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AN ANALYSIS
OF NONCONFORMING MULTI-GRID METHODS,

LEADING TO AN IMPROVED METHOD
FOR THE MORLEY ELEMENT

ROB STEVENSON

Abstract. We recall and slightly refine the convergence theory for noncon-
forming multi-grid methods for symmetric positive definite problems developed
by Bramble, Pasciak and Xu. We derive new results to verify the regularity
and approximation assumption, and the assumption on the smoother. From
the analysis it will appear that most efficient multi-grid methods can be ex-
pected for fully regular problems, and for prolongations for which the energy
norm of the iterated prolongations is uniformly bounded.

Guided by these observations, we develop a new multi-grid method for the
biharmonic equation discretized with Morley finite elements, or equivalently,

for the Stokes equations discretized with the P0-nonconforming P1 pair. Nu-
merical results show that the new method is superior to standard ones.

1. Introduction

We reconsider the convergence theory for nonconforming multi-grid methods
for symmetric positive definite problems developed by Bramble, Pasciak and Xu
in [BPX91]. With nonconforming methods, the coarse-grid correction is not a
projection, and in many applications it defines an iteration that is even divergent.
As a consequence, a W-cycle multi-grid method is not a safe choice, since with a
fixed number of smoothing steps it may result in a preconditioned system that is
indefinite. On the other hand, a V-cycle type method yields preconditioned systems
that are always positive definite. Moreover, for m(k) denoting the number of pre-
and post smoothing steps on level k = 1, . . . , j, it was proved that the resulting
preconditioner is optimal when for some β > 1, m(k) ≥ βj−k (variable V-cycle).

In this paper, we investigate to what extent this increase of the number of
smoothing steps when going to coarser levels can be reduced, meanwhile preserving
optimality. Apart from scientific interest, for a parallel implementation a reduction
of the work on lower levels is important. A slight adaptation of the theory from
[BPX91] will show that for a “fully regular” problem, already

∑j−1
k=0

1
m(j−k)

<∼ 1 en-
sures optimality (mildly variable V-cycle) (cf. note at the end of this introduction).

Aiming at minimizing the work on lower levels, the best method is clearly the
standard “nonvariable” V-cycle. Unfortunately, in the framework of nonconforming
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methods, we are not able to prove optimality of this cycle. Yet, we present an
estimate that demonstrates that the condition number of the preconditioned system
corresponding to the standard V-cycle may depend critically on the energy norm
of the iterated prolongations alternated with smoothers. That is, if this norm
grows exponentially with the numbers of levels, then the condition number may
do so as well, whereas if this norm is uniformly bounded, then the standard V-
cycle is at least suboptimal. These observations will be confirmed by numerical
experiments. As a further support of these findings, we will recall some results
obtained by Oswald in [Osw97], which show that in order to get a suitable additive
multi-grid method, it is essential to use prolongations for which the energy-norm
of the iterated prolongations is uniformly bounded.

The main application that we will discuss is the biharmonic equation on some
convex polygon, discretized with Morley elements. The biharmonic operator is not
fully regular, which means that we can only rely on the variable V-cycle. Yet, as
is well-known, the Stokes equations discretized with the P0-nonconforming P1 pair
give rise to the same algebraic system. This equivalence has been exploited more
often, in the sense that the biharmonic formulation was used to analyze multi-grid
methods applied to the Stokes problem. Here we will follow the opposite approach.

The advantage of the Stokes formulation is that it defines a fully regular problem.
Yet, since the usual basis for the finite element space is not uniformly L2-stable, we
have to pay for switching to this framework by the fact that standard smoothers do
not satisfy the necessary assumptions. We develop a new type of smoothers that
involve a call of a conforming multi-grid method to solve a discretized Laplacian.
Using these smoothers, we show that the mildly variable V-cycle yields an optimal
preconditioner.

It turns out that with the prolongation usually applied to the above-mentioned
biharmonic, or equivalently Stokes problem, the energy norm of the iterated pro-
longations increases exponentially with the number of levels. We introduce a new
prolongation, for which, at least in a model case, this energy-norm is uniformly
bounded.

Using the standard V-cycle, we compare numerically the new smoother and pro-
longation with common choices. Both the new smoother and the new prolongation
turn out to strongly reduce the condition numbers. With both improvements imple-
mented, the condition numbers are “small”, and they appear to be even uniformly
bounded. Moreover, the new method can be implemented at the same costs as a
standard method.

The remainder of this paper is organized as follows: We start by giving a descrip-
tion of the class of multi-grid methods that will be considered. This description is
not only basis independent, but it also avoids making use of some scalar products,
for which usually the L2-scalar product is taken. As a consequence, the abstract
formulation can be translated more easily in terms of an actual implementation.

We recall and slightly refine the multi-grid convergence theory from [BPX91].
We give new, general applicable criteria to verify whether a smoother satisfies the
assumption necessary for this convergence theory. The proofs are based on some
simple algebraic arguments only. We give a short proof of a new theorem, requiring
more or less minimal assumptions, to obtain the full regularity and approximation
assumption.
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Mainly to underline the role of the iterated prolongations in the behaviour of
multi-grid methods, we recall the convergence theory for additive multi-grid meth-
ods developed in [Osw97]. We relate the assumptions on the smoother in the
multiplicative and the additive case.

Finally, we discuss some applications. Apart from the aforementioned applica-
tion to the Morley element, we briefly discuss applications to the nonconforming
P1 and rotated Q1 elements.

In order to avoid the repeated use of generic but unspecified constants, in this
paper by C <∼ D we mean that C can be bounded by a multiple of D, independently
of parameters which C and D may depend on. Obviously, C >∼ D is defined as
D <∼ C, and C =∼ D as C <∼ D and C >∼ D.

Note. The referee pointed out that a publication of J.H. Bramble and X. Zhang is
going to appear in which it is proved that, with α being the regularity parameter,
optimality of a V-cycle type method is guaranteed when

∑j−1
k=0

1
m(j−k)α

<∼ 1, which
generalizes our finding in the α = 1 case. Although this generalization means a
quantitative improvement for α < 1, it is not in conflict with the approach followed
in this paper to reformulate the less-regular biharmonic problem as a fully regular
Stokes problem with the aim to reduce the number of necessary smoothing steps
on lower levels.

2. Multi-grid methods

2.1. Algorithm. We describe the symmetric (multiplicative) multi-grid method
in a general setting. Let

V0, V1, . . . , Vj , . . . ,

be a sequence of finite dimensional linear spaces over R or C. By V ′j we denote the
linear space of (anti-)linear functionals g on Vj , i.e., g is linear. Assuming that aj
is some scalar product on Vj , for given g ∈ V ′j we are interested in finding u ∈ Vj
such that

aj(u, v) = g(v) (v ∈ Vj).(2.1)

Defining Aj : Vj → V ′j by

(Aju)(v) = aj(u, v) (u, v ∈ Vj),(2.2)

we see that (2.1) is equivalent to

Aju = g.(2.3)

To define a multi-grid method for solving (2.3) iteratively, for 1 ≤ k ≤ j we
need suitable linear mappings Ik : Vk−1 → Vk, which are called prolongations. The
dual mappings I ′k : V ′k → V ′k−1, defined by (I ′kg)(w) = g(Ikw), are then called
restrictions.

Furthermore, to define the smoothers, for 1 ≤ k ≤ j we need possibly non-
Hermitian auxiliary sesquilinear forms ck on Vk, that give rise to operators Ck, C

†
k :

Vk → V ′k defined by

(Cku)(v) = ck(u, v), (C†ku)(v) = ck(v, u) (u, v ∈ Vk).(2.4)

We set

Ck,` =
{
Ck if ` is odd,
C†k if ` is even.
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We assume that {u ∈ Vk : ck(u, Vk) = 0} = {0}, which means that Ck and C†k are
invertible.

The multi-grid operator Bk : V ′k → Vk is now defined by induction as follows:
Let B0 = A−1

0 . Assume that Bk−1 has been defined and define Bkg for g ∈ V ′k
as follows:

1. Set x(0) = 0 and q(0) = 0.
2. Define x(`) for ` = 1, . . . ,m(k) by

x(`) = x(`−1) + C−1
k,`+m(k)(g −Akx

(`−1)).

3. Define y(m(k)) = x(m(k)) + Ikq
(p), where q(i) for i = 1, . . . , p is defined by

q(i) = q(i−1) +Bk−1(I ′k(g −Akx(m(k)))−Ak−1q
(i−1)).

4. Define y(`) for ` = m(k) + 1, . . . , 2m(k) by

y(`) = y(`−1) + C−1
k,`+m(k)(g −Aky

(`−1)).

5. Set Bkg = y(2m(k)).

Remark 2.1. The above description of the multi-grid method follows [BPX91] quite
closely. A difference is that instead of using dual spaces V ′k, in [BPX91] and in many
other papers, after equipping the spaces Vk with some additional scalar products
( , )0,k, all multi-grid components are defined between primal spaces by (implicitly)
applying Riesz’ representation theorem. Then, as a consequence, all these compo-
nents depend on the particular choice of ( , )0,k, whereas the preconditioned system
BjAj does not. In other words, the influence of ( , )0,k on the multi-grid algorithm
is artificial. On the other hand, the introduction of suitable scalar products ( , )0,k

has turned out to be essential for the convergence theory.
A definition of the multi-grid algorithm directly in terms of its implementation,

i.e., in terms of matrices and vectors, can for example be found in [Hac85]. Actually,
when ( , )0,k is the Euclidean scalar product corresponding to the basis one wants
to apply, the definitions from [BPX91] and [Hac85] are similar.

Our definition is basis independent. Because it also does not depend on the
scalar products ( , )0,k, the description of the implementation is straightforward,
since it does not involve mass matrices and inverses of these matrices.

