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MIXED FINITE VOLUME METHODS
ON NONSTAGGERED QUADRILATERAL GRIDS

FOR ELLIPTIC PROBLEMS

SO-HSIANG CHOU, DO Y. KWAK, AND KWANG Y. KIM

Abstract. We construct and analyze a mixed finite volume method on quadri-
lateral grids for elliptic problems written as a system of two first order PDEs
in the state variable (e.g., pressure) and its flux (e.g., Darcy velocity). An
important point is that no staggered grids or covolumes are used to stabilize
the system. Only a single primary grid system is adopted, and the degrees of
freedom are imposed on the interfaces. The approximate flux is sought in the
lowest-order Raviart–Thomas space and the pressure field in the rotated-Q1
nonconforming space. Furthermore, we demonstrate that the present finite
volume method can be interpreted as a rotated-Q1 nonconforming finite ele-
ment method for the pressure with a simple local recovery of flux. Numerical
results are presented for a variety of problems which confirm the usefulness
and effectiveness of the method.

1. Introduction

Let Ω be a bounded polygonal domain in R2 with the boundary ∂Ω. We consider
the second-order elliptic boundary value problem{

− div(K∇p) = f in Ω,
p = 0 on ∂Ω,

(1.1)

where K = K(x) is a symmetric and uniformly positive definite matrix, i.e., there
exist two positive constants c1 and c2 such that

c1ξ
T ξ ≤ ξTK(x)ξ ≤ c2ξT ξ, ∀ξ ∈ R2, x ∈ Ω.

Let us introduce the vector variable u = −K∇p and rewrite the problem (1.1)
in the mixed form 

u +K∇p = 0, in Ω,
div u = f, in Ω,

p = 0, on ∂Ω.
(1.2)

In the mathematical modeling of fluid flow in porous media, u and p represent
the velocity and pressure fields, respectively. The first equation of (1.2), which
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relates u and p, is called Darcy’s law, and the second equation represents the
conservation of mass. In the full system of equations for certain porous media
problems such as transport of contaminants or tracers, these equations are coupled
with the concentration equation. Since the coupling is only through the velocity
variable u, it is important to gain very accurate approximation for the velocity u
when discretizing the full system of equations. More details about this point can
be found, for example, in [18, 30].

Much effort has been made in accurate computation of the velocity variable
since the late 1970’s. The mixed finite element method, which is the standard
finite element method for the system (1.2), has been a very active area of research,
and many finite element spaces subject to the well-known inf-sup stability condition
have been developed; see, for example, [3, 4, 5, 19, 20, 24, 28, 33]. On the other
hand, the finite volume method has been also applied to the system (1.2) in several
ways. For example, see [6, 11, 12, 25] for mixed covolume methods, and [35, 36, 38]
for different approaches.

One shortcoming of some of the early mixed methods mentioned above is that
they led to indefinite matrix systems when discretizing (1.2). This prevents one from
applying well known iterative methods such as the conjugate-gradient method that
are useful to solve the symmetric positive definite matrix system. This drawback
causes severe difficulties particularly in solving the porous media problem, because
one has to solve the mixed system (1.2) at every time step to obtain the approximate
velocity which appears in the concentration equation (cf. [18, 30]).

A common way to remedy this situation is to make use of numerical quadratures
for calculating integrals (which is adopted in [35, 36, 38]). This enables one to
decouple the pressure p easily and obtain a symmetric positive definite matrix
system for p only which is very similar to cell-centered finite difference methods.
Another way is to introduce the Lagrange multipliers on the edges of the mesh
to ensure the continuity of normal components of the velocity variable [22]. In
this fashion the velocity and the pressure finite element spaces have no continuity
constraints at all, and thus both variables can be eliminated to obtain a symmetric
positive definite matrix system which only involves the Lagrange multipliers. It
can be shown that this matrix system is equivalent to some nonconforming finite
element method for the original problem (1.1). For the interested readers we refer
to [1, 7, 27].

