
MATHEMATICS OF COMPUTATION
Volume 71, Number 239, Pages 971–994
S 0025-5718(02)01412-6
Article electronically published on February 4, 2002

EACH AVERAGING TECHNIQUE YIELDS RELIABLE
A POSTERIORI ERROR CONTROL IN FEM

ON UNSTRUCTURED GRIDS.
PART II: HIGHER ORDER FEM

SÖREN BARTELS AND CARSTEN CARSTENSEN

Abstract. Averaging techniques are popular tools in adaptive finite element
methods since they provide efficient a posteriori error estimates by a simple
postprocessing. In the second paper of our analysis of their reliability, we con-
sider conforming h-FEM of higher (i.e., not of lowest) order in two or three
space dimensions. In this paper, reliablility is shown for conforming higher
order finite element methods in a model situation, the Laplace equation with
mixed boundary conditions. Emphasis is on possibly unstructured grids, non-
smoothness of exact solutions, and a wide class of local averaging techniques.
Theoretical and numerical evidence supports that the reliability is up to the

smoothness of given right-hand sides.

1. Introduction

Given the exact solution u and an approximate solution uh of a second order
elliptic partial differential equation, an averaging technique for a posteriori error
control is a postprocessing algorithm that provides qh from the input ∇uh. The
true energy error ‖∇(u − uh)‖L2(Ω) is then estimated by ‖qh − ∇uh‖L2(Ω). The
underlying motivation is that qh is a “smoother” approximation of ∇u or/and of
“higher order”. So far, mathematical justifications for regarding ‖qh − ∇uh‖L2(Ω)

as an approximation to ‖∇(u − uh)‖L2(Ω) have been based on superconvergence
phenomena or given for ∇uh piecewise constant only. This paper aims to establish
the reliability and efficiency of local averaging: For each edge E, written E ∈ E ,
with neighbourhood ωE (i.e., the union of elements with face E) we suggest to
compute (in case of pure Dirichlet problems)

ηE := min{‖∇uh − qE‖L2(ωE) : qE ∈ PdE(ωE)d} and η2
Z :=

∑
E∈E

η2
E .

The polynomial degree dE on ωE is chosen according to the elementwise degrees of
uh on ωE , and PdE (ωE) denotes algebraic polynomials of degree ≤ dE regarded as
functions on ωE . We analyse estimates of the form

c1ηZ + h.o.t. ≤ ‖∇(u− uh)‖L2(Ω) ≤ c2ηZ + h.o.t.(1.1)
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for the error estimator ηZ =
(∑

E∈E η
2
E

)1/2 and study the qualitative behaviour of
the constants c1, c2 > 0 and the higher order terms (h.o.t.) in (1.1). It turns out
that the higher order terms in the efficiency estimate, i.e., the first inequality in
(1.1), depend on the smoothness of the exact solution u while the higher order terms
in the reliability estimate, i.e., the second inequality in (1.1), merely depend on the
smoothness of given right-hand sides. The constants c1 and c2 are independent of
the mesh-size but depend on the polynomial degrees.

We stress that the upper bound of (1.1) shows reliability of any local averaging
scheme in the sense that, whatever choice of qE ∈ PdE(ωE)d we have, up to higher
order terms (which are easily computed from the given right-hand sides f , g, and
uD),

‖∇(u− uh)‖L2(Ω) ≤ c3
(∑
E∈E
‖∇uh − qE‖2L2(ωE)

)1/2
.(1.2)

The error term ηE measures the flux difference of two neighbouring elements and
so might be regarded as an edge contribution generalising hE

∫
E [∂uh/∂n]2 ds from

standard residual-based error estimations to higher order finite elements. Hence,
(1.1) indicates the dominance of edge-contributions, which is true for lowest order
finite elements [CV], [R] but known to be false for general higher-order polynomials
[Y1], [Y2]. From this point of view, (1.2) appears surprising: the volume residual
f −∆T uh does not enter the upper bound directly.

In case of lowest order finite elements, local and global averaging is indeed equiv-
alent [CB], and so qE can be chosen as a T -piecewise polynomial that is globally
continuous, as suggested in [ZZ]. However, for higher order finite element methods
it is conjectured that global averaging is not equivalent to local averaging.

The outline of the remaining part of this paper is as follows. Approximation and
stability properties of a weak approximation operator of [Ca], [CV] are generalised
to higher-order approximation in Section 2. Some preliminary results are given in
Section 3 in the spirit of [CB]. The main results on (1.1) are stated and proved
in Section 4. Three examples with uniform, adapted, and perturbed meshes and a
variety of polynomial order finite element methods conclude the paper in Section
5.

2. Approximation in higher order finite element spaces

The Lipschitz boundary Γ = ∂Ω of the bounded domain Ω is split into a closed
Dirichlet part ΓD with positive surface measure and a remaining, relatively open
and possibly empty, Neumann part ΓN := Γ \ ΓD. Suppose T be a regular trian-
gulation of the domain Ω ⊆ Rd, d = 1, 2, 3, in the sense of Ciarlet [BS], [Ci] (no
hanging node, domain is matched exactly) with piecewise affine Lipschitz bound-
ary Γ = ∂Ω = ΓD ·∪ΓN , i.e., T consists of a finite number of closed subsets of Ω,
that cover Ω =

⋃
T . Each element T ∈ T is either an interval T = conv {a, b} if

d = 1, a triangle T = conv{a, b, c} or a parallelogram T = conv {a, b, c, d} if d = 2,
and a tetrahedron T = conv {a, b, c, d} or a parallelepiped T = conv {a, ..., h} if
d = 3. The extremal points a, b, c, d are called vertices; the faces E ⊆ ∂T , e.g.
E = conv {a, b} in d = 2 or E = conv {a, b, c} in d = 3, are called edges. The set of
all vertices and all edges appearing for some T in T are denoted as N and E . Two
distinct and intersecting T1 and T2 share either an entire edge or a vertex. Each edge
E ∈ E on the boundary Γ belongs either to ΓD, written E ∈ ED, or to ΓN , written
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E ∈ EN . Therefore the set of edges is partitioned into EΩ := {E ∈ E : E 6⊂ Γ}, ED,
and EN . We stress that the union of all edges

⋃
E denotes the skeleton of edges

in T , i.e., the set of all points x that belong to some boundary x ∈ ∂T of some
element T ∈ T . Finally, K := N \ ΓD denotes the set of free nodes.

For T ∈ T , let P kT := Pk(T ) if T is a triangle or tetrahedron, or P kT := Qk(T ) if
T is a parallelogram or parallelepiped. Here, Pk(K) resp. Qk(K) denotes the set
of algebraic polynomials in d variables on K of total resp. partial degree ≤ k. The
space Lk(T ) of (possibly discontinuous) T –piecewise polynomials of degree ≤ k is
the set of all U ∈ L∞(Ω) with U |T ∈ P kT for all T in T . Set

Sk(T ) := Lk(T ) ∩ C(Ω) and S1
D(T ) := {uh ∈ S1(T ) : uh|ΓD = 0}.