2.2. Implementation. For all k, let Vk be equipped with some basis {φk,m :
m ∈ Jk}, and think of V ′k as being equipped with the corresponding dual basis
{φ′k,m : m ∈ Jk} defined by φ′k,m(φk,n) = δn,m. From g =

∑
m∈Jk g(φk,m)φ′k,m,

we see that g = (g(φk,m))m∈Jk is the vector representation of g ∈ V ′k. It is easily
verified that the operator Ak : Vk → V ′k is represented by the stiffness matrix
Ak = (a(φk,n, φk,m))m,n∈Jk , and that if pk denotes the matrix representation of
Ik : Vk−1 → Vk, then the matrix transpose pTk is the representation of I ′k.

Noting that ak(u, v) = 〈Aku,v〉, where the vectors u and v denote the represen-
tations of u ∈ Vk and v ∈ Vk, respectively, and 〈 , 〉 is the Euclidean scalar product,
a natural way to construct the sesquilinear forms ck is the following: For Ck being
some (easily) invertible approximation of Ak, define

ck(u, v) = 〈Cku,v〉.(2.5)

Then the representations of the operators Ck, C
†
k : Vk → V ′k are given by Ck and

its matrix adjoint CH
k , respectively.
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2.3. Convergence theory. We recall convergence results obtained in [BPX91],
and give some additional estimates.

We will denote by ( )∗ an adjoint with respect to the “energy” scalar product ak.
Then setting Kk = I − C−1

k Ak, we have K∗k = I − C−†k Ak. Defining

K̃
(m)
k =

{
(K∗kKk)m/2 if m is even,
(K∗kKk)(m−1)/2K∗k if m is odd,

and noting that

I∗k = A−1
k−1I

′
kAk,

for k > 0 we have

I −BkAk = (K̃(m(k))
k )∗ [(I − IkI∗k ) + Ik(I −Bk−1Ak−1)pI∗k ] K̃(m(k))

k .(2.6)

Note that (BkAk)∗ = BkAk, and that (K̃(m(k))
k )∗(I − IkI

∗
k )K̃(m(k))

k is the error
amplification operator of the corresponding two-grid method.

For ( , )0,k some additional scalar product on Vk, and ‖·‖0,k := (·, ·)
1
2
0,k, we define

‖u‖2,k = sup
06=v∈Vk

|ak(u, v)|
‖v‖0,k

(u ∈ Vk)(2.7)

and

ρk = sup
06=u∈Vk

ak(u, u)
‖u‖20,k

.(2.8)

We make the following assumptions:

Regularity and Approximation Assumption. There exists an α ∈ (0, 1] such that

|ak((I − IkI∗k )u, u)| <∼ (ρ−1
k ‖u‖22,k)αak(u, u)1−α (u ∈ Vk),(A)

and furthermore

ak(u, u)− ak(Kku,Kku) >∼ ρ−1
k ‖u‖22,k (u ∈ Vk).(B)

If in addition

ρ(I∗kIk) ≤ 1,(C1)

then the
• W-cycle, i.e., p = 2, and m(1) = · · · = m(j) ≥ 1,
• variable V-cycle, i.e., p = 1, and for some β > 1, m(j − k) ≥ βkm(j) and
m(j) ≥ 1,

and when α = 1, the
• standard V-cycle, i.e., p = 1, and m(1) = · · · = m(j) ≥ 1,

all have been shown to yield Bj that satisfy

σ(I −BjAj) ⊂ [0, δj
1+δj

], where δj <∼ m(j)−α.(2.9)

A particular case for which (C1) is valid is I∗kIk = I, i.e., ak−1(u, v) = ak(Iku, Ikv)
(“Galerkin approach”). For this case a lot of additional multi-grid convergence
theory is available, even some for which a regularity assumption is not necessary.
In [Che99] an application is described of the Galerkin approach to nonconforming
finite element discretizations, which involves a redefinition of the energy scalar
products on lower levels.
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If only

ρ(I∗kIk) ≤ 2,(C2)

then the W-cycle has been shown to yield Bj that satisfy

σ(I −BjAj) ⊂ [ −δj1+δj
,

δj
1+δj

], where δj <∼ m(j)−α.(2.10)

Unfortunately, for the usual nonconforming multi-grid methods, (C1) does not
hold, whereas (C2) has been shown only for an Ik used for the rotated Q1 element
([CO98]). The common Ik used for the nonconforming P1 element or the Morley
element generally do not satisfy (C2), and neither does the alternative Ik for the
Morley element that will be introduced in this paper.

Without (C2), the W-cycle satisfies (2.10) for m(k) = m sufficiently large. In
fact, it can be shown that it is sufficient that

ρ(I∗kK̃
(m−1)
k (K̃(m−1)

k )∗Ik) ≤ 2,(C3)

which generalizes (C2). By (A) and (B), the forthcoming Lemma 2.2 and (2.13)
show that indeed (C3) is valid for m sufficiently large.

If (C3) is not valid, then the W-cycle may result in a preconditioned system that
is indefinite. On the other hand, when p = 1, from (B) it can be deduced that
BjAj is positive definite anyway, although not necessarily ρ(I −BjAj) < 1. In the
remainder of this subsection, we will study some V-cycle variants, i.e., p = 1, to be
used as preconditioners, only assuming (A) and (B).

For the variable V-cycle, i.e., m(j − k) grows exponentially with k, it has been
shown that

λmax(I −BjAj) ≤ δj
1+δj

, where δj <∼ m(j)−α.(2.11)

Yet, from the analysis presented in [BPX91], it can be deduced that when α = 1,
(2.11) is even valid for any (m(k))1≤k≤j with m(k) ≥ m(j).

We now consider λmin(I − BjAj) = −λmax(BjAj − I). A repeated use of (2.6)
shows that

aj((BjAj − I)u, u) =
j∑

k=1

ak((K̃(m(k))
k )∗(IkI∗k − I)K̃(m(k))

k Ĩ∗j←ku, Ĩ
∗
j←ku),

where

Ĩj←k := (K̃(m(j))
j )∗Ij Ĩj−1←k (j > k), and Ĩk←k := I.

With

qk := max{0, λmax((K̃(m(k))
k )∗(IkI∗k − I)K̃(m(k))

k )},
we find that

λmax(BjAj − I) ≤
j∑

k=1

qkρ(Ĩ∗j←k Ĩj←k).(2.12)

For convenience, from [BPX91] we recall the following result that concerns the
two-grid method:

Lemma 2.2. Assume that (A) and (B) hold. Then

qk ≤ ρ((K̃(m(k))
k )∗(I − IkI∗k )K̃(m(k))

k ) <∼ m(k)−α.
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Proof. With Kk =
{
K∗kKk if m(k) is even
KkK

∗
k if m(k) is odd , (A) and (B) show that

|ak((I − IkI∗k )K̃(m(k))
k u, K̃

(m(k))
k u)| <∼

(
ρ−1
k ‖K̃

(m(k))
k u‖22,k

)α
ak(K

m(k)

k u, u)1−α

<∼ ak((I −Kk)K
m(k)

k u, u)αak(K
m(k)

k u, u)1−α.

Since σ(Kk) ⊂ [0, 1], which follows from (B), we infer that

ak((I −Kk)K
m(k)

k u, u) ≤ ak(u, u) max
λ∈[0,1]

(1 − λ)λm(k) <∼ m(k)−1ak(u, u)

and ak(K
m(k)

k u, u) ≤ ak(u, u), which completes the proof.

To estimate ρ(Ĩ∗j←k Ĩj←k), we use the fact that

ak(I∗k+1K̃
(m(k+1))
k+1 u, I∗k+1K̃

(m(k+1))
k+1 u)

= ak+1((K̃(m(k+1))
k+1 )∗(Ik+1I

∗
k+1 − I)K̃(m(k+1))

k+1 u, u) + ak+1(K
m(k+1)

k+1 u, u)

≤ (qk+1 + 1)ak+1(u, u),

(2.13)

and so ρ(Ĩ∗j←k Ĩj←k) ≤
∏j
i=k+1(qi + 1). From (2.12) and Lemma 2.2, we conclude

that

λmax(BjAj − I) ≤
j∑

k=1

qk

j∏
i=k+1

(qi + 1) = −1 +
j∏

k=1

(qk + 1)

≤ −1 + e
∑j
k=1 qk ≤ −1 + e

∑j−1
k=0 m(j−k)−α .

For the variable V-cycle, we infer that λmax(BjAj − I) <∼ m(j)−α, and so by
(2.11), κ(BjAj) − 1 <∼ m(j)−α, as was also noted in [BPX91]. However, a milder
increase of m(j − k) as a function of k is already sufficient. For example, m(j − k)
>∼ m(j)+kβ for some β > 1

α yields λmax(BjAj−I) <∼ m(j)−α+ 1
β . What is more, to

get λmax(BjAj − I) to be uniformly bounded, it is obviously already sufficient that∑j−1
k=0 m(j − k)−α <∼ 1. Combining this with the bound (2.11) on λmax(I −BjAj),

which for α = 1 is valid for any (m(k))1≤k≤j with m(k) ≥ m(j), yields the following
result:

Theorem 2.3 (“mildly” variable V-cycle). Assume (A) with α = 1 and (B). Let
p = 1, m(k) ≥ m(j), and

∑j−1
k=0

1
m(j−k)

<∼ 1. Then κ(BjAj) <∼ 1.

So, besides the fact that upper bounds on the condition number corresponding to
various cycles decrease faster as functions of the number of smoothing steps when
α is larger, Theorem 2.3 is another indication that for more regular problems one
may expect more efficient multi-grid methods, in particular when α = 1.

