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NORMAL CONES OF MONOMIAL PRIMES

REINHOLD HÜBL AND IRENA SWANSON

Abstract. We explicitly calculate the normal cones of all monomial primes
which define the curves of the form (tL, tL+1, . . . , tL+n), where n ≤ 4. All
of these normal cones are reduced and Cohen-Macaulay, and their reduction
numbers are independent of the reduction. These monomial primes are new
examples of integrally closed ideals for which the product with the maximal
homogeneous ideal is also integrally closed.

Substantial use was made of the computer algebra packages Maple and
Macaulay2.

Let (R,m) be a regular local or graded local ring and let I ⊆ R be an ideal. In the
case of a graded ring, I is assumed to be homogeneous. By NI =

⊕
t∈N I

t/m ·It we
denote the special fibre of the blow-up of I, i.e., the normal cone of I. When I ⊆ R
is an m–primary ideal (in which case Spec(NI) is homeomorphic to the exceptional
fibre of the blow–up of I), normal cones have been studied quite intensely (see for
example the comprehensive reference [HIO]), and some of the results for m-primary
ideals have been extended to equimultiple ideals (cf. [Sh1], [Sh2], [HSa], [CZ]). For
more general ideals very little is known about the structure of their normal cones. If
I is generated by a d-sequence, then NI is a polynomial ring, cf. [Hu]. In particular
this is the case if I is generated by a regular sequence. Conversely, a celebrated
result of Cowsik and Nori [CN] asserts that an equidimensional radical ideal I with
dim(NI) = ht(I) = dim(R) − 1 is a complete intersection ideal. Other than that,
the structure of NI has been determined only in some special cases ([MS], [G],
[CZ]).

Our interest in the normal cones got sparked by their relations to evolutions
and evolutionary stability of algebras. In [H] it was shown that whenever I is
a radical ideal and NI is reduced (or, more generally, NI does not contain any
nilpotent elements of degree 1), then the ideal m · I is integrally closed. If in
addition R is essentially of finite type over a field k of characteristic zero, this
in turn implies that R/I is evolutionarily stable as a k-algebra, thus answering a
question of Mazur from [EM] in this case. In [HH] further connections between the
normal cone of an ideal and the integral closedness of m · I have been established.
For two-dimensional regular rings the product of any two integrally closed ideals
is integrally closed; however, in general this is not the case. With the exception
of radical ideals generated by d-sequences, few examples of classes of ideals I for
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which m · I is integrally closed are known. We provide many new examples in this
paper.

The standard way of constructing NI is as a homomorphic image of the associ-
ated graded ring of I. Good properties of the associated graded ring often imply
similar good properties for the normal cone; however, often NI satisfies properties
that the associated graded ring does not. For example, whereas the associated
graded ring of an ideal is rarely reduced, concrete examples show that this is the
case quite frequently with NI .

Another reason to study the normal cone is its relation to reductions and reduc-
tion numbers. Recall that a reduction of I is an ideal J ⊆ I such that JIr = Ir+1

for some r ∈ N, and J is called a minimal reduction if it does not contain a proper
reduction of I. The reduction number rJ(I) of I with respect to J is defined to be
the smallest r with JIr = Ir+1. In general, it depends on the choice of a minimal
reducton J of I. However, we have:

Proposition 1 (see also [CZ, Remark 4.5]). If k = R/m is an infinite field and
if NI is Cohen–Macaulay, then the reduction number rJ(I) is independent of the
choice of a minimal reduction J of I.

Proof. Let J = (x1, . . . , xl) ⊆ I be a minimal reduction of I, and let x∗i := xi+m ·I.
Then x∗1, . . . , x

∗
l are algebraically independent elements of NI of degree 1 and

P = k[x∗1, . . . , x
∗
l ]→ NI

is a homogeneous noetherian normalization of NI (cf. [Va, page 100]). As NI is
Cohen–Macaulay, it is free as a graded P–module. Let {a1, . . . , am} be a homoge-
neous P -basis of NI with deg(ai) ≤ deg(ai+1). Set

r := max{deg(ai)} = deg(am),

and for 0 ≤ j ≤ r set

tj := |{i ∈ {1, . . . ,m} : deg(ai) = j}|.
Then, for the Hilbert function of the normal cone we have

H(NI , ρ) := dimk(NI,ρ) =
r∑
j=0

tj

(
l+ρ−1−j
ρ−j

)
.

Hence if J̃ = (y1, . . . , yl) ⊆ I is another minimal reduction of I, and if we define r̃,
t̃j in the analogous way, we get again

H(NI , ρ) =
r̃∑
j=0

t̃j

(
l+ρ−1−j
ρ−j

)
.

Comparing these two expressions, we conclude in particular that r = r̃, hence

rJ (I) = r = r̃ = rJ̃ (I)

(cf. [Va, page 100]).
Thus there is ample reason to study the special fibre NI . In this note we concen-

trate on the normal cones of the ideals of monomial curves of type (tL, tL+1, . . . ,
tL+n), n ≤ 4. We determine the normal cones completely in these cases, and we
show that NI is reduced and Cohen–Macaulay. Moreover, we show that NI is essen-
tially determined by the residue class of L modulo n. In particular, in each of these
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cases the reduction number is independent of the choice of a minimal reduction,
and m · I is integrally closed.

Our results are explicit and computationally intensive. We arrived at most of
them after observing the patterns on the examples calculated with Macaulay2 and
Maple. Though neither of these programs can actually prove anything about the
structure of NI in general, their help has been crucial to us. We used Macaulay2
to calculate normal cones for specific fields k and integers L and n (based on re-
sults of Patil and Singh). With the help of Maple we then manipulated these
patterns to obtain general relations for large sets of L and arbitrary fields k. Find-
ing these relations involved not just Maple but also some guessing. However, the
obtained relations were subsequently all verified by traditional methods. Finally,
with somewhat less computational algebra we subsequently proved that the rela-
tions we obtained in this way indeed generated the whole ideal of presentation of
the normal cone. A few of the results were only verified by Macaulay2 for various
k, n and L, and not proved. All such results are marked with * in the summary
table at the end.

We thank Dan Grayson and Mike Stillman for helping us with Macaulay2, and
Steve Swanson for helping us with Maple. Some Macaulay2 code is included in this
paper.