On the other hand, Courbet and Croisille [17], seeking to avoid the inf-sup
condition, considered the lowest-order Raviart–Thomas space for the velocity and
the P1 nonconforming element for the pressure, and discretized the mixed system
(1.2) in the case of K = I, the identity matrix, by the finite volume (box) method,
using only a single triangular grid system. It was shown that a symmetric positive
definite system in the unknown ph can be obtained with the flux recovered by a
simple formula. It was later extended and analyzed in a more effective way by
Chou and Tang [15] to general tensor-coefficient problems. Furthermore, following
the previous successful and consistent viewpoint [11, 12, 16] that any given finite
volume method should be related to a close finite element method, they provided in
[14, 15], among other things, a new framework showing equivalence between mixed
finite volume methods and nonconforming Galerkin methods with a cheap local
recovery of the fluxes. The significance of this is that, unlike lower order mixed
finite element methods, mixed finite volume methods can decouple the pressure
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from the flux and compute it basically cost free. However, all these results pertain
to the triangular grid case, where one has the convenient area coordinates to use.

In the mixed finite volume literature, it is common to introduce a secondary grid
or dual grid of covolumes to enforce equality between the numbers of equations
and unknowns [6, 11, 12, 13, 38]. Thus it is rather surprising that there exist finite
volume methods such as those in [14, 15, 17] achieving stability using a single grid
system while violating the inf-sup condition on the pressure-velocity spaces. Let us
now list some features of the mixed finite volume scheme on nonstaggered triangular
grids:

• The discretized system gives rise to a mixed system in which the pressure
decouples easily and the velocity can be recovered by a simple local formula.
• An accurate approximation for the velocity can be computed from the non-

conforming approximation of the pressure in a direct manner, with no help
from Lagrange multipliers. (This is a restatement of the first item from a
different angle.)
• The nonconforming Galerkin method for the pressure requires fewer degrees

of freedom than the mixed finite element method.
• The pressure solution can be obtained by a fast solver such as the multigrid

algorithm (cf. [2, 8, 9, 26]).
• The data structure is simple, since only one mesh system is used.
• The mixed finite volume scheme satisfies discrete mass conservation locally,

as all the mixed methods mentioned above do.

In view of the fact that many practical hydrocodes (e.g., [31, 32]) have been
written using conservation laws over irregular polygonal control volumes such as
triangles and quadrilaterals, it is useful to ask if one can construct and analyze
the corresponding finite volume method on rectangular and/or quadrilateral grids
that shares the above features. The answer turns out to be positive. The first
step involves a correct choice of pressure and velocity spaces: we will make use of
the lowest-order Raviart–Thomas space for the velocity variable [34, 39] and the
rotated-Q1 nonconforming element for the pressure [33]. The second step involves
an effective way of decoupling the mixed discrete system: we show that the velocity
approximation uh can be easily eliminated to yield the rotated-Q1 nonconforming
method for the pressure ph only, and that uh can be recovered from ph in a simple
manner.

It is sometimes believed that the use of finite volume methods is mainly in hy-
perbolic conservation laws and there is no need to use them for elliptic problems.
For this reason, we mention that in an important book [29] McCormick has eluci-
dated, among other things, the reasons why methods of the finite volume element
type are natural and effective on composite grids in conjunction with the multilevel
FAC iterative solver. In particular, they play useful roles in approximating elliptic
problems.

The rest of the paper is organized as follows. In the next section we introduce
some notations about the grids and define the relevant function spaces. In Section 3,
we describe the mixed finite volume method on quadrilateral and rectangular grids,
and we establish optimal error estimates for it in Section 4. Finally, in Section 5,
some numerical results are presented to illustrate the efficiency of our method.
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Figure 2.1. The bilinear mapping FQ : Q̂→ Q

2. Preliminaries

Let Qh be a partition of Ω into convex quadrilaterals whose diameters are less
than or equal to h. The intersection, if any, of any two (closed) quadrilaterals in
the partition is either a common edge or a common vertex. Let

NQ = Number of elements of Qh,
NE i = Number of interior edges of Qh,
NE b = Number of boundary edges of Qh,

and NE = NE i + NE b, the total number of edges of Qh.
Let x̂ = (x̂, ŷ) and x = (x, y). We use the unit square Q̂ = [0, 1]× [0, 1] as the

reference element (cf. Figure 2.1) in the x̂ŷ-plane with the vertices

x̂1 = (0, 0), x̂2 = (1, 0), x̂3 = (1, 1), x̂4 = (0, 1).