Aiming at minimizing the number of operations on lower levels, obviously the
best algorithm is the standard V-cycle. Unfortunately, a proof of optimality of
this cycle applied to general nonconforming discretizations cannot be deduced from
the above estimates. However, some useful observations can be made. As stated
before, for α = 1 the upper bound (2.11) on λmax(I − BjAj) is also valid for the
standard V-cycle. Furthermore, again for the standard V-cycle, (2.12) shows that
the behaviour of λmax(BjAj−I) might depend critically on the factors ρ(Ĩ∗j←k Ĩj←k),
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that is, on the squared energy norm of the “iterated prolongations alternated with
smoothers”. Indeed, in case these factors are uniformly bounded, then at least
λmax(BjAj − I) <∼ j m(j)−α, and so κ(BjAj) <∼ j m(j)−1 if α = 1. However,
if ρ(Ĩ∗j←k Ĩj←k) increases exponentially with j − k (which is not excluded by the
preceding analysis), then κ(BjAj) might increase exponentially as a function of j.

Numerical results for an α = 1 case presented in Section 3.3.3 show that this
exponential increase of the condition number indeed occurs with a prolongation
that is commonly used. With a new prolongation, that is developed with the aim
of getting bounded factors ρ(Ĩ∗j←k Ĩj←k), the condition number of the standard
V-cycle even turns out to be uniformly bounded.

2.4. Assumption (B) for inexact Gauss-Seidel and damped Jacobi
smoothers. By substituting u = A−1

k Ckw, we see that (B) can be rewritten as

ρk(2<ck(w,w) − ak(w,w)) >∼ sup
06=v∈Vk

|ck(w, v)|2
‖v‖20,k

(w ∈ Vk).(2.14)

Having fixed some bases of the spaces Vk, and with ck and Ck related according to
(2.5), and mass matrices Mk defined by 〈Mku,v〉 = (u, v)0,k (u, v ∈ Vk), by noting
that

ρk = ρ(M−1
k Ak),

(2.14) in turn can be written as

ρ(M−1
k Ak)(Ck + CH

k −Ak) >∼ CH
k M−1

k Ck.(2.15)

In two propositions, we give sufficient conditions for (B). Dealing with “inexact
smoothers”, i.e., smoothers that involve an inexact, possibly nonsymmetric inner
solver, these propositions generalize results from the literature, e.g., from [BP92].
These generalizations turn out to be particularly useful in cases where the mass
matrices are not uniformly well-conditioned, a situation that we will encounter in
practical applications.

Proposition 2.4. Let D̃k, Dk and Lk be some matrices of the same size as Ak,
and let Ck := D̃k + Lk. If

(a) 0 < Dk = DH
k
<∼ ρ(M−1

k Ak)Mk,
(b) Ak ≤ Dk + Lk + LHk ,

(c) ‖D−
1
2

k LkD
− 1

2
k ‖ <∼ 1,

(d) 1− ‖I−D
1
2
k D̃−1

k D
1
2
k ‖ >∼ 1,

with ‖ · ‖ = 〈·, ·〉 1
2 being the Euclidean-norm, then (B) is valid.

Proof. From the definition of Ck, b and (2.15), it is sufficient to prove that

ρ(M−1
k Ak)(D̃k + D̃H

k −Dk) >∼ (D̃H
k + Lk)M−1

k (D̃k + Lk).

From

D̃k + D̃H
k −Dk = D̃H

k D−
1
2

k

(
I− (I−D

1
2
k D̃−Hk D

1
2
k )(I−D

1
2
k D̃−1

k D
1
2
k )
)

D−
1
2

k D̃k,

which is valid for any invertible D̃k and because Dk = DH
k > 0, we infer that

D̃k + D̃H
k −Dk ≥ (1− ‖I−D

1
2
k D̃−1

k D
1
2
k ‖

2)D̃H
k D−1

k D̃k.(2.16)
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Because of this result together with d, and because M−1
k

<∼ ρ(M−1
k Ak)D−1

k by a,
it is sufficient to show that

D−1
k

>∼ (I + D̃−Hk Lk)D−1
k (I + LkD̃−1

k ).

The latter relation follows from

‖D−
1
2

k (I + LkD̃−1
k )D

1
2
k ‖ ≤ 1 + ‖D−

1
2

k LkD
− 1

2
k ‖‖D

1
2
k D̃−1

k D
1
2
k ‖ <∼ 1,

by c and d.

Remark 2.5. Condition d of Proposition 2.4 means that D̃−1
k is an approximate

inverse of Dk which defines a uniformly convergent iteration in the “energy” norm
〈Dk·, ·〉

1
2 .

Remark 2.6 (“inexact” point or block Gauss-Seidel). In the setting of Proposition
2.4, let Ak = Dk + Lk + LHk be a partitioning of Ak into its (block) diagonal, its
(block) lower triangular and its (block) upper triangular part, so that b is trivially
valid.

Now Dk > 0 follows from Ak > 0. With ∆k := diag(Mk), Âk := ∆−
1
2

k Ak∆−
1
2

k ,

D̂k := ∆−
1
2

k Dk∆−
1
2

k and M̂k := ∆−
1
2

k Mk∆−
1
2

k , the relation Dk
<∼ ρ(M−1

k Ak)Mk

can be rewritten as

D̂k
<∼ ρ(M̂−1

k Âk)M̂k.

From D̂k ≤ ρ(Âk)I ≤ κ(M̂k)ρ(M̂−1
k Âk)M̂k, a sufficient condition for a is

κ(M̂k) <∼ 1. From

〈Mku,u〉
〈∆ku,u〉

=
‖
∑
m∈Ik uk,mφk,m‖20,k∑

m∈Ik |uk,m|2‖φk,m‖
2
0,k

,

we see that κ(M̂k) <∼ 1 means uniform stability of the normalized bases of Vk with
respect to ‖ ‖0,k.

The Cauchy-Schwarz inequality |〈Aku,v〉| ≤ 〈Aku,u〉
1
2 〈Akv,v〉

1
2 implies that

all elements or blocks of D−
1
2

k LkD
− 1

2
k have absolute values or Euclidean norms less

than or equal to one. So in case the number of elements or blocks, or more generally,
the number of nonzero elements or blocks in each row and column is uniformly
bounded, then c is valid. Applications are given by (inexact, i.e., D̃k 6= Dk) point
or block Gauss-Seidel iterations based on lexicographical or multicolor orderings of
the unknowns.

Proposition 2.7. Let D̃k, Dk and Lk be some matrices of the same size as Ak,
and let Ck := ρ(D−1

k Ak)D̃k. If

(a) 0 < Dk = DH
k
<∼

ρ(M−1
k Ak)

ρ(D−1
k Ak)

Mk,

(b) 1− ‖I−D
1
2
k D̃−1

k D
1
2
k ‖ >∼ 1,

then (B) is valid.

Proof. In this case, (2.15) reads as

ρ(M−1
k Ak)(D̃k + D̃H

k − ρ(D−1
k Ak)−1Ak) >∼ ρ(D−1

k Ak)D̃H
k M−1

k D̃k.(2.17)

The proof follows from Ak ≤ ρ(D−1
k Ak)Dk, an application of (2.16), b and a.
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Remark 2.8 (preconditioned Richardson). If in Proposition 2.7, D̃k = ω−1Dk for
some fixed ω ∈ R, then b means ω ∈ (0, 2). Moreover, since after substituting
D̃k = ω−1Dk, (2.17) is equivalent to

2ωI− ω2ρ(D−1
k Ak)−1D−

1
2

k AkD
− 1

2
k

>∼
ρ(D−1

k Ak)

ρ(M−1
k Ak)

D
1
2
kM−1

k D
1
2
k ,

in this case both ω ∈ (0, 2) and a are also necessary conditions for (B).

Remark 2.9. Writing Ak−Dk in the form Lk + LHk , condition a of Proposition 2.7

follows from 0 < Dk
<∼ ρ(M−1

k Ak)Mk and ρ(D−1
k Ak) ≤ 1 + 2‖D−

1
2

k LkD
− 1

2
k ‖ <∼ 1,

that is, from assumptions a and c of Proposition 2.4.
In particular, when Dk is a (block) diagonal part of Ak, sufficient conditions for

these assumptions are discussed in Remark 2.6. In this case, and with D̃k = ω−1Dk,
the iteration from Proposition 2.7 is known as the damped (block) Jacobi iteration
with damping parameter ρ(D−1

k Ak)−1ω. Iterations with D̃k not equal to some
multiple of Dk will be called inexact damped (block) Jacobi iterations.

2.5. The regularity and approximation assumption (A) with α = 1 in
a nonconforming framework. We consider the following usual nonconforming
finite element setting: Let

H2 ↪→ H1 ↪→ H0

be continuously embedded Hilbert spaces. We assume that, for all k,

Vk ⊂ H0,

and put

‖ · ‖0,k := ‖ · ‖H0 .

Furthermore, we assume that there exists a scalar product a on H1 satisfying

a(·, ·) =∼ ‖ · ‖2H1 ,

such that for all k, ak can be extended to a scalar product on H1 + Vk, which
reduces to a on H1. Finally, we assume that the sequence (ρk)k defined in (2.8)
satisfies ρk+1

<∼ ρk.

Theorem 2.10. For f ∈ H0, let u ∈ H1 denote the solution of

a(u, v) = (f, v)H0 (v ∈ H1).