Preliminaries and techniques

As mentioned earlier, a motivation for this work came from [H], in which prop-
erties (AR) and (MR) were defined:

Definition 2. A radical ideal I in a local or graded local ring (R,m) satisfies prop-
erty (MR) if whenever x ∈ I \m · I, then x is contained in a minimal reduction of
I. A radical ideal I satisfies property (AR) if whenever x ∈ I \m · I, then x+ m · I
is not nilpotent in the normal cone NI of I.

Clearly (MR) implies (AR). The first author proved in [H] that if I satisfies
(AR), then m · I is integrally closed. We show that all the monomial primes in this
paper satisfy (AR) but many do not satisfy (MR).

Here is the set-up for this paper. Fix positive integers L, n, let

α : R := k[X0, X1, . . . , Xn]→ k[tL, tL+1, . . . , tL+n]

be the canonical map (with α(Xi) = tL+i), and let P be the kernel of α. Set

Gn =
⌈
L

n

⌉
, s = Gnn− L.

Then P can be determined completely, and specializing and slightly modifying
results of Patil [P] and Patil–Singh [PS] to our situation gives:

Theorem 3. i) Assume L ≤ n. Then P is minimally generated by the elements

ξi,j = XiXj −Xi−1Xj+1 for 1 ≤ i ≤ j ≤ L− 1,

ϕj = XL+j −X
bL+j

L c
0 Xj−Lb jLc for j ∈ {0, . . . , n− L}.

ii) Assume L > n. Then P is minimally generated by the elements

ξi,j = XiXj −Xi−1Xj+1 for 1 ≤ i ≤ j ≤ n− 1,
ψj = Xn−s+jX

Gn−1
n −XGn

0 Xj for j ∈ {0, . . . , s}.
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In particular, the minimal number µ(P) of generators of P equals

µ(P) =


(
L− 1

2

)
+ n, if L ≤ n,(

n

2

)
+
⌈
L

n

⌉
n− L+ 1, if L > n.

From this we are able to derive an easy and straightforward algorithm to deter-
mine the normal cones of these primes. For example, in case L > n:

1. Set S = k[X0, . . . , Xn, {Xi,j}1≤i≤j≤n−1, Y0, . . . , Ys] and T = k[X0, . . . , Xn, t].
2. Define ϕ : S → T by

ϕ(Xi) = Xi,

ϕ(Xi,j) = (XiXj −Xi−1Xj−1) · t,
ϕ(Yl) = (Xn−s+jX

Gn−1
n −XGn

0 Xj) · t.

3. Determine Q = ker(ϕ).
4. Set m = (X0, . . . , Xn) ⊆ S and J = m + Q.

Proposition 4. S/J is the normal cone of P and S/Q is the Rees–algebra of P.

Proof. In view of the above theorem this is evident from the definitions.

The above algorithm can be made into an effective Macaulay2 code. For example,
in the case that n = 3, L = 3l−2, for various values of l, we input the corresponding
monomial curve prime ideal as follows:

L = 3*l - 2
n = 3
v = apply(n+1, j -> L+j)
R = ZZ/31[x_0..x_n, Degrees => {1} | vv ]
P = ideal (x_1^ 2-x_0*x_2, x_1*x_2-x_0*x_3, x_2^ 2-x_1*x_3,

x_1*x_3^(l-1)-x_0^ (l+1), x_2*x_3^ (l-1)-x_0^ l*x_1,
x_3^ l-x_0^ l*x_2)

With this ideal P in a ring R we can now pass to the normal cone computation
of P via the following routine:
Input: ring R, ideal P (not necessarily prime)
Output: the ideal presenting the normal cone of P

ncp = () -> (
k = coefficientRing R;
rr = gens R;
n = numgens R;
v = apply(n, i-> (degree(rr_i))_0);
m = numgens P;
vv = apply(m, i -> (degree(P_i))_0+1);
S = k[rr,y_1..y_m, Degrees => join(v,vv), MonomialSize => 16];
T = k[t,rr, Degrees => prepend(1,v), MonomialSize => 16];
f = map(T,S, apply(n, i -> substitute(rr_i,T)) |

apply(m, i -> t*substitute(P_i,T)));
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K = ker f;
g = map(S,S, apply(n, i -> 0) | toList(y_1..y_m));
ideal mingens g(K)
)

-- example: R = ZZ/101[a,b,c];
-- P = ideal(a^ 2-b*c,a^ 3,b*c*d);
-- ncp ()

This algorithm and the examples obtained with it allowed us to find results
about the structure of some classes of monomial primes (presented below), though
in some cases additional calculations and algorithms have been needed.

Some easy cases

First we identify all the pairs (L, n) for which µ(P) = n.

Theorem 5. The number of generators of P is n if and only if the normal cone
NP of P is a polynomial ring in n variables over k, and that is true if and only if
one of the following conditions is satisfied:

1. L = 1 ≤ n,
2. L = 2 ≤ n,
3. n = 1 < L,
4. n = 2 and L is even.

Proof. The dimension of the normal cone is at least the height of the ideal, which
in these cases is n, and at most the number of generators of the ideal, which here is
also n (see [HIO]). This proves that the first two statements are equivalent. That
they are equivalent to the four conditions listed is an easy combinatorial exercise
left to the reader.

By the Cowsik-Nori result [CN], the cases in Theorem 5 are exactly those cases
for which the dimension of the normal cone is exactly n. Thus from now on it
suffices to consider the cases for which P is generated by at least n + 1 elements,
and in all these cases the dimension of the normal cone is at least n+ 1. However,
the dimension of the normal cone is bounded above by the dimension n+ 1 of the
ring (see [HIO]), so that from now on the dimension of the normal cones is exactly
n + 1. Moreover, the cases when P is generated by at most n + 1 elements are
special:

Theorem 6. µ(P) ≤ n+ 1 if and only if NP is a polynomial ring over k in µ(P)
variables.

Proof. It is well-known that P is generated by analytically independent elements
if NP is a polynomial ring. But the number of analytically independent elements
is bounded above by the dimension n + 1 of the ring (see [HIO]), so that P is
generated by at most n+ 1 elements.