Let Q be a convex quadrilateral with the vertices xi arranged counterclockwise.
Then there exists a unique invertible bilinear transformation FQ which maps Q̂
onto Q and satisfies

xi = FQ(x̂i), i = 1, 2, 3, 4.

In fact, it is given by

x = FQ(x̂) = x1 + x21x̂+ x41ŷ + gx̂ŷ,(2.1)

where we set

xij = xi − xj , g = x12 + x34.

The Jacobian matrix JQ of FQ is given by

JQ =

(
∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

)
= (x21 + gŷ,x41 + gx̂).(2.2)

Denote by Si the subtriangle of Q with vertices xi−1,xi and xi+1 (x0 = x4). Let
hQ be the diameter of Q and ρQ = 2 min1≤i≤4{diameter of circle inscribed in Si}.
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Throughout the paper we assume a regular family of partitions Q = {Qh}, i.e.,
there exists a positive constant σ independent of h such that

hQ
ρQ
≤ σ, ∀Q ∈ Qh, ∀Qh ∈ Q.(2.3)

The following upper bounds for JQ and JQ can be found, e.g., in [23]:

‖JQ‖∞,Q̂ ≤ ChQ, ‖J−1
Q ‖∞,Q ≤ Ch

−1
Q ,(2.4)

|JQ|∞,Q̂ ≤ Ch
2
Q, |J−1

Q |∞,Q ≤ Ch
−2
Q ,(2.5)

where ‖M‖∞,K := supx∈K ‖M(x)‖, the supremum of the spectral norm of the
matrix function M . Hereafter C will denote a generic positive constant which is
independent of h. It may have different values in different places, especially when
used in proofs.

Simple calculation shows that the determinant JQ = detJQ is a linear function
of x̂ and ŷ:

JQ(x̂, ŷ) = α+ βx̂+ γŷ,(2.6)

where

α = det(x21,x41), β = det(x21,g), γ = det(g,x41).(2.7)

We shall assume throughout the paper that each quadrilateral in the family of
partitions is almost a parallelogram: ‖g‖ = O(h2

Q). In other words,

The distance between the midpoints of the two diagonals of Q is O(h2
Q).(2.8)

This condition is easily satisfied if the partitions are obtained by symmetric refine-
ment of quadrilaterals via bisection on edges.

It is well known that (shape) regularity is equivalent to the minimum angle
condition for partitions with triangular elements. For the quadrilateral case, it is
shown in [10] that the shape regularity condition (2.3) is equivalent to the follow-
ing two conditions: the uniform boundedness of hQ/h′Q, the ratios of diameter to
shortest edge h′Q, and the existence of a positive constant s independent of h such
that | cos(θQ)| ≤ s < 1 for all Q with θQ any interior angle of Q. A similar result
can be found in [37], which states that a certain quasi-regularity condition plus the
almost parallelogram condition (2.8) imply the above two conditions. A detailed
clarification on the relations between various regularity and uniformity conditions
on quadrilateral grids can be found in [10].

The Piola transformation PQ transforms a vector-valued function on Q̂ to one
on Q by

v = PQv̂ =
1
J
J v̂ ◦ F−1,(2.9)

where we drop the subscript Q for brevity. This transformation preserves the
H(div) space on the reference element and has the following well known properties
(cf. [34, 39]): If we let p̂ = p ◦ F , then∫

Q

∇p · v dxdy =
∫
Q̂

∇̂p̂ · v̂ dx̂dŷ,(2.10)

div v =
1
J

div v̂.(2.11)

We need the following lemma for error analysis.
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Lemma 2.1. Let v and v̂ be related by (2.9). For regular partitions, there exist
positive constants C1 and C2 such that for every v ∈ L2(Q) we have

