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NEW QUADRATIC POLYNOMIALS
WITH HIGH DENSITIES OF PRIME VALUES

MICHAEL J. JACOBSON, JR. AND HUGH C. WILLIAMS

Abstract. Hardy and Littlewood’s Conjecture F implies that the asymptotic
density of prime values of the polynomials fA(x) = x2 + x + A, A ∈ Z,
is related to the discriminant ∆ = 1 − 4A of fA(x) via a quantity C(∆).
The larger C(∆) is, the higher the asymptotic density of prime values for
any quadratic polynomial of discriminant ∆. A technique of Bach allows one
to estimate C(∆) accurately for any ∆ < 0, given the class number of the
imaginary quadratic order with discriminant ∆, and for any ∆ > 0 given
the class number and regulator of the real quadratic order with discriminant
∆. The Manitoba Scalable Sieve Unit (MSSU) has shown us how to rapidly
generate many discriminants ∆ for which C(∆) is potentially large, and new
methods for evaluating class numbers and regulators of quadratic orders allow
us to compute accurate estimates of C(∆) efficiently, even for values of ∆
with as many as 70 decimal digits. Using these methods, we were able to find
a number of discriminants for which, under the assumption of the Extended
Riemann Hypothesis, C(∆) is larger than any previously known examples.

1. Introduction

Consider the polynomial f(x) = ax2 + bx+ c. If p | f(X) for some X ∈ Z, then
∆ = b2 − 4ac, the discriminant of f(x), must be a square modulo p. Thus, if ∆ is
not a square modulo many primes p, we expect f(x) to take on many prime values
asymptotically. Hardy and Littlewood formalized this phenomenon as Conjecture
F in [10]. If πf (n) denotes the number of prime values assumed by f(X) for
X = 0, 1, . . . , n, then their conjecture can be given as follows:

Conjecture (F). Let a > 0, b, c be integers such that gcd (a, b, c) = 1, ∆ = b2−4ac
is not a square and a+b, c are not both even. Then there are infinitely many primes
of the form f(x), and

πf (n) ∼ εCfLi(n),

where

Li(n) =
∫ n

2

dx

log x
,

ε =

{
1
2 when 2 6 | a+ b,

1 otherwise,
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and

Cf =
∏
p>2

p | (a,b)

p

p− 1

∏
p>2
p |/ a

(
1−

(
∆
p

)
p− 1

)
.

The products in the expression for Cf are taken over the primes only, and
(

∆
p

)
denotes the Legendre symbol. Note here that εCf is what really determines the
density of prime values assumed by f, since Li(n) is a function of n only. The
larger εCf is, the higher the asymptotic density of prime values for any quadratic
polynomial of discriminant ∆.

We restrict ourselves to polynomials of the form fA(x) = x2 +x+A. If we denote
by PA(n) the number of prime values assumed by fA(x) for 0 ≤ x ≤ n, then for
these polynomials we have the following simplified form of Conjecture F:

PA(n) ∼ C(∆)LA(n),

where

LA(n) = 2
∫ n

0

dx

log fA(x)

and

C(∆) =
∏
p≥3

1−
(

∆
p

)
p− 1

.(1.1)

Here ∆ = 1− 4A.
The most famous example of such a polynomial is certainly Euler’s polynomial

f41(x) = x2 + x + 41, which is prime for 0 ≤ x ≤ 39. To date, no one has found a
polynomial of the form fA(x) that represents distinct primes for more than the first
40 values of x. However, several people including Beeger [3], Lehmer [14], and Fung
and Williams [7] have found polynomials which have higher asymptotic densities
of prime values. According to Conjecture F, the function C(∆) should provide a
good indication of likely candidate polynomials. For example, the largest value of
C(∆) currently known [11] before this work is

C(−13598858514212472187) = 5.3670819.

The corresponding polynomial x2 +x+3399714628553118047 starts off slower than
Euler’s polynomial (only 24 primes for x ≤ 100 compared to 87), but for x ≤ 107

it assumes 2517022 prime values as compared to only 2208197 by Euler’s polyno-
mial. Notice that for Euler’s polynomial we have C(−163) = 3.3197732, so by
Conjecture F we expect that it will assume fewer prime values asymptotically than
x2 + x+ 3399714628553118047.

The purpose of this paper is to describe a new method for accurately computing
C(∆) for values of |∆| up to 70 digits (under the Extended Riemann Hypothesis
— ERH) and to provide some new values of ∆ for which C(∆) is larger than any
value previously computed.

2. Estimating C(∆)

The infinite product representation (1.1) of C(∆) converges very slowly; con-
sequently, we need another method to approximate it more rapidly. We used the
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formula of Fung and Williams [7], which can be derived from (14) and (20) of
Shanks [23]. For ∆ < −4 they show that

C(∆) =
cπ3
√
|∆|

90h∆
· 1
L (2, χ∆)

∏
p |∆
p odd

(
1− 1

p4

)∏
q≥3

(
1− 2

q(q − 1)2

)
,

where q denotes a prime such that
(

∆
q

)
= 1, h∆ is the ideal class number of the

imaginary quadratic order O∆ and

c =


5
2 if ∆ ≡ 1 (mod 8),
1
2 if ∆ ≡ 5 (mod 8),
15
16 otherwise.

Similarly, one can derive for ∆ > 0 [11]

C(∆) =
cπ4
√

∆
180R∆h∆

· 1
L (2, χ∆)

∏
p |∆
p odd

(
1− 1

p4

)∏
q≥3

(
1− 2

q(q − 1)2

)
,

where as above h∆ is the class number of the real quadratic order O∆ and R∆ is
the regulator, i.e., the natural logarithm of the fundamental unit of O∆. Thus, in
order to approximate C(∆) we have to compute the class number (and regulator
for ∆ > 0) of the quadratic order O∆, factor ∆, and estimate the infinite product

P =
1

L (2, χ∆)
·
∏
q≥3

(
1− 2

q(q − 1)2

)
.

