂Ω is a union of
three nonoverlapping portions Γu,Γg and ΓC . The vertices of ΓC are {c1, c2} and
those of Γu are {c′1, c′2}. The part Γu of nonzero (surface) measure is subjected
to Dirichlet conditions, while on Γg a Neumann condition is prescribed, and ΓC is
the candidate to be in contact with a rigid obstacle. To avoid technicalities arising
from the special Sobolev space H

1
2
00(ΓC), we assume that Γu and ΓC do not touch.

For a given data f ∈ L2(Ω) and g ∈ H 1
2 (Γg)′, the Signorini problem consists in

finding u that verifies, in a distributional sense,

−∆u = f in Ω,(2.1)

u = 0 on Γu,(2.2)
∂u

∂n
= g on Γ,(2.3)

u ≥ 0,
∂u

∂n
≥ 0, u

∂u

∂n
= 0 on ΓC ,(2.4)

where n is the outward unit normal to ∂Ω. Most often, the modeling of the contact
condition is formulated using a gap function α defined on ΓC , so that instead of
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u ≥ 0 and the saturation condition u ∂u∂n = 0 we have u − α ≥ 0 and (u − α) ∂u∂n =
0 on the contact zone ΓC (see [11]). As the whole subsequent analysis can be
extended straightforwardly to the case where α does not vanish, we choose, only
for conciseness, to take α = 0.

The functional framework well suited to solve problem (2.1)-(2.4) consists in
working with the subspace H1

0 (Ω,Γu) of H1(Ω) made up of functions that vanish
at Γu. The semi-norm is actually, by the Poincaré inequality, a norm in H1

0 (Ω,Γu)
equivalent to the norm of H1(Ω). In the weak formulation, the unilateral contact
condition on ΓC is taken into account by incorporating it in the closed convex cone

K(Ω) =
{
v ∈ H1

0 (Ω,Γu), v|ΓC ≥ 0, a.e.
}
.

The primal variational principle for the Signorini problem produces the variational
inequality: find u ∈ K(Ω) such that

a(u, v − u) ≥ L(v − u), ∀v ∈ K(Ω).(2.5)

In (2.5) we have set

a(u, v) =
∫

Ω

∇u∇v dx,

L(v) =
∫

Ω

fv dx + 〈g, v〉 1
2 ,Γg

.

By Stampacchia’s Theorem (see [16]), the weak problem (2.5) is well posed and has
only one solution in K(Ω) that depends continuously on the data (f, g).

Remark 2.1. In the variational formulation, the mathematical sense given to con-
ditions (2.3) and (2.4) is as follows:

〈 ∂u
∂n

, v〉 1
2 ,∂Ω − 〈g, v〉 1

2 ,Γg
≥ 0, ∀v ∈ H

1
2
00(∂Ω,Γu), v|ΓC ≥ 0,(2.6)

〈 ∂u
∂n

, u〉 1
2 ,∂Ω − 〈g, u〉 1

2 ,Γg
= 0,(2.7)

where H
1
2
00(∂Ω,Γu) is the subspace of H

1
2 (∂Ω) of the functions that vanish on Γu.

Roughly, (2.6) says that ∂u
∂n = g on Γg and ∂u

∂n ≥ 0 on ΓC , while (2.7) expresses
the saturation condition u ∂u∂n = 0 on ΓC .

Remark 2.2. Apart from the strong singularities created by changing from the
Dirichlet to the Neumann condition around the vertices {c′1, c′2}, it is now well
known that the unilateral condition may generate some singular behavior in the
vicinity of ΓC even for very regular data (f, g) and a very smooth boundary ∂Ω. For
example, if f ∈ H1(Ω), the solution u may not be of class H3 around (ΓC \{c1, c2})
(see [22]). The reason is the following. Letm be a point of ΓC where the constraints
change from binding to nonbinding. Then the singularity Sm(r, θ) = r

3
2 sin(3

2θ)ϕ(r)
((r, θ) are the polar coordinates with originm and ϕ is a smooth function with com-
pact support and equal to 1 in the vicinity of m) is involved in the decomposition
of the solution on the Dirichlet-Neumann singular functions. The first singular-
ity r

1
2 sin(1

2θ)ψ(r) is cancelled because it fails to satisfy the Signorini condition
(the nonnegativity of both Sm and ∂Sm

∂n ). The best we can expect is to obtain
u ∈ Hσ(VΓC ) with σ < 5

2 and VΓC an open set containing ΓC (see [22]).
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Figure 2.1.

Remark 2.3. The Signorini problem has many important applications, particularly
in mechanics. In deformable structure mechanics, the displacement of a body Ω
(represented in Figure 2.1) supported by a frictionless rigid foundation ΓC , fixed
along a part Γu of the border and subjected to external forces f |Ω and g|Γg , is a
solution of the following problem:

−div σ(u) = f in Ω,(2.8)

σ(u)n = g on Γg,(2.9)

u = 0 on Γu.(2.10)

The bold symbol div denotes the divergence operator of a tensor function and is
defined as div σ =

(
∂σij
∂xj

)
i
. The stress tensor is obtained from the displacement

through the constitutive law σ(u) = A(x) ε(u), where A(x) ∈ (L∞(Ω))16, the
Hook tensor, is of fourth order, symmetric and elliptic. Finally, to close the sys-
tem, frictionless contact conditions are needed on ΓC . Denoting by σn the normal
component of (σn) and by σt its tangential component, the contact conditions are
formulated as follows:

u.n ≤ 0, σn ≤ 0, σn(u.n) = 0,
σt = 0.

(2.11)

The weak problem is set on the closed convex set

K(Ω) =
{
v ∈ H1

0 (Ω,Γu)2, v.n|ΓC ≤ 0, a.e.
}
.

It reads as follows: find u ∈K(Ω) such that∫
Ω

Aε(u) : ε(v − u) dx ≥
∫

Ω

f .(v − u) dx+
∫

Γg

g.(v − u) dΓ, ∀v ∈K(Ω).

In the linear elasticity context, where the body undergoes small displacements with
the strain tensor ε(u) = 1

2 (∇u + (∇u)T ), this variational problem has the same
properties as the Signorini problem (2.5) that we intend to study in detail. Then,
our whole numerical analysis is extended as well to the unilateral contact elasticity
problem.
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3. Quadratic finite element discretization: first numerical model

The convergence rate of the finite element approximation of the Signorini prob-
lem depends on the regularity of the solution u. In practice, it may occur that u
belongs to a more regular space than H2, at least around ΓC (see Remark 2.2).
Therefore, the numerical simulation of problem (2.5) based on affine finite elements
fails to profit from the full regularity of u|VΓC

(see [16], [3], [4]). Indeed, in this case
the effective useful regularity is that of H2. To alleviate this limitation we resort
to quadratic finite elements for the discretization of the weak Signorini problem.

For the description of the method, for simplicity and to avoid more technicalities
the shape of the domain Ω is assumed polygonal, so that it can be exactly covered by
rectilinear finite elements. The generalization to curved domains is done following
[15] and is not addressed here. For any given discretization parameter h > 0, let
there be given a partition Th of Ω into triangles with a maximum size h,

Ω =
⋃
κ∈Th

κ.