C1‖v‖0,Q ≤ ‖v̂‖0,Q̂ ≤ C2‖v‖0,Q.(2.12)

If the regular partition satisfies the almost a parallelogram condition (2.8), then for
every v ∈ H1(Q),

|v|1,Q ≤ C1h
−1‖v̂‖1,Q̂, |v̂|1,Q̂ ≤ C2h‖v‖1,Q.(2.13)

Proof. The proof can be easily done by using the formulae (2.2), (2.7) and the
bounds (2.4), (2.5).

Now we introduce the function spaces

V = H(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)},(2.14)

Hs(div,Ω) = {v ∈ L2(Ω) : div v ∈ Hs(Ω)}.(2.15)

To define the lowest-order Raviart–Thomas space Vh on Qh, let Vh(Q̂) denote the
local space on the reference element Q̂:

Vh(Q̂) = {v̂ : v̂ = (a+ bx̂, c+ dŷ), a, b, c, d ∈ R}.(2.16)

Then the local space Vh(Q) on each quadrilateral Q is defined to be

Vh(Q) = {v = PQv̂ : v̂ ∈ Vh(Q̂)},
and the global space Vh is defined by

Vh = {v ∈ V : v|Q ∈ Vh(Q), ∀Q ∈ Qh}.(2.17)

Furthermore, the discrete space satisfies the condition that if ni denotes the unit
outward normal to the edge ei of Q, then

|ei|v · ni = v̂ · n̂i, i = 1, 2, 3, 4,(2.18)

where n̂i is the unit exterior normal to êi. Note that every v ∈ Vh has continuous
normal components across the edges of Qh, which are constant due to (2.18). We
refer to [34, 39] for further details.

The Raviart–Thomas projection Πh : V → Vh is defined as follows: Let us
define Π̂ on Q̂ to be∫

ê

Π̂v̂ · n̂ ds =
∫
ê

v̂ · n̂ ds, ∀ edges ê of Q̂,(2.19)

and then set

ΠQv = PQ(Π̂v̂), ∀v ∈ H1(Q),(2.20)

where PQv̂ = v. Finally, we define

Πhv|Q = ΠQv.(2.21)

Some well known properties [34, 39] of Πh, necessary to derive error estimates, are
summarized in the following lemma.

Lemma 2.2. If w ∈ L2(Ω) is a piecewise constant function on Qh, then

(div(u−Πhu), w) = 0, ∀u ∈ V.(2.22)
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Also, the following estimates are valid:

‖u−Πhu‖0 ≤ Ch ‖u‖1, ∀u ∈ H1(Ω),(2.23)

‖ div(u−Πhu)‖0 ≤ Ch ‖ div u‖1, ∀u ∈ H1(div; Ω).(2.24)

The pressure space Nh is chosen to be the rotated-Q1 nonconforming finite ele-
ment space given by ([33])

Nh =
{
p : p|Q ∈ Nh(Q), ∀Q ∈ Qh; and if Q1, Q2 share an edge e,(2.25)

then
∫
e

p|∂Q1 ds =
∫
e

p|∂Q2 ds; and
∫
∂Q∩∂Ω

p|∂Ω ds = 0
}
,

where the local spaces are defined by

Nh(Q̂) = span {1, x̂, ŷ, x̂2 − ŷ2},(2.26)

Nh(Q) = {p = p̂ ◦ F−1
Q : p̂ ∈ Nh(Q̂)}.(2.27)

The degrees of freedom for Nh are given by
{

1
|e|
∫
e ph ds : e is an edge of Qh.

}
.

Lemma 2.3. We have

∇Nh(Q̂) = {v̂ ∈ Vh(Q̂) : div v̂ = 0}.

Proof. The proof is obvious, since we have ∇Nh(Q̂) = {(a+ cx̂, b− cŷ)}.

Finally, we define f̄h to be the function given by f̄h
∣∣
Q

= 1
JQ

∫
Q
f . Note that only

when Q is a rectangle is f̄h
∣∣
Q

the local average of f on Q.