Also, we note that because

− log
∏
p |∆
p≥A

(
1− p−4

)
∼
∑
p |∆
p≥A

p−4 = O
(
A−4 logA|∆|

)
,

it is a simple matter to estimate the value of
∏
p |∆(1−p−4) very accurately without

having to completely factor ∆. Fortunately, P converges much more quickly than
(1.1), and, while we could use the method of [7] to estimate it rapidly, we found
that a slight modification of the method of Bach [2] to evaluate L (2, χ∆) produced
an even faster technique for doing this. We will now briefly sketch this procedure.
The notation, unless otherwise stated, is that of [2].

We first let χ be any non-principal character modulo m, and we put

B(x, χ) =
∏
p<x

p2

p2 − χ(p)
, B(x, χ) =

∏
p≥x

p2

p2 − χ(p)
,

F (x, χ) =
∏
q<x

(
1− 2

q(q − 1)2

)
, F (x, χ) =

∏
q≥x

(
1− 2

q(q − 1)2

)
,

where, as above, the values of p are prime integers and the values of q are odd
primes such that

(
∆
q

)
= 1. It is easy to deduce that

|logF (x, χ)| ≤ 3
∑
n≥x

1
(n− 1)3

<
2
x2

(x > 15).(2.1)
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By the reasoning in [2], we have

logB(x, χ) =
∫ ∞
x−

dΨ(t, χ)
t2 log t

dt− T (x, χ),(2.2)

where

T (x, χ) =
∑
pk≥x
p<x

χ(pk)
kp2k

.

The method of the proof of Lemma 5.1 of [2] can be used to establish that

|T (x, χ)| ≤ 4C
[

2
3x3/2 log x

+
3

5x5/3 log 2

]
,(2.3)

where C = 1.25506. Also, if

Ψ1(x, χ) =
∫ x

0

Ψ(t, χ)dt,

then under the ERH (Lemma 9.3 of [2]) we know that

|Ψ1(x, χ)| ≤ c(m)x3/2 + h(x),(2.4)

where

c(m) = 2/3 (logm+ 5/3)

and

h(x) = x log x+ (2c(m) + 1)x+ 3c(m) + 1.

If we integrate by parts twice, we get, on the assumption that x is integral,

(2.5)
∫ ∞
x−

dΨ(t, χ)
t2 log t

dt = −Ψ(x− 1, χ)
x2 log x

− Ψ1(x, χ)(2 log x+ 1)
x3 log2 x

+
∫ ∞
x

Ψ1(t, χ)
(

6 log2 t+ 5 log t+ 2
t4 log3 t

)
dt.

We next define, for a given positive integer x,

ai =
(x + i)2 log(x+ i)

S(x)
,

where

S(x) =
x−1∑
i=0

(x+ i)2 log(x+ i).

Clearly
x−1∑
i=1

ai = 1.(2.6)

We now consider

E(x, χ) =
x−1∑
i=0

ai logB(x + i, χ)(2.7)
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and note that
x−1∑
i=0

ai logB(x + i, χ) + E(x, χ) = logL (2, χ) .(2.8)

It follows that

|logL (2, χ)−
x−1∑
i=0

ai logB(x+ i, χ)| ≤ |E(x, χ)|.

We put

C∗(Q,∆) = w
√
|∆|

∏
p |∆

(
1− 1

p4

)
F (Q,χ∆) exp

{
−
Q−1∑
i=0

ai logB(Q + i, χ∆)

}
,

(2.9)

where χ∆ is the Kronecker symbol (∆/·) and

w =

{
cπ3/(90h∆) if ∆ < 0,
cπ4/(180R∆h∆) if ∆ > 0.

We now note that if k = 5 · 10−r, then∣∣∣∣C(∆)− C∗(Q,∆)
C(∆)

∣∣∣∣ < k

when

|logC(∆)− logC∗(Q,∆)| < log(1 + k),(2.10)

and C∗(Q,∆) will approximate C(∆) to r figures of accuracy. By (2.8)

logC(∆) − logC∗(Q,∆) = logF (Q,χ∆)− E(Q,χ∆).

Hence, by (2.1),

|logC(∆) − logC∗(Q,∆)| ≤ |E(Q,χ∆)|+ 2
Q2

(Q > 15).

Thus, we need to be able to bound E(x, χ∆) in order to find a value for Q such
that (2.10) holds.

We note that by (2.2), (2.5), and (2.7), we get

|E(x, χ)| ≤
∣∣∣∣∣
x−1∑
i=0

ai
Ψ(x+ i− 1, χ)

(x+ i)2 log(x + i)

∣∣∣∣∣+

∣∣∣∣∣
x−1∑
i=0

ai
Ψ1(x+ i, χ)(2 log(x+ i) + 1)

(x+ i)3 log2(x+ i)

∣∣∣∣∣
+

∣∣∣∣∣
x−1∑
i=0

ai

∫ ∞
x+i

Ψ1(t, χ)
6 log2 t+ 5 log t+ 2

t4 log3 t
dt

∣∣∣∣∣+

∣∣∣∣∣
x−1∑
i=0

aiT (x+ i, χ)

∣∣∣∣∣ .
It is easy to see that

S(x) > U(x) :=
∫ x−1

0

(t+ x)2 log(t+ x)dt

= 1/3
[
(2x− 1)3(log(2x− 1)− 1/3)− x3(log x− 1/3)

]
> 2x3 log x

(2.11)
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when x > 3000. Also,
x−1∑
i=0

(x+ i)1/2 <

∫ x

0

(x+ t)1/2dt = λx3/2,(2.12)

where λ = 2/3(23/2 − 1) ≈ 1.2189514. With these observations, (2.4), and (2.6) we
get

(2.13)

∣∣∣∣∣
x−1∑
i=0

ai
Ψ(x+ i− 1, χ)

(x+ i)2 log(x+ i)

∣∣∣∣∣ =
1

S(x)

∣∣∣∣∣
x−1∑
i=0

Ψ(x+ i− 1, χ)

∣∣∣∣∣
<

(1 + 23/2)c(m)x3/2

U(x)
+
h(x) + h(2x)