The motivation of the choice of triangular finite elements is that they are more
widely used than quadrangular ones. However, the whole analysis set forth here
applies as well to the quadrangular finite elements.

The family (Th)h is assumed to be C0-regular in the classical sense [9]. Moreover
Th is built in such a way that {c1, c2, c

′
1, c
′
2} coincide with the vertices of some

elements. For any κ ∈ Th,P2(κ) stands for the set of polynomials of total degree
≤ 2. Then we introduce the finite dimensional subspace Xh(Ω) of H1

0 (Ω,Γu):

Xh(Ω) =
{
vh ∈ C(Ω), ∀κ ∈ Th, vh|κ ∈ P2(κ), vh|Γu = 0

}
.

Let Σh denote the set of all corners and midpoints of edges of the elements κ in Th.
Set Ξh = Σh \ Γu; then (Ω, Xh(Ω),Ξh) is unisolvent. Furthermore, if (Ih) stands
for the standard Lagrange interpolation operator, then for any µ (0 ≤ µ ≤ 1) and
any ν (1 < ν ≤ 3) we have, for all v ∈ Hν(Ω),

‖v − Ihv‖Hµ(Ω) ≤ Chν−µ‖v‖Hν(Ω).(3.1)

Realizing a conforming approximation requires one to impose the nonpenetration
condition uh ≥ 0 everywhere in ΓC . An essential drawback of this model arises
in the implementation. We do not see how to take into account, in an easy way,
the condition uh|ΓC ≥ 0 in a computing code. To overcome this complication, it is
better to enforce nonnegativity on a finite number of degrees of freedom “located”
on ΓC , which, most often, results in a nonconforming finite element approach. The
construction of the discrete convex cone requires the introduction of some more
notation connected with the contact zone. Due to the C0-regularity hypothesis, the
boundary inherits a regular mesh T ∂Ω

h , the elements of which are complete edges
of the triangles κ ∈ Th. The trace of T ∂Ω

h on ΓC results in a mesh denoted by T Ch
and is characterized by the subdivision (xCi )0≤i≤i∗ with xC0 = c1 and xCi∗ = c2,
(ti =]xCi ,x

C
i+1[)0≤i≤i∗−1 for its elements, and the middle node of ti is denoted by

xC
i+ 1

2
.

Our first choice consists to enforce nonnegativity on the values of uh at the
vertices (xCi )0≤i≤i∗ and on its momentum on the elements (ti)0≤i≤i∗−1. Then, we
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work with the finite dimensional closed convex cone,

Kh(Ω) =
{
vh ∈ Xh(Ω), vh(xCi ) ≥ 0, ∀i (0 ≤ i ≤ i∗),∫

ti

vh dΓ ≥ 0, ∀i (0 ≤ i ≤ i∗ − 1)
}
.

For our purpose we need to introduce an operator (Jh) more appropriate than
(Ih); it is defined by the following degrees of freedom:

(v(x))x∈Ξh\ΓC , (v(xCi ))0≤i≤i∗ ,
(∫

ti

v(x) dΓ
)

0≤i≤i∗−1
.

The operator (Jh) has similar localization properties as (Ih), i.e., (Jhv)|κ depends
only on v|κ, ∀κ ∈ Th. In addition, using the Bramble-Hilbert Theorem, the following
error estimate holds, for any µ (0 ≤ µ ≤ 1) and for any ν (1 < ν ≤ 3) there exists
a constant C > 0 such that, ∀v ∈ Hν(Ω),

‖v − Jhv‖Hµ(Ω) ≤ Chν−µ‖v‖Hν(Ω).(3.2)

It is easy to see that for any v ∈ K(Ω) ∩ C0(Ω) we have (Jhv) ∈ Kh(Ω). Let us
also remark that there is no reason why (Jhv)|ΓC ≥ 0. Another essential feature
of the operator Jh is the optimality of the approximation estimates it provides on
ΓC , in the dual Sobolev spaces. Before discussing them, we need to introduce some
additional functional tools. Denote

Mh(ΓC) =
{
ψh ∈ L2(ΓC), ψh|ti ∈ P0(ti), ∀i (0 ≤ i ≤ i∗ − 1)

}
,

and let πCh be the projection defined on Hµ(ΓC)′ →Mh(ΓC) for any µ (0 ≤ µ < 1
2 )

by, ∀ψ ∈ Hµ(ΓC)′,

〈ψ − πCh ψ, χh〉µ,ΓC = 0, ∀χh ∈Mh(ΓC).

Notice that if ψ ∈ L2(ΓC) then (πCh ψ)|ti = 1
|ti|
∫
ti
ψ dΓ. As we know, for any

ν, µ (0 ≤ µ, ν ≤ 1) we have, ∀ψ ∈ Hν(ΓC),

‖ψ − πCh ψ‖Hµ(ΓC)′ ≤ Chν+µ‖ψ‖Hν(ΓC).(3.3)

Besides, πCh satisfies some nonstandard approximation result (see Lemma 7.2). In-
deed, for µ (0 ≤ µ < 1

2 ) and ν (1
2 < ν ≤ 1) we have, ∀ψ ∈ Hµ(ΓC)′,

‖ψ − πCh ψ‖H 1
2 (ΓC)′

≤ Ch 1
2−µ‖ψ‖Hµ(ΓC)′ .(3.4)

We also need to use the operator π∂Ω
h constructed in the same way on the whole

boundary ∂Ω and, therefore, satisfying similar approximation estimates with re-
spect to the dual Sobolev norms. Going back to the operator Jh, let us introduce
the trace space on ΓC as

Wh(ΓC) =
{
ψh ∈ C(ΓC), ∃vh ∈ Xh(Ω), ψh|ΓC = vh|ΓC

}
,

and define the one-dimensional interpolation operator jh : C(ΓC)→Wh(ΓC) to be,
∀ψ ∈ C(ΓC),

(jhψ)(xCi ) = ψ(xCi ), ∀i (0 ≤ i ≤ i∗),∫
ti

(ψ − jhψ) dΓ = 0, ∀i (0 ≤ i ≤ i∗ − 1).
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Then, it is straightforward that for any v ∈ C(Ω) we have (Jhv)|ΓC = jh(v|ΓC ). As
a consequence we have the following: ∀ψ ∈ Hν(ΓC) (1

2 < ν ≤ 3),

‖ψ − jhψ‖L2(ΓC) ≤ Chν‖ψ‖Hν(ΓC).(3.5)

Lemma 3.1. For any ν ∈] 1
2 , 3] and any µ ∈ [0, 1], we have, ∀ψ ∈ Hν(ΓC),

‖ψ − jhψ‖Hµ(ΓC)′ ≤ Chν+µ‖ψ‖Hν(ΓC).