Let (ϕz : z ∈ N ) denote the nodal basis of S1(T ), i.e., ϕz ∈ S1(T ) satisfies
ϕz(x) = 0 if x ∈ N \ {z}, and ϕz(z) = 1. Note that (ϕz |z ∈ N ) is a partition of
unity and the open patches

ωz := {x ∈ Ω : 0 < ϕz(x)}(2.1)

form an open cover (ωz : z ∈ N ) of Ω with finite overlap.
In order to define an approximation-operator J , we choose for each fixed node

z ∈ N \ K a neighbouring free node ζ ∈ K and thereby define a relation R on N
where zRz if z ∈ K. Then, let

ψz :=
∑

ζ∈N , ζRz
ϕζ and Ωz := interior(suppψz).(2.2)

We require that for each z ∈ K, Ωz is connected and ϕz 6= ψz implies that (∂Ωz)∩ΓD
has a positive surface measure. As ({ζ ∈ N : ζRz} : z ∈ K) is a partition of N ,
(ψz : z ∈ K) is a partition of unity. For each z ∈ K, we define the degree (minimal
degree allowed on Ωz minus one)

d(z) := max{k ∈ N0 : Pk(Ωz)ϕz ⊆ S},(2.3)

where Pk(Ωz) denotes the set of all polynomials on Rd of total degree at most k
restricted to Ωz. The set S ⊆ H1(Ω) is some finite element space consisting of
functions that are T -elementwise polynomials and globally continuous. Moreover,
we require that S1

D(T ) ⊆ S, which implies that d(z) is well defined and greater
than or equal than zero.

For g ∈ L1(Ω) and z ∈ K, let gz ∈ Pd(z)(Ωz) be defined by∫
Ωz

(gzϕz − gψz)qz dx = 0 for all qz ∈ Pd(z)(Ωz),(2.4)

and then let

J g :=
∑
z∈K

gzϕz ∈ S ∩H1
D(Ω).(2.5)

Remark 2.1. Notice that gzϕz ∈ S, because of (2.3).

Remark 2.2. Condition (2.4) characterises the unique minimiser gz of

1
2

∫
Ωz

ϕzq
2
z dx−

∫
Ωz

gψzqz dx(2.6)

amongst all qz in Pd(z)(Ωz). In particular, there exists a unique solution to (2.4),
i.e., J g is well defined and belongs to S even for g ∈ L1(Ω).
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The local mesh-sizes are denoted by hT and hE , where hT ∈ L0(T ) is the element-
size, hT |T := hT := diam (T ) for T ∈ T , and the edge-size hE ∈ L∞(

⋃
E) is defined

on the union or skeleton
⋃
E of all edges E in E by hE |E := hE := diam (E). The

patch-size hz := diam (Ωz) is defined for each node z ∈ K separately.

Theorem 2.1. There exist (hT , hE)-independent constants c4, c5, c6, c7 > 0 such
that, for all g ∈ H1

D(Ω) and f ∈ L2(Ω),

‖∇(g − J g)‖L2(Ω) ≤ c4‖∇g‖L2(Ω),(2.7) ∫
Ω

f(g − J g) dx ≤ c5‖∇g‖L2(Ω)

×
(∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

‖f − fz‖2L2(Ωz)

)1/2

,(2.8)

‖h−1
T (g − J g)‖L2(Ω) ≤ c6‖∇g‖L2(Ω),(2.9)

‖h−1/2
E (g − J g)‖L2(ΓN ) ≤ c7‖∇g‖L2(Ω).(2.10)

The constants c4, c5, c6, c7 only depend on Ω, ΓD, ΓN , the degrees d(z), z ∈ K, and
the shapes of the elements T ∈ T and the patches Ωz, z ∈ K.

Proof. In this proof and at similar occasions, . abbreviates an inequality ≤ up to
a constant (hT , hE)-independent factor. Also, ‖ · ‖p,K abbreviates ‖ · ‖Lp(K) and we
neglect K if Ω is meant, i.e., ‖ · ‖2 := ‖ · ‖2,Ω. Hence, e.g., (2.7) could be phrased
as ‖∇J g −∇g‖2 . ‖∇g‖2.

The local key estimate for the stability and the approximation property of J
will be

‖gzϕz − gψz‖2,Ωz . hz‖∇g‖2,Ωz .(2.11)

(The constant in (2.11) is hz–independent but depends on d(z) and the shape of
Ωz.) For the proof of (2.11) let gz denote the integral mean of g on Ωz. Then,
gz − gz ∈ Pd(z)(Ωz) and

‖gz − gz‖2,Ωz ≤ c8‖ϕz(gz − gz)‖2,Ωz .(2.12)

For a proof of (2.12), notice that ‖·‖2,Ωz and ‖ϕz ·‖2,Ωz are norms on Pd(z)(Ωz) and
so are equivalent. A scaling argument shows that the constant c8 is hz–independent
(but of course depends on the shape of Ωz and the degree d(z)). Since gz ∈
Pd(z)(Ωz) is allowed in (2.6), we have

∫
Ωz

ϕzg
2
z dx ≤

∫
Ωz

ϕzg
2
z dx− 2

∫
Ωz

ψzggz dx + 2
∫

Ωz

ψzggz dx(2.13)
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and infer, with Cauchy’s and Young’s inequality,

‖(gz − gz)ϕz‖22,Ωz ≤ ‖(gz − gz)ϕ
1/2
z ‖22,Ωz

= 2
∫

Ωz

ϕzgz(gz − gz) dx + 2
∫

Ωz

ψzg(gz − gz) dx

= 2
∫

Ωz

ϕz(gz − g)(gz − gz) dx+ 2
∫

Ωz

(ψz − ϕz)g(gz − gz) dx

≤ 1
4
‖(gz − gz)ϕz‖22,Ωz + 4‖g − gz‖22,Ωz

+
1

4c28
‖gz − gz‖22,Ωz + 4c28‖(ψz − ϕz)g‖22,Ωz .

(2.14)

Utilising (2.12) and absorbing ‖(gz − gz)ϕz‖22,Ωz , we deduce from (2.14) that

‖(gz − gz)ϕz‖22,Ωz ≤ 8‖g − gz‖22,Ωz + 8c28‖(ψz − ϕz)g‖22,Ωz .(2.15)

A Poincaré inequality yields

‖g − gz‖2,Ωz . hz‖∇g‖2,Ωz(2.16)

with a constant factor that only depends on the shape of Ωz ; the weight-function
(ψz − ϕz) is non-zero only if ΓD ∩ (∂Ωz) has positive surface measure. Since g = 0
there, a Friedrichs’ inequality yields

‖(ψz − ϕz)g‖2,Ωz ≤ ‖g‖2,Ωz . hz‖∇g‖2,Ωz(2.17)

for an hz–independent constant that depends on the shape of Ωz and (∂Ωz) ∩ ΓD
only. Therefore, (2.15) yields

‖(gz − gz)ϕz‖2,Ωz . hz‖∇g‖2,Ωz .(2.18)

To prove (2.11), we use the triangle inequality and (2.15)-(2.18) to verify

‖gzϕz − gψz‖2,Ωz ≤ ‖(gz − gz)ϕz‖2,Ωz + ‖(g − gz)ϕz‖2,Ωz
+ ‖(ψz − ϕz)g‖2,Ωz . hz‖∇g‖2,Ωz ,

(2.19)

which is (2.11). To verify (2.8), we use that (ψz : z ∈ K) is a partition of unity and
obtain with (2.11), (2.4) for any fz ∈ Pd(z)(Ωz) that

(2.20)∫
Ω

f(g − J g) dx =
∑
z∈K

∫
Ωz

f(gψz − gzϕz) dx =
∑
z∈K

∫
Ωz

(f − fz)(gψz − gzϕz) dx

.
∑
z∈K
‖f − fz‖2,Ωzhz‖∇g‖2,Ωz .

(∑
z∈K

h2
z‖f − fz‖22,Ωz

)1/2

‖∇g‖2.