Conversely, assume that µ(P) ≤ n+ 1. By Theorem 5 we only need to consider
the cases when µ(P) = n + 1. Then the normal cone is an (n + 1)-dimensional
quotient of a polynomial ring in n + 1 variables over k, so that necessarily the
normal cone equals the polynomial ring. This proves the theorem.
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The Patil-Singh formulae help identify all the pairs (L, n) for which µ(P) = n+1.
When L ≤ n, necessarily

(
L−1

2

)
= 1, so that L = 3 ≤ n. When L > n instead,(

n
2

)
+
⌈
L
n

⌉
n− L+ 1 = n + 1 if and only if

(
n
2

)
− n = L −

⌈
L
n

⌉
n, where the last

quantity is non-positive. Thus n
(
n−3

2

)
≤ 0, which forces the following two cases:

1. n = 3 and L = 3l for some integer l > 1,
2. n = 2 and L odd, L ≥ 3.

Thus all in all, NP is a polynomial ring if and only if one of the following holds:
1. L = 1 ≤ n,
2. L = 2 ≤ n,
3. n = 1 < L,
4. n = 2 and L is even,
5. n = 3 and L = 3l for some positive integer l,
6. n = 2 and L odd.

For all these cases, P satisfies (MR), thus (AR), and thus m ·P is integrally closed.
From now on we analyze the cases for which the number of generators of P is at

least n+2. The normal cones in these cases are, by the last theorem, not polynomial
rings. They are of course quotients of polynomial rings, and the presenting relations
have a very varied structure. These structures tend to be similar for the P with the
same n. We analyze the cases up to n equal to 4. So far we have proved that all
the cases n ≤ 2 yield polynomial normal cones, so we start with n = 3. Moreover,
we may assume that L ≥ 3.

Also, note that in all the previous cases the reduction number was zero as the
P were all basic. In all the cases with µ(P) ≥ n + 2, however, P is not basic, so
that the reduction numbers from now on will be positive integers.

The cases n = 3

Note that all the cases L ≤ n = 3 yield polynomial rings as normal cones. So we
may assume that L > n. The case when L is a multiple of 3 also yields polynomial
rings as normal cones, so it remains to analyze the cases L = 3l− 1 and L = 3l− 2.

The case n = 3, L = 3l− 1 > 3. Necessarily l ≥ 2. By the Patil-Singh theorem,

P = (x2
1 − x0x2, x1x2 − x0x3, x

2
2 − x1x3, x2x

l−1
3 − xl+1

0 , xl3 − x1x
l
0).

Let the five generators above be named y1, . . . , y5 in the order given. One can
verify by hand or by Maple that

y3y
2
4 − y2y4y5 + y1y

2
5 − xl−2

3 y5y
2
3 = xl−2

0 xl−2
3 (x0y

3
2 + x2y

2
1y2 − x1y1y

2
2)− xl−1

0 y2
1y4.

When l = 2, set F = y3y
2
4 − y2y4y5 + y1y

2
5 − y5y

2
3 , and when l > 2, set F = y3y

2
4 −

y2y4y5+y1y
2
5 . By the given relation, NP is a quotient ring of k[y1, y2, y3, y4, y5]/(F ).

It is easily verified that F is an irreducible polynomial in k[y1, y2, y3, y4, y5], so
that k[y1, y2, y3, y4, y5]/(F ) is a four-dimensional integral domain. If NP were a
proper quotient ring of it, then NP would be three-dimensional, contradicting the
earlier observation that the dimension of the normal cone has to be n + 1 = 4.
Thus necessarily NP = k[y1, y2, y3, y4, y5]/(F ), so it is an integral domain, and in
particular none of its elements of degree 1 is a zero-divisor.

One can calculate that (y1 − y5, y2, y3, y4) is a minimal reduction of P with
reduction number 2, so that by Proposition 1, the reduction number of P equals 2.
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The case n = 3, L = 3l− 2 > 3. Necessarily l ≥ 2. By the Patil-Singh theorem,

P = (x2
1 − x0x2, x1x2 − x0x3, x

2
2

− x1x3, x1x
l−1
3 − xl+1

0 , x2x
l−1
3 − xl0x1, x

l
3 − xl0x2).

A combination of Macaulay2 and Maple produces two relations in S:

y3y4 − y2y5 + y1y6 = 0

and
y2

5 − y4y6 − xl−2
3 y3y6 − xl−1

0 xl−2
3 y2

2 − xl−2
0 x2x

l−2
3 y2

1

+ xl−2
0 x1x

l−2
3 y1y2 + xl−1

0 y1y4 = 0

for any value of l, where y1, y2, y3, y4, y5 and y6 are the given generators of P, in the
given order. It is easy to check that these two relations are indeed relations on the
given Patil-Singh generators of P, for an arbitrary integer l and the underlying field
k. Set F = y3y4− y2y5 + y1y6. Set G = y2

5 − y4y6− y3y6 if l = 2 and G = y2
5 − y4y6

otherwise. F and G are clearly irreducible polynomials in k[y1, y2, y3, y4, y5, y6]
forming an ideal of height 2. By the two displayed relations, the normal cone of P

is a quotient ring of A = k[y1, y2, y3, y4, y5, y6]/(F,G).
We first verify that A is an integral domain. Under the reverse lexicographic

ordering, F and G are presented in their expansion in descending order. As their
leading terms have no variables in common, their S-polynomial is zero, so that the
Gröbner basis of (F,G) is {F,G}. Thus by the standard Gröbner bases result,
(F,G) ∩ k[y5, y6] = (0). It is easy to see that

(F,G)k(y5, y6)[y1, . . . , y4]

=
(
y1 +

y3y4 − y2y5

y6
, y4 + δl2y3 −

y2
5

y6

)
k(y5, y6)[y1, . . . , y4]

is a prime ideal. Now in order to finish the proof that (F,G) is prime, it suffices to
prove that (F,G)k(y5, y6)[y1, . . . , y4] ∩ k[y1, . . . , y6] equals (F,G) (see for example
[GTZ, Lemma 4.2]). As the only elements of k(y5, y6) which divide any of the
leading terms of (F,G) are powers of y5, by [GTZ, Proposition 3.7],

(F,G)k(y5, y6)[y1, . . . , y4] ∩ k[y1, . . . , y6] = (F,G)k[y1, . . . , y6]y5 ∩ k[y1, . . . , y6].

But F,G, y5 form a regular sequence in k[y1, . . . , y6], so that (F,G)y5 ∩k[y1, . . . , y6]
equals (F,G). Thus by [GTZ, Lemma 4.2] the ideal (F,G) is prime.

It follows that A is a four-dimensional complete intersection integral domain,
and thus Gorenstein. As n = 3, the normal cone of P has to have dimension 4, so
necessarily the normal cone is A.