Proof. The proof is carried out for µ = 1; the case µ ∈ [0, 1[ is handled in the same
way. We use the Aubin-Nitsche duality

‖ψ − jhψ‖H1(ΓC)′ = sup
χ∈H1(ΓC)

1
‖χ‖H1(ΓC)

∫
ΓC

(ψ − jhψ)χ dΓ.

We have ∫
ΓC

(ψ − jhψ)χ dΓ =
∫

ΓC

(ψ − jhψ)(χ− πCh χ) dΓ

≤ ‖ψ − jhψ‖L2(ΓC)‖χ− πCh χ‖L2(ΓC).

Using (3.3) with µ = 0 and (3.5) leads to∫
ΓC

(ψ − jhψ)χ dΓ ≤ Chν+1‖ψ‖Hν(ΓC)‖χ‖H1(ΓC).

Thus the proof.

We are in position to define and study the finite element problem issuing from
(2.5), in a variational inequality formulation: find uh ∈ Kh(Ω) such that

a(uh, vh − uh) ≥ L(vh − uh), ∀vh ∈ Kh(Ω).(3.6)

The set Kh(Ω) is an external approximation of K(Ω), i.e., Kh(Ω) 6⊂ K(Ω); the
discretization is then nonconforming. Nevertheless, proving that the discrete prob-
lem (3.6) has only one solution uh ∈ Kh(Ω) is an easy matter from Stampacchia’s
Theorem.

4. Numerical analysis

We restrict ourselves to the Signorini solution that belongs to Hν(Ω) with ν ≤ 5
2 .

As indicated in Remark 2.2, this is in general the effective regularity expected by
the theory in the vicinity of ΓC (see [22]). We have the following error estimate
results.

Theorem 4.1. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5).

i. Assume u ∈ Hν(Ω) with 1 < ν ≤ 3
2 and g ∈ H 3

2−ν(Γg)′. Then, the discrete
solution uh ∈ Kh(Ω) is such that

‖u− uh‖H1(Ω) ≤ Chν−1(‖u‖Hν(Ω) + ‖f‖L2(Ω) + ‖g‖
H

3
2−ν(Γg)′

).

ii. Assume u ∈ Hν(Ω) with 2 < ν ≤ 5
2 . Then, the discrete solution uh ∈ Kh(Ω)

is such that

‖u− uh‖H1(Ω) ≤ Chν−1‖u‖Hν(Ω).
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Theorem 4.2. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5).

i. Assume that u ∈ Hν(Ω) with 3
2 < ν < 2 and that the number of points in ΓC ,

where the constraint changes from binding to nonbinding, is finite. Then, the
discrete solution uh ∈ Kh(Ω) is such that

‖u− uh‖H1(Ω) ≤ Chν−1‖u‖Hν(Ω).

ii. Assume that u ∈ H2(Ω) and that the number of points in ΓC , where the
constraint changes from binding to nonbinding, is finite. Then, the discrete
solution uh ∈ Kh(Ω) is such that

‖u− uh‖H1(Ω) ≤ Ch| log h| 14 ‖u‖H2(Ω).

Remark 4.3. The results provided by Theorem 4.2 are somehow surprising com-
pared to those given in Theorem 4.1. In view of the optimality attained for
ν ∈ ]1, 3

2 ] ∪ ]2, 5
2 ], without any additional assumption on u, we expected to ob-

serve similar performances of our method for ν ∈ ]3
2 , 2]. Unfortunately, the tools

developed here fail to produce the desired optimality without assuming that the
number of points in ΓC where the constraint changes from binding to nonbinding
is finite, even thought this working hypothesis, which first appeared in [8] and has
since been used in many papers (see [16], [6]), seems to be currently satisfied in
particular in solid mechanics. Nevertheless, our belief is that the convergence rate
would be also optimal in more general situations and that the problem would be
only technical.

Remark 4.4. Of course the regularity exponent ν on the whole domain should be
lower than 3

2 , because of the Dirichlet-Neumann singularities generated around
{c1, c2}. However, our goal is only to focus on the approximation behavior around
ΓC , so we choose to assume that they are not effective (or in an equivalent way the
corresponding singular coefficient is switched-off), which, in view of Remark 2.2,
makes the assumptions of Theorem 4.1 and Theorem 4.2 very reasonable. Anyhow,
in practice it is possible to reduce the impact of these kind of singularities by
resorting to meshes of a particular shape (geometrical or radial meshes) around the
Dirichlet-Neumann singular points or by using the algorithm of Strang and Fix (see
[23]).

Deriving an estimate of the error (u−uh) from the exact Signorini solution by our
nonconforming quadratic finite element approximation is based on an adaptation
of Falk’s Lemma (see [12], [4]).

Lemma 4.5. Let u ∈ K(Ω) be the solution of the variational Signorini inequality
(2.5), and uh ∈ Kh(Ω) the solution of the discrete variational inequality (3.6). Then

‖u− uh‖2H1(Ω)

≤ C
[

inf
vh∈Kh(Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh − u〉 1

2 ,∂Ω − 〈g, vh − u〉 1
2 ,Γg

)
+ inf
v∈K(Ω)

(
〈 ∂u
∂n

, v − uh〉 1
2 ,∂Ω − 〈g, v − uh〉 1

2 ,Γg

)]
.

(4.1)

Remark 4.6. The first infimum of the bound given in (4.1) is the approximation
error, and the integral term involved there is specifically generated by the discretiza-
tion of variational inequalities. The last infimum is the consistency error; it is the
“variational crime” and is due to the nonconformity of the approximation.



92 Z. BELHACHMI AND F. BEN BELGACEM

Before giving the proof of both theorems let us bound separately the approxi-
mation and the consistency errors. We start by the approximation error.

Lemma 4.7. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume u ∈ Hν(Ω) with 1 < ν ≤ 3

2 and g ∈ H 3
2−ν(Γg)′. Then

inf
vh∈Kh(Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh − u〉 1

2 ,∂Ω − 〈g, vh − u〉 1
2 ,Γg

)
≤ Ch2(ν−1)‖u‖Hν(Ω)

(
‖u‖Hν(Ω) + ‖f‖L2(Ω) + ‖g‖

H
3
2−ν(Γg)′

)
.

Proof. Observe that, as u ∈ Hν(Ω) and −∆u(= f) ∈ L2(Ω), then ( ∂u∂n )|∂Ω ∈
H

3
2−ν(∂Ω)′ with ∥∥∥ ∂u

∂n

∥∥∥
H

3
2−ν(∂Ω)′

≤ C(‖u‖Hν(Ω) + ‖f‖L2(Ω)).(4.2)

Then, choosing vh = Jhu, on account of (3.2) it turns out that

‖u− Jhu‖2H1(Ω) ≤ Ch2(ν−1)‖u‖2Hν(Ω).

The estimate of the first integral term is obtained from (3.2) and (4.2):

〈 ∂u
∂n

,Jhu− u〉 1
2 ,∂Ω ≤

∥∥∥ ∂u
∂n

∥∥∥
H

3
2−ν(∂Ω)′

‖Jhu− u‖
H

3
2−ν(∂Ω)

≤ Ch2(ν−1)‖u‖Hν(Ω)(‖u‖Hν(Ω) + ‖f‖L2(Ω)).