In the last step we used that (ψz : z ∈ K) has a finite overlap that depends on the
shape of the elements only. The proof of (2.8) is finished. Notice that hz . hT for
all z ∈ K and T ∈ T with T ⊆ Ωz. Letting f := h−2

T (g − J g) and fz = 0, z ∈ K,
we deduce from (2.8) that

‖h−1
T (g − J g)‖22 . ‖∇g‖2

(∑
z∈K
‖h−1
T (g − J g)‖22,Ωz

)1/2

(2.21)

. ‖∇g‖2‖h−1
T (g − J g)‖2,
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which implies (2.9). To verify (2.7) we argue as above and additionally utilise∑
z∈K∇ψz = 0. Repeating the triangle inequality only a limited number of times

(according to the finite overlap of the patches Ωz), we infer

‖∇g −∇J g‖22 .
∑
z∈K
‖∇(ψzg − ϕzgz)‖22.(2.22)

Since gz is constant, and recalling (2.16), we have

h−1
z ‖g − gz‖2,Ωz + ‖∇(g − gz)‖2,Ωz . ‖∇g‖2,Ωz .(2.23)

Then, with the triangle inequality, Friedrichs’ inequality, ‖∇φζ‖∞,Ωz ≤ 1/ρz, and
(2.23) we conclude that

‖∇(gψz − gzϕz)‖2,Ωz
≤ ‖(ψz − ϕz)∇g‖2,Ωz + ‖∇(ϕz(gz − gz))‖2,Ωz

+ ‖∇(ϕz(gz − g))‖2,Ωz + ‖g∇(ψz − ϕz)‖2,Ωz
. ‖∇g‖2,Ωz + hz/ρz‖∇g‖2,Ωz + ‖∇(ϕz(gz − gz))‖2,Ωz .

(2.24)

Note that hz . ρz. To estimate ‖∇(ϕz(gz−gz))‖2,Ωz we observe that ‖∇(ϕz ·)‖2,Ωz
is a norm on Pd(z)(Ωz) and so is equivalent to ‖ϕz ·‖2,Ωz . A scaling argument shows
that

hz‖∇(ϕz(gz − gz))‖2,Ωz . ‖ϕz(gz − gz)‖2,Ωz ,(2.25)

where the hz–independent constant depends on the shape of Ωz and the degree d(z)
only. Utilising (2.11), (2.23), and Friedrichs’ inequality, we obtain from (2.25) that

hz
c12
‖∇(ϕz(gz − gz))‖2,Ωz ≤ ‖ϕzgz − ψzg‖2,Ωz

+ ‖(ψz − ϕz)g‖2,Ωz + ‖ϕz(g − gz)‖2,Ωz
. hz‖∇g‖2,Ωz .

Employing this estimate in (2.24) and the resulting estimate in (2.22), we verify
(2.7).

A trace inequality [BS], [Cl], [CF] is required for the proof of (2.10). For E ∈ EN
and a neighbouring element T ∈ T with E ⊂ ∂T ∩ ΓN we have, for all w ∈ H1(T ),

||w||2,E . h−1/2
E ||w||2,T + h

1/2
E ||∇w||2,T .(2.26)

We denote ωE := T for E ∈ EN and E ⊆ ∂T . Since hT . hE , we deduce from
(2.26) with w = g − J g by summing all edges E on ΓN that∑

E∈EN

h−1
E ‖g − J g‖22,E .

∑
E∈EN

h−2
T ‖g − J g‖22,ωE +

∑
E∈EN

‖∇(g − J g)‖22,ωE

. ‖∇g‖22,Ω,

according to (2.7) and (2.9). This concludes the proof.

Remark 2.3. The constants in the theorem depend on the polynomial degrees in
the finite element method and are expected to increase to infinity with the degree.
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3. Basic estimates

In this section we first derive with the approximation operator J a global error
estimate for a posteriori error control by averaging processes in an abstract setting.
The estimate of this section is specified in the subsequent section to higher order
conforming finite element methods.

Theorem 3.1. Suppose p, q ∈ H(div ; Ω) and ph ∈ Lk(T )d with p ·n, q ·n ∈ L2(ΓN )
and ∫

Ω

(p− ph) · ∇wh dx = 0 for all wh ∈ S ∩H1
D(Ω).(3.1)

Then

sup
w∈H1

D(Ω)
||∇w||L2(Ω)=1

∫
Ω

(p− ph) · ∇w dx ≤ c4‖ph − q‖L2(Ω)

+ c5

(∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

||div (p− q)− fz||L2(Ωz)
2
)1/2

+ c7||h1/2
E (p− q) · n||L2(ΓN ).

(3.2)

Proof. According to (3.1), (2.7), Cauchy’s inequality, and an integration by parts
we have, for each w ∈ H1

D(Ω) with ||∇w||2 = 1, that∫
Ω

(p− ph) · ∇w dx =
∫

Ω

(p− ph) · ∇(w − Jw) dx

=
∫

Ω

(p− q) · ∇(w − Jw) dx +
∫

Ω

(q − ph) · ∇(w − Jw) dx

≤
∫

ΓN

(w − Jw) (p− q) · n dx

−
∫

Ω

(w − Jw) div (p− q) dx+ c4||ph − q||2,Ω,

(3.3)

since w and Jw vanish on ∂Ω \ ΓN . Owing to (2.8) and (2.10) in Theorem 2.1, we
conclude (3.2) from (3.3) and Cauchy’s inequality.

The next lemma states that averaging over the patches Ωz is dominated by
averaging over smaller domains. Let ωE := T1 ∪ T2 for an interior edge E =
T1 ∩ T2 ∈ EΩ and ωE := T for an edge E = T ∩ ∂Ω ∈ ED ∪ EN on the boundary.
Moreover, for z ∈ K, let EΩz denote the set of all edges E ⊂ Ωz with E 6⊂ ∂Ωz.

Lemma 3.1. Suppose S = {vh ∈ C(Ω) : ∀T ∈ T , vh|T ∈ Pd(T )(T )} for positive
integers d(T ), T ∈ T , and let dE, E ∈ E, be nonnegative integers. Then there exists
a constant c9 > 0 such that, for all uh ∈ S and each z ∈ K, we have

min
qz∈Pd(z)+1(Ωz)d

‖∇uh − qz‖2L2(Ωz) ≤ c9
∑

E∈EΩz

min
qE∈PdE (ωE)d

‖∇uh − qE‖2L2(ωE).(3.4)

The constant c9 depends on the degrees dz and dE as well as on the shapes of the
elements and patches, but not on their diameters.

Proof. Set ph := ∇uh and let ‖|ph|‖21,z and ‖|ph|‖22,z denote the expressions on the
left- and right-hand side in (3.4), respectively. Assume uh ∈ S with ‖|ph|‖2,z = 0.
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We claim that ‖|ph|‖1,z = 0. (The statement of the lemma then follows from com-
pactness and scaling argument.) Since Ωz is connected, there exists a sequence of
edgesE1, ..., EJ ∈ EΩz such that ωEj∩ωEj+1 6= ∅ and the open patches ωEj cover Ωz,
i.e., ωE1 ∪ ...∪ ωEJ = Ωz. Since ‖|ph|‖2,z = 0 we deduce that ph|ωEj ∈ PdEj (ωEj )

d,
j = 1, ..., J , and so ph|Ωz ∈ Pm(Ωz)d, where m is the smallest polynomial de-
gree of ph restricted to elements T ⊆ Ωz, i.e., m = min{mT : T ⊆ Ωz} for
mT := min{` ∈ N0 : ph|T ∈ P`(T )d}. Since m ≤ d(T ) − 1 for all T ⊆ Ωz and
d(z) ≥ minT∈T ,T⊆Ωz

d(T )−2, we have m ≤ d(z)+1. This implies ‖|ph|‖1,z = 0.