One can calculate that (y1 − y6, y2, y3, y4) is a minimal reduction of P with
reduction number 2, so that again by Proposition 1, the reduction number of P

equals 2.
We conclude in particular that P satisfies the condition (MR) whenever n = 3,

and consequenly m ·P is integrally closed.

The cases n = 4

We have seen that the case L = 3 yields a polynomial normal cone of dimension
5. If instead L = 4 = n, by the Patil-Singh theorem,

P = (x2
1 − x0x2, x1x2 − x0x3, x1x3

− x0x4, x
2
2 − x1x3, x2x3 − x1x4, x

2
3 − x2x4, x4 − x2

0),
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and by Macaulay2 its normal cone is

k[y1, y2, y3, y4, y5, y6, y7]/(y2
5 − y3y6 − y4y6, y3y4 − y2y5 + y1y6),

at least when k = Z/31Z. However, it is easy to see that the relations y2
5 − y3y6 −

y4y6 = 0 and y3y4−y2y5 +y1y6 = 0 hold for arbitrary fields, and by analysis similar
to the case n = 3, L = 3l−2 > 3, we see that the two polynomials generate a prime
ideal of height two. Thus

k[y1, y2, y3, y4, y5, y6, y7]/(y2
5 − y3y6 − y4y6, y3y4 − y2y5 + y1y6)

is a 5-dimensional complete intersection domain, and by the dimension restraint
there are no relations on the yi outside of the ideal

(y2
5 − y3y6 − y4y6, y3y4 − y2y5 + y1y6).

Thus

k[y1, y2, y3, y4, y5, y6, y7]/(y2
5 − y3y6 − y4y6, y3y4 − y2y5 + y1y6)

is a normal cone of P. Hence every minimal generator of P is a part of a minimal
reduction of P, P satisfies (MR), and m ·P is integrally closed.

One of the minimal reductions is (y1−y6, y2, y3, y4, y7), and its reduction number
is 2. Thus the reduction number of P is 2, by Proposition 1.

Note that by the structure of the minimal generators of P as given by Patil-Singh
and by Proposition 4.2 in [HS], the normal cone for all cases L = 4, n ≥ 4, is a
polynomial ring in n−4 variables over the normal cone for the case n = 4. Thus any
good property for the special case n = 4 also holds for the general case n ≥ 4. In
particular, for all the cases L = 4, n ≥ 4, the normal cone is an (n+ 1)-dimensional
complete intersection domain, with every minimal generator of P being part of a
minimal reduction of P, i.e., P satisfies (MR).

We next analyze the cases when n = 4 and L > n.
As for the n = 3, L > n cases, the normal cones depend on the congruence

classes of L modulo n, but now in addition there are also a few special cases for
low values of L.

An important ingredient for all these cases is the normal cone of the ideal Q

generated by the six quadric generators of all these ideals P: namely, let Q =
(x2

1− x0x2, x1x2− x0x3, x1x3− x0x4, x
2
2− x1x3, x2x3− x1x4, x

2
3− x2x4). Note that

Q is independent of L, so it is straightforward to calculate its associated graded
ring and its normal cone:

Theorem 7. The associated graded ring grQ(R) of Q has exactly two minimal
primes. Note that grQ(R) is a homomorphic image of

S = k[x0, x1, x2, x3, x4, y1, . . . , y6],

where yi maps to the ith quadric generator of Q. With this notation, the two
minimal primes in grQ(R) are

p1 = (x0, x1, x2, x3, x4)grQ(R) and p2 = (G, x2y4 − x1y5 + x0y6)grQ(R),

where

G = y3
4 + y1y

2
5 + y2

2y6 − y2y4y5 − y1y3y6 − 2y1y4y6.

Moreover, in grQ(R),

0 : x∞4 = 0 : x∞0 = p2.
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Also, the normal cone NQ of Q is isomorphic to k[y1,... ,y6]
(F ) , where F = y3y4−y2y5+

y1y6.

Proof. First of all, Macaulay2 calculates – for k = Z/31Z – and one can verify
manually that the Gröbner basis for the presenting ideal of the Rees algebra of Q

over an arbitrary field is indeed

{x4y4 − x3y5 + x2y6, x3y4 − x2y5 + x1y6, x4y2 − x3y3 + x1y6, x3y2 − x2y3 + x0y6,

x2y2 − x1y3 − x1y4 + x0y5, x4y1 − x2y3 + x1y5,

x3y1 − x1y3 + x0y5, x2y1 − x1y2 + x0y4, y3y4 − y2y5 + y1y6}

in S = k[x0, x1, x2, x3, x4, y1, . . . , y6]. Thus it follows that the ideal presenting the
normal cone of Q is simply (y3y4−y2y5 +y1y6), and that the ideal K presenting the
associated graded ring grQ(R) is generated by all of these and by x2

1−x0x2, x1x2−
x0x3, x1x3 − x0x4, x

2
2 − x1x3, x2x3 − x1x4, x

2
3 − x2x4.

Any minimal prime P over K either contains x0 or it does not. If x0 is not in
P, then after inverting x0, PSx0 is minimal over

KSx0 = (y6 +
x3

1

x3
0

y2 −
x2

1

x2
0

y3, y5 +
x3

1

x3
0

y1

− x1

x0
y3, y4 +

x2
1

x2
0

y1 −
x1

x0
y2, x2 −

x2
1

x0
, x3 −

x3
1

x2
0

, x4 −
x4

1

x3
0

)Sx0 ,

which is a prime ideal. Let P2 be the contraction of this prime ideal to S and p2

the image of P2 in grQ(R). Both P2 and p2 are prime ideals. We have shown so
far that 0 : x∞0 = p2. Note that x4 is also not a zero divisor modulo p2. It is then
straightforward to show that also 0 : x∞4 = p2. Macaulay2 verifies, and one can do
it manually as well, that P2 and p2 are as stated in the theorem.

If instead x0 ∈ P, then P is minimal over

(x0, x4y4 − x3y5 + x2y6, x3y4 − x2y5 + x1y6, x4y2 − x3y3 + x1y6, x3y2 − x2y3,

x2y2 − x1y3 − x1y4, x4y1 − x2y3 + x1y5, x3y1 − x1y3, x2y1 − x1y2,

y3y4 − y2y5 + y1y6, x
2
1, x1x2, x1x3, x

2
2 − x1x3, x2x3 − x1x4, x

2
3 − x2x4)

and thus over

(x0, x1, x2, x3, x4y4, x4y2, x4y1, y3y4 − y2y5 + y1y6),

so that either

P = (x0, x1, x2, x3, x4, y3y4 − y2y5 + y1y6),

or

P = (x0, x1, x2, x3, y4, y2, y1).