The last integral term is bounded in the following way:

〈g,Jhu− u〉 1
2 ,Γg
≤ ‖g‖

H
3
2−ν(Γg)′

‖Jhu− u‖
H

3
2−ν(Γg)

≤ Ch2(ν−1)‖u‖Hν(Ω)‖g‖H 3
2−ν(Γg)′

.

Assembling these estimates yields the proof.

Lemma 4.8. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume u ∈ Hν(Ω) with 3

2 < ν ≤ 5
2 . Then

inf
vh∈Kh(Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh − u〉 1

2 ,∂Ω − 〈g, vh − u〉 1
2 ,Γg

)
≤ Ch2(ν−1)‖u‖2Hν(Ω)

Proof. Since ν > 3
2 , the normal derivative ∂u

∂n |∂Ω
belongs to L2(∂Ω), and

g (= ∂u
∂n |Γg) ∈ L

2(Γg). Then, we can write

〈 ∂u
∂n

, vh − u〉 1
2 ,∂Ω − 〈g, vh − u〉 1

2 ,Γg
=
∫

ΓC

∂u

∂n
(vh − u) dΓ.

Choosing vh = Jhu and using Lemma 3.1, we get∫
ΓC

∂u

∂n
(Jhu− u) dΓ ≤

∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ΓC)

‖u− jh(u|ΓC )‖
Hν−

3
2 (ΓC)′

≤ Ch2(ν−1)
∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ΓC)

‖u‖
Hν−

1
2 (ΓC)

≤ Ch2(ν−1)‖u‖2Hν(Ω).

Hence the proof.
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Remark 4.9. For higher regularity of u, ν > 5
2 , the approximation is not optimal

any longer because even though ( ∂u∂n )|ΓC ∈ Hν− 3
2 (ΓC) with (ν − 3

2 ) > 1, the best
we can prove is that

‖u− Jhu‖
Hν−

3
2 (ΓC)′

≤ ‖u− Jhu‖H1(ΓC)′ ≤ Chν+ 1
2 ‖u‖Hν(Ω).

This yields the estimate[
inf

vh∈Kh(Ω)

(
‖u− vh‖2H1(Ω) +

∫
ΓC

∂u

∂n
(vh − u) dΓ

)] 1
2 ≤ Chν−1h

5
4−

ν
4 ‖u‖Hν(Ω).

The worst extra factor h
5
4−

ν
4 shows up for ν = 3, where we are h

1
4 away from opti-

mality (the convergence rate is of order h
7
4 instead of h2). However, the quadratic

convergence rate can be recovered under the additional assumption of Theorem 4.2.

Now, we are left with the consistency error, the analysis of which introduces
more technicalities.

Lemma 4.10. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume u ∈ Hν(Ω) with 1 < ν ≤ 3

2 and g ∈ H 3
2−ν(Γg)′. Then

inf
v∈K(Ω)

(
〈 ∂u
∂n

, v − uh〉 1
2 ,∂Ω − 〈g, v − uh〉 1

2 ,Γg

)
≤

C
(
hν−1‖u− uh‖H1(Ω) + h2(ν−1)‖u‖Hν(Ω)

)(
‖u‖Hν(Ω) + ‖f‖L2(Ω) + ‖g‖

H
3
2−ν(Γg)′

)
.

Proof. Define the piecewise constant function ψh = π∂Ω
h ( ∂u∂n ), it is clear that ψh|ΓC

≥ 0. Taking v = u, then we have

〈 ∂u
∂n

, u− uh〉 1
2 ,∂Ω − 〈g, u− uh〉 1

2 ,Γg
= 〈ψh, u− uh〉 1

2 ,∂Ω − 〈ψh, u− uh〉 1
2 ,Γg

+ 〈 ∂u
∂n
− ψh, u− uh〉 1

2 ,∂Ω − 〈g − ψh, u− uh〉 1
2 ,Γg

.

(4.3)

The second term is estimated in the following way:

〈 ∂u
∂n
− ψh, u− uh〉 1

2 ,∂Ω − 〈g − ψh, u− uh〉 1
2 ,Γg

≤
∥∥∥ ∂u
∂n
− ψh

∥∥∥
H

1
2 (∂Ω)′

‖u− uh‖
H

1
2 (∂Ω)

+ ‖g − ψh‖
H

1
2 (Γg)′

‖u− uh‖
H

1
2 (Γg)

.

Therefore, by (3.4) we derive that

〈 ∂u
∂n
− ψh, u− uh〉 1

2 ,∂Ω − 〈g − ψh, u− uh〉 1
2 ,Γg

≤ Chν−1
(
‖u‖Hν(Ω) + ‖f‖L2(Ω) + ‖g‖

H
3
2−ν(Γg)′

)
‖u− uh‖H1(Ω).

To handle the remaining part of (4.3), notice that∫
ΓC

uhψhdΓ =
i∗−1∑
i=0

(∫
ti

uh dΓ
)
ψh|ti ≥ 0,

which yields the following bound:

〈ψh, u− uh〉 1
2 ,∂Ω − 〈ψh, u− uh〉 1

2 ,Γg
=
∫

ΓC

(u− uh)ψhdΓ ≤
∫

ΓC

uψhdΓ.
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Thanks to the boundary conditions on Γu and Γg together with the saturation
(2.7), we deduce that

〈ψh, u− uh〉 1
2 ,∂Ω − 〈ψh, u− uh〉 1

2 ,Γg
≤ 〈ψh −

∂u

∂n
, u〉 1

2 ,∂Ω − 〈ψh − g, u〉 1
2 ,Γg

≤
∥∥∥ ∂u
∂n
− ψh

∥∥∥
Hν−

1
2 (∂Ω)′

‖u‖
Hν−

1
2 (∂Ω)

+ ‖g − ψh‖
Hν−

1
2 (Γg)′

‖u‖
Hν−

1
2 (∂Ω)

By another use of estimate (3.4) we obtain

〈ψh, u− uh〉 1
2 ,∂Ω − 〈ψh, u− uh〉 1

2 ,Γg

≤ Ch2(ν−1)
(∥∥∥ ∂u
∂n

∥∥∥
H

3
2−ν(∂Ω)′

‖u‖
Hν−

1
2 (∂Ω)

+ ‖g‖
H

3
2−ν(Γg)′

‖u‖
Hν−

1
2 (∂Ω)

)
≤ Ch2(ν−1)

(
‖u‖Hν(Ω) + ‖f‖L2(Ω) + ‖g‖

H
3
2−ν(Γg)′

)
‖u‖Hν(Ω).

Lemma 4.11. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume u ∈ Hν(Ω) with 2 < ν ≤ 5

2 . Then

inf
v∈K(Ω)

(
〈 ∂u
∂n

, v − uh〉 1
2 ,∂Ω − 〈g, v − uh〉 1

2 ,Γg

)
≤ C

(
hν−1‖u− uh‖H1(Ω) + h2(ν−1)‖u‖Hν(Ω)

)
‖u‖Hν(Ω).