2x3 log x

and∣∣∣∣∣
x−1∑
i=0

ai
Ψ1(x+ i, χ)(2 log(x+ i) + 1)

(x+ i)3 log2(x + i)

∣∣∣∣∣ ≤
x−1∑
i=0

ai
c(m)(x + i)3/2(2 log(x+ i) + 1)

(x+ i)3 log2(x+ i)

+
h(x)(2 log x+ 1)

2x3 log x
,

because h(x)(2 log x + 1)/(2x3 log x) is a decreasing function of x. It follows from
(2.11), (2.12) and the definition of ai that

(2.14)

∣∣∣∣∣
x−1∑
i=0

ai
Ψ1(x+ i, χ)(2 log(x+ i) + 1)

(x+ i)3 log2(x+ i)

∣∣∣∣∣ ≤ c(m)
U(x)

(
2 +

1
log x

)
λx3/2

+
h(x)(2 log x+ 1)

2x3 log x
.

It is also easy to deduce from (2.3), (2.6), (2.11), and (2.12) that∣∣∣∣∣
x−1∑
i=0

aiT (x+ i, χ)

∣∣∣∣∣ ≤ 8Cλx3/2

3S(x)
+

12C
(5 log 2)x5/3

.(2.15)

We note that by (2.4)∣∣∣∣∣
x−1∑
i=0

ai

∫ ∞
x+i

Ψ1(t, χ)
6 log2 t+ 5 log t+ 2

t4 log3 t
dt

∣∣∣∣∣
≤ c(m)

x−1∑
i=0

ai

(
6

log(x+ i)
+

5
log2(x+ i)

+
2

log3(x+ i)

)∫ ∞
x+i

t−5/2dt

+
∫ ∞
x

h(x)
t4

(
6

log t
+

5
log2 t

+
2

log3 t

)
dt.

Also, by (2.12) we have

x−1∑
i=0

ai

(
6

log(x+ i)
+

5
log2(x+ i)

+
2

log3(x+ i)

)
(x+ i)−3/2

≤ λx3/2

S(x)

(
6 +

5
log x

+
2

log2 x

)
.
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Table 2.1. Q values for approximating C(∆).

log10|∆| Q

30 525500
35 576000
40 624500
45 670500
50 715000
55 758000
60 799500
65 839500
70 879000
75 917000

If, after Bach, we define the linear functional Tx on any function f which is positive
and non-decreasing but grows sufficiently slowly that f(x)(1 + 2 logx)/(x3 log x) is
decreasing, as

Tx(f) =
f(x) + f(2x)

2x3 log x
+
f(x)(2 log x+ 1)

2x3 log x

+
∫ ∞
x

f(t)
t4

(
6

log t
+

5
log2 t

+
2

log3 t

)
dt,

we see by (2.13), (2.14), (2.15) and our results above that

(2.16) |E(x, χ)| ≤ c(m)x3/2

U(x)

(
1 + 23/2 + 6λ

)
+

13c(m)λ
6x3/2 log2 x

+
2λc(m)

3x3/2 log3 x

+
4Cλ

3x3/2 log x
+

12C
(5 log 2)x5/3

+ Tx(h).

Since (for α < 3)

Tx(xα) ≤ 1
x3−α log x

[(
3 + 2α +

6
3− α

)
+
(

1 +
5

3− α

)
1

log x
+

2
3− α

1
(log x)2

]
,

Tx(x log x) ≤ 1
x2

[
8 +

2 log 2 + 6
log x

+
1

log2 x

]
,

it is easy to use (2.16) to find the least value of Q such that

|E(Q,χ∆)|+ 2/Q2 < log(1 + k).

Since the dominant term of (2.16) is O(x−3/2 logm), we would expect

Q = O
(

102r/3 (log|∆|)2/3
)
.

Of course, since the bound on E(Q,χ∆) and (later) the correctness of h∆ and R∆

are all conditional on the truth of the ERH, our approximation of C(∆) is as well.
In Table 2.1 we list the Q values required to approximate C(∆) to 8 significant
figures for various sizes of ∆. Naturally, any Q which works for a given size of ∆
also works for all smaller values of ∆. We note here that since ∆ ≡ 1 (mod 4) and
our values of ∆ will be squarefree in the sequel, we may use m = |∆|. These same
properties of ∆ are assumed in Table 2.1.
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3. Computing the class number and regulator

The majority of the computation time spent in using (2.9) to approximate C(∆)
is in computing the class number and regulator of the quadratic order O∆. We
used the method described in [12] (Algorithm 4.3). The underlying strategy of this
algorithm is the same as that of Hafner and McCurley [9] and its variants [6], [4],
[1], [5]. Suppose we have computed a factor base FB = {p1, . . . , pk} consisting
of invertible prime ideals such that the equivalence classes of some subset of FB
generates the class group Cl∆ of O∆. For ~v ∈ Zk we define

FB~v =
k∏
i=1

p
vi
i ,

where pi ∈ FB. We call ~v a relation if the ideal FB~v is principal, i.e., FB~v ∼ O∆.
The algorithm then produces a generating system L = {~v1, . . . , ~vn} of the relation
lattice

Λ = {~v ∈ Zk | FB~v ∼ O∆},(3.1)

which is the kernel of the homomorphism

Zk → Cl∆, ~v → FB~v.(3.2)

Since the equivalence classes of the ideals of FB generate the class group, it follows
that the homomorphism (3.2) is surjective, and we have

Cl∆ ∼= Zk/Λ.

This implies that Λ is a k-dimensional lattice and its determinant is equal to h∆.
Also, the relation matrix A = (~vT1 , . . . , ~v

T
n ), the matrix formed by taking the rela-

tions ~vi as columns, has rank k. The diagonal elements which are greater than 1
in S, the Smith normal form of A, are precisely the elementary divisors of Cl∆.
Thus, in addition to h∆, we get the structure of Cl∆ as a direct product of cyclic
subgroups with very little extra effort.