However, the second prime ideal properly contains P2. This proves that grQ(R)
indeed has only the two minimal primes.

Furthermore, by the structure of F and by Lemma 19.8 in Matsumura [M], the
normal cone NQ of Q is even a unique factorization domain. This ideal Q is thus an
example of an ideal for which the normal cone has much better properties than the
associated graded ring: here grQ(R) is not even reduced, whereas NQ is a unique
factorization domain.
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The case n = 4, L = 4l > 4. Necessarily l ≥ 2. By the Patil-Singh theorem,

P = (x2
1 − x0x2, x1x2 − x0x3, x1x3

− x0x4, x
2
2 − x1x3, x2x3 − x1x4, x

2
3 − x2x4, x

l
4 − xl+1

0 ),

and the combination of Macaulay2 and Maple establishes the following two rela-
tions:

y3y4 − y2y5 + y1y6 = 0,

(y3
4 + y1y

2
5 + y2

2y6 − y2y4y5 − y1y3y6 − 2y1y4y6)y7

= xl−2
4 y2

3y
2
6 − 2xl−2

4 y3y
2
5y6 + xl−2

4 y4
5 + 2xl−2

4 y2y5y
2
6 − 2xl−2

4 y4y
2
5y6

− 2xl−2
4 y1y

3
6 + xl−2

4 y2
4y

2
6 − xl−1

0 y2
1y

2
3 + 2xl−1

0 y1y
2
2y3 − 2xl−2

0 x1y
2
1y2y3

+ 2xl−2
0 x2y

3
1y3 − xl−1

0 y4
2 + 2xl−2

0 x1y1y
3
2 − 2xl−2

0 x2y
2
1y

2
2

− xl−2
0 x1y

2
1y2y4 + xl−2

0 x2y
3
1y4,

where y1, y2, y3, y4, y5, y6 and y7 are the generators of P in the given order. When
l = 2, this says that the normal cone is the quotient of k[y1, y2, y3, y4, y5, y6, y7] by
the two relations y3y4 − y2y5 + y1y6 and −(y3

4 + y1y
2
5 + y2

2y6 − y2y4y5 − y1y3y6 −
2y1y4y6)y7 + y2

3y
2
6 − 2y3y

2
5y6 + y4

5 + 2y2y5y
2
6 − 2y4y

2
5y6 − 2y1y

3
6 + y2

4y
2
6 . Indeed, by

using Gianni-Trager-Zacharias [GTZ] techniques as for the case n = 3, L = 3l−2 >
3, this quotient is a five-dimensional complete intersection domain, and thus by
the dimension restriction it equals the normal cone. Thus again every minimal
generator is part of a minimal reduction, and P satisfies (MR). Furthermore, P

has reduction number 4.
When instead l > 2, the displayed relations imply that the normal cone of P is

a quotient ring of

A =
k[y1, y2, y3, y4, y5, y6, y7]

(y3y4 − y2y5 + y1y6, (y3
4 + y1y2

5 + y2
2y6 − y2y4y5 − y1y3y6 − 2y1y4y6)y7)

.

Note that the second relation of degree 4 is y7 times the polynomial G from The-
orem 7, and the first quadric relation is F from Theorem 7. Both F and G are
in k[y1, y2, y3, y4, y5, y6]. It is not hard to see that (F, y7G) = (F, y7) ∩ (F,G) is a
decomposition in A. Furthermore, as in our proof of the case n = 3, L = 3l− 2 > 3
using [GTZ], the two ideals (F, y7) and (F,G) are primes. Thus if NP equals A,
then NP is a complete intersection reduced ring, and y7 is a minimal generator of
P which is not part of any minimal reduction of P. Therefore P satisfies (AR) but
not (MR).

Now we use Theorem 7 to prove that NP = A. By the x-degree count, there is
a canonical inclusion NQ ⊆ NP. As NQ is a unique factorization domain and the
relations on NP contain F and y7G, where G ∈ NQ, it follows that

NQ ⊆ NP =
NQ[y7]
(y7) ∩ I

for some ideal I in NQ[y7] containing the canonical image of G. Let α ∈ NP, of
degree j, and let i be a positive integer such that αyi7 = 0. Suppose we can prove
that all such α are elements of GNP. Then I ⊆ GNP, so that

y7GNP ⊆ (y7) ∩ I ⊆ (y7) ∩GNP = y7GNP.

Hence equality holds throughout, proving that NP = A. Thus it remains to prove
that for all α as above, α ∈ GNP.



NORMAL CONES OF MONOMIAL PRIMES 469

Of course, α can be written as α0 + y7α1, where α0 is the image of an element
α̃0 in Qj and α1 is the image of an element α̃1 in Pj−1. Note that either α0 is 0 or
α̃0 may be taken to be a homogeneous element in the x’s of degree exactly 2j. By
the assumption, if ỹ7 denotes the preimage xl4 − xl+1

0 of y7 in R, then

ỹi7α̃0 + ỹi+1
7 α̃1 ∈ (x0, x1, x2, x3, x4)Pi+j

⊆
i−1∑
k=0

(x0, x1, x2, x3, x4)ỹk7Q
i+j−k + (x0, x1, x2, x3, x4)ỹi7P

j

⊆ Qj+1 + (x0, x1, x2, x3, x4)(xl4, x
l+1
0 )i(Q + (xl+1

0 , xl4))j .

Any x-monomial appearing in an element in the last ideal has degree at least
1 + li + 2j, whereas on the left side there appear monomials of degree exactly
li+ 2j. Thus by taking the homogeneous part of degree li+ 2j we get that

xli4 α̃0 ∈ Qj+1,

so that by Theorem 7, α0 ∈ GNP. This finishes the proof of the case j = 0, and
when j > 0, it reduces the proof to showing that y7α1 ∈ GNP. Thus, as y7G = 0
in NP and α0 ∈ GNP, we have that yi+1

7 α1 = 0. But by induction on j, as α1 lies
in degree j − 1, we are done. This proves that A = NP.