Remark 3.1. Note that a hat function ϕz is not elementwise affine when z belongs
to a parallelogram if d = 2 or a parallelepiped if d = 3. Then, Pd(z)+1(Ωz)d cannot
be reduced to Pd(z)(Ωz)d in (3.4).

The following lemma includes the approximation of given boundary data by
discrete functions. We denote by Lk(EN ) the space of all (possibly discontinuous)
functions on ΓN which equal a polynomial of degree at most k on each edge E ∈ EN .

Lemma 3.2. Let k and dE , E ∈ E, be nonnegative integers and let ph ∈ Lk(T )d

and gh ∈ Lk+1(EN ). Then,

min
qh∈Sk+1(T )d

(
‖ph − qh‖2L2(Ω) + ‖h1/2

E (gh − qh · n)‖2L2(ΓN )

)
≤ c10

∑
E∈EΩ∪EN

min
qE∈PdE (ωE)d

(
‖ph − qE‖2L2(ωE) + hE‖gh − qE · n‖2L2(E∩ΓN )

)
(3.5)

with a constant c10 > 0 that depends on the degrees k and dE as well as on the
shapes of the elements and patches but not on their diameters.

Proof. Let TE := {T ∈ T : T ⊆ ωE} denote the restriction of T to ωE, E ∈ E . It
is shown in [CB] that

(3.6) min
qh∈Sk+1(T )d

(
‖ph − qh‖22,Ω + ‖h1/2

E (gh − qh · n)‖22,ΓN
)

.
∑

E∈EΩ∪EN

min
qE∈Sk+1(TE)d

(
‖ph − qE‖22,ωE + hE‖gh − qE · n‖22,E∩ΓN

)
.

For E ∈ EΩ we have minqE∈PdE (ωE)d ‖ph − qE‖22,ωE = 0 if and only if ph ∈
PdE(ωE)d∩Lk(TE)d ⊂ C(ωE)d, and minqE∈Sk+1(TE)d ‖ph− qE‖22,ωE = 0 if and only
if ph ∈ C(ωE)d ∩ Lk(TE)d. Hence a compactness and a scaling argument (from
the context of equivalence of norms) show (with an (hT , hE)-independent constant
factor)

min
qE∈Sk+1(TE)d

‖ph − qE‖22,ωE . min
qE∈PdE (ωE)d

‖ph − qE‖22,ωE .(3.7)

For an edge E ∈ EN the corresponding minimum in the right-hand-side of (3.6)
is zero if and only if gh = ph · n, while the corresponding minimum over PdE(ωE)d

is zero if and only if gh = ph · n and ph|ωE ∈ PdE (ωE)d. By a compactness and a
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scaling argument we deduce the inequality

(3.8) min
qE∈Sk+1(TE)d

(
‖ph − qE‖22,ωE + hE‖gh − qE · n‖22,E∩ΓN

)
. min

qE∈PdE (ωE)d

(
‖ph − qE‖22,ωE + hE‖gh − qE · n‖22,E∩ΓN

)
.

Combining (3.6), (3.7), and (3.8), we obtain (3.5).

4. Higher order finite element methods

Given right-hand sides f ∈ L2(Ω), g ∈ L2(ΓN ), and uD ∈ H1(ΓD) ∩ C(ΓD), let
u ∈ H1(Ω) denote the unique weak solution to

−∆u = f in Ω,(4.1)
u = uD on ΓD,(4.2)

∂u/∂n = g on ΓN .(4.3)

Suppose a finite element scheme, based on a regular triangulation T , provided a
discrete flux ph := ∇uh to the exact flux p := ∇u ∈ H(div ; Ω) such that uh ∈ S
and ∫

Ω

∇uh · ∇wh dx =
∫

Ω

fwh dx+
∫

ΓN

gwh ds for all wh ∈ S ∩H1
D(Ω).(4.4)

We will assume in Lemma 4.3 below that uh|ΓD interpolates uD in nodes on ΓD.

Theorem 4.1. Assume ∇uh ∈ Lk(T )d and (4.4). There exist (hT , hE)-indepen-
dent constants c11, c12 > 0 such that

||∇(u − uh)||L2(Ω)

≤ min
qh∈Sk+1(T )d

(
c11||∇uh − qh||L2(Ω) + 2c7||h1/2

E (g − qh · n)||L2(ΓN )

)
+ c12

(∑
z∈K

min
qz∈Pd(z)+1(Ωz)d

‖∇uh − qz‖2L2(Ωz)

)1/2

+ inf
v|ΓD=uD

||∇(uh − v)||L2(Ω)

+ 2
√

3c5
(∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

‖f − fz‖2L2(Ωz)

)1/2

.

(4.5)

In the infimum, “v|ΓD = uD” stands for all v ∈ H1(Ω) with v = uD on ΓD.

Proof. Abbreviate e := u − uh and let qh ∈ Sk+1(T )d. Assume that v ∈ H1(Ω)
satisfies v = uD on ΓD and ||∇(uh − v)||2 ≤ ||∇e||2. Then (4.1)-(4.4) imply (3.1).
Hence, we may choose q = qh and w = u − v in Theorem 3.1 to obtain (with
Cauchy’s inequality for the second term in the right-hand side of the subsequent
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equality) that

‖∇e‖22 =
∫

Ω

∇e · ∇w dx +
∫

Ω

∇e · ∇(v − uh) dx

≤ ||∇w||2

(
c4||∇uh − qh||2 + c7||h1/2

E (g − qh · n)||2,ΓN

+c5

(∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

‖f + div qh − fz‖22,Ωz

)1/2


+ ||∇(uh − v)||2 ||∇e||2.

(4.6)

Since ||∇w||2 ≤ ||∇e||2 + ||∇(uh − v)||2 ≤ 2||∇e||2, we can divide (4.6) by ||∇e||2
to verify

(4.7) ||∇e||2 ≤ 2c4||∇uh − qh||2 + 2c7||h1/2
E (g − qh · n)||2,ΓN + ||∇(uh − v)||2

+ 2c5
(∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

‖f + div qh − fz‖22,Ωz
)1/2

.

Let div T denote the T -piecewise action of the div -operator. The triangle inequality
in the last summand in (4.7) and hz . hT for z ∈ T ∩N and T ∈ T , a summation
over elements, and div

(
Pd(z)+1(Ωz)d

)
⊆ Pd(z)(Ωz) show that∑

z∈K
h2
z min
fz∈Pd(z)(Ωz)

‖f + div qh − fz‖22,Ωz

≤ 3‖hT div T (∇uh − qh)‖22
+ 3

∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

‖f − fz‖22,Ωz

+ 3
∑
z∈K

min
qz∈Pd(z)+1(Ωz)d

‖hzdiv T (∇uh − qz)‖22,Ωz .

(4.8)

A T -elementwise inverse estimate shows

||hT div T (∇uh − qh)||2 . ||∇uh − qh||2
and

||hzdiv T (∇uh − qz)||2,Ωz . ||∇uh − qz||2,Ωz
(with constants that depend on the polynomial degrees and on the shape of the
finite elements but not on their diameters). Utilising this in (4.7)-(4.8), we deduce
(4.5).

The following lemmas show that the terms concerning the right-hand-sides f , g,
and uD in (4.5) are of higher order, provided the given data functions are smooth
enough.