Then, if
(a) u ∈ H2 with ‖u‖H2 <∼ ‖f‖H0 (“full” regularity),

(b) |ak(u, vk)− (f, vk)H0 | <∼ ρ
− 1

2
k ak(vk, vk)

1
2 ‖f‖H0 (vk ∈ H1 + Vk)

(consistency)

(c) inf
vk∈Vk

ak(v − vk, v − vk)
1
2 <∼ ρ

− 1
2

k ‖v‖H2 (v ∈ H2)

(approximation)
and there exist mappings Πk : H2 → Vk such that

(d) ‖I −Πk‖H0←H2 <∼ ρ−1
k ,

(e) ‖Πk − IkΠk−1‖H0←H2 <∼ ρ−1
k ,

and finally,
(f) ‖Ik‖H0←H0 <∼ 1,



NONCONFORMING MULTI-GRID METHODS 65

then

|ak((I − IkI∗k )vk, vk)| <∼ ρ−1
k ‖vk‖

2
2,k (vk ∈ Vk)

(Assumption (A) with α = 1).

Proof. By the definition of ‖ ‖2,k in (2.7), it follows that

|ak(wk, vk)| ≤ ‖wk‖H0‖vk‖2,k (wk, vk ∈ Vk),(2.18)

which means that it is sufficient to show that

‖(I − IkI∗k )vk‖H0 = sup
06=f∈H0

|(f, (I − IkI∗k )vk)H0 |
‖f‖H0

<∼ ρ−1
k ‖vk‖2,k (uk ∈ Vk).

(2.19)

Given f ∈ H0, we define u ∈ H1 and, for each k, uk ∈ Vk by

a(u,w) = (f, w)H0 (w ∈ H1),
ak(uk, wk) = (f, wk)H0 (wk ∈ Vk).

From

(f, (I − IkI∗k )vk)H0 = ak(uk, (I − IkI∗k )vk)
= ak(uk − Ikuk−1, vk) + ak(Ik(uk−1 − I∗kuk), vk),

together with (2.18) and f, we see that (2.19) will follow from

‖uk − Ikuk−1‖H0 <∼ ρ−1
k ‖f‖H0,(2.20)

‖uk−1 − I∗kuk‖H0 <∼ ρ−1
k ‖f‖H0.(2.21)

By a, b and c, the well-known Aubin-Nitsche lemma (cf. e.g., [Cia78, Ex. 4.2.3])
shows that

‖u− uk‖H0 <∼ ρ−1
k ‖f‖H0 (convergence).(2.22)

By writing

uk − Ikuk−1 = (uk −Πku) + (Πku− IkΠk−1u) + Ik(Πk−1u− uk−1),

(2.20) follows from (2.22), d, e, f and a.
To establish (2.21), we write

‖uk−1 − I∗kuk‖H0 = sup
06=g∈H0

|(g, uk−1 − I∗kuk)H0 |
‖g‖H0

,

and, for given g ∈ H0, we define z ∈ H1 and, for each k, zl ∈ Vl by

a(z, w) = (g, w)H0 (w ∈ H1),
ak(zk, wk) = (g, wk)H0 (wk ∈ Vk).

By writing

(g, uk−1 − I∗kuk)H0 = (g, uk−1)H0 − ak−1(zk−1, I
∗
kuk)

= (g, uk−1)H0 − ak(Ikzk−1, uk)
= (g, uk−1 − uk)H0 + ak(zk − Ikzk−1, uk)
= (g, uk−1 − uk)H0 + (zk − Ikzk−1, f)H0 ,

(2.21) follows from (2.22) and (2.20).
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Remark 2.11. Under the assumptions of Theorem 2.10, most proofs from the lit-
erature yield assumption (A) only for α = 1

2 . An exception is [Bre99], which our
proof is partly based upon. Yet, compared to that paper, our proof is shorter and
needs fewer assumptions. On the other hand, the arguments from [Bre99] are not
restricted to the “full” regularity case. In view of the multi-grid convergence the-
ory from Section 2.3, it is desirable to have (A) with α as high as possible, and in
particular to know whether it is valid for α = 1.

In [BDH99, §4] a result similar to Theorem 2.10 was proved. Instead of b and c,
there (2.22) was assumed, which is clearly also a sufficient condition for the present
proof. Moreover, instead of d, e and f, it was assumed that Ik : Vk−1 → Vk can be
extended to an H0-bounded projector Îk from Vk−1 +Vk onto Vk. Obviously, (2.20)
can also be deduced from this property, which means that our proof applies as well.
Although in applications often the condition involving Îk is more easily verified, in
connection with the Morley element we will encounter an Ik of practical interest
for which d, e and f are valid, but the condition involving Îk is not.

2.6. Additive multi-grid method. In particular to underline the role of the
iterated prolongations in the behaviour of multi-grid methods, we briefly discuss
the additive variant. Given some scalar products ek on Vk, we define Ek : Vk → V ′k,
determining a Hermitian smoother, by

(Eku)(v) = ek(u, v) (u, v ∈ Vk).

The additive multi-grid operator B(add)
k is now defined by

B
(add)
k =

{
E−1
k + IkB

(add)
k−1 I ′k if k > 0,

A−1
0 if k = 0.

The following result can be deduced from [Osw97]:

Theorem 2.12. For k ≥ 0, let Pk : Vk+1 → Vk be some mappings. Put

Ij←k :=
{
IjIj−1←k if j > k,

I if j = k,
and Pk←j :=

{
Pk←j−1Pj−1 if j > k,

I if j = k.

Then, with I0P−1 := 0,

inf
06=u∈Vj

ej(u, u)
aj(u, u)

· max
0≤k≤j

sup
06=u∈Vk

aj(Ij←ku, Ij←ku)
ek(u, u)

≤ κ(B(add)
j Aj) ≤ sup

06=u∈Vj

∑j
k=0 ek((I − IkPk−1)Pk←ju, (I − IkPk−1)Pk←ju)

aj(u, u)

·
j∑

k=0

sup
06=u∈Vk

aj(Ij←ku, Ij←ku)
ek(u, u)

.

In particular, if

ak(u, u) <∼ ek(u, u) <∼ ρk‖u‖20,k (u ∈ Vk),(2.23)

then with

tj := sup
06=u∈Vj

∑j
k=0 ρk‖(I − IkPk−1)Pk←ju‖20,k

aj(u, u)
,
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it follows that

max
0≤k≤j

sup
06=u∈Vk

aj(Ij←ku, Ij←ku)
ek(u, u)

<∼ κ(B(add)
j Aj) <∼ tj

j∑
k=0

ρ(I∗j←kIj←k).(2.24)

Remark 2.13. Let us assume (2.23). In our applications, it will appear that the
Pk can be selected such that either tj <∼ 1 or tj <∼ j, and so κ(B(add)

j Aj) <∼
jmax0≤k≤j ρ(I∗j←kIj←k) or κ(B(add)

j Aj) <∼ j2 max0≤k≤j ρ(I∗j←kIj←k). On the other

hand, for any fixed k, based on ak( , ) =∼ ek( , ), we have κ(B(add)
j Aj) >∼ ρ(I∗j←kIj←k)

(j ≥ k). Together these bounds show that the quality of the additive multi-grid
preconditioner depends critically on the energy norm of the iterated prolongations.

Recall that at the end of Subsection 2.3, for Bj defined by the (multiplicative)
standard V-cycle, we observed that the upper bound on κ(BjAj) depends critically
on the energy norm of the “iterated prolongations alternated with smoothers”, i.e.,
on the factors ρ(Ĩ∗j←k Ĩj←k). Since by assumption (B), ρ(K∗kKk) ≤ 1, it is likely
that ρ(I∗j←kIj←k) <∼ 1 would imply that ρ(Ĩ∗j←k Ĩj←k) <∼ 1. On the other hand, if
for example ρ(I∗j←kIj←k) is an exponentially increasing function of j − k, then for
general smoothers it cannot be expected that ρ(Ĩ∗j←k Ĩj←k) <∼ 1.

Remark 2.14. Even when tj <∼ 1 and ρ(I∗j←kIj←k) <∼ 1, Theorem 2.12 only shows

that the additive multi-grid preconditioner is suboptimal, i.e., κ(B(add)
j Aj) <∼ j.

Yet, under the conditions that were imposed, this is the best result one can expect.
Indeed, consider the case that 0 6= V0 ⊂ · · · ⊂ Vj−1 ( Vj , for all 1 ≤ k ≤ j,
ek = ak = aj , and Ik is the trivial injection. It is not difficult to show that then
κ(B(add)

j Aj) = j + 1.

Below we comment on the construction of Hermitian smoothers that satisfy
(2.23). If the forms ck introduced in Section 2.1 are Hermitian and (B) is valid, then
the equivalence of (B) and (2.14) shows that 2ck(u, u) > ak(u, u) and ck(u, u) <∼
ρk‖u‖20,k, or ek = ck satisfies (2.23).

The reverse is not valid; taking ck = ek, where ek satisfies (2.23), does not imply
(B). Indeed, note for example that (2.23) does not guarantee that 2ek > ak, that
is, convergence of the corresponding iteration.

In case ck is non-Hermitian, an obvious candidate for a suitable Hermitian
smoother is the symmetrized smoother defined as follows: Let Ck, C†k be defined as
in (2.4). For g ∈ V ′k, put Gkg = x(2), where x(0) = 0 and{

x(1) = x(0) + C−1
k (g −Akx(0)),

x(2) = x(1) + C−†k (g −Akx(1)),

or Gk = C−1
k + C−†k − C

−†
k AkC

−1
k .

Proposition 2.15. Ek := G−1
k exists, and ek(u, v) = (Eku)(v) are scalar products

that satisfy (2.23) if and only if the ck satisfy (B).