Then it is easy to verify that (y1 − y6, y2, y3, y4 − y7, y5) is a minimal reduction
of P with reduction number 4. Hence by Proposition 1, the reduction number of
P equals 4.

The case n = 4, L = 4l − 1 > 4. Note that necessarily l ≥ 2. By the Patil-Singh
theorem,

P = (x2
1 − x0x2, x1x2 − x0x3, x1x3 − x0x4, x

2
2

− x1x3, x2x3 − x1x4, x
2
3 − x2x4, x3x

l−1
4 − xl+1

0 , xl4 − xl0x1).

The combination of Macaulay2, Maple, and some guessing produces the following
relations on the generators y1, . . . , y8 of NP:

y3y4 − y2y5 + y1y6,

y6y
2
7 − y5y7y8 + y4y

2
8 − xl−2

4 y2
6y8 − xl−1

0 y1y3y7

+ xl−1
0 y2

2y7 − xl−1
0 xl−2

4 y3(y3y5 − y2y6),

y5y
2
7 − y3y7y8 − y4y7y8 + y2y

2
8 − xl−2

4 y5y6y8

+ xl−1
0 y1y2y7 − xl−1

0 xl−2
4 y3(y2

3 − y1y6),

y4y
2
7 − y2y7y8 + y1y

2
8 + xl−2

4 (y3y6 − y2
5)y8 + xl−1

0 y2
1y7

+ xl−2
0 xl−2

4 ((x1y1 − x0y2)y2
3 − x0y1y2y6 + x0y1y4y5 − x3y1y

2
2 + x3y

2
1y4),

y2
5y7 − (y3 + y4)y6y7 − y4y5y8 + y2y6y8 + xl−1

0 (y1y
2
3 − y2

2y3 + y1y2y5 − y2
1y6),

y4y5y7 − y2y6y7 − y2
4y8 + y1y6y8 + xl−2

4 (y3y6 − y2
5 + y4y6)y6

+ xl−1
0 y2(y1(y3 + y4)− y2

2),

y2
4y7 − y1y6y7 − y2y4y8 + y1y5y8 + xl−2

4 y5((y3 + y4)y6 − y2
5)

+ xl−1
0 y1(y1(y3 + y4)− y2

2),

y2y4y7 − y1y5y7 − y2
2y8 + y1(y3 + y4)y8 + xl−2

4 y3((y3 + y4)y6 − y2
5).
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Thus when l = 2, the normal cone NP is the quotient of k[y1, . . . , y8] modulo the
following induced relations:

y3y4 − y2y5 + y1y6,

y6y
2
7 − y5y7y8 + y4y

2
8 − y2

6y8,

y5y
2
7 − y3y7y8 − y4y7y8 + y2y

2
8 − y5y6y8,

y4y
2
7 − y2y7y8 + y1y

2
8 + (y3y6 − y2

5)y8,

y2
5y7 − (y3 + y4)y6y7 − y4y5y8 + y2y6y8,

y4y5y7 − y2y6y7 − y2
4y8 + y1y6y8 + (y3y6 − y2

5 + y4y6)y6,

y2
4y7 − y1y6y7 − y2y4y8 + y1y5y8 + y5((y3 + y4)y6 − y2

5),

y2y4y7 − y1y5y7 − y2
2y8 + y1(y3 + y4)y8 + y3((y3 + y4)y6 − y2

5).

Calculation by Macaulay2 for various finite fields k shows that the ideal generated
by these elements is indeed the defining ideal of the normal cone NP. It is unlikely
that the relations would be any different for some field k; however, we provide no
proof here. Similarly, it is also a result due to Macaulay2 that for various finite
fields k, this ideal is prime, Cohen-Macaulay, and non-Gorenstein, so that each of
the minimal generators of P is part of a minimal reduction, i.e., P satisfies (MR).

It is easy to verify that (y1 − y6, y3, y5, y2 − y8, y4 − y7) is a minimal reduction
of P and that it has reduction number 2. Then by Proposition 1, the reduction
number of P equals 2. The same ideal is also a reduction with reduction number 2
in the case when l > 2.

Now let l > 2. Let J be the ideal in k[y1, . . . , y8] generated by the images of the
relations on the yi calculated above, i.e.,

J = (y3y4 − y2y5 + y1y6, y6y
2
7 − y5y7y8 + y4y

2
8 , y5y

2
7 − y3y7y8 − y4y7y8 + y2y

2
8,

y4y
2
7 − y2y7y8 + y1y

2
8 , y

2
5y7 − (y3 + y4)y6y7 − y4y5y8 + y2y6y8,

y4y5y7 − y2y6y7 − y2
4y8 + y1y6y8, y

2
4y7 − y1y6y7 − y2y4y8 + y1y5y8,

y2y4y7 − y1y5y7 − y2
2y8 + y1(y3 + y4)y8).

Thus NP is a homomorphic image of A = k[y1, . . . , y8]/J . We prove next that
actually NP equals A. Certainly NP = k[y1, . . . , y8]/L for some ideal L containing
J , and it suffices to prove that L ⊆ J .

As in the calculation of the normal cone of Q, also here one can show manually
in a straightforward way that J has exactly two minimal primes:

p1 = (F, y7, y8)k[y],

p2 = J : x∞0 = J : x∞4 ,

where F and G are the same as in the previous case: F = y3y4 − y2y5 + y1y6

and G = y3
4 + y1y

2
5 + y2

2y6 − y2y4y5 − y1y3y6 − 2y1y4y6. Macaulay2 calculated the
generators of p2 for k = Z/31Z, and it is actually a straightforward (even manually
doable) Gröbner basis calculation that

p2 = J + (G)k[y],

whence it is easy to see that J = p1 ∩ p2, so that J is reduced and equidimensional
with two minimal primes.
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By Theorem 7, as in the previous n = 4 case, as J contains Gy7, Gy8, we have

NQ ⊆ NP =
NQ[y7, y8]
(y7, y8) ∩ I

for some ideal I containing G. This shows in particular that L ⊆ p1. Thus to prove
that L = J , it suffices to prove that L ⊆ p2. We will use a similar method as in
the previous case. The main difference is that the prime ideal p1 here is generated
by two variables, whereas before it was generated by only one. So we first reduce
to one of the variables only, after which the proof is essentially the same as before.