Lemma 4.1. For all z ∈ K, there exists an hz-independent constant c13 > 0 such
that, if f |Ωz ∈ Hd(z)+1(Ωz), we have (Dd(z)+1f = (∂αf)|α|=d(z)+1 denotes the
vector of all partial derivatives of order d(z) + 1)

min
fz∈Pd(z)(Ωz)

‖f − fz‖L2(Ωz) ≤ c13 h
d(z)+1
z ‖Dd(z)+1f‖L2(Ωz).(4.9)

Proof. The proof of the lemma can be found, e.g., in [BS].
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For a function w ∈ H1(γ) we denote by ∂w/∂t and ∂w/∂s its gradient with
respect to the arc-length along the (d − 2)– respectively (d − 1)–dimensional sub-
manifold γ.

Lemma 4.2. Let E ∈ EN and assume g|E ∈ HdE (E) for some dE ≥ 1. Then there
exist qh ∈ LdE (ωE)d and a constant c14 > 0 that is independent of hE and g, such
that, for gh := qh · n, we have

‖g − gh‖L2(E) ≤ c14 h
dE
E ‖∂dEg/∂sdE‖L2(E).(4.10)

Proof. The statement is the (d−1)-dimensional version of the previous lemma.

Lemma 4.3. Let uD ∈ H1(ΓD)∩C(ΓD) satisfy uD|E ∈ HdE+1(E) for some dE ≥
1, E ∈ ED, and uh(z) = uD(z) for all z ∈ N ∩ ΓD. If uh also satisfies

‖∂`(uh − uD)/∂s`‖L2(E) ≤ c15h
dE+1−`
E ‖∂dE+1uD/∂s

dE+1‖L2(E)(4.11)

for all E ∈ ED and ` = 0, 1, 2 with an hE-independent constant c15 > 0, then there
exists an hE-independent constant c16 > 0 such that

inf
v|ΓD=uD

‖∇(v − uh)‖L2(Ω) ≤ c16

( ∑
E∈ED

h2dE+1
E ‖∂dE+1uD/∂s

dE+1‖2L2(E)

)1/2

.

(4.12)

Proof. The trace theorems yield (both infima are attained)

inf
v∈H1(Ω)
v|ΓD=uD

‖∇(uh − v)‖2 = inf
ṽ∈H1(Ω)

ṽ|ΓD=uh|ΓD−uD

‖∇ṽ‖2 . ‖uh − uD‖H1/2(ΓD).(4.13)

The norm in H1/2(ΓD) is equivalent to the norm of minimal extension to Γ, and so
(4.13) leads to

inf
v∈H1(Ω)
v|ΓD=uD

‖∇(uh − v)‖2 . inf
w∈H1/2(Γ)

w|ΓD=uh|ΓD−uD

‖w‖H1/2(Γ).

We construct an extension w of uh|ΓD − uD to Γ. For d = 2 we extend uh|ΓD − uD
by zero to Γ and obtain a continuous extension w. For d = 3 this extension might
be discontinuous, which forces a modification on edges near ΓD. For E ∈ E \ ED
with E ∩ ΓD = ∅ or E ∩ ΓD = {z} for some z ∈ N , set w|E = 0. In the remaining
cases E ∈ E\ED with E∩ΓD =

⋃J
j=1 E∩Fj =

⋃J
j=1 conv {aj, bj} with J ∈ {1, 2, 3},

Fj ∈ ED, and aj , bj ∈ N ∩ Fj , aj 6= bj, j = 1, ..., J , we proceed as follows. Let sE
denote the center of inertia of E. On each triangle Gj := conv {aj , bj, sE} we let w
be an harmonic extension of uh|ΓD − uD from Sj := conv {aj, bj} to Gj such that
w|∂Gj\Sj = 0. Note that w is continuous on Gj . An interpolation argument and
‖w‖2,∂Gj ≤ hE‖∂w/∂t‖2,∂Gj reveal that

‖∂w/∂s‖22,Gj . ‖w‖
2
H1/2(∂Gj)

. ‖w‖2,∂Gj‖w‖H1(∂Gj) ≤ hE‖∂w/∂t‖22,∂Gj
= hE‖∂(uh − uD)/∂t‖22,Sj .

(4.14)

By a trace theorem [CF], [BS] for the tangential gradient ∂(uh − uD)/∂s from Fj
to Gj ∩ Fj = Sj we have

hE‖∂(uh − uD)/∂t‖22,Sj
. ‖∂(uh − uD)/∂s · t‖22,Fj + h2

E‖∂(∂(uh − uD)/∂s · t)/∂s‖22,Fj ,
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where t denotes the unit tangent vector along Sj . Since t is constant, this shows
that

hE‖∂(uh − uD)/∂t‖22,Sj . ‖uh − uD‖
2
H1(Fj)

+ h2
E‖uh − uD‖2H2(Fj)

.(4.15)

Applying (4.15) in (4.14), we find that

‖∂w/∂s‖22,Gj . ‖uh − uD‖
2
H1(Fj)

+ h2
E‖uh − uD‖2H2(Fj)

(4.16)

and, using Friedrichs’ inequality ‖w‖2,Gj . hE‖∂w/∂s‖2,Gj ,

‖w‖22,Gj . h
2
E‖(uh − uD)‖2H1(Fj)

+ h4
E‖(uh − uD)‖2H2(Fj)

.(4.17)

Note that the extension is continuous and affects neighbouring edges of ΓD only.
Let w1, ..., wn denote the nonvanishing functions amongst (wϕz|Γ : z ∈ N ∩ Γ).

By an interpolation estimate and Friedrichs’ inequality we infer that, for each j =
1, ..., n,

‖wj‖2H1/2(Γ) . ‖wj‖2,Γ‖wj‖H1(Γ)

≤ ‖wj‖2,Γ(‖wj‖2,Γ + ‖∂wj/∂s‖2,Γ) . ‖h1/2
E ∂wj/∂s‖22,Γ.

(4.18)

To localise the H1/2-norm on ΓD, we employ the arguments from [CMS]. It was
shown therein that there exists a partition (I` : ` = 1, ..., L) of {1, ..., n} such that
wjwk = 0 for any distinct j, k ∈ I`. L is independent of hT , and for each ` = 1, ..., L
we have

‖
∑
j∈I`

wj‖2H1/2(Γ) .
∑
j∈I`

‖wj‖2H1/2(Γ).(4.19)

Using the inequality (
∑L

`=1 a`)
2 ≤ L

∑L
`=1 a

2
` and (4.19), we deduce that

‖w‖2H1/2(Γ) ≤ L
L∑
`=1

‖
∑
j∈I`

wj‖2H1/2(Γ) . L
L∑
`=1

∑
j∈I`

‖wj‖2H1/2(Γ)

. L
L∑
`=1

∑
j∈I`

‖h1/2
E ∂wj/∂s‖22,Γ.

(4.20)

With wj = wϕz , |∂wj/∂s| ≤ |∂w/∂s|+ |w||∂ϕz/∂s| . |∂w/∂s|+ |w|/hE, and L . 1
this shows that

‖w‖H1/2(Γ) .
J∑
`=1

∑
j∈I`

(
‖h1/2
E ∂w/∂s‖22,suppwj + ‖h−1/2

E w‖22,suppwj

)
. ‖h1/2

E ∂w/∂s‖22,Γ + ‖h−1/2
E w‖22,Γ.

(4.21)

Utilising w|E = (uh|ΓD −uD)|E for all E ∈ ED, and the estimates (4.16) and (4.17),
we infer

‖w‖2H1/2(Γ) . ‖h
−1/2
E (uh − uD)‖22,ΓD + ‖h1/2

E ∂(uh − uD)/∂s‖22,ΓD
+ ‖h3/2

E ∂2
E(uh − uD)/∂s2‖22,ΓD .