Lemma 2.4. Assume that f ∈ H1(Q), ∀Q ∈ Qh. Then

‖f − f̄h‖0 ≤ Ch(
∑
Q

||f ||21,Q)1/2.

Proof. We first note that

‖f − f̄h‖0,Q ≤ Ch
∥∥∥f̂ − 1

JQ

∫
Q̂

JQf̂ dx̂
′dŷ′

∥∥∥
0,Q̂

.

Writing JQ in the integrand as

JQ(x̂′, ŷ′) = JQ(x̂, ŷ) + β(x̂′ − x̂) + γ(ŷ′ − ŷ),

we have

f̂ − 1
JQ

∫
Q̂

JQf̂ dx̂
′dŷ′ =

[
f̂(x̂, ŷ)−

∫
Q̂

f̂(x̂′, ŷ′) dx̂′dŷ′
]

+
∫
Q̂

β(x̂− x̂′) + γ(ŷ − ŷ′)
JQ(x̂, ŷ)

f̂(x̂′, ŷ′) dx̂′dŷ′

≡ I1 + I2

Clearly, I1 is bounded by C|f̂ |1,Q̂. Now by (2.7) one has |β| + |γ| = O(h3
Q), and

the bound for I2 follows easily. Combining these results gives

‖f − f̄h‖0,Q ≤ Ch(|f̂ |1,Q̂ + h‖f̂‖0,Q̂) ≤ Ch‖f‖1,Q.
Summing over Q completes the proof.
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3. Mixed finite volume methods

on rectangular and quadrilateral grids

In this section we first introduce a finite volume method (FVM) on rectangular
grids and relate it to a nonconforming finite element method with local recovery of
the flux. The ideas are then generalized to quadrilateral grids.

3.1. FVM on rectangular grids. To define the finite volume method on rec-
tangular grids, we begin by integrating the mixed system (1.2) over each element
Q ∈ Qh: ∫

Q

(uh +K∇ph) = 0,
∫
Q

div uh =
∫
Q

f.(3.1)

This gives rise to a total of 3NQ equations in 2NE i + NE b unknowns. It is easy to
see that this is a square matrix system on triangular grids (cf. [17]), since we have

3NQ =
∑
Q

∑
∂Q

1 = 2
∑
e∈Ei

1 +
∑
e∈Eb

1 = 2NE i + NE b

However, on rectangular and quadrilateral grids we have 4NQ = 2NE i+NE b, which
implies that NQ additional equations, or equivalently, one additional equation per
element, is required.

To resolve this problem we propose the following scheme: Find (uh, ph) ∈ Vh ×
Nh which satisfies, on every element Q ∈ Qh,

∫
Q

(uh +K∇ph) · ∇χ = 0, ∀χ ∈ Nh(Q),∫
Q

div uh =
∫
Q

f.

(3.2)

Note that this gives the desired number of equations, since we have dim∇Nh(Q) =
3. We also see that any solution (uh, ph) of the system (3.2) satisfies (3.1), since
∇Nh(Q) contains the constant vectors (1, 0), (0, 1).

Now let us show how the velocity uh is eliminated and the system (3.2) reduces
to the nonconforming finite element method for ph only. Noticing that uh · n is
constant on the edges and χ ∈ Nh has common averages on the interior edges with
vanishing boundary averages, we obtain, for every χ ∈ Nh,∑

Q∈Qh

∫
Q

uh · ∇χ =
∑
Q∈Qh

[∫
∂Q

(uh · n)χ−
∫
Q

div uh χ
]

= −
∫

Ω

f̄hχ,(3.3)

where we used the equality div uh = f̄h. By virtue of (3.2), it follows immediately
that ∑

Q∈Qh

∫
Q

K∇ph · ∇χ =
∫

Ω

f̄hχ, ∀χ ∈ Nh.(3.4)

This is a rotated-Q1 nonconforming finite element method for the problem (1.1),
except that the right-hand side is given by f̄h instead of f .