This strategy can easily be extended to compute class groups and regulators
of real quadratic orders [4, 1]. In this case, we compute relations of the form
(~v, log|γ|), where FB~v = (γ), i.e., γ generates the principal ideal FB~v. We produce
a generating system

L′ = {(~v1, log|γ1|), (~v2, log|γ2|), . . . , (~vl, log|γl|)}
of the extended relation lattice

Λ′ = {(~v, log |γ|) ∈ Zk × R | FB~v = (γ)}.(3.3)

Then, if Λ is the part of Λ′ in Zk, as before we have Cl∆ ∼= Zk/Λ. Furthermore, it
can be shown [4] that det(Λ′) = h∆R∆, so by computing this determinant we also
get the regulator.

The major difference between our approach and that of [9], [6], etc., is in the way
the generating system of the relation lattice is produced. The solution employed
by contemporary algorithms is to attempt to factor randomly produced ideals over
the factor base. We replace this step by a sieve-based strategy similar to that used
in the MPQS factoring algorithm [24]. The idea of employing sieving to compute
relations in similar contexts was first suggested by Seysen [22], and later by Paulus
[20].
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In the MPQS, one sieves over quadratic polynomials F (x) = ax2 + bx + c in
order to find certain values of x for which F (x) completely factors over a finite
factor base of prime integers. By sieving a polynomial F (x) over an interval, we
mean testing each value of X in a given interval as to whether all the prime factors
of F (X) are contained in a finite, given set. The observation that F (X) ≡ F (X+ip)
(mod p) for i ∈ Z, p prime, allows one to use a sieve to perform this test rather
than evaluating every value of F (x) and attempting to factor it.

In our case, we first compute an ideal a as a power-product of the prime ideals
in our factor base FB, i.e., a = FB~e for some ~e ∈ Zk. The vector ~e is sparse with
non-zero entries ±1. In [12], we provide further details on how ~e is selected. Then,
we search for integers X and Y such that f(X,Y ) = aX2 + bXY + cY 2, the norm
form of a, factors over the norms of the ideals in FB. For each such pair (X,Y ),
there exists a quadratic number γ such that a/(γ) = b−1 splits over the factor base.
As shown in [12], we can explicitly compute b and its decomposition over FB easily.
Since a splits over FB by construction, we have that ab = (γ) yields a relation.

The main work in generating relations with the strategy outlined above is finding
smooth values of the quadratic polynomial f(x, y). It is certainly possible to sieve
f(x, y) in two dimensions. However, most sieve-based factoring algorithms, includ-
ing the MPQS, work exclusively with univariate quadratic polynomials. Hence, in
order to parallel these factoring methods as closely as possible, we also work with
the univariate polynomials F (x) = f(x, 1) = ax2 + bx+ c.

Thus, the problem of finding relations for class group computation is reduced to
the same problem as finding relations in the MPQS factoring algorithm. A large
amount of effort has been invested in making the MPQS and its variants as efficient
as possible, and we make use of as many of these techniques as possible, most
notably self-initialization. The use of these sieving methods results in a dramatic
increase in performance. See [12] for more details and computational results.

4. Previous results

The example ∆ = −13598858514212472187 and others like it were generated us-
ing the MSSU [18, 17], a numerical sieving device capable of searching for solutions
to sets of simultaneous linear congruences at the rate of over 4 × 1012 candidates
per second. A typical problem solvable by such sieving devices is as follows. A set
of moduli is first specified, and then a set of acceptable residues is chosen for each
modulus. The sieve then searches for integer solutions x > L for some lower bound
L such that x is congruent to any one of the acceptable residues modulo each of
the corresponding moduli.

The strategy employed to find values of ∆ with large C(∆) values was to search
for values of ∆ ≡ 5 (mod 8) for which

(
∆
q

)
= −1 for all odd primes q less than or

equal to some bound p. Clearly this has the effect of maximizing the leading terms
in the infinite product representation of C(∆). The problem of finding such values
of ∆ can be formulated as a sieve problem by fixing as moduli 8 and the primes
less than or equal to p. For each of these primes q the acceptable residues are the
integers x such that 1 ≤ x < q and x is a quadratic non-residue modulo q. The
acceptable residue for 8 is 5, since we want solutions ∆ ≡ 5 (mod 8). The sieve
then searches for integers which are congruent to one of the acceptable residues for
each modulus.
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Following Lehmer [14], we define the symbol Np to represent the least positive
integer congruent to 3 modulo 8 such that

(−Np
q

)
= −1 for all odd primes q ≤ p.

Lehmer computed the first table of Np values for p ≤ 107. Lehmer, Lehmer, and
Shanks extended these computations in [15], Problem III, to values of p ≤ 163, and
Lehmer also computed the next three values up to p = 181, but did not publish
them. In [11], the MSSU was used to extend these computations further, and values
of Np up to p = 277 and least prime solutions of Np up to p = 269 were found.
Tables 4.1 and 4.2 are reproduced from [11], and contain all the currently known
values of Np and the least prime solutions of Np, respectively.

Table 4.1. Np — Least Solutions

p Np h−Np C(−Np)
3 19 1 0.94222046

5,7 43 1 1.6297209
11,13 67 1 2.0873308

17, . . . ,37 163 1 3.3197732
41,43 77683 22 3.3003388

47 1333963 79 3.8123997
53,59 2404147 107 3.7793704

61 20950603 311 3.8410195
67 36254563 432 3.6365197
71 51599563 487 3.8514289

73,79 96295483 665 3.8528890
83 114148483 692 4.0332358

89, . . . ,103 269497867 1044 4.1092157
107 585811843 1536 4.1185705

109,113 52947440683 13909 4.3245257
127 71837718283 15204 4.6097143

131,137 229565917267 29351 4.2679170
139 575528148427 44332 4.4746374

149, . . . ,163 1432817816347 70877 4.4163429
167 6778817202523 149460 4.5565681
173 16501779755323 223574 4.7524812

179,181 30059924764123 296475 4.8379057
191,193,197 110587910656507 553436 4.9711959