Proof. Taking v = u, and thanks to the regularity of u, we have

inf
v∈K(Ω)

(
〈 ∂u
∂n

, v − uh〉 1
2 ,∂Ω − 〈g, v − uh〉 1

2 ,Γg

)
≤
∫

ΓC

∂u

∂n
(u− uh) dΓ.

Setting ψh = πCh ( ∂u∂n ) ≥ 0, we get∫
ΓC

∂u

∂n
(u− uh) dΓ =

∫
ΓC

(
∂u

∂n
− ψh)(u− uh) dΓ +

∫
ΓC

ψh(u − uh) dΓ

≤
∫

ΓC

(
∂u

∂n
− ψh)(u− uh) dΓ +

∫
ΓC

ψhu dΓ.

The first part of the bound is handled in a standard way:∫
ΓC

(
∂u

∂n
− ψh)(u − uh) dΓ ≤ Chν−1‖u− uh‖H1(Ω)‖u‖Hν(Ω).

In order to work out the second term, let us define χh = πCh u ≥ 0. In view of the
saturation (u ∂u∂n )|ΓC = 0 we get∫

ΓC

ψhu dΓ =
∫

ΓC

(ψh −
∂u

∂n
)(u − χh) dΓ =

i∗−1∑
i=0

∫
ti

(ψh −
∂u

∂n
)(u − χh) dΓ.

The sum can be restricted to the set I of indices i for which u vanishes at least
once in ti. Indeed, if u|ti > 0, then ∂u

∂n |ti = 0. This yields ψh|ti = 0, and therefore∫
ti
ψhu dΓ = 0. Then∫

ΓC

ψhu dΓ ≤
∑
i∈I

∥∥∥ψh − ∂u

∂n

∥∥∥
L2(ti)

‖u− χh‖L2(ti)

≤
∑
i∈I

Ch
ν− 3

2
i

∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ti)

hi|u|H1(ti).

(4.4)
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It remains to estimate the semi-norm |u|H1(ti). Because for any i ∈ I, u|ti ≥ 0 and
u vanishes at least for one point x̃i, we necessarily have u′(x̃i) = 0 (the symbol
′ stands for the tangential derivative of u along ΓC). This makes sense because
u|ΓC ∈ C1,ν−2(ΓC). Applying Lemma 8.1 to u′ yields

|u|H1(ti) = ‖u′‖L2(ti) ≤ Ch
ν− 3

2
i |u′|

Hν−
3
2 (ti)

,

so that, going back to (4.4), we obtain∫
ΓC

ψhu dΓ ≤
∑
i∈I

Ch
ν− 3

2
i

∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ti)

h
ν− 1

2
i |u′|

Hν−
3
2 (ti)

≤ Ch2(ν−1)
(∑
i∈I

∥∥∥ ∂u
∂n

∥∥∥2

Hν−
3
2 (ti)

) 1
2
(∑
i∈I
|u′|2

Hν−
3
2 (ti)

) 1
2

≤ Ch2(ν−1)
∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ΓC)

‖u′‖
Hν−

3
2 (ΓC)

≤ Ch2(ν−1)‖u‖2Hν(Ω).

The proof is finished.

Proof of of Theorem 4.1. Putting together Lemma 4.8 and Lemma 4.11 yields

‖u− uh‖2H1(Ω) ≤ Chν−1‖u− uh‖H1(Ω)‖u‖Hν(Ω) + h2(ν−1)‖u‖2Hν(Ω)

from which point ii. of the theorem follows. Point i. is proven in the same manner
using Lemmas 4.4 and 4.6.

Proving Theorem 4.2 requires two more technical lemmas, also dedicated to the
analysis of the consistency error.

Lemma 4.12. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume that u ∈ Hν(Ω) with 3

2 < ν < 2, and that the number of points in
ΓC, where the constraint changes from binding to nonbinding is finite. Then

inf
v∈K(Ω)

(
〈 ∂u
∂n

, v − uh〉 1
2 ,∂Ω − 〈g, v − uh〉 1

2 ,Γg

)
≤ C

(
hν−1‖u− uh‖H1(Ω) + h2(ν−1)‖u‖Hν(Ω)

)
‖u‖Hν(Ω).

Proof. Denote by I the set of indices i (0 ≤ i ≤ i∗ − 1) corresponding to the
segments ti containing at least one point where the constraint changes from binding
to nonbinding. The cardinality of I is bounded uniformly in h. It is straightforward
that in each ti, i 6∈ I, the product (ψhu)|ti = 0, because either u|ti = 0 or u|ti > 0;
then ( ∂u∂n)|ti = 0 and ψh|ti = 0. Proceeding as in the proof of the previous lemma,
the term that remains to bound is∫

ΓC

ψhu dΓ =
∫

ΓC

(ψh −
∂u

∂n
)u dΓ

≤
∑
i∈I

∥∥∥ψh − ∂u

∂n

∥∥∥
L2(ti)

‖u‖L2(ti) ≤
∑
i∈I

Ch
ν− 3

2
i

∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ti)

h
1
2
i ‖u‖L∞(ti).

(4.5)

By Sobolev-Morrey we have the continuous embedding Hν− 1
2 (ΓC) ⊂ C0,ν−1(ΓC).

Observing that u vanishes at least once in ti, i ∈ I, we see that

‖u‖L∞(ti) ≤ hν−1 sup
x,y∈ti

|u(x)− u(y)|
|x− y|ν−1

≤ hν−1‖u‖C0,ν−1(ΓC).
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Inserting this in (4.5) and observing that card I is finite yield∫
ΓC

ψhu dΓ ≤
∑
i∈I

Ch
ν− 3

2
i

∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ti)

h
ν− 1

2
i ‖u‖C0,ν−1(ΓC)

≤ Ch2(ν−1)
∥∥∥ ∂u
∂n

∥∥∥
Hν−

3
2 (ΓC)

‖u‖C0,ν−1(ΓC) ≤ Ch2(ν−1)‖u‖2Hν(Ω).

This ends the proof.

Lemma 4.13. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume that u ∈ H2(Ω), and that the number of points in ΓC where the
constraint changes from binding to nonbinding is finite. Then

inf
v∈K(Ω)

(
〈 ∂u
∂n

, v − uh〉 1
2 ,∂Ω − 〈g, v − uh〉 1

2 ,Γg

)
≤ C

(
h‖u− uh‖H1(Ω) + h2| log h| 12 ‖u‖H2(Ω)

)
‖u‖H2(Ω).

Proof. First recall that for any α ∈ [0, 1[ the embedding H
3
2 (ΓC) ⊂ C0,α(ΓC) is

continuous and there exists a constant C > 0 independent of α such that (see [3],
Lemma A.2), ∀ψ ∈ H 3

2 (ΓC),

‖ψ‖C0,α(ΓC) ≤ C
1√

1− α
‖ψ‖

H
3
2 (ΓC)

.