Proof. Assumption (B) can be rewritten as

ak(GkAku, u) >∼ ρ−1
k ‖u‖22,k (u ∈ Vk),(2.25)

which shows that Ek exists.
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From ak((I−GkAk)u, u) = ak(K∗kKku, u) ≥ 0, we have ak(GkAku, u) ≤ ak(u, u),
or, by substituting u = (GkAk)−

1
2 v,

ak(v, v) ≤ ak(A−1
k Ekv, v) = ek(v, v) (v ∈ Vk).(2.26)

Substituting u = (GkAk)−1w in (2.25) yields

ek(w,w) >∼ ρ−1
k sup

06=v∈Vk

|ek(w, v)|2
‖v‖20,k

,(2.27)

and so, by taking v = w, in particular

ek(w,w) <∼ ρk‖w‖20,k (w ∈ Vk).(2.28)

Together, formulas (2.26) and (2.28) show that (2.23) is valid.
On the other hand, if ek(u, v) := (Eku)(v) are scalar products that satisfy (2.23)

and thus (2.28), then by an application of the Cauchy-Schwarz inequality we infer
(2.27) and so (2.25), that is, (B) is valid.

3. Applications

3.1. Nonconforming P1 element. Let τ0, τ1, . . . be a sequence of conforming tri-
angulations of some bounded, convex polygon Ω ⊂ R2, such that τk+1 is generated
from τk by refinement, supT∈τk diam(T ) =∼ 2−k, and the triangles satisfy a shape
regularity condition uniformly over the levels. We define Ek and Ek as the sets
of all and of all internal edges of τk, respectively. For e ∈ Ek, me will denote the
midpoint of e. We take Vk = V

(P1)
k , where

V
(P1)
k = {v ∈

∏
T∈τk P1(T ): v is continuous at me for e ∈ Ek,

and it vanishes at me for e ∈ Ek\Ek},
and define

ak(u, v) =
∑
T∈τk

∫
T

∇u · ∇v.

With ‖ ‖0,k := ‖ ‖L2(Ω), we find that ρk defined in (2.8) satisfies ρk =∼ 4k.
We define the prolongation in the usual way, that is,

(Iku)(me) = averagei of u|Ti(me) (e ∈ Ek),

where τk−1 3 Ti ⊃ e.
In the setting of Section 2.5, let

H0 = L2(Ω), H1 = H1
0 (Ω), H2 = H2(Ω) ∩H1

0 (Ω),

and

a(u, v) =
∫

Ω

∇u · ∇v.

With these definitions, it is well-known that conditions a-c of Theorem 2.10 are sat-
isfied (for b and c, see, e.g., [BS94, §8.3]). We define Πk : H2(Ω) ∩H1

0 (Ω)→ V
(P1)
k

by (Πku)(me) = u(me). Then, using the local reproduction by Ik of first de-
gree polynomials, standard arguments like the Sobolev embedding theorem and
the Bramble-Hilbert lemma show the remaining conditions c, d and f. From Theo-
rem 2.10 we conclude that assumption (A) with α = 1 is valid.
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We now equip the spaces V (P1)
k with nodal bases {ηk,e : e ∈ Ek}, defined by

ηk,e(mẽ) = δe,ẽ (e, ẽ ∈ Ek).(3.1)

These bases are L2(Ω)-orthogonal, and so, as demonstrated in Section 2.4, (inexact)
standard Gauss-Seidel and damped Jacobi smoothers satisfy assumption (B).

Since (A) and (B) are valid, with a number of smoothing steps m that is suf-
ficiently large, the W-cycle yields uniformly convergent iterations. Yet, since gen-
erally ρ(I∗kIk) > 2, which has been demonstrated in [Che97, Ex.1], for any m that
happens not to be large enough the W-cycle might result in a preconditioned system
that is indefinite. On the other hand, the variable V-cycle yields preconditioned
systems that have uniformly bounded condition numbers. Since (A) is valid with
α = 1, Theorem 2.3 even shows that this also holds for the mildly variable V-cycle.

We now consider the additive multi-grid method. By taking Pk to be the re-
striction to V (P1)

k+1 of the ak+1( , )-orthogonal projector from V
(P1)
k+1 +V

(P1)
k to V (P1)

k ,
[Osw97] has proved that the scalars tj from Theorem 2.12 are uniformly bounded.
Furthermore, assuming uniform dyadic refinements and under some technical as-
sumptions concerning the degree of the nodes in the mesh, in [Osw92] it was shown
that ρ(I∗j←kIj←k) <∼ 1. Assuming a Hermitian smoother that satisfies (2.23), from

Theorem 2.12 we conclude that the additive multi-grid preconditioner B(add)
j sat-

isfies κ(B(add)
j Aj) <∼ j. Since regularity plays no role in the analysis of the additive

method, this result is also valid for nonconvex Ω.
Because ρ(I∗j←kIj←k) <∼ 1, it is likely that also ρ(Ĩ∗j←k Ĩj←k) <∼ 1. According to

the observations made at the end of Section 2.3, this would mean that the standard
(multiplicative) V-cycle yields a preconditioner Bj for which at least κ(BjAj) <∼ j.

3.2. Rotated Q1 element. Now let τ0, τ1, . . . be a sequence of conforming sub-
divisions of some bounded, convex polygon Ω ⊂ R2 into parallelograms, such that
τk+1 is generated from τk by refinement, supT∈τk diam(T ) =∼ 2−k, and the par-
allelograms satisfy a shape regularity condition uniformly over the levels. We
define Ek and Ek as the sets of all or internal edges of τk, respectively. For
e ∈ Ek, me will denote the midpoint of e. For each T ∈ τk, we consider the
space PT = {v ∈ L2(T ) : v ◦ FT ∈ span{1, x, y, x2 − y2}}, where FT is an affine
bijection between [−1, 1]2 and T . There are two usual options to identify v ∈ PT
uniquely, namely either by

{v(me) : e ∈ Ek},(3.2)

or by

{ 1
|e|
∫
ev : e ∈ Ek}.(3.3)

Both choices give rise to different finite element spaces Vk = V
(Q1)
k defined by

V
(Q1)
k = {v ∈

∏
T∈τk PT : the degrees of freedom match at e ∈ Ek,

and they vanish at e ∈ Ek\Ek},
Similarly to Section 3.1, we take

ak(u, v) =
∑
T∈τk

∫
T

∇u · ∇v,

and with ‖ ‖0,k := ‖ ‖L2(Ω), we find that ρk defined in (2.8) satisfies ρk =∼ 4k.
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As in Section 3.1, the prolongations Ik can be defined by averaging the degrees
of freedom at e ∈ Ek, and by setting them equal to zero at e ∈ Ek\Ek. For both
(3.2) and (3.3), the resulting Ik reproduces first degree polynomials.

With H0, H1, H2 and a( , ) as in Section 3.1, all conditions of Theorem 2.10 can
be verified analogously. We conclude that assumption (A) with α = 1 is valid.

Since for both (3.2) and (3.3), the normalized bases of V (Q1)
k with respect to

the degrees of freedom are uniformly L2(Ω)-stable, from Section 2.4 we learn that
(inexact) standard Gauss-Seidel and damped Jacobi smoothers satisfy (B). We con-
clude that the W-cycle with a sufficiently large number of smoothing iterations, the
variable V-cycle and even the mildly variable V-cycle all yield uniformly convergent
iterations or preconditioned systems with uniformly bounded condition numbers.

Assuming that τk corresponds to a uniform partition of Ω into squares, for the
choice (3.3), in [CO98] it was shown that ρ(I∗kIk) ≤ 2 (but generally ρ(I∗kIk) > 1,
see [Che97]). This means that even for any positive number of smoothing iterations
the W-cycle yields uniformly convergent iterations.

Again for (3.3), and under the same assumption on the mesh, in [CO98] it
was shown that ρ(I∗j←kIj←k) <∼ 1. Since, for Pk being the restriction to V

(Q1)
k+1

of the ak+1( , )-orthogonal projector from V
(Q1)
k+1 + V

(Q1)
k to V

(Q1)
k , it was proved

that tj <∼ 1, Theorem 2.12 now shows that with a suitable Hermitian smoother
the additive multi-grid preconditioner is suboptimal, i.e., κ(B(add)

j Aj) <∼ j. Since
it is likely that as a consequence also ρ(Ĩ∗j←k Ĩj←k) <∼ 1, this would mean that the
standard (multiplicative) V-cycle yields a preconditioner that is at least suboptimal.

On the other hand, for the choice (3.2), we know that ρ(I∗kIk) > 2 ([Che97]).
This means that with a number of smoothing steps that is not large enough, the
W-cycle might result in a preconditioned system that is indefinite. Moreover, again
for (3.2), numerical results from [Osw97] indicate that for fixed k, ρ(I∗j←kIj←k)
increases exponentially as a function of j − k. By Remark 2.13, this means that
also κ(B(add)

j Aj) is an exponentially growing function of j ≥ k. Moreover, since
in this case for general smoothers it cannot be expected that ρ(Ĩ∗j←k Ĩj←k) <∼ 1,
the discussion at the end of Section 2.3 shows that the standard (multiplicative)
V-cycle might give unsatisfactory results as well.

3.3. Morley element.

3.3.1. The discretized biharmonic equation. Let τ0, τ1, . . . be a sequence of con-
forming triangulations of some bounded, convex polygon Ω ⊂ R2, such that τk+1 is
generated from τk by refinement, supT∈τk diam(T ) =∼ 2−k, and the triangles satisfy
a shape regularity condition uniformly over the levels. We define Ek, Nk as the set
of all edges and vertices of τk, and Ek, Nk as the set of internal edges and vertices
of τk. For e ∈ Ek, me will denote the midpoint of e, and ne a unit vector normal to
e. We take Vk = Mk, where Mk is the Morley finite element space corresponding
to τk, i.e.,

Mk = {v ∈
∏
T∈τk P2(T ): v is continuous at p ∈ Nk and vanishes at p ∈ Nk\Nk;

∂nev is continuous at me for e ∈ Ek and vanishes at me for e ∈ Ek\Ek}.
Since v ∈ Mk is piecewise quadratic, its derivative tangential to e ∈ Ek in me

from either side of e (if e ∈ Ek) can be expressed as a divided difference in terms of
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the values of v at the endpoints of e. The continuity of v at the vertices therefore
shows that also these tangential derivatives are continuous for e ∈ Ek and vanish
for e ∈ Ek\Ek.