199 4311527414591923 3791896 4.5293043
211,223 10472407114788067 5798780 4.6162389

227, . . . ,241 22261805373620443 8035685 4.8576312
251 132958087830686827 19412108 4.9146545
257 441899002218793387 33684408 5.1635913

263,269 2278509757859388307 77949544 5.0669199
271 5694230275645018963 119705436 5.2163043
277 9828323860172600203 156104956 5.2552050
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Table 4.2. Np — Least Prime Solutions

p Np h−Np C(−Np)
3 19 1 0.94222046

5,7 43 1 1.6297209
11,13 67 1 2.0873308

17, . . . ,37 163 1 3.3197732
41 222643 33 3.7289570

43,47 1333963 79 3.8123997
53,59 2404147 107 3.7793704

61 20950603 311 3.8410195
67,71 51599563 487 3.8514289
73,79 96295483 665 3.8528890

83 146161723 857 3.6832906
89 1408126003 2293 4.2771747

97,101,103 3341091163 3523 4.2878711
107,109,113 52947440683 13909 4.3245257

127 193310265163 26713 4.3024065
131,137 229565917267 29351 4.2679170

139 915809911867 59801 4.1834705
149, . . . ,163 1432817816347 70877 4.4163429
167, . . . ,181 30059924764123 296475 4.8379057

191 3126717241727227 3201195 4.5685162
193,197,199 8842819893041227 5188215 4.7414735

211,223 13688678408873323 6524653 4.6907580
227, . . . ,241 22261805373620443 8035685 4.8576312

251 4908856524312968467 121139393 4.7847955
257,263,269 7961860547428719787 140879803 5.2409110

Similarly, we define the symbol Mp to represent the least positive integer con-
gruent to 5 modulo 8 such that

(Mp

q

)
= −1 for all odd primes q ≤ p. We would

expect, due to Conjecture F, that |fA(x)| will have a large density of prime values
when A = (1 −Mp)/4. According to Poletti [21], Beeger was the first to make a
table of Mp values; he listed them up to p = 59. Lehmer, Lehmer, and Shanks [15],
Problem VI, extended this table in 1970 up to p = 139, and Lehmer produced one
more value for p = 163, but did not publish it. The MSSU was used to extend the
table further, to p = 283 and p = 263 for least prime solutions. Tables 4.3 and 4.4,
again reproduced from [11], contain all the currently known values of Mp and the
least prime solutions of Mp, respectively.

Table 4.3. Mp — Least Solutions

p Mp RMp hMp C(Mp)
3 5 0.4812 1 1.7733051
5 53 1.9657 1 1.3831458

7,11 173 2.5708 1 2.0427655
13 293 2.8366 1 2.4386997
17 437 3.0422 1 2.7933935
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Table 4.3. Mp — Least Solutions (continued)

p Mp RMp hMp C(Mp)
19,23 9173 12.4722 1 3.1227858

29 24653 5.0562 4 3.1631443
31,37,41 74093 7.2159 5 3.0809338

43 170957 16.9391 3 3.3299831
47,53,59 214037 28.9536 2 3.2704656

61 2004917 48.2972 3 4.0077796
67 44401013 352.5078 2 3.8743032
71 71148173 140.5395 6 4.1026493

73,79 154554077 694.9131 2 3.6684052
83,89,97 163520117 152.1367 9 3.8307572
101,103 261153653 512.3272 3 4.3158954

107,109,113 1728061733 4021.1400 1 4.2447622
127 9447241877 1252.3775 7 4.5541813
131 19553206613 6209.5055 2 4.6250203

137,139 49107823133 18804.6808 1 4.8420287
149, . . . ,163 385995595277 27068.0628 2 4.7144914

167 13213747959653 330785.2663 1 4.5147795
173 14506773263237 331149.0061 1 4.7257867

179,181 57824199003317 165998.4596 4 4.7059530
191,193 160909740894437 275610.2629 4 4.7279560
197,199 370095509388197 794079.6472 2 4.9779329

211 1409029796180597 3130386.6897 1 4.9274990
223 4075316253649373 5291574.7242 1 4.9577054

227,229,233 18974003020179917 2737025.3979 4 5.1711431
239,241 224117990614052477 10257518.4583 4 4.7415726

251,257,263 637754768063384837 22908547.7970 3 4.7753226
269, . . . ,283 4472988326827347533 14462868.4419 12 5.0085747

Table 4.4. Mp — Least Prime Solutions

p Mp RMp hMp C(Mp)
3 5 0.48121 1 1.7733051
5 53 1.96572 1 1.3831458

7,11 173 2.57081 1 2.0427655
13 293 2.83665 1 2.4386997
17 2477 6.47234 1 3.1173079

19,23 9173 12.47223 1 3.1227858
29 61613 36.23370 1 2.7929099

31,37,41 74093 7.21597 5 3.0809338
43 170957 16.93918 3 3.3299831
47 360293 68.23691 1 3.6032397
53 679733 92.04349 1 3.6713558

59,61 2004917 48.29722 3 4.0077796
67 69009533 869.69643 1 3.9166092
71 138473837 1369.29769 1 3.5221802
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Table 4.4. Mp — Least Prime Solutions (continued)

p Mp RMp hMp C(Mp)
73 237536213 1725.64096 1 3.6624765
79 384479933 2087.35754 1 3.8534093
83 883597853 3018.26471 1 4.0411818

89, . . . ,113 1728061733 4021.14004 1 4.2447622
127 9447241877 1252.37753 7 4.5541813

131,137,139 49107823133 18804.68086 1 4.8420287
149 1843103135837 119080.85359 1 4.6828076

151,157 4316096218013 192239.83257 1 4.4390420
163,167 15021875771117 344898.80858 1 4.6165765
173,179 82409880589277 804942.51462 1 4.6336310

181 326813126363093 1551603.41110 1 4.7874230
191,193 390894884910197 1650908.48845 1 4.9214877

197 1051212848890277 547589.04349 5 4.8659116
199,211,223 4075316253649373 5291574.72421 1 4.9577054