Thus let α be a homogeneous element of A of degree j which is contained in
the image of L. To prove that α = 0 it suffices to prove that α ∈ p2. Assume
that α 6= 0 and let i be the largest integer such that α ∈ (y7, y8)i. Note that
i > 0, as L ⊆ p1. Write α = α0 + α1, with α0 ∈ (y1, . . . , y6)j−i(y7, y8)iR and
α1 ∈ (y1, . . . , y8)j−i−1(y7, y8)i+1R. As y2y4 − y1y5 6∈ p2, it suffices to prove that
(y2y4− y1y5)iα ∈ p2, and even that (y2y4− y1y5)iαk ∈ p2 for k = 0, 1. But modulo
the element (y2y4 − y1y5)y7 − (y2

2 − y1(y3 + y4))y8 ∈ J , (y2y4 − y1y5)iαk = βky
i
8,

for some βk of y-degree j, with β0 ∈ Qj. As (y2y4 − y1y5)iα = (β0 + β1)yi8
∈ L, the x-degree count gives (as in the previous case) that β0 ∈ (G). But
then (y2y4 − y1y5)iα0 = β0y

i
8 ∈ p2, so that α0 ∈ p2. Hence it suffices to prove

that (y2y4 − y1y5)iα1 lies in p2 or equivalently that α1 lies in p2. But α1 ∈
(y7, y8)i+1Pj−i−1, so we have reduced the original α to one with strictly higher
i. But necessarily i is bounded above by j, so this process eventually stops. This
finishes the proof that A is the normal cone of P.

Hence P satisfies (AR) but not (MR). The calculation of the resolution by
Macaulay2 shows that NP is Cohen-Macaulay but not Gorenstein.

The case n = 4, L = 4l− 2 > 4. Necessarily l ≥ 2. By the Patil-Singh theorem,

P = (x2
1 − x0x2, x1x2 − x0x3, x1x3 − x0x4, x

2
2 − x1x3, x2x3

− x1x4, x
2
3 − x2x4, x2x

l−1
4 − xl+1

0 , x3x
l−1
4 − xl0x1, x

l
4 − xl0x2).

If these generators are y1, . . . , y9, in the given order, it is easy to verify the following
relations on them (we obtained them, as before, via Macaulay2 and Maple):

F = y3y4 − y2y5 + y1y6 = 0,

y2
8 − y7y9 = xl−2

4 y6y9 − xl−1
0 y1y7 + xl−1

0 xl−2
4 (y2

3 − y1y6),

y6y7 − y5y8 + y4y9 = −xl−1
0 (y2

2 − y1(y3 + y4)),
y5y7 − y3y8 − y4y8 + y2y9 = 0,

y4y7 − y2y8 + y1y9 = xl−2
4 (y2

5 − y3y6 − y4y6).

When l = 2, Macaulay2 calculates that these relations indeed determine all the
defining relations of the normal cone. Macaulay2 also determined that the normal
cone is a Cohen-Macaulay integral domain which is not Gorenstein, and P satisfies
(MR). We do not provide a non-Macaulay2 proof of this case.

When l > 2, the left sides of these equations generate an ideal J , so that the
normal cone NP = k[y1, . . . , y9]/L is a homomorphic image of k[y1, . . . , y9]/J . As
in the previous n = 4, l > 2 cases, J is equidimensional and reduced with two
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minimal primes

p1 = (F, y7, y8, y9)k[y],

p2 = J + (G)k[y].

Also as before, it suffices to prove that L ⊆ p2, and as before, it suffices to be able
to reduce elements α ∈ (y7, y8, y9)iPj−i to ones in yi9P

j−i modulo J , after possibly
first multiplying by elements not in p2. But this is straightforward:

1. As y6 6∈ p2, by first multiplying by a power of y6 and then by reducing modulo
y6y7 − y5y8 + y4y9 ∈ J , we may assume that α ∈ (y8, y9)iPj−i.

2. By first multiplying by a power of y4y5−y2y6 6∈ p2 and then reducing modulo

(y4y5 − y2y6)y8 + (y1y6 − y2
4)y9

= y6(y4y7 − y2y8 + y1y9)− y4(y6y7 − y5y8 + y4y9) ∈ J,

without loss of generality α ∈ yi9Pj−i, as was wanted.
With this the proof proceeds as in the previous n = 4, l > 2 cases.
This proves that indeed NP is defined by J . Thus NP is a reduced almost

complete intersection with two minimal primes. Thus P satisfies (AR) but not
(MR). Macaulay2 also verifies that NP is Cohen-Macaulay.

Furthermore, one can verify that (y8 − y4, y1 − y9, y6 − y7, y2 − y5, y3) is a min-
imal reduction of P with reduction number 2 for all values of l ≥ 2. Thus by
Proposition 1, the reduction number of P equals 2.

The case n = 4, L = 4l− 3 > 4. Necessarily l ≥ 2. By the Patil-Singh theorem,

P = (x2
1 − x0x2, x1x2 − x0x3, x1x3 − x0x4, x

2
2 − x1x3, x2x3 − x1x4, x

2
3

− x2x4, x1x
l−1
4 − xl+1

0 , x2x
l−1
4 − xl0x1, x3x

l−1
4 − xl0x2, x

l
4 − xl0x3).

Let these generators be y1, . . . , y10, in the given order. We find the following
relations:

y3y4 − y2y5 + y1y6 = 0

y2
9 − y8y10 = xl−2

4 y6y10 − xl−1
0 y4y7

+ xl−1
0 xl−2

4 ((y3 + y4)y5 − y4y5 − y2y6),

y8y9 − y7y10 = xl−2
4 y5y10 − xl−1

0 y2y7

+ xl−1
0 xl−2

4 (y3(y3 + y4)− y2y5),

y2
8 − y7y9 = xl−2

4 y4y10 − xl−1
0 y1y7

+ xl−1
0 xl−2

4 (y2(y3 + y4)− y1y5 − y2y4),

y5y8 − y3y9 − y4y9 + y2y10 = xl−1
0 (y2

2 − y1(y3 + y4)),

y4y8 − y2y9 + y1y10 = xl−2
4 (y2

5 − (y3 + y4)y6),
y6y8 − y5y9 + y4y10 = 0,
y6y7 − y3y9 + y2y10 = 0,
y5y7 − y3y8 + y1y10 = 0,
y4y7 − y2y8 + y1y9 = 0.
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When l = 2, these relations induce the following relations on the normal cone:

NP = k[y1, . . . , y10] modulo (y3y4 − y2y5 + y1y6,

y2
9 − y8y10 − y6y10, y8y9 − y7y10 − y5y10, y

2
8 − y7y9 − y4y10,

y5y8 − y3y9 − y4y9 + y2y10, y4y8 − y2y9 + y1y10 − y2
5 + (y3 + y4)y6,

y6y8 − y5y9 + y4y10, y6y7 − y3y9 + y2y10,

y5y7 − y3y8 + y1y10, y4y7 − y2y8 + y1y9).