We define ak = a
(Bih)
k by

a
(Bih)
k (u, v) :=

∑
T∈τk

∫
T

2∑
i,j=1

∂2u
∂xi∂xj

∂2v
∂xi∂xj

.

The prolongation I(Bih,1)
k : Mk−1 → Mk commonly used in connection with the

Morley finite element spaces was introduced in [Bre89], and is defined by

(I(Bih,1)
k u)(p) = averagei of u|Ti(p) (p ∈ Nk),

∂ne(I
(Bih,1)
k u)(me) = averagei of ∂ne(u|Ti)(me) (e ∈ Ek),(3.4)

where τk−1 3 Ti 3 p or τk−1 3 Ti ⊃ e.
As appears from numerical results reported in [Osw97, Che97], a disadvantage of

I
(Bih,1)
k is that, for fixed k, ρ((I(Bih,1)

j←k )∗I(Bih,1)
j←k ) generally grows exponentially with

j − k. As we said before, this has an adverse effect on the additive and (V-cycle
type) multiplicative multi-grid methods.

In this paper, we therefore introduce an alternative prolongation I
(Bih,2)
k . For

ease of presentation, we restrict ourselves to the case of uniform dyadic refinements.
Let E(new)

k denote the set of new edges, i.e., E(new)
k = {e ∈ Ek : e 6⊂ ẽ for any ẽ ∈

Ek−1}. Then I
(Bih,2)
k is defined by

(I(Bih,2)
k u)(p) = averagei of u|Ti(p) (p ∈ Nk),(3.5)

where τk−1 3 Ti 3 p,

∂ne(I
(Bih,2)
k u)(me) = ∂neu(me) (e ∈ E(new)

k )(3.6)

and

a
(Bih)
k (I(Bih,2)

k u, M̌k) = 0,(3.7)

where M̌k is defined as the span of the remaining degrees of freedom, i.e.,

M̌k = {u ∈Mk : u(Nk) = 0, ∂neu(me) = 0 (e ∈ E(new)
k )}.

Note that (3.5)-(3.6) coincide with the corresponding definitions of I(Bih,1)
k , and

that for each p̃ ∈ Nk−1, equation (3.7) involves solving a small system with un-
knowns the values ∂ne(I

(Bih,2)
k u)(me) for all edges e ∈ Ek\E(new)

k that contain p̃
(see Figure 1).

Since among all prolongations I(Bih)
k : Mk−1 →Mk satisfying (3.5)-(3.6), I(Bih,2)

k

is the one for which ak(I(Bih)
k u, I

(Bih)
k u) is minimal, we have ρ((I(Bih,2)

k )∗I(Bih,2)
k ) ≤

ρ((I(Bih,1)
k )∗I(Bih,1)

k ).

Remark 3.1. In view of a practical implementation, we note that, in case of a mul-
tiplicative multi-grid method, if a prolongation I(Bih)

k is followed by a block Gauss-
Seidel smoother for which the first block, that is assumed to be inverted exactly,
corresponds to the degrees of freedom at the midpoints me of e ∈ Ek\E(new)

k , then
the values ∂ne(I

(Bih)
k u)(me) for these me are irrelevant. That is, when applying
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Figure 1. Degrees of freedom of Mk: Vertices in Nk−1 (⊕), or in
Nk\Nk−1 (•); midpoints of e ∈ E

(new)
k (?), or of e ∈ Ek\E(new)

k

(♦)

such a smoother, it does not matter whether I(Bih,1)
k or I(Bih,2)

k is used, and what
is more, the values ∂ne(I

(Bih)
k u)(me) for these me do not have to be computed.

Obviously, an analogous comment applies to the restriction that is preceded by
the adjoint smoother. The “trick” described here is well-known in the multi-grid
literature in connection with multicolor Gauss-Seidel smoothing.

To be able to prove assumption (A), later on we will need the fact that, like
I

(Bih,1)
k , the prolongation I

(Bih,2)
k locally preserves second order polynomials: Let

p̃ ∈ Nk−1, and assume that u ∈Mk−1 is equal to some second degree polynomial on
the union V of all T ∈ τk−1 that contain p̃. Then ∂ne(I

(Bih,2)
k u)(me) = ∂neu(me)

for all e ∈ E
(new)
k , and, since u is continuous on V , (I(Bih,2)

k u)(p) = u(p) for all
p ∈ Nk in the interior of V . Now let U be the union of all triangles T1, . . . , Tq ∈ τk
that contain p̃. Since the first order partial derivatives of v ∈ M̌k are continuous at
me for e ∈ Ek\E(new)

k , and vanish at me for e ∈ E(new)
k , integration by parts and

an application of the midpoint quadrature rule shows that
q∑
`=1

∫
T`

∑
i,j

∂2u
∂xi∂xj

∂2v
∂xi∂xj

=
q∑
`=1

∑
j

∫
∂T`

(∇ ∂u
∂xj
· n) ∂v∂xj = 0.

We conclude that (u − I(Bih,2)
k u)|U = 0, so that indeed I

(Bih,2)
k locally preserves

second order polynomials.
Since we were not able to derive useful theoretical upper bounds for the values

of ρ((I(Bih,2)
j←k )∗I(Bih,2)

j←k ), we give some numerical results for a model case.

Example 3.2. Let τ0 be the triangulation of Ω = [0, 1]2 into two triangles, and
for k > 0, let τk be generated from τk−1 by uniform dyadic refinement. Numeri-
cally computed values of ρ((I(Bih,2)

10←k )∗I(Bih,2)
10←k ) and ρ((I(Bih,1)

10←k )∗I(Bih,1)
10←k ) are given in

Table 1. The results indicate that, in contrast to ρ((I(Bih,1)
j←k )∗I(Bih,1)

j←k ), the values

ρ((I(Bih,2)
j←k )∗I(Bih,2)

j←k ) are uniformly bounded. The column k = 9, however, shows

that generally ρ((I(Bih,2)
k )∗I(Bih,2)

k ) > 2, which means that also for I(Bih,2)
k , when

the number of smoothing steps is not large enough, the W-cycle might result in a
preconditioned system that is indefinite.



NONCONFORMING MULTI-GRID METHODS 73

Table 1. ρ((I(Bih,i)
10←k )∗I(Bih,i)

10←k )

k 9 8 7 6 5 4 3 2 1 0

i = 2 2.97 4.66 6.36 7.65 8.66 9.29 9.35 8.43 7.45 0.620

i = 1 4.19 1.18e1 3.05e1 7.45e1 1.76e2 4.02e2 8.64e2 1.57e3 1.93e3 7.39e2

Remark 3.3. Instead of minimizing the energy norm over the degrees of freedom at
the midpoints of e ∈ Ek\E(new)

k , equally well we could have modified the standard
prolongation I(Bih,1)

k by minimizing the energy with respect to the degrees of free-
dom at midpoints of e ∈ E(new)

k . Although obviously this also yields a prolongation
with a smaller energy norm, in the model case of Example 3.2, the energy norm of
the sufficiently many iterated prolongations turned out to be even larger than with
the standard prolongation I(Bih,1)

k .

For the following convergence analysis, we take ‖ ‖0,k = ‖ ‖L2(Ω), which implies
that ρk, defined in (2.8), satisfies ρk =∼ 16k.

First we consider the additive multi-grid method. For the prolongation I(Bih,1)
k ,

and with Pk−1 being the restriction to Mk of the a(Bih)
k ( , )-orthogonal projection

fromMk+Mk−1 to Mk−1, in [Osw97] it was proved that the scalars tj from Theorem
2.12 are uniformly bounded. However, because of the generally exponential growth
of ρ((I(Bih,1)

j←k )∗I(Bih,1)
j←k ) as a function of j ≥ k, from Remark 2.13 we learn that

with this prolongation the condition numbers of the preconditioned system are
exponentially growing as well.

If we replace I(Bih,1)
k by I

(Bih,2)
k and use the same mappings Pk−1, then unfor-

tunately the proof of tj <∼ 1 does not carry over. In view of [Osw97, Lemma 7],
the problem is that, in contrast to I(Bih,1)

k , the prolongation I(Bih,2)
k : Mk−1 →Mk

cannot be extended to an L2(Ω)-bounded projector from Mk +Mk−1 onto Mk (cf.
also Remark 2.11). Yet, by definition of Pk, it follows that

a
(Bih)
k (Pku, Pku) = a

(Bih)
k+1 (Pku, Pku) ≤ a(Bih)

k+1 (u, u) (u ∈Mk+1).(3.8)

So if we can prove that

‖(I − I(Bih,2)
k Pk−1)u‖2L2(Ω)

<∼ 16−k
∑
T∈τk

|u|2H2(T ) (u ∈Mk),(3.9)

then the suboptimal result tj <∼ j is valid.
To show (3.9), we write

I − I(Bih,2)
k Pk−1 = (I − I(Bih,2)

k )Pk−1 + (I − Pk−1).

In [Osw97], it was proved that

‖(I − Pk−1)u‖2L2(Ω)
<∼ 16−k

∑
T∈τk

|u|2H2(T ) (u ∈Mk),

which together with (3.8) and the following lemma shows (3.9) and thus tj <∼ j.