227 274457237558283317 45653225.95687 1 4.7155029
229 443001676907312837 6097479.67224 9 4.9843291
233 599423482887195557 65388978.22854 1 4.8658247
239 614530964726833997 64783176.97206 1 4.9730080

241, . . . ,263 637754768063384837 22908547.79705 3 4.7753226

The example ∆ = −13598858514212472187 was found by using the MSSU to
generate all values of ∆ such that−2×1019 < ∆ < 1019,∆ ≡ 5 (8), and (∆/q) = −1
for all odd primes q ≤ 199. By restricting to the primes less than 200 more results
were generated than if a larger bound had been used. Furthermore, the sieve runs
faster if fewer moduli are used, and thus a larger number of candidates could be
tested. For the several thousand numbers that resulted, C(∆) was computed using
the Shanks heuristic [19, p.283] to calculate the class numbers when ∆ > 0, and the
technique of the previous section when ∆ < 0. The C(∆)-hichamps for the cases
∆ < 0 and ∆ > 0 were then selected, i.e., those ∆ with the property that their
corresponding C(∆) value is greater than that of any ∆ of smaller magnitude found
by the sieve.
C(∆) was evaluated correct to 8 figures for all of these C(∆)-hichamps by using

the previously described technique with the class numbers and regulators com-
puted as in [11]. No deviations from the results given by the Shanks heuristic were
found. Table 4.5 contains the C(∆)-hichamps for the negative values of ∆ and Ta-
ble 4.6 contains the C(∆)-hichamps for the positive values of ∆. The largest C(∆)
value found by this method is the aforementioned C(−13598858514212472187) =
5.3670819.

By using Littlewood’s bounds on L (1, χ∆) [16], it is easy to see [18] that under
the ERH

C(∆) < {1 + o(1)}eγ log log|∆|,

where γ is Euler’s constant. Indeed, if we define

r(∆) = C(∆)/eγ log log|∆|,(4.1)
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Table 4.5. C(∆)-hichamps (∆ < 0).

∆ h∆ r(∆) C(∆)
-4311527414591923 3791896 0.70964311 4.5293043
-5513463660887323 4214276 0.72070730 4.6086597
-8842819893041227 5188215 0.73881217 4.7414735

-11779882219755787 5904498 0.74766420 4.8086435
-14363876114143483 6478729 0.75133104 4.8393795
-15326624594334307 6664840 0.75401443 4.8590033
-30462609261723907 9340770 0.75475096 4.8883007
-32779240456803163 9520419 0.76778682 4.9753684
-50792117776428667 11782274 0.76982885 5.0043010

-221328140358231307 24591656 0.76210545 5.0050646
-234391954943494723 24980688 0.77179828 5.0706939
-369885383792662483 31346105 0.77034080 5.0766794
-441899002218793387 33684408 0.78260083 5.1635912
-554395014308976163 37602038 0.78412438 5.1814176
-803608018073876563 45224688 0.78297632 5.1864453

-2038991582966171563 71351592 0.78588177 5.2369507
-2039953459173530587 70825967 0.79181939 5.2765336
-6849319464662435083 128288704 0.79508448 5.3384020

-13598858514212472187 179800672 0.79604287 5.3670819

Table 4.6. C(∆)-hichamps (∆ > 0).

∆ h∆ R∆ r(∆) C(∆)
370095509388197 2 794079.64725 0.79561686 4.9779328

16710980998953317 2 5296924.24250 0.77763395 5.0144216
18974003020179917 4 2737025.39798 0.80118713 5.1711431

587108439330001613 2 30377994.30089 0.78408776 5.1831340
2430946649400343037 4 30781378.01108 0.78019116 5.2048129
3512773592849667053 1 146959147.17623 0.78399584 5.2422843
4927390995446922917 2 86988957.82243 0.78257150 5.2437622

then as ∆ increases we would expect that extreme values of the r(∆) would tend to
approach 1 if the ERH is true. Indeed, it is possible to use a result of Joshi [13] to
show unconditionally that for any given positive ε < 1, there exists an infinitude of
values of ∆ such that r(∆) > (1 + ε)/2. Thus, the closeness of r(∆) to 1 provides
an indication of how good our C(∆) values are in relation to the size of ∆. We
have listed the r(∆) values corresponding to the C(∆) values in both Table 4.5
and Table 4.6. The largest r(∆) value we found was 0.80118713, corresponding to
∆ = 18974003020179917.

5. Generating ∆ with larger C(∆) values

The MSSU and other sieving devices only allow a fixed number of moduli to be
used at one time. Furthermore, when many moduli are used solutions can be quite
rare. Hence, we used an unpublished idea of Lehmer which he employed to find the
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Table 5.1. A−p and A+
p values.

p A−p A+
p

257 93 43
277 942 1457
307 8138 1730
331 75586 203909
353 4893645 3261415

20 digit value of ∆ with small L (1, χ∆) that appears in [15, p.439]. Lehmer’s idea
allows us to find solutions ∆ with

(
∆
q

)
= −1 for all q ≤ p while using fewer moduli

for the sieve than would otherwise be required. To this end, we examined negative
discriminants of the form

∆ = −(A−p +BpX)

and positive discriminants of the form

∆ = A+
p +BpX,

where

Bp =
p∏

q≥233
q prime

q

and
(−A−p

q

)
=
(A+

p

q

)
= −1 for all primes q (233 ≤ q ≤ p). We used five different values

of p ranging from 257 to 353, and the least non-square values of A−p and A+
p for

each p ∈ {257, 277, 307, 331, 353}, which are given in Table 5.1. Our values of Bp,
A−p , and A+

p were selected so that we could generate solutions with approximately
30, 40, 50, 60, and 70 decimal digits, respectively.