As in the proof of Lemma 4.12, we obtain∫
ΓC

ψhu dΓ ≤
∑
i∈I

Ch
1
2
i

∥∥∥ ∂u
∂n

∥∥∥
H

1
2 (ti)

h
1
2 +α
i ‖u‖C0,α(ΓC)

≤ Ch1+α
∥∥∥ ∂u
∂n

∥∥∥
H

1
2 (ΓC)

‖u‖C0,α(ΓC)

≤ Ch2 hα−1

√
1− α

∥∥∥ ∂u
∂n

∥∥∥
H

1
2 (ΓC)

‖u‖
H

3
2 (ΓC)

.

Choosing α = 1− 1
| log h| achieves the result.

Proof of Theorem 4.2. Putting together Lemma 4.8 and Lemma 4.12 gives point i.
of the theorem, while point ii. is obtained from Lemma 4.8 and Lemma 4.13.

5. Another quadratic finite elements discretization

An alternative to the numerical model of the contact condition presented in the
previous section consists in enforcing the nonnegativity of the Lagrange degrees
of freedom of the discrete solution that are located on the contact region ΓC , i.e.,
uh(xCi ) ≥ 0 (1 ≤ i ≤ i∗) and uh(xC

i+ 1
2
) ≥ 0 (1 ≤ i ≤ i∗−1). This choice seems more

appropriate when we are interested in checking the condition u|ΓC ≥ 0 rather than
∂u
∂n |ΓC ≥ 0 (for which the first model appears well adapted). The closed convex
cone of work is defined to be

K̃h(Ω) =
{
vh ∈ Xh(Ω), vh(xCi ) ≥ 0, ∀i (0 ≤ i ≤ i∗)

vh(xCi+ 1
2
) ≥ 0, ∀i (0 ≤ i ≤ i∗ − 1)

}
.
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The discrete variational inequality is expressed in the same line as for the first
method and consists of: find ũh ∈ K̃h(Ω) such that

a(ũh, vh − ũh) ≥ L(vh − ũh), ∀vh ∈ K̃h(Ω).(5.1)

Clearly this method is also nonconforming, because K̃h(Ω) 6⊂ K(Ω). Using again
Stampacchia’s Theorem, we deduce the well posedness of this problem with a sta-
bility result; the approximated solution is continuous with respect to the data. The
reliability of the approximation is summarized in two theorems.

Theorem 5.1. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5).

i. Assume u ∈ Hν(Ω) with 1 < ν ≤ 3
2 , and g ∈ H 3

2−ν(Γg)′. Then, the discrete
solution ũh ∈ K̃h(Ω) of problem (5.1) is such that

‖u− ũh‖H1(Ω) ≤ Chν−1(‖u‖Hν(Ω) + ‖f‖L2(Ω) + ‖g‖
H

3
2−ν(Γg)′

).

ii. Assume u ∈ Hν(Ω) with 2 < ν ≤ 5
2 . Then, the discrete solution ũh ∈ K̃h(Ω)

of problem (5.1) is such that

‖u− ũh‖H1(Ω) ≤ Chν−1‖u‖Hν(Ω).

Theorem 5.2. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5).

i. Assume that u ∈ Hν(Ω) with 3
2 < ν < 2, and that the number of points in ΓC

where the constraint changes from binding to nonbinding is finite. Then the
discrete solution ũh ∈ K̃h(Ω) of problem (5.1) is such that

‖u− ũh‖H1(Ω) ≤ Chν−1‖u‖Hν(Ω).

ii. Assume that u ∈ H2(Ω), and that the number of points in ΓC where the
constraint changes from binding to nonbinding is finite. Then the discrete
solution ũh ∈ K̃h(Ω) of problem (5.1) is such that

‖u− ũh‖H1(Ω) ≤ Ch| log h| 14 ‖u‖H2(Ω).

Before starting the numerical analysis of this method, which is also based on
Falk’s Lemma 4.3, replacingKh(Ω) by K̃h(Ω), let us make the following observation.
By Simpson’s quadrature formula we have, ∀vh ∈ K̃h(Ω),∫

ti

vh dΓ ≥ 0, ∀i (0 ≤ i ≤ i∗ − 1).

This implies that K̃h(Ω) ⊂ Kh(Ω), and the principal consequence is that the anal-
ysis of the consistency error induced by K̃h(Ω) can be made exactly as for Kh(Ω),
and the convergence rate will be the same as those provided by Lemmas 4.10–4.13.
The only remaining point is to exhibit an estimate of the approximation error,
which turns out to be more technical than for the first method and is the subject
of the following lemmas.
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Lemma 5.3. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume u ∈ Hν(Ω) with 1 < ν ≤ 3

2 , and g ∈ H 3
2−ν(Γg)′. Then

inf
vh∈K̃h(Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh − u〉 1

2 ,∂Ω − 〈g, vh − u〉 1
2 ,Γg

)
≤ Ch2(ν−1)‖u‖Hν(Ω)

(
‖u‖Hν(Ω) + ‖f‖L2(Ω) + ‖g‖

H
3
2−ν(Γg)′

)
.

Proof. Choose vh = Ihu and proceed as in the proof of Lemma 4.7.

Lemma 5.4. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume u ∈ Hν(Ω) with 2 < ν ≤ 5

2 . Then

inf
vh∈K̃h(Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh − u〉 1

2 ,∂Ω − 〈g, vh − u〉 1
2 ,Γg

)

≤ Ch2(ν−1)‖u‖2Hν(Ω).

Proof. Taking vh = Ihu, and thanks to (3.1), we have

‖u− vh‖H1(Ω) ≤ Chν−1‖u‖Hν(Ω).

In order to study the integral term, notice that due to the regularity of u it is
reduced to

〈 ∂u
∂n

, vh − u〉 1
2 ,∂Ω − 〈g, vh − u〉 1

2 ,Γg
=
∫

ΓC

∂u

∂n
(Ihu− u) dΓ

=
i∗−1∑
i=0

∫
ti

∂u

∂n
(Ihu− u) dΓ ≤

i∗−1∑
i=0

∥∥∥ ∂u
∂n

∥∥∥
L2(ti)

‖u− Ihu‖L2(ti)

The sum can be restricted to the set I of indices i for which ( ∂u∂n )|ΓC ⊂ Hν− 3
2 (ΓC) ⊂

C(ΓC) vanishes at least once in ti, because if ∂u
∂n |ti > 0 then u|ti = 0; this yields

(Ihu)|ti = 0. Then∫
ΓC

∂u

∂n
(Ihu− u) dΓ ≤ C

∑
i∈I

∥∥∥ ∂u
∂n

∥∥∥
L2(ti)

h
ν− 1

2
i |u|

Hν−
1
2 (ti)

.