Lemma 3.4. With I(Bih)
k being either I(Bih,1)

k or I(Bih,2)
k , we have

‖(I − I(Bih)
k )u‖2L2(Ω)

<∼ 16−k
∑

T∈τk−1

|u|2H2(T ) (u ∈Mk−1).
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Proof. By the exactness of the midpoint quadrature rule on first degree polynomials,
in (3.6) we may replace ∂neu(me) by 1

|e|
∫
e ∂neu, and in (3.4) we can make analogous

replacements for ∂ne(u|Ti)(me). Although these modification thus do not change
the definitions of the prolongations on Mk−1, in contrast to the original ones, the
new definitions allow for canonical extensions of I(Bih)

k to mappings Ĩ(Bih)
k : Mk−1 +

H2
0 (Ω)→Mk. Since Ĩ(Bih)

k locally preserves first (even second) degree polynomials,
the Bramble-Hilbert lemma and a homogeneity argument show that

‖(I − ĨBih)
k )u‖L2(Ω)

<∼ 4−k‖u‖H2(Ω) (u ∈ H2
0 (Ω)).(3.10)

Let M̃k−1 ⊂ H2
0 (Ω) be the Hsieh-Clough-Tocher macro element space corre-

sponding to τk−1 (see, e.g., [Cia78]). In [Bre99], a mapping Ek−1 : Mk−1 → M̃k−1

was constructed satisfying

‖(I − Ek−1)u‖2L2(Ω)
<∼ 16−k

∑
T∈τk−1

|u|2H2(T ) (u ∈Mk−1),(3.11)

and so, in particular,

‖Ek−1u‖2H2(Ω)
<∼

∑
T∈τk−1

|u|2H2(T ) (u ∈Mk−1).(3.12)

A simple scaling argument shows that

‖Ĩ(Bih)
k u‖L2(Ω)

<∼ ‖u‖L2(Ω) (u ∈Mk−1 + M̃k−1).(3.13)

By writing I − I(Bih)
k = (I − Ĩ(Bih)

k )Ek−1 + (I − Ĩ(Bih)
k )(I − Ek−1), the proof of the

lemma follows from (3.10), (3.12), (3.13) and (3.11).

Assuming that indeed ρ((I(Bih,2)
j←k )∗I(Bih,2)

j←k ) <∼ 1, from tj <∼ j and Theorem 2.12
we conclude that with a Hermitian smoother that satisfies (2.23) the additive multi-
grid preconditioner B(add)

j satisfies κ(B(add)
j Aj) <∼ j2.

We now turn to the verification of assumptions (A) and (B) for the multiplicative
multi-grid method. It is well-known that the normalized bases corresponding to the
degrees of freedom defining the Morley finite element space are uniformly L2(Ω)-
stable. So Section 2.4 shows that (inexact) standard Gauss-Seidel and damped
Jacobi smoothers satisfy assumption (B).

Using the local reproduction by both I
(Bih,1)
k and I

(Bih,2)
k of second order poly-

nomials, a proof of assumption (A) with α = 1
2 can be deduced from [Bre99]. Since

with

a(Bih)(u, v) :=
∫

Ω

2∑
i,j=1

∂2u
∂xi∂xj

∂2v
∂xi∂xj

,

for f ∈ H−2(Ω) the problem of finding u ∈ H2
0 (Ω) satisfying a(Bih)(u, v) = f(v)

(v ∈ H2
0 (Ω)) is not fully regular, i.e., ‖u‖H4(Ω)

<∼ ‖f‖L2(Ω) is generally not valid,
but instead only

‖u‖H3(Ω)
<∼ ‖f‖H−1(Ω)(3.14)

can be shown, we stress that assumption (A) with α > 1
2 cannot be expected. As a

consequence, we may only conclude that the W-cycle with a number of smoothing
steps that is sufficiently large is a uniformly convergent iteration, and that the
variable V-cycle yields preconditioned systems having uniformly bounded condition
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numbers. On the other hand, the mildly variable V-cycle does not necessarily
yield uniformly bounded condition numbers, and, compared to an α = 1 case, less
favourable results can be expected for the standard V-cycle. We will develop better
V-cycle type methods in the next subsection.

3.3.2. An equivalent discretized Stokes problem. Let τ0, τ1, . . . be the sequence of
triangulations as in Section 3.3.1. Let

Zk = {u ∈ (V (P1)
k )2 : divku = 0},

where V
(P1)
k is the nonconforming P1 space from Section 3.1, and (divku)|T :=

div u|T (T ∈ τk).
With (curlkv)|T := curl v|T (T ∈ τk), in [FM90] it was proved that curlk :

Mk → Zk is a bijection, and moreover that

a
(Bih)
k (u, v) = a

(St)
k (curlku, curlkv),(3.15)

where

a
(St)
k (u,v) :=

∑
T∈τk

∫
T

2∑
i=1

∇ui · ∇vi.

So when g = f ◦ curlj , the problems of solving

a
(Bih)
j (u, v) = g(v) (v ∈Mj)(3.16)

and

a
(St)
j (u,v) = f(v) (v ∈ Zj)(3.17)

are equivalent, in the sense that u = curlju.

Remark 3.5. The equation (3.17) can be identified as characterizing the velocity
components of a discretized Stokes problem. In [Ste00], an efficient and stable post-
processing procedure is presented for finding an approximation for the pressure
component assuming that some approximations of the velocity components are
available.

A consequence of the equivalence of (3.16) and (3.17) is that if on all levels we
relate smoothers and prolongations for both problems according to

c
(Bih)
k (u, v) = c

(St)
k (curlku, curlkv)

and

curlkI
(Bih)
k = I

(St)
k curlk−1,(3.18)

then the resulting multi-grid methods are equivalent. Moreover, if we equip Zk
with a basis generated by applying curlk to all basis functions of Mk, then from
Section 2.2 it appears that for both multi-grid methods the matrix representations
Ak, pk, pTk , C−1

k and C−Hk of all individual components are equal, and also that
the vector representations of the right-hand sides and the solutions are equal.

This equivalence of both multi-grid methods was used earlier in the literature,
e.g., in [Bre90], in the sense that the discretized biharmonic was used to analyze
the behaviour of the multi-grid method applied to the discretized Stokes problem.
Here we will follow the opposite approach.
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In our general nonconforming multi-grid framework, let Vk = Zk and ak = a
(St)
k .

With ‖ ‖0,k := ‖ ‖L2(Ω)2 , we find that ρk =∼ 4k. Since an analysis using the Stokes
formulation of the additive method does not yield new insights, we concentrate on
the multiplicative multi-grid method. In the setting of Section 2.5, we take

H0 = L2(Ω)2, H1 = {u ∈ H1
0 (Ω)2 : div u = 0}, H2 = H2(Ω)2 ∩H1

and a = a(St) defined by

a(St)(u,v) =
∫

Ω

2∑
i=1

∇ui · ∇vi.

With these definitions, conditions a-c of Theorem 2.10 are satisfied. In fact, using
the continuous equivalent of (3.15), condition a (“full” regularity) can be shown
to be equivalent to (3.14). For the verification of b and c one may consult [Ste99,
§6.3], where they correspond to conditions (I) and (G), respectively.

Because curl : H2
0 (Ω) ∩H3(Ω) → H2 is a homeomorphism (see, e.g., [GR86]),

the conditions d-f of Theorem 2.10 involving I(St)
k : Zk−1 → Zk and some suitable

Π(St)
k : H2 → Zk can be rewritten as∑

T∈τk

|(I −Π(Bih)
k )u|2H1(T )

<∼ 16−k‖u‖2H3(Ω) (u ∈ H2
0 (Ω) ∩H3(Ω)),(3.19)

∑
T∈τk

|(Π(Bih)
k − I(Bih)

k Π(Bih)
k−1 )u|2H1(T )

<∼ 16−k‖u‖2H3(Ω) (u ∈ H2
0 (Ω) ∩H3(Ω)),

(3.20)

and ∑
T∈τk

|I(Bih)
k u|2H1(T )

<∼
∑

T∈τk−1

|u|2H1(T ) (u ∈Mk−1),(3.21)

where I(Bih)
k , I(St)

k and Π(Bih)
k , Π(St)

k are related according to (3.18) and curlkΠ(Bih)
k

= Π(St)
k curl, respectively.

Let I(Bih)
k be either I(Bih,1)

k or I(Bih,2)
k , and let Π(Bih)

k be defined by (Π(Bih)
k u)(p) =

u(p) (p ∈ Nk) and ∂ne(Π
(Bih)
k u)(me) = ∂neu(me) (e ∈ Ek). Then, using the local

reproduction by Π(Bih)
k and I

(Bih)
k of second order polynomials, (3.20) and (3.21)

follow from the Bramble-Hilbert lemma and a homogeneity argument. The inverse
inequalities | · |H2(T )

<∼ 2k| · |H1(T ) and | · |H1(T )
<∼ 2k‖ · ‖L2(T ) on P2(T ), T ∈ τk,

together with Lemma 3.4 show (3.21). Theorem 2.10 shows that within this Stokes
framework assumption (A) with α = 1 is valid.

Now we turn to the verification of assumption (B). Applying curlk to the canon-
ical basis of Mk that corresponds to the degrees of freedom defining this space, we
obtain a basis for Zk that we denote by

{vk,e : e ∈ Ek} ∪ {wk,p : p ∈ Nk}.(3.22)

One may verify that

vk,e = ηk,ete,
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Figure 2. Basis functions vk,e and wk,p of the space Zk

where te = [(ne)2 −(ne)1]T is a unit vector tangential to e and ηk,e is the canonical
basis function of V (P1)

k corresponding to e defined in (3.1), and furthermore that

wk,p =
∑̀
i=1

|ei|−1ηk,einei,p,

where e1, . . . , e` ∈ Ek are all edges that contain p, and nei,p is the unit vector nor-
mal to ei pointing in the counterclockwise direction with respect to p, see Figure 2.