For the case ∆ = −(A−p +BpX) < 0, we ran five separate sieve jobs corresponding
to each of the five pairs (A−p , Bp), p ∈ {257, 277, 307, 331, 353}. We employed the
MSSU to sieve on values of X > 0 using as moduli 8 and primes q1, q2, . . . , qm
with qm ≤ 229. For each qi, the acceptable residues were the values of x such

that 0 ≤ x < qi and
(−(A−p +Bpx)

qi

)
= −1. The observation that if

(
y
q

)
= −1 then

x ≡ (y + A−p )(−Bp)−1 (mod q) satisfies
(−(A−p +Bpx)

q

)
= −1 allows one to easily

determine all the acceptable residues for any given modulus q. In order to ensure
that −(A−p + BpX) ≡ 5 (mod 8) we use x ≡ (5 + A−p )(−Bp)−1 (mod 8) as the
single acceptable residue for the modulus 8. Thus, each solution X found by the
sieve which is congruent to one of the acceptable residues modulo 8 and every odd
prime qi ≤ 229 yields a value of ∆ = −(A−p + BpX) such that

(
∆
q

)
= −1 for all

odd primes q less than or equal to 257, 277, 307, 331, and 353, for each of the five
pairs (A−p , Bp). Notice that in order to find these ∆ values we need only sieve with
primes less than or equal to 229.

We ran another five sieve jobs for the cases ∆ = (A+
p +BpX) > 0 corresponding to

the five pairs (A+
p , Bp), p ∈ {257, 277, 307, 331, 353}.Again, we used as moduli 8 and

the odd primes qi ≤ 229. The single acceptable residue for 8 is (5−A+
p )(Bp)−1 mod

8, and the residues for each odd modulus q are given by (y−A+
p )(Bp)−1 mod q for

each 0 ≤ y < q such that
(
y
q

)
= −1. Similarly, we obtained solutions ∆ = A+

p +BpX
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Table 5.2. X values yielding ∆ = −(A−p +BpX) with large C(∆).

Composite ∆ Prime ∆
p X np X np

257 466615859130369190 30 450663765848215486 30
277 370813410258174265 40 216364723669119361 39
307 47981058088400465 49 177458814519025865 49
331 180678079710346857 59 395114060043264249 60
353 628306272374561842 70 22664467457614162 69

Table 5.3. X values yielding ∆ = A+
p +BpX with large C(∆).

Composite ∆ Prime ∆
p X np X np

257 396312611459525290 30 218767904524491586 30
277 697769695386840996 40 482626651962422460 40
307 639546162945216939 50 762810077127556299 50
331 390861540221680416 60 435543163377951528 60

such that
(

∆
q

)
= −1 for all odd primes q less than or equal to 257, 277, 307, 331,

and 353, for each of the five pairs (A+
p , Bp), again sieving only with the primes less

than or equal to 229.
For each of the ten sieve jobs, we recorded the first 40 solutions X and com-

puted an estimate of C(∆) from (1.1) using only the odd primes less than 300000.
The composite and prime solutions with the largest C(∆) estimates for each pair
(A−p , Bp) and (A+

p , Bp) were selected, and their corresponding C(∆) values were
approximated to 8 significant digits using (2.9). The values of X yielding the best
negative composite and prime solutions are listed in Table 5.2, and those yield-
ing the best positive composite and prime solutions in Table 5.3. In these tables,
as well as all subsequent tables, np denotes the number of decimal digits of the
corresponding |∆|.

In Table 5.4 and 5.5 we present the class numbers, r(∆) values, and C(∆) ap-
proximations for composite and prime ∆ = −(A−p +BpX), respectively. Tables 5.6
and 5.7 contain the corresponding values for those ∆ = A+

p + BpX, together with
the regulators of the quadratic orders O∆. Unfortunately, we have not yet been
able to compute h∆ and R∆ for the 70-digit positive values of ∆ corresponding to
p = 353, and hence we do not give C(∆) values for these two discriminants.

Table 5.4. C(∆) values for ∆ = −(A−p +BpX).

p h∆ r(∆) C(∆)
257 31732649150720 0.69697563 5.24106505
277 1976760608074606524 0.68146521 5.46609410
307 61214787639146593755232 0.64025219 5.37024150
331 11759774715020356643576929686 0.62718279 5.48239469
353 2665657958662748945432048763520638 0.59889664 5.41351382
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Table 5.5. C(∆) values for prime ∆ = −(A−p +BpX).

p h∆ r(∆) C(∆)
257 32205652661741 0.67490844 5.07451231
277 1616387968869310119 0.63738276 5.10571428
307 121676986663041036395593 0.61788587 5.19553338
331 18644248113618124566660398865 0.58425088 5.11311211
353 508563922487050052185191214201329 0.59868248 5.38920304

Table 5.6. C(∆) values for ∆ = A+
p +BpX.

p h∆ R∆ r(∆) C(∆)
257 2 22720556233553.76096 0.70502465 5.29857981
277 32 136748579504713684.06545 0.66227548 5.32039776
307 200 1756711054276061939500.58651 0.63660975 5.36584646
331 2 13733001618386164806256150133.05014 0.61969493 5.42321540

Table 5.7. C(∆) values for prime ∆ = A+
p +BpX.

p h∆ R∆ r(∆) C(∆)
257 23 1486019958907.89109 0.69782143 5.23353756
277 1 3524266116230524920.39910 0.68457204 5.49456617
307 1 388454242975025771000236.31306 0.62860736 5.30013214
331 3 10083301848416825689407861674.34216 0.59383948 5.19778395

Table 5.8. Run times for ∆ = −(A−p +BpX).

Composite ∆ Prime ∆
p np th tver np th tver

257 30 19.35 s 44.26 s 30 18.79 s 44.27 s
277 40 2.81 m 4.12 m 39 2.77 m 4.40 m
307 49 23.45 m 1.58 h 49 26.34 m 2.29 h
331 59 8.62 h 9.15 h 60 8.26 h 8.51 h
353 70 6.47 d 1.18 s 69 5.29 d 0.55 s

We made use of Jacobson’s technique [12] to evaluate h∆ and R∆ for these large
values of ∆. The computations were carried out on a 296 MHz SUN UltraSPARC-II
processor with 1024 MB of main memory using C++ routines based on the LiDIA
computer algebra library [8]. The CPU time required for these computations ranged
from about 19 seconds to about 6.5 days. In order to guarantee the correctness of
our results under the ERH, we also performed the verification described in [12, Ch.3]
for each of the ten discriminants. The time required for this additional computation
ranged from about 26 seconds to 9 hours. The run-times in CPU seconds (s),
minutes (m), hours (h), or days (d) for all ∆ considered above are contained in
Tables 5.8 and 5.9. By th we denote the CPU time required to compute the class
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Table 5.9. Run times for ∆ = A+
p +BpX.