The velocity uh can be computed directly from the solution ph of (3.4) in
the following manner. Let Q be an arbitrary element of Qh with the edges ei,
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i = 1, 2, 3, 4, and let φi ∈ Nh(Q) be the basis function associated with the edge ei,
namely, 1

|ei|
∫
ei
φj = δij . Then the outflux through the edge ei is given by

|ei|(uh · n)
∣∣
ei

=
∫
∂Q

(uh · n)φi =
∫
Q

div(uhφi)

=
∫
Q

(div uh φi + uh · ∇φi),

from which it follows by the fact div uh = f̄h and (3.2) that

|ei|(uh · n)
∣∣
ei

=
∫
Q

f̄hφi −
∫
Q

K∇ph · ∇φi.(3.5)

Thus, in order to compute the outfluxes through the edges of an element Q, we
only need to compute the local residual of the solution ph on Q. Incidentally, we
have proved the existence and uniqueness of a solution of the system (3.2), since
f = 0 implies that ph = 0 by (3.4), and that uh = 0 by (3.5).

Remark 3.1. Our argument applies equally well to triangular grids. In this case, we
take Nh to be the P1 nonconforming finite element space. In particular, since we
have ∇Nh = {(1, 0), (0, 1)}, the equations (3.1) and (3.2) are identical. For more
details, see [14, 17].

Remark 3.2. Let hx and hy denote the width and height of a rectangle Q. Obvi-
ously, one can write on Q

uh +K∇ph
∣∣
Q

= (a+ b(x− xQ), c+ d(y − yQ))

for some constants a, b, c and d. In the case of a piecewise constant scalar-valued
K, by taking ∇χ = (1, 0), (0, 1) and (x,−y) in (3.2) and using div(K∇ph) = 0, we
obtain

a = 0, c = 0, bhx = dhy, b+ d = f̄h.

Hence for a square grid (hx = hy) and scalar K, one obtains the following formula
for uh:

uh
∣∣
Q

= −K∇ph
∣∣
Q

+
f̄h
2

(x − xQ),(3.6)

where xQ is the center of Q. The same formula was derived by Chou and Tang [14]
in the case of triangular grids.

3.2. FVM on quadrilateral grids. Next we turn to quadrilateral grids. In anal-
ogy with the rectangular case, we propose the following scheme:

∫
Q

(uh +K∇ph) · ∇χ = 0, ∀χ ∈ Nh(Q),∫
Q

div uh =
∫
Q

f.

(3.7)

Elimination of the velocity uh can be done in the same way as in the rectangular
case. Since we again have by (2.11)

div uh
∣∣
Q

=
1
JQ

div ûh =
1
JQ

∫
Q

f = f̄h
∣∣
Q
,
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consequently (3.3) becomes∑
Q∈Qh

∫
Q

uh · ∇χ = −
∫

Ω

f̄hχ, ∀χ ∈ Nh,

which gives immediately, by (3.7),∑
Q∈Qh

∫
Q

K∇ph · ∇χ =
∫

Ω

f̄hχ, ∀χ ∈ Nh.(3.8)

Again this is a rotated-Q1 nonconforming finite element method for the problem
(1.1) with a slightly modified right-hand side. Also, the velocity uh can be recovered
from the solution ph by the local residual

|ei|(uh · n)
∣∣∣
ei

=
∫
Q

f̄hφi −
∫
Q

K∇ph · ∇φi.(3.9)

Remark 3.3. Our techniques can be easily extended to the mixed boundary condi-
tions of general form

u · n = g on Γ1, p = h on Γ2, Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅.

4. Error estimates

In this section we derive optimal error estimates for the velocity and the pressure
variable. We use the standard notations | · |m,Q and ‖ · ‖m,Q for the semi and full
norm of the Sobolev space Hm(Q), and set

|χ|21,h =
∑
Q∈Qh |χ|

2
1,Q, ∀χ ∈ H1(Ω)⊕Nh,

and ‖χ‖1,h = (‖χ‖20 + |χ|21,h)1/2. We also define the bilinear form

ah(p, χ) =
∑
Q∈Qh

∫
Q

K∇p · ∇χ, ∀p, χ ∈ H1(Ω)⊕Nh,

where the subscript h will be dropped when both p and χ belong to H1(Ω). To
simplify notation, we shall write | · |m, ‖ · ‖m instead of | · |m,Ω, ‖ · ‖m,Ω.