(4.22)

Estimating the summands in the right-hand side of (4.22) on each E ∈ ED by (4.11),
we conclude the proof.
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Theorem 4.2. Suppose that S satisfies the hypothesis of Lemma 3.1 and let dE,
E ∈ E, be nonnegative integers with dE ≥ 1 for E ∈ EN ∪ ED. Assume f |Ωz ∈
Hd(z)+1(Ωz) for all z ∈ K, g|E ∈ HdE (E) for all E ∈ EN , and uD|E ∈ HdE+1(E)
for all E ∈ ED. Then, if uh satisfies the hypothesis of Lemma 4.3, there exists
gh ∈ L∞(ΓN ) with gh|E ∈ PdE (E) for all E ∈ EN , such that

||∇(u − uh)||L2(Ω) ≤ c17

( ∑
E∈EΩ∪EN

min
qE∈PdE (ωE)d,

qE ·n=ghon E∩ΓN

‖∇uh − qE‖2L2(ωE)

)1/2

+ 2c7c14

( ∑
E∈EN

h2dE+1
E ‖∂dEg/∂sdE‖2L2(E)

)1/2

+ c16

( ∑
E∈ED

h2dE+1
E ‖∂dE+1uD/∂s

dE+1‖2L2(E)

)1/2

+ 2c5c13

(∑
z∈K

h2(d(z)+2)
z ‖Dd(z)+1f‖2L2(Ωz)

)1/2

.

(4.23)

The constant c17 > 0 depends only on the shapes of the elements and the polynomial
degrees dE and dz.

Proof. Let gh ∈ L∞(ΓN ) be such that, for all E ∈ EN , gh|E ∈ PdE(E) is an
approximation of g|E as in Lemma 4.2. Choose k ∈ N0 such that ∇uh ∈ Lk(T )
and gh ∈ Lk+1(EN ). Utilising Theorem 4.1, we verify

||∇(u − uh)||2
≤ min

qh∈Sk+1(T )d

(
c11||∇uh − qh||2 + 2c7||h1/2

E (gh − qh · n)||2,ΓN
)

+ ||h1/2
E (g − gh)||2,ΓN + c12

(∑
z∈K

min
qz∈Pd(z)+1(Ωz)d

‖∇uh − qz‖22,Ωz

)1/2

+ inf
v|ΓD=uD

‖∇(uh − v)‖2 + 2c5

(∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

‖f − fz‖22,Ωz

)1/2

.

(4.24)

By Lemma 3.1 and since each inner edge belongs to a finite number of patches, we
have ∑

z∈K
min

qz∈Pd(z)+1(Ωz)d
‖∇uh − qz‖22,Ωz

≤ c9
∑
z∈K

∑
E∈EΩz

min
qE∈PdE (ωE)d

‖∇uh − qE‖22,ωE

.
∑
E∈EΩ

min
qE∈PdE (ωE)d

‖∇uh − qE‖22,ωE .

(4.25)
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With Lemma 3.2 and noting that for all E ∈ EN there exists qE ∈ PdE(ωE)d =
LdE (ωE)d with qE |E · n = gh|E , we can estimate

min
qh∈Sk+1(T )d

(
‖∇uh − qh‖22 + ‖h1/2

E (gh − qh · n)‖22,ΓN
)

≤ c10

∑
E∈EΩ∪EN

min
qE∈PdE (ωE)d

(
‖∇uh − qE‖22,ωE + hE‖gh − qE · n‖22,E∩ΓN

)
≤ c10

∑
E∈EΩ∪EN

min
qE∈PdE (ωE)d,

qE ·n=ghon E∩ΓN

‖∇uh − qE‖22,ωE .

(4.26)

Estimating the first and the third term in (4.24) by (4.25) resp. (4.26) and utilising
Lemmas 4.1-4.3 to bound the remaining terms in (4.24) yields (4.23).

The a posteriori error estimate given in the previous theorem is efficient up to
higher order terms which depend on the smoothness of∇u, as the following theorem
shows.

Theorem 4.3. Let gh ∈ Lk(EN ) with gh|E ∈ PdE(E) for dE ∈ {0, 1, ..., k} on each
E ∈ EN . Then we have( ∑

E∈EΩ∪EN

min
qE∈PdE (ωE)d,
qE ·n=ghon E∩ΓN

‖∇uh − qE‖2L2(ωE)

)1/2

≤
√

2d ‖∇(u− uh)‖L2(Ω)

+

( ∑
E∈EΩ∪EN

min
qE∈PdE (ωE)d,

qE ·n=ghon E∩ΓN

‖∇u− qE‖2L2(ωE)

)1/2

.

(4.27)

Proof. Since gh ∈ PdE(E) for each E ∈ EN , the minima in the left-hand side of
(4.27) are well defined. We infer, with Young’s inequality and an arbitrary γ > 0,∑

E∈EΩ∪EN

min
qE∈PdE (ωE)d,

qE ·n=ghon E∩ΓN

‖∇uh − qE‖22,ωE

≤
∑

E∈EΩ∪EN

min
qE∈PdE (ωE)d,

qE ·n=ghon E∩ΓN

(
‖∇(uh − u)‖2,ωE + ‖∇u− qE‖2,ωE

)2
≤ (1 + 1/γ)

∑
E∈EΩ∪EN

‖∇(u− uh)‖22,ωE

+ (1 + γ)
∑

E∈EΩ∪EN

min
qE∈PdE (ωE)d,

qE ·n=ghon E∩ΓN

‖∇u− qE‖22,ωE .

(4.28)

Rearranging the sum over the edges E ∈ EΩ∪EN and using the fact that T ∈ T has
at most 2d edges, the first term in the right-hand side of (4.28) can be estimated
by ∑

T∈T

∑
E⊂∂T,
E 6∈ED

‖∇(u− uh)‖22,T ≤ 2d ‖∇(u− uh)‖22,Ω.
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A direct calculation shows that (1+1/γ)a2 +(1+γ)b2, where a, b > 0, is minimised
for γ = b/a with minimal value a2 + 2ab+ b2 = (a+ b)2. The optimal choice for γ
in the right-hand side of (4.28) yields (4.27).

Remark 4.1. The local degrees dE have to be chosen large enough to obtain higher
order terms in the reliability estimate (4.23) and in the efficiency estimate (4.27)
at the same time.

Remark 4.2. The definition of the approximation operator J is related to “partition
of unity finite elements” [MBa], where for a fixed nonnegative integer `,

S =

{∑
z∈N

qzϕz : qz ∈ P`(ωz)
}

(4.29)

(so that d(z) = ` for all z ∈ K by definition). When S is given by (4.29), a
reasonable choice for dE is dE = ` + 1, E ∈ E , so that inequality (4.23) reads

‖∇(u− uh)‖L2(Ω) ≤ c17

( ∑
E∈EΩ∪EN

min
qE∈P`+1(ωE)d,
qE ·n=ghon E∩ΓN

‖∇uh − qE‖2L2(ωE)

)1/2

+ c18

(
||h`+3/2
E ∂`+2

E uD/∂s
`+2||L2(ΓD)

+ ||h`+3/2
E ∂`+1

E g/∂s`+1||L2(ΓN ) + ||h`+2
T D`+1f ||L2(Ω)

)

(4.30)

with an (hT , hE)-independent constant c18 > 0. Here, ∂E ·/∂s denotes the edgewise
differentiation along ΓD and ΓN .