By Lemma 8.1 applied to ∂u
∂n (which vanishes at least at one point of ti) we obtain∫

ΓC

∂u

∂n
(Ihu− u) dΓ ≤

∑
i∈I

Ch
ν− 3

2
i

∣∣∣ ∂u
∂n

∣∣∣
Hν−

3
2 (ti)

h
ν− 1

2
i |u|

Hν−
1
2 (ti)

≤ Ch2(ν−1)
(∑
i∈I

∣∣∣ ∂u
∂n

∣∣∣2
Hν−

3
2 (ti)

) 1
2
(∑
i∈I
|u|2

Hν−
1
2 (ti)

) 1
2

≤ Ch2(ν−1)
∣∣∣ ∂u
∂n

∣∣∣
Hν−

3
2 (ΓC)

|u|
Hν−

1
2 (ΓC)

≤ Ch2(ν−1)‖u‖2Hν(Ω).

The proof is finished.

Proof of Theorem 5.1. We combine Lemmas 4.10 and 5.3 for point i and Lemmas
4.11 and 5.4 to obtain point ii.

Let us turn to the lemmas necessary for the proof of Theorem 5.2, for which an
additional assumption is required on the exact solution.
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Lemma 5.5. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume that u ∈ Hν(Ω) with 3

2 < ν < 2, and that the number of points in
ΓC where the constraint changes from binding to nonbinding is finite. Then

inf
vh∈K̃h(Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh − u〉 1

2 ,∂Ω − 〈g, vh − u〉 1
2 ,Γg

)
≤ Ch2(ν−1)‖u‖2Hν(Ω).

Proof. We use the arguments developed in ([3], Lemma 2.4). Let I be the set of
indices i (0 ≤ i ≤ i∗−1) such that ti contains at least one point where the constraint
changes from binding to nonbinding. In ti, i 6∈ I, the product ( ∂u∂n (u−Ihu))|ti = 0.
Setting p = (ν − 1)−1 and p′ = (2− ν)−1, clearly we have p, p′ ≥ 1 and 1

p + 1
p′ = 1.

Then, as ∂u
∂n ∈ Hν− 3

2 (ΓC) and u ∈ Hν− 1
2 (ΓC), invoking the continuous Sobolev

embedding (see [1], Theorem 7.48),

Hν− 3
2 (ΓC) ⊂ Lp

′
(ΓC), Hν− 1

2 (ΓC) ⊂ Lp(ΓC),

we find that ( ∂u∂n)|ΓC ∈ Lp
′
(ΓC) and u|ΓC ∈ Lp(ΓC). Using the Hölder inequality

yields ∫
ΓC

∂u

∂n
(Ihu− u) dΓ ≤

∑
i∈I

∥∥∥ ∂u
∂n

∥∥∥
Lp′(ti)

‖Ihu− u‖Lp(ti)

≤
∑
i∈I

∥∥∥ ∂u
∂n

∥∥∥
Lp′(ti)

h
1
p

i ‖Ihu− u‖L∞(ti).

(5.2)

Resorting to the Gagliardo-Nirenberg inequality produces

‖Ihu− u‖L∞(ti) ≤ ‖Ihu− u‖
1
2
L2(ti)

‖Ihu− u‖
1
2
H1(ti)

≤ Chν−1
i |u|

Hν−
1
2 (ti)

.

Going back to (5.2), and recalling that card I is bounded uniformly in h, we write∫
ΓC

∂u

∂n
(Ihu− u) dΓ≤C

∥∥∥ ∂u
∂n

∥∥∥
Lp′(Γc)

∑
i∈I

h
1
p

i h
ν−1
i |u|

Hν−
1
2 (ti)
≤Ch2(ν−1)

i ‖u‖2Hν(Ω).

Hence the proof.

Lemma 5.6. Let u ∈ K(Ω) be the solution of the variational Signorini problem
(2.5). Assume that u ∈ H2(Ω), and that the number of points in ΓC where the
constraint changes from binding to nonbinding is finite. Then

inf
vh∈K̃h(Ω)

(
‖u− vh‖2H1(Ω) + 〈 ∂u

∂n
, vh − u〉 1

2 ,∂Ω − 〈g, vh − u〉 1
2 ,Γg

)
≤ Ch2| log h| 12 ‖u‖2Hν(Ω).

Proof. As in the previous lemma, the hardest task is to estimate the integral term.
First, recall that for any p′ ≥ 1 the embedding H

1
2 (ΓC) ⊂ Lp

′
(ΓC) is continuous

and there exists a constant C > 0 independent of p′ such that (see [3], Lemma A.1),
∀ψ ∈ H 1

2 (ΓC),

‖ψ‖Lp′(ΓC) ≤ C
√
p′‖ψ‖

H
1
2 (ΓC)

.(5.3)
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As in the proof of Lemma 5.5, we derive that∫
ΓC

∂u

∂n
(Ihu− u) dΓ ≤ C

∥∥∥ ∂u
∂n

∥∥∥
Lp′(Γc)

∑
i∈I

h
1
p

i hi|u|H 3
2 (ti)

≤ Ch2h
− 1
p′
∥∥∥ ∂u
∂n

∥∥∥
Lp′(Γc)

|u|
H

3
2 (ΓC)

,

where p and p′ are conjugate real numbers. Applying (5.3) to ∂u
∂n , and since I is

finite uniformly with respect to h, we get∫
ΓC

∂u

∂n
(Ihu− u) dΓ ≤ C(

√
p′h−

1
p′ )h2

∥∥∥ ∂u
∂n

∥∥∥
H

1
2 (ΓC)

|u|
H

3
2 (ΓC)

.

Taking p′ = | log h| completes the proof.

Proof of Theorem 5.2. Put together Lemmas 4.12 and 5.5 for point i, and Lemmas
4.13 and 5.6 to obtain point ii.

6. Conclusion

The numerical models proposed here, to take into account—in a weak sense—the
Signorini nonpenetration condition for a quadratic finite element approximation,
provide the expected convergence results for almost all interesting configurations.
Using these methods to compute the solution of unilateral contact problems of
Signorini type is more accurate than the linear finite element solution.

There are two obvious directions in which this work could be extended. First
is the extension of these numerical contact models to three dimensions, for which
the technical difficulties are even more increased. The second consists in using the
mortar concept introduced in [7] (see also [6], [3], [20], [10] for linear finite elements
applied to unilateral contact inequalities) in order to match noncoinciding meshes
in the quadratic finite element framework. This approach is of major importance
especially for the simulation of unilateral contact between two elastic solids.

7. Appendix A

The main purpose of this appendix is to state the nonstandard estimate (3.4)
on the piecewise constant interpolation operator. The proof can be found in [5] for
any space dimension; it is given here in one dimension to be self contained. For
simplicity we work on the reference segment Γ = (0, 1). Consider the subdivision
(xi)0≤i≤i∗ ordered increasingly, with x0 = 0, xi∗ = 1. Define ti = (xi, xi+1), and
let hi = |ti| = |xi+1 − xi| be the length of ti; we assume that hi ≤ h (0 ≤ i ≤
i∗ − 1). The finite element space Mh(Γ) involves the piecewise constant functions,
i.e., ψh ∈ Mh(Γ) means that ψh|ti ∈ P0(ti) (0 ≤ i ≤ i∗ − 1). The L2-orthogonal
projection πh on Mh(Γ) is then characterized by

(πhψ)|ti =
1
|ti|

∫
ti

ψ dΓ, ∀i (0 ≤ i ≤ i∗ − 1).