Throughout this section we assume elliptic regularity holds. First we prove the
following error estimate for the pressure approximation of the finite element method
(3.8).

Theorem 4.1. Let f ∈ H1(Q), ∀Q ∈ Qh, and let ph ∈ Nh be the solution of (3.8).
Then there exists a constant C independent of h such that

‖p− ph‖0 + h|p− ph|1,h ≤ Ch2‖f‖1,h.(4.1)

Proof. Let p̃ ∈ H2(Ω) ∩H1
0 (Ω) be the solution of

a(p̃, χ) = (f̄h, χ), ∀χ ∈ H1
0 (Ω).

Then we can apply the standard argument of H1 estimate and the Aubin–Nitsche
technique to obtain (cf. [33])

‖p̃− ph‖0 + h|p̃− ph|1,h ≤ Ch2‖f‖0.(4.2)

Now we need to estimate ‖p− p̃‖1. Since we have
∫
Q(f − f̄h) = 0, it follows that

for all χ ∈ H1
0 (Ω)

a(p− p̃, χ) = (f − f̄h, χ) ≤ Ch2‖f‖1,h|χ|1,
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where we have used Lemma 2.4. By taking χ = p − p̃ and using the Poincaré
inequality, we obtain

‖p− p̃‖1 ≤ Ch2‖f‖1,h.(4.3)

The proof is completed by combining (4.2) and (4.3).

In order to derive the estimate for ‖u− uh‖0, we note that∫
Q

[
(u− uh) +K∇(p− ph)

]
· ∇χ = 0, ∀χ ∈ Nh(Q),

which, when transferred onto the reference element, becomes∫
Q̂

[
(û− ûh) + JJ−1KJ −t∇̂(p̂− p̂h)

]
· ∇̂χ̂ = 0, ∀χ̂ ∈ Nh(Q̂).(4.4)

Since div(Π̂û− ûh) = 0, we may take ∇̂χ̂ = Π̂û− ûh by Lemma 2.3 to obtain

‖Π̂û− ûh‖0,Q̂ ≤ ‖û− Π̂û‖0,Q̂ + ‖K‖∞‖J‖∞,Q̂‖J
−1‖2∞,Q|p̂− p̂h|1,Q̂

≤ C(|û|1,Q̂ + |p̂− p̂h|1,Q̂),

where we have used the upper bounds (2.4) and (2.5). Thus it follows by Lemma
2.1 that

‖u− uh‖0,Q ≤ ‖û− ûh‖0,Q̂ ≤ ‖û− Π̂û‖0,Q̂ + ‖Π̂û− ûh‖0,Q̂
≤ C(|û|1,Q̂ + |p̂− p̂h|1,Q̂)

≤ C(h|u|1,Q + |p− ph|1,Q),

which gives by Theorem 4.1

‖u− uh‖0 ≤ Ch(‖u‖1 + ‖f‖1,h).

Finally, the estimate for ‖ div u − div uh‖0 follows directly from Lemma 2.4, since
we have div u = f and div uh = f̄h. We summarize these results in the following
theorem.

Theorem 4.2. Let (uh, ph) be the solution of the system (3.7). Then there exists
a constant C independent of h such that

‖u− uh‖0 + ‖ div u− div uh‖0 ≤ Ch(‖u‖1 + ‖f‖1,h),(4.5)

provided that p is in H2(Ω), and the L2 function f is locally in H1(Q), ∀Q ∈ Qh.