Remark 4.3. An a posteriori error estimate based on a global averaging technique
could be formulated as follows: There exists an (hT , hE)-independent constant c19 >
0 such that, if ∇uh ∈ Lk(T )d, we have

||∇(u − uh)||L2(Ω) ≤ c19 min
qh∈Pm(Ω)d

(
‖∇uh − qh‖L2(Ω) + ‖h1/2

E (qh · n− g)‖L2(ΓN )

)
+ inf
v|ΓD=uD

‖∇(v − uh)‖L2(Ω)

+ 2c5

(∑
z∈K

h2
z min
fz∈Pd(z)(Ωz)

‖f − fz‖2L2(Ωz)

)1/2

,

(4.31)

with m := min{k}∪{d(z) : z ∈ K}+1. The authors failed to replace Pm(Ω)d in the
minimisation over qh in (4.31) by a larger discrete space (such as certain piecewise
polynomials) to make it efficient.

Proof of (4.31). By Theorem 4.1 we only need to estimate the term∑
z∈K

min
qz∈Pd(z)+1(Ωz)d

‖∇uh − qz‖22,Ωz
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by the minimum in (4.31). For this, let q̃h ∈ Pm(Ω)d denote the minimiser in
(4.31). Since q̃z := q̃h|Ωz ∈ Pd(z)+1(Ωz)d, we can conclude that

∑
z∈K

min
qz∈Pd(z)+1(Ωz)d

‖∇uh − qz‖22,Ωz ≤
∑
z∈K
‖∇uh − q̃z‖22,Ωz ≤ c19‖∇uh − q̃h‖22,Ω.

(4.32)

Remark 4.4. For the restriction TE = {T ∈ T : T ⊆ ωE} of the triangulation T to
ωE, the equivalence

min
qh∈Sk(T )d

‖ph − qh‖2L2(Ω) ≈
∑
E∈EΩ

min
qE∈Sk(TE)d

‖ph − qE‖2L2(ωE)(4.33)

holds for ph ∈ Lk(T )d. For ph ∈ L0(T )d we also have (by a compactness argument)

min
qE∈Sk(TE)d

‖ph − qE‖2L2(ωE) ≈ min
qE∈Pk(ωE)d

‖ph − qE‖2L2(ωE).(4.34)

The left-hand side of (4.33) thus defines an efficient (provided k ≥ 1) and reliable
error estimate for lowest order finite element methods and ph = ∇uh. However,
there is no analogon for higher order finite element methods, since (4.34) is not
valid if ph is not elementwise constant.

5. Numerical experiments

The theoretical results of this paper are supported by numerical experiments for
d = 2. Here, we report on three examples of the problem (4.1)-(4.3) on uniform,
h-, p-, hp-adapted, and perturbed meshes. Two of these examples were considered
in [CB] for lowest order schemes.

Example 5.1. Let f(x, y) := −8π2 sin(2πx) sin(2πy) on the unit square Ω :=
(0, 1)2 and set uD := 0 on ΓD := ∂Ω. The exact solution is then given by
u(x, y) = sin(2πx) sin(2πy). In this example the right-hand sides as well as the ex-
act solution are smooth. The coarsest triangulation T0 consists of one square halved
by the diagonal parallel to (1, 1). The initial polynomial degrees p0 = (p0

T )T∈T0 are
chosen to be equal to p for all T ∈ T0 and various values p = 1, 2, ..., 6.

Example 5.2. Let f := −∆u for the function

u(x, y) := x(1 − x)y(1 − y) arctan(60(r − 1))

r2 := (x − 1.25)2 + (y + 0.25)2 on the unit square Ω := (0, 1)2, and set uD := 0
on the entire boundary ΓD := ∂Ω. The solution u to (4.1)-(4.3) is H2-regular but
f (although theoretically smooth) has huge gradients on the circle with radius 1
around (1.25,−0.25). The coarsest triangulation T0 consists of four squares halved
by diagonals parallel to (1, 1). The initial polynomial degrees p0 = (p0

T )T∈T0 are
chosen to be equal to p for all T ∈ T0 and various values p = 1, 2, ..., 6.

Example 5.3. Let f := 0 on the L–shaped domain Ω := (−1, 1)2 \ [0, 1]× [−1, 0],
uD := 0 on the Dirichlet boundary ΓD := {0} × [−1, 0] ∪ [0, 1]× {0}, and, on the
Neumann boundary ΓN := ∂Ω \ ΓD,

g(r, ϕ) := 2/3 r−1/3(− sin(ϕ/3), cos(ϕ/3)) · n
using polar coordinates (r, ϕ). The exact solution u(r, ϕ) := r2/3 sin(2ϕ/3) of (4.1)-
(4.3) has a typical corner singularity at the origin. In this example, the right-hand
sides are smooth, but the solution is not. The coarsest triangulation T0 consists of
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Figure 1. Error and error estimator for uniform mesh-refinement
in Example 5.1 for different fixed polynomial degrees.

three squares halved by diagonals parallel to (1, 1). The initial polynomial degrees
p0 = (p0

T )T∈T0 are chosen to be equal to p for all T ∈ T0 and various values
p = 1, 2, ..., 6.

The following adaptive algorithm generates all the sequences of meshes T0, T1,
T2, ... in this paper which are h-uniform for Θ = 0 or h-adapted for Θ = 1/2 in (5.2).
No element is refined if Θ = 2. We also allow raising polynomial degrees steered
by the parameter δ ∈ {(0, 0), (1, 1), (0, 1)}. If δ = (0, 0), the initial polynomial
degrees are kept on all triangles and their subtriangles. For δ = (1, 1), we increase
the degree on each element by one during each iteration of the algorithm while for
δ = (0, 1) the polynomial degree is increased only on those triangles that are not
h-refined during the respective iteration of the algorithm.

Since the resulting meshes might show local symmetries, we considered meshes
that are either unperturbed (relative to T0) for ϑ = 0 or randomly perturbed for
ϑ = 1 in step (e).

The implementation was performed in Matlab in the spirit of [ACF] with a
direct solution of linear systems of equations. For details on the red-blue-green-
refinements we refer to [V].

Algorithm (Aϑ,δΘ ). (a) Start with a coarse mesh T0 and polynomial degrees p0 =
(p0
T )T∈T0 , k = 0.
(b) Compute the discrete solution uh on the actual mesh Tk in the space

Spk (Tk) := {vh ∈ C(Ω) : ∀T ∈ T , vh|T ∈ P p
k
T

T }.

(c) Set dE := max(pkT1
, pkT2

) if E = T1∩T2 ∈ EΩ and dE := pkT if E = T∩ΓN ∈ EN .
Compute, for all E ∈ EΩ ∪ EN , error indicators

ηZ,E :=
1√
3

min
qE∈PdE (ωE)d,

qE ·n=ghon E∩ΓN

‖∇uh − qE‖L2(ωE)(5.1)
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Figure 2. Error and error estimator on perturbed meshes for uni-
form h-refinement and fixed polynomial degrees p = 3 in Example
5.1 (top). Perturbed mesh T6 with 4225 nodes (bottom).

and plot energy error eN := ‖∇(u− uh)‖L2(Ω) and its estimator

η2
N :=

∑
E∈EΩ∪EN

η2
Z,E

versus the degree of freedom N of the triangulation Tk.
(d) Mark the edge E for red-refinement provided

ηZ,E ≥ Θ max
E′∈EΩ∪EN

ηZ,E′ .(5.2)

(e) Mark further edges (red–blue–green-refinement) to avoid hanging nodes. Gen-
erate a new triangulation T̃k+1 using edge–midpoints if ϑ = 0 and points on the
edges at a random distance at most 0.1 hE from the edge–midpoints if ϑ = 1. For
T ∈ T̃k+1 set pk+1

T := pkT ′ + δ1 if T ( T ′ for T ′ ∈ T k and define pk+1
T := pkT + δ2
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Figure 3. Error and error estimator for uniform mesh-refinement
in Example 5.2 for different fixed polynomial degrees.

if T ∈ Tk ∩ T̃k+1. Perturb the nodes z ∈ Nk+1 of the mesh T̃k+1 at random with
values taken uniformly from a ball around z of radius ϑ 2−k/15. Correct boundary
nodes by orthogonal projection onto that boundary piece they are expected such
that Ω,ΓD,ΓN are matched by the resulting mesh Tk+1 exactly. Update k and go
to (b).