Using the fact that {ηk,e : e ∈ Ek} is an L2(Ω)-orthogonal basis for V (P1)
k , for

vectors c = (ce)e∈Ek and d = (dp)p∈Nk , we infer that

‖
∑
e∈Ek

cevk,e +
∑
p∈Nk

dpwk,p‖2L2(Ω)2 =
∑
e∈Ek

|ce|2‖ηk,e‖2L2(Ω) + ‖
∑
p∈Nk

dpwk,p‖2L2(Ω)2

(3.23)

and

‖
∑
p∈Nk

dpwk,p‖2L2(Ω)2 =
∑
e∈Ek

|dpe − dp̃e |2|e|−2‖ηk,e‖2L2(Ω),(3.24)

where pe, p̃e ∈ Nk denote both vertices on e ∈ Ek, and dp := 0 when p ∈ Nk\Nk.
From (3.24) we conclude that the normalized bases (3.22) are not uniformly L2(Ω)2-
stable, and so that general Gauss-Seidel or damped Jacobi smoothers do not nec-
essarily satisfy assumption (B).

Now, let Z(0)
k = span{wk,p : p ∈ Nk}, and let Z(i)

k = span{vk,e : e ∈ E(i)
k } for

1 ≤ i ≤ m, where
⋃m
i=1E

(i)
k is some partition of Ek into disjoint subsets. Then by

definition of ρk and (3.23), we have
m∑
i=0

a
(St)
k (u(i),u(i)) ≤ ρk

m∑
i=0

‖u(i)‖2L2(Ω)2 = ρk‖
m∑
i=0

u(i)‖2L2(Ω)2 (u(i) ∈ Z(i)
k ).

That is, if, with respect to the decomposition Zk =
⊕m

i=0 Z(i)
k , Dk is the block

diagonal part of the stiffness matrix Ak corresponding to (3.22), then condition
a of Proposition 2.4 is satisfied. So, if in addition for i > 0 the Z(i)

k are selected
such that, possibly after reordering, the decomposition Zk =

⊕m
i=0 Z(i)

k satisfies



78 ROB STEVENSON

c of Proposition 2.4 as well, then these resulting block Gauss-Seidel and damped
block Jacobi smoothers do satisfy (B).

Since neither of the spaces Z(i)
k contain smooth vector fields, we infer that

a(St)(u(i),u(i)) =∼ ρk‖u(i)‖2L2(Ω)2 (u(i) ∈ Z(i)
k , 0 ≤ i ≤ m).(3.25)

So, in particular, (3.25) for i = 0 combined with (3.24) shows that a further decom-
position of Z(0)

k into subspaces each of them spanned by some uniformly bounded
number of wk,p’s will generally not give rise to (block) Gauss-Seidel or damped
(block) Jacobi smoothers that satisfy (B), because condition a of Proposition 2.4
will be violated.

At the same time, (3.25) for i = 0 combined with (3.24) shows that “exact” block
Gauss-Seidel or damped block Jacobi smoothers corresponding to Zk =

⊕m
i=0 Z(i)

k

are not feasible, since the diagonal block of Dk corresponding to Z(0)
k cannot be

inverted in O(dimZk) operations. However, from Propositions 2.4 and 2.7 we learn
that in order to satisfy (B), it is sufficient to invert the diagonal blocks approx-
imately, at least when the approximate inverses define iterations that converge
uniformly in the corresponding “energy” norms.

Considering the diagonal block corresponding to Z(0)
k , one easily verifies that

∑
e∈Ek

|dpe − dp̃e |2|e|−2‖ηk,e‖2L2(Ω)
=∼
∫

Ω

|∇dI |2dx,(3.26)

where dI is the function in the conforming P1 finite element space C(Ω)∩H1
0 (Ω)∩∏

T∈τk P1(T ) defined by dI(p) = dp (p ∈ Nk). Optimal conforming multi-grid
preconditioners that take only O(#Nk) operations are available for the right-hand
side of (3.26). So properly scaled, these preconditioners satisfy the assumptions to
be used as inexact solvers for the diagonal block of Dk corresponding to Z(0)

k .
If not already invertible in O(dimZk) operations, (3.25) for i > 0 and (3.23)

show that the other diagonal blocks of Dk are uniformly well-conditioned, so that
also for these blocks suitable approximate inverses are available. From Proposition
2.4 or 2.7, we conclude that the above introduced “inexact” block Gauss-Seidel
or damped block Jacobi smoothers satisfy assumption (B), and that they can be
performed in O(dimZk) operations.

Since, in this Stokes framework, (A) with α = 1 and, with the above smoothers,
(B) are valid, compared to the discretized biharmonic formulation from Section
3.3.1, we obtain the following new results: The mildly variable V-cycle yields pre-
conditioned systems that have uniformly bounded condition numbers. Further-
more, assuming that ρ((Ĩ(St,2)

j←k )∗Ĩ(St,2)
j←k ) <∼ 1, the standard V-cycle using the pro-

longation I
(St,2)
k yields a preconditioner that is at least suboptimal. This condi-

tion on the “iterated prolongations alternated with smoothers” likely follows from
ρ((I(St,2)

j←k )∗I(St,2)
j←k ) = ρ((I(Bih,2)

j←k )∗I(Bih,2)
j←k ) <∼ 1 (for completeness, here ( )∗ refers

to energy scalar products in the Stokes and biharmonic framework, respectively).
Numerical evidence for the latter result was found in the model case of Example
3.2.
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3.3.3. Practical algorithms and numerical results. We apply the multiplicative stan-
dard V-cycle to the discretized biharmonic problem (3.16), or equivalently, the dis-
cretized Stokes problem (3.17), taking m(k) ≡ m = 1, i.e., one post-smoothing step
and one pre-smoothing step with the “adjoint” smoother.

We use either the standard prolongation

• I(Bih,1)
k (I(St,1)

k ),
or the new prolongation

• I(Bih,2)
k (I(St,2)

k ).
Equipping Mk or Zk with the standard basis (3.22), we use “inexact” block

Gauss-Seidel smoothing with respect to the following ordered subdivision of the
degrees of freedom:

1. midpoints of e ∈ Ek\E(new)
k ,

2. vertices,
3. midpoints of e ∈ E(new)

k ,
and with reversed ordering in the post-smoothing step.

Assuming uniform dyadic refinements, note that with respect to this partition-
ing the first and last diagonal block of the stiffness matrix Ak are block diagonal
matrices with blocks of small and uniformly bounded sizes. We invert the third
diagonal block exactly, and the first one approximately, by applying one damped
point Jacobi iteration with ω = 1 (cf. Remark 2.9).

We consider two options to approximate the inverse of the second diagonal block.
We apply either
• one damped point Jacobi iteration with ω = 1

or
• a properly scaled multi-grid iteration for a discretized Laplacian on the cor-

responding conforming P1 finite element space.
As demonstrated in §§3.3.1 and 3.3.2, the smoother corresponding to the first option
satisfies (B) in the biharmonic framework but not in the Stokes framework, whereas
the smoother corresponding to the second option satisfies (B) also in the Stokes
framework. The first smoother can be expected to give qualitatively similar results
as any arbitrary smoother, and we will refer to this smoother as the “standard
smoother”. The second smoother will be referred to as the “new smoother”.

As noted in Remark 3.1, the combination of either smoother with I(Bih,2)
k can be

implemented efficiently by replacing both the computation of the normal derivatives
of the prolongated function at the midpoints of e ∈ Ek\E(new)

k and the application
of the approximate inverse of the first diagonal block, by the application of the
exact inverse of this block.

We have performed numerical tests in the model case of τ0 being the subdivision
of Ω = [0, 1]2 into two triangles, and for k > 0, τk being generated from τk−1 by
uniform dyadic refinement. In this case, the second diagonal block of Ak is just
a multiple of the discretized Laplacian on the corresponding conforming P1 finite
element space. For the new smoother, as “inner” multi-grid method we applied
one standard V-cycle with one block Gauss-Seidel iteration with respect to a “red-
black” ordering of the unknowns as a pre-smoother, and one “adjoint” iteration as
the post-smoother. Note that Propositions 2.4 and 2.7 also allow for “unsymmetric”
inner multi-grid methods, but we did not test this possibility.
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Table 2. Operation count per degree of freedom

I
(Bih,1)
k I

(Bih,2)
k

standard smoother 56 45
new smoother 70 57

For all four combinations of I(Bih,1)
k or I(Bih,2)

k , and standard or new smoother,
we counted the number of arithmetic operations per degree of freedom necessary
to perform one multi-grid iteration, where we let the number of levels tend to
infinity. The results given in Table 2 show that implementing together I(Bih,2)

k and
the new smoother does not increase the costs compared to I(Bih,1)

k and the standard
smoother. Note that, on a regular mesh, the number of vertices is only 1

4 of the
total number of degrees of freedom of a Morley finite element space, which explains
why the new smoother needs relatively few additional operations.

Although for nonregular meshes the operation counts will be somewhat larger,
the ratios will basically be the same.

Numerically computed condition numbers of the stiffness matrix Aj precondi-
tioned with the standard V-cycle with each of the four smoother-prolongation com-
binations are presented in Figure 3. The results show that the condition numbers
for the standard method increase almost exponentially with the number of levels.
Both the new smoother and the new prolongation result in smaller condition num-
bers. With both improvements implemented, the condition numbers are “small”
and they even appear to be uniformly bounded.
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Figure 3. Standard smoother, standard prolongation (−); new
smoother, standard prolongation (−−); standard smoother, new
prolongation (· · · ); new smoother, new prolongation (−·)
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