Again we leave it as a Macaulay2 result (without human proof) that these relations
define the normal cone and that the resulting normal cone is a Cohen-Macaulay,
non-Gorenstein integral domain. Hence P satisfies (MR).

When l > 2 instead, the relations above give that the normal cone is a quotient
of k[y1, . . . , y10]/J , where of course

J = (y3y4 − y2y5 + y1y6, y
2
9 − y8y10, y8y9 − y7y10,

y2
8 − y7y9, y5y8 − y3y9 − y4y9 + y2y10,

y4y8 − y2y9 + y1y10, y6y8 − y5y9 + y4y10, y6y7 − y3y9 + y2y10,

y5y7 − y3y8 + y1y10, y4y7 − y2y8 + y1y9).

As in the previous n = 4, l > 2 cases, this J actually presents the normal cone. The
main ingredient is again that J is reduced with two minimal primes, p1 generated
by y7, y8, y9, y10 and F , and p2 generated by G and J . As before, we need to be
able to reduce the elements in (y7, y8, y9, y10)iPj−i to ones in yi10P

j−i modulo J ,
but that is easy:

1. By multiplying by a power of y4y6 6∈ p2 and by reducing modulo y6y7−y3y9 +
y2y10 and y4y8 − y2y9 + y1y10 in J , we may assume that α ∈ (y9, y10)iPj−i.

2. By multiplying by a power of y4y5 − y2y6 6∈ p2 and by reducing modulo

(y4y5 − y2y6)y9 + (y1y6 − y2
4)y10

= y6(y4y8 − y2y9 + y1y10)− y4(y6y8 − y5y9 + y4y10)

in J , without loss of generality α ∈ yi10P
j−i, as desired.

Then, as before, NP is presented by the ideal J , so that it is reduced and with
two minimal primes. Furthermore, P satisfies (AR) but not (MR).

Macaulay2 calculates that NP is also Cohen-Macaulay and non-Gorenstein.
Moreover, (y1 − y10, y2 − y9, y3 − y4, y5 − y7, y6 − y8) is a minimal reduction of

P with reduction number 2 for all l ≥ 2, so that by Proposition 1, the reduction
number of P equals 2.
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Summary table of results on normal cones

Note that in all cases P satisfies (AR), so that m ·P is integrally closed.
The results “proved” by Macaulay2 rather than with a traditional proof are

marked in the table with a star *.

n NP L red. (MR)
no.

1 NP is a polynomial ring in n variables L arbitrary 0 yes

2 NP is a polynomial ring in n variables L even or 1 0 yes

2 NP is a polynomial ring in n+ 1 variables L odd, L ≥ 3 0 yes

3 NP is a polynomial ring in n variables L = 1, 2 0 yes

3 NP is a polynomial ring in n+ 1 variables L = 3l ≥ 3 0 yes

3 NP = k[y1, y2, y3, y4, y5] L = 3l− 1 > 3 2 yes
modulo (y3y2

4 − y2y4y5 + y1y2
5 − δl2y5y2

3)
is a c.i. integral domain, dimension 4

3 NP = k[y1, y2, y3, y4, y5, y6] L = 3l− 2 > 3 2 yes
modulo (y2

5 − y4y6 − δl2y3y6, y3y4 − y2y5 + y1y6)
NP is a c.i. integral domain, dimension 4

4 NP is a polynomial ring in n variables L = 1, 2 0 yes

4 NP is a polynomial ring in n+ 1 variables L = 3 0 yes

4 NP = k[y1, y2, y3, y4, y5, y6, y7] L = 4 2 yes
modulo (y2

5 − y4y6 − y3y6, y3y4 − y2y5 + y1y6)
NP is a c.i. integral domain of dimension 5

4∗ NP = k[y1, . . . , y10] modulo 10 relations L = 5 2 yes
NP is a Cohen-Macaulay, non-Gorenstein domain

4∗ NP = k[y1, . . . , y9] modulo 5 relations L = 6 2 yes
so almost complete intersection
NP is a Cohen-Macaulay, non-Gorenstein domain

4∗ NP = k[y1, . . . , y8] modulo 8 relations L = 7 2 yes
NP is a Cohen-Macaulay, non-Gorenstein domain

4 NP = k[y1, y2, y3, y4, y5, y6, y7] L = 8 4 yes
with two relations y3y4 − y2y5 + y1y6,
(y3

4 + y1y2
5 + y2

2y6 − y2y4y5 − y1y3y6 − 2y1y4y6)y7

+y2
3y

2
6 − 2y3y2

5y6 + y4
5

+2y2y5y2
6 − 2y4y2

5y6 − 2y1y3
6 + y2

4y
2
6

NP is a c.i. integral domain, dimension 5

4 NP = k[y1, y2, y3, y4, y5, y6, y7] L = 4l ≥ 12 4 no
with two relations y3y4 − y2y5 + y1y6,
(y3

4 + y1y2
5 + y2

2y6 − y2y4y5 − y1y3y6 − 2y1y4y6)y7

NP is c.i. reduced, dimension 5
exactly two minimal primes
y7 is not part of any minimal reduction

4 NP = k[y1, . . . , y8] modulo 8 relations L = 4l− 1 > 7 2 no
NP is Cohen-Macaulay, non-Gorenstein, reduced
exactly two minimal primes
y7, y8 are not part of any minimal reduction

4 NP = k[y1, . . . , y9] modulo 5 relations L = 4l− 2 > 6 2 no
so almost complete intersection
NP is Cohen-Macaulay*, non-Gorenstein*, reduced
exactly two minimal primes
y7, y8, y9 are not part of any minimal reduction

4 NP = k[y1, . . . , y10] modulo 10 relations L = 4l− 3 > 5 2 no
NP is Cohen-Macaulay*, non-Gorenstein*, reduced
exactly two minimal primes
y7, y8, y9, y10 are not part of any minimal reduction
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