Remark 5.1. The proof of Theorem 4.3 shows that we may choose the factor 1/
√

3
in (5.1) to obtain an efficient error estimate with constant 1 for our two-dimensional
examples with triangles.

Remark 5.2. In our numerical experiments the minimiser in (5.1) is calculated ex-
plicitly. The resulting linear system of equations is badly scaled for large polynomial
degrees p (we employed transformed Legendre polynomials in such cases). The con-
straint qE · n = gh is satisfied by matching qE · n and g in nodes on E.

We used Algorithm (A0,(0,0)
0 ) in Example 5.1 with uniform initial polynomial

degrees pT = p for all T ∈ T0, where p = 1, 2, ..., 6. Experimental convergence rates
are indicted in Figure 1, where we plotted the entries (N, eN ) and (N, ηN ). A log-
scaling on both axes allows a slope −α of a straight line that connects subsequent
entries to be interpreted as an experimental convergence rate 2α (owing to N ∝
h−2 in two dimensions). Moreover, we see from Figure 1 that the error estimator
ηN serves as a good approximation for the error eN in this example. When a
perturbation of the meshes is introduced we obtain with Algorithms (A0,(0,0)

0 ) and
(A1,(0,0)

0 ) for polynomial degrees equal to three the results displayed in the top
plot of Figure 2. The results become worse for the perturbed meshes but still ηN
approximates eN reasonably. The perturbed mesh T6 with N = 9025 is shown in
the bottom plot of Figure 2 and appears quite degenerate.

The lack of smoothness of the exact solution in Example 5.2 results in a poorer
quality of the numerical solution and the estimates than in the previous numerical
experiment. Figure 3 shows the results for uniform mesh-refinement and fixed
polynomial degrees obtained from Algorithm (A0,(0,0)

0 ). For polynomial degrees
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Figure 4. Error and error estimator on perturbed meshes for
uniform h-refinement and fixed polynomial degree p = 3 in Ex-
ample 5.2 compared to uniform and h-adaptive mesh-refinement
without perturbation (top). Perturbed mesh with 4225 nodes (bot-
tom).

p = 1, 2, 3 we obtain the expected convergence rates, though the preasymptotic
range is very large, while for p = 4, 5, 6 the values (N, eN ) and (N, ηN ) do not result
in a straight line in the plot, but the quotient ηN/eN remains in a small intervall
containing one. This is also true for the perturbed meshes in the top and bottom
plots of Figure 4, where we chose p = 3 and used Algorithm (A1,(0,0)

0 ) to generate
the triangulations. The top plot of Figure 4 also shows that an adaptive mesh
refinement, realised by Algorithm (A0,(0,0)

1/2 ), yields smaller errors than the uniform

mesh-refinement from Algorithm (A0,(0,0)
0 ) at comparable numbers of degrees of

freedom.
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Figure 5. Error and error estimator for adaptive mesh-
refinement in Example 5.3 for different fixed polynomial degrees.

The numerical results for (unperturbed) h-adaptive mesh-refinement, i.e., the
results obtained with Algorithm (A0,(0,0)

1/2 ), in Example 5.3 for fixed polynomial
degrees p = 1, 2, ..., 6, are displayed in Figure 5. We obtain optimal experimental
convergence rates for p = 1, 2, ..., 6. Algorithm (A0,(1,1)

2 ) ran a p-version on a fixed
mesh T with 96 elements obtained by two uniform red-refinements of T0. The top
plot of Figure 6 displays the results for the p-refinements and p = 1, 2, ..., 10. For
small p we observe efficiency (i.e., ηN ≤ eN ) which decreases for larger p (e.g.,
eN < ηN for p ≥ 6). This is in agreement with our theoretical predictions, as
efficiency is linked to the smoothness of the exact solution, which is limited in this
example, while the given data f , g, and uD are smooth.

For comparison we considered an hp-like refinement strategy by running Algo-
rithm (A0,(0,1)

1/2 ). The obtained mesh-refinement and the degree distribution (via
different shadings) is given in Figure 5. We observe an automatic geometric re-
finement towards the origin (where u is singular) and a reverse distribution of the
polynomial degrees. This appears as a good strategy: Large elements have a high
polynomial degree where the exact solution u is smooth, and small elements of
lower degree appear near the singular points of u. The corresponding estimate ηN
for eN is satisfactory and even improves for increasing N . As the constants in
our theoretical results may depend on the polynomial degrees, this good behaviour
in practice could not be predicted, but suggests that those constants depend only
moderately on p.

An h-adaptive algorithm was compared to a uniform mesh-refinement strategy
in our last experiment. Algorithms (A0,(0,0)

0 ), (A1,(0,0)
0 ), (A0,(0,0)

1/2 ), and (A1,(0,0)
1/2 )

generate results displayed in Figure 7. The adaptive meshes refine towards the
singular point seen on the bottom plot of Figure 7. This improved the experimental
convergence rate from 2/3 to 3.

Remark 5.3. The numerical experiments allow the subsequent conclusions:
(i) Our overall experience with the error estimator ηN is that it serves as an

efficient and reliable error indicator provided the exact solution is smooth enough.
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tom).

For nonsmooth exact solutions there is no equivalence for high polynomial degrees
in general, but ηN is still reliable.

(ii) For smooth exact solutions, the constant in the efficiency estimate tends to
one as the polynomial degree is increased. This behaviour is in agreement with
Formula (4.27) of Theorem 4.3.

(iii) The numerical experiments show that adaptive mesh-refinement strategies
of Algorithm (Aϑ,δΘ ) yield considerable convergence improvements.

(iv) As is argued in [CB], the numerical examples support the theoretical predic-
tion that the higher order terms in the reliability estimate depend on the smooth-
ness of given right-hand sides, while those in the efficiency estimate depend on the
smoothness of the exact solution.



AVERAGING TECHNIQUES YIELD RELIABLE ERROR CONTROL PART II 993

1 0. 8 0. 6 0. 4 0. 2 0 0.2 0.4 0.6 0.8 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

10
1

10
2

10
3

10
4

10
4

10
3

10
2

10
1

10
0

N

η N
, e

N 1

0.33

1
0.2

1

1.5

e
N
   (uniform, not perturbed)

η
N
   (uniform, not perturbed)

e
N
   (adaptive, not perturbed)

η
N
   (adaptive, not perturbed)

e
N
   (uniform, perturbed)

η
N
   (uniform, perturbed)

e
N
   (adaptive, perturbed)

η
N
   (adaptive, perturbed)

Figure 7. Error and error estimator for uniform and adaptive
mesh-refinement on perturbed and unperturbed meshes in Exam-
ple 5.3 (top) for p = 3. Triangulation T22 with 382 nodes obtained
from Algorithm (A1,(0,0)

1/2 ) (bottom).

Acknowledgments. The first author (S.B.) thankfully acknowledges partial support
by the German Research Foundation (DFG) within the Graduiertenkolleg “Ef-
fiziente Algorithmen und Mehrskalenmethoden”.

References

[ACF] J. Alberty, C. Carstensen, S.A. Funken: Remarks around 50 lines of Matlab: short

finite element implementation. Numer. Algorithms 20 (1999) 117–137. CMP 2000:01
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