The approximation error (3.3) for πh is standard and is obtained by the Aubin-
Nitsche argument. Before stating the desired results let us recall the Hardy in-
equality. If µ ∈ [0, 1

2 [, then we have, ∀ψ ∈ Hµ(0, 1),( ∫
(0,1)

ψ(x)2

x2µ
dx
) 1

2 ≤ c‖ψ‖Hµ(0,1).(7.1)
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We need the following intermediary lemma.

Lemma 7.1. Let µ ∈ [0, 1
2 [ and ν ∈ [µ, 1]. Then ∀ψ ∈ Hν(0, 1),

‖ψ − πhψ‖Hµ(Γ) ≤ Chν−µ‖ψ‖Hν(Γ).

Proof. Set ψh = πhψ. We have to bound

|ψ − πhψ|2Hµ(Γ) =
∫

Γ

∫
Γ

[(ψ − ψh)(x) − (ψ − ψh)(y)]2

|x− y|1+2µ
dxdy

=
i∗−1∑
i=0

∫
ti

∫
ti

[ψ(x)− ψ(y)]2

|x− y|1+2µ
dxdy

+
i∗−1∑
i=0

∑
j 6=i

∫
ti

∫
tj

[(ψ − ψh)(x) − (ψ − ψh)(y)]2

|x− y|1+2µ
dxdy.

(7.2)

It is straightforward that

i∗−1∑
i=0

∫
ti

∫
ti

[ψ(x) − ψ(y)]2

|x− y|1+2µ
dxdy

≤ h2(ν−µ)
i∗−1∑
i=0

∫
ti

∫
ti

[ψ(x)− ψ(y)]2

|x− y|1+2ν
dxdy ≤ h2(ν−µ)|ψ|2Hν(Γ).

The second sum in (7.2) is bounded as follows:

i∗−1∑
i=0

∑
j 6=i

∫
ti

∫
tj

[(ψ − ψh)(x) − (ψ − ψh)(y)]2

|x− y|1+2µ
dxdy

≤
i∗−1∑
i=0

∑
j 6=i

∫
ti

∫
tj

[(ψ − ψh)(x)]2

|x− y|1+2µ
dxdy+

i∗−1∑
i=0

∑
j 6=i

∫
ti

∫
tj

[(ψ − ψh)(y)]2

|x− y|1+2µ
dxdy.

We only focus on the the first term (the second is worked out exactly in the same
way):

i∗−1∑
i=0

∑
j 6=i

∫
ti

∫
tj

[(ψ − ψh)(x)]2

|x− y|1+2µ
dxdy

=
i∗−1∑
i=0

∫
ti

[(ψ − ψh)(x)]2
( ∫

Γ\ti

1
|x− y|1+2µ

dy
)
dx

≤ C
i∗−1∑
i=0

∫
ti

[(ψ − ψh)(x)]2
( 1

(xi+1 − x)2µ
+

1
(x − xi)2µ

)
dx.

Recalling (7.1) with an appropriate scaling and applying the Bramble-Hilbert The-
orem, we obtain∫

ti

[(ψ − ψh)(x)]2
( 1

(xi+1 − x)2µ
+

1
(x− xi)2µ

)
dx ≤ C|ψ − ψh|2Hµ(ti)

≤ Ch2(ν−µ)|ψ|2Hν (ti)
.
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In view of this bound we deduce that

i∗−1∑
i=0

∑
j 6=i

∫
ti

∫
tj

[(ψ − ψh)(x)− (ψ − ψh)(y)]2

|x− y|1+2µ
dxdy ≤ Ch2(ν−µ)

i∗−1∑
i=0

|ψ|2Hν(ti)

≤ Ch2(ν−µ)|ψ|2Hν (Γ),

which completes the proof.

Lemma 7.2. Let µ ∈ [0, 1
2 [ and ν ∈ [µ, 1]. Then, ∀ψ ∈ Hµ(Γ)′,

‖ψ − πhψ‖Hν(Γ)′ ≤ Chν−µ‖ψ‖Hµ(Γ)′ .

Proof. Resorting to the duality of Aubin-Nitsche, we write

‖ψ − πhψ‖Hν(Γ)′ = sup
χ∈Hν (Γ)

〈ψ − πhψ, χ〉ν,Γ
‖χ‖Hν(Γ)

= sup
χ∈Hν (Γ)

〈ψ, χ− πhχ〉ν,Γ
‖χ‖Hν(Γ)

.

Then by Lemma 7.1

〈ψ, χ− πhχ〉ν,Γ ≤ ‖ψ‖Hµ(Γ)′‖χ− πhχ‖Hµ(Γ) ≤ Chν−µ‖ψ‖Hµ(Γ)′‖χ‖Hν(Γ).

Hence the proof.

8. Appendix B

Our aim here is to prove a sharp estimate used in the proof of Lemmas 4.11 and
5.4. Let t be a finite segment of R and h its length. Then

Lemma 8.1. For any α ∈ ] 1
2 , 1], there exists a constant C > 0 independent of h

so that, ∀ψ ∈ Hα(t), ∀x0 ∈ t,

‖ψ − ψ(x0)‖L2(t) ≤ Chα|ψ|Hα(t).

Proof. Notice that this result is interesting in that the constant C is uniform for
arbitrary x0. Let us first consider the reference segment t̂ = (0, 1). Then the
Sobolev space Hα(t̂) is embedded in the space C(t̂) with a continuous embedding
(see [1]) and therefore ψ̂(x̂0) makes sense. Then, we have in particular, ∀ψ ∈ Hα(t̂),

sup
x̂,ŷ∈t̂

|ψ̂(x̂)− ψ̂(ŷ)| ≤ ĉ‖ψ̂‖Hα(t̂).

or, again by the Bramble-Hilbert Theorem,

sup
x̂,ŷ∈t̂

|ψ̂(x̂)− ψ̂(ŷ)| ≤ ĉ inf
d∈R
‖ψ̂ − d‖Hα(t̂) ≤ ĉ|ψ̂|Hα(t̂).

Then, we derive that

‖ψ̂ − ψ̂(x̂0)‖L2(t̂) ≤ ‖ψ̂ − ψ̂(x̂0)‖L∞(t̂) ≤ sup
x̂,ŷ∈t̂

|ψ̂(x̂)− ψ̂(ŷ)| ≤ ĉ|ψ̂|Hα(t̂).

Hence the result for t̂. A standard scaling argument lets us recover the result of
the lemma with C = ĉ.
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Remark 8.2. This lemma plays a fundamental role in the proof of the optimality
of the consistency error in Lemma 4.11 and of the approximation error in Lemma
5.4. When α ≤ 1

2 , the estimate no longer holds, and the incidence on the analysis
of these errors when u ∈ Hν(Ω) with 0 < ν ≤ 2 is dramatic, and the techniques
developed in this paper fail to recover the optimality, at least without an additional
assumption (see Lemmas 4.12, 4.13, 5.5, and 5.6).
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