5. Numerical results

To confirm the theoretical results established in the previous section, some nu-
merical tests are carried out on the unit square Ω = (0, 1)2, involving scalar and
tensor coefficients, smooth and nonsmooth coefficients, and rectangular and quadri-
lateral grids. For convenience, we compute velocity error in an L2 seminorm and
pressure error in a discrete L2 norm:

δu =

 ∑
Q∈Qh

∑
e∈∂Q

[∫
e

(u− uh) · n ds
]2


1/2

,(5.1)

δp =

[ ∑
Q∈Qh

|Q|(p(xQ)− ph(xQ))2

]1/2

,(5.2)



536 S.-H. CHOU, D. Y. KWAK, AND K. Y. KIM

where the edge integrals are evaluated by the midpoint rule, and xQ is the mass
center of Q. These discrete (semi)norms are the ones defined in [14, 16], except
that δu is defined elementwise and thus involves the interior edge integrals twice.

In all of the examples below, the exact solutions p and the coefficients K are
given in explicit form, and the source terms f and the boundary conditions are
determined by them. In the first three examples we partition Ω into squares of size
h, whereas we consider a distorted grid in the last example (cf. Figure 5.1).

Based on the computed errors for the problems, we also report the convergence
rates in Table 5, assuming that the error is of the form Chα. Here C and α are
determined by the least squares fit to the data. One notes the superconvergence
behavior of the flux at the midpoints.

Problem 1. K = 1.0 and p(x, y) = x(1 − x) sin(πy)

Problem 2. K = 1 + 10x+ y and p(x, y) = x(1 − x)y(1 − y)

Problem 3. This example is the one presented in [25]:

K =
(

14
9

7
9

7
9 2

)
for 0 < x < .5,

(
1 1

2
1
2 2

)
for .5 < x < 1,

and

p(x, y) =

{
1− x3 for 0 < x < .5,
7
6 (1 − x2) for .5 < x < 1.

By simple calculations it is easy to see that the velocity u = −K∇p has continuous
normal components across the line of discontinuity x = 1/2.

Problem 4. This example is the one presented in [6, 25]:

K =
(

cos θ sin θ
− sin θ cos θ

)(
1 0
0 0.01

)(
cos θ − sin θ
sin θ cos θ

)
,

and p(x, y) = cos(πx) cos(2πy). The geometry of the grid is shown in Figure 5.1.

�
�
�
�
�
�
�
�
�
�
�
��

(0, 0) (1, 0)

(0, 1) (1, 1)

(.5, .5)

β$
Figure 5.1. Distorted grids for Problem 4
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Table 1. Problem 1: Constant scalar coefficients

h δu δp
1/8 5.9935e-3 3.0080e-3

1/16 1.4992e-3 7.5270e-4

1/32 3.7483e-4 1.8822e-4

1/64 9.3711e-5 4.7058e-5

1/128 2.3428e-5 1.1765e-5

Table 2. Problem 2: Variable scalar coefficients

h δu δp
1/8 2.0213e-2 6.9621e-4

1/16 5.0450e-3 1.7362e-4

1/32 1.2608e-3 4.3377e-5

1/64 3.1515e-4 1.0843e-5

1/128 7.8784e-5 2.7105e-6

Table 3. Problem 3: Discontinuous tensor coefficients

h δu δp
1/8 1.4378e-2 3.0216e-3

1/16 3.6223e-3 7.5599e-4

1/32 9.1484e-4 1.8904e-4

1/64 2.3118e-4 4.7262e-5

1/128 5.8414e-5 1.1816e-5

Table 4. Problem 4: Distorted grids, β = 60◦, θ = 45◦

Grid Size δu δp
8× 8 2.0878e-1 4.1977e-2

16× 16 5.2684e-2 1.0989e-2

32× 32 1.3526e-2 2.7816e-3

64× 64 3.4843e-3 6.9757e-4

128× 128 8.9701e-4 1.7453e-4

Table 5. Convergence rates: δu ≤ Cuhαu and δp ≤ Cphαp

Cu αu Cp αp
Problem 1. 0.384 1.999 0.193 1.999

Problem 2. 1.295 2.000 0.045 2.001

Problem 3. 0.893 1.985 0.194 1.999

Problem 4. 12.308 1.964 2.622 1.979
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