Composite ∆ Prime ∆
p np tCl tver np tCl tver

257 30 38.95 s 30.48 s 30 41.42 s 25.65 s
277 40 7.75 m 3.50 m 40 10.02 m 3.17 m
307 50 1.78 h 2.25 h 50 1.92 h 1.72 h
331 60 1.04 d 7.84 h 60 1.97 d 4.85 h

number and regulator of O∆, and by tver the CPU time required for the ERH
verification.

6. Larger C(∆) values with fewer sieve moduli

All the examples given above were generated by sieving with odd primes q ≤ 229.
However, the more moduli used, the harder it is to find solutions. For example, in
order to generate the 40 solutions X for A+

331 + B331X it took almost a week of
sieve time. Hence, we also ran two sieve jobs using primes q ≤ 199 in an effort to
find C(∆) > 5.49456617, the largest value found using the methods in the previous
section. The first of these was designed to generate 70-digit negative discriminants.
We used the MSSU to search for values of X such that

(−(C−337+D337X)
qi

)
= −1 for

odd primes 3 ≤ qi ≤ 199 and −(C−337 +D337X) ≡ 5 (mod 8). We used

C−337 = 1613265, and D337 =
337∏
q≥211
q prime

q,

where C−337 is the smallest integer such that
(−C−337

q

)
= −1 for all primes q (211 ≤

q ≤ 337). Thus, every solution X is such that
(−(C−337+D337X)

q

)
= −1 for all odd

primes 3 ≤ q ≤ 337, and we only need to sieve with primes less than 200.
The second sieve job was designed to generate positive discriminants of about

70 decimal digits. We searched for solutions X such that
(C+

337+D337X
qi

)
= −1 for

all odd primes 3 ≤ qi ≤ 199 and C+
337 + D337X) ≡ 5 (mod 8). C+

337 = 14130195

is the smallest integer such that
(C+

337
q

)
= −1 for all primes q (211 ≤ q ≤ 337).

In this case, every solution X is such that
(C+

337+D337X
q

)
= −1 for all odd primes

3 ≤ q ≤ 337, and as above we only need to sieve with primes less than 200.
In both cases we generated 500 solutions to the sieve problem, and ordered the

solutions according to C(∆) estimates computed from (1.1) using only the odd
primes less than 300000. We were able to find these solutions much faster than in
the previous problems using sieve moduli up to 229. For the negative discriminants,
it took just over 4 days to find the 500 solutions, compared to over a week for only
40 solutions when sieving with q ≤ 229. The composite and prime solutions with the
largest C(∆) estimates for each pair (C−337, D337) and (C+

337, D337) were selected,
and their corresponding C(∆) values were approximated to 8 significant digits using
(2.9). The values of X yielding these best composite and prime values of ∆ are
listed in Table 6.1.
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Table 6.1. X values yielding ∆ with large C(∆).

Composite ∆ Prime ∆
∆ X np X np

−(C−337 +D337X) 25455834532981358 70 313761223204200542 71
C+

337 +D337X 480364831229973862 72 344681809987259902 71

Table 6.2. C(∆) values for ∆ = −(C−337 +D337X).

h∆ r(∆) C(∆)
D 3970294065612579776224498944560096 0.61158214 5.53388912
p 14171128122001880660726087303711577 0.59973638 5.44325560

Table 6.3. C(∆) values for ∆ = C+
337 +D337X.

h∆ R∆ r(∆) C(∆)
D 4 6625291330661652053429358727545606.5573 0.62299738 5.65726388
p 3 7748091868989848744375988664484659.1689 0.60191933 5.46368497

Table 6.4. Run times for ∆ = −(C−337 +D337X) and ∆ = C+
337 +D337X.

Composite ∆ Prime ∆
p np th tver np th tver

337− 70 5.84 d 3.57 s 71 5.81 d 2.99 s
337+ 72 10.68 d 7.83 d 71 7.55 d 7.30 d

In Table 6.2 and 6.3 we present the class numbers, regulators, r(∆) values,
and C(∆) approximations for composite and prime ∆ = −(C−337 + D337X) and
∆ = C+

337 +D337X, respectively. In both tables, the entry D denotes the composite
discriminant and p indicates the prime discriminant. The CPU time needed on a
296 MHz SUN UltraSPARC-II processor to compute the class numbers and verify
them under the ERH are given in Table 6.4.

Although we have been able to find significantly larger C(∆) values than those
in [11], the fact that the r(∆) values corresponding to these ∆ are somewhat small
suggests that larger C(∆) values should be obtainable for other ∆ of the same
size. However, as of yet we know of no way to use the MSSU to find ∆ such that(

∆
q

)
= −1 for primes q ≤ p and p > 229 without resorting to Lehmer’s idea, which

unfortunately causes the sizes of ∆ under consideration to increase rapidly. The
∆ presented in [11] are minimal in the sense that they are taken from the set of
the smallest integers in absolute value for which

(
∆
q

)
= −1 for primes q ≤ 199, and

hence the r(∆) values are larger than ours, as expected.
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The largest value of C(∆) we found is

C(∆) = 5.65726388

for the 72-digit ∆ = C+
337 +D337 480364831229973862. Thus, according to Conjec-

ture F and under the assumption of the ERH, we expect the polynomial x2 +x−A
for A given by

33251810980696878103150085257129508857312847751498190349983874538507313

to have the largest asymptotic density of prime values for any polynomial of this
type currently known.
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