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NYSTRÖM-CLENSHAW-CURTIS QUADRATURE
FOR INTEGRAL EQUATIONS

WITH DISCONTINUOUS KERNELS

SHEON-YOUNG KANG, ISRAEL KOLTRACHT, AND GEORGE RAWITSCHER

Abstract. A new highly accurate numerical approximation scheme based on
a Gauss type Clenshaw-Curtis quadrature for Fredholm integral equations of
the second kind

x(t) +

∫ b

a
k(t, s)x(s)ds = y(t),

whose kernel k(t, s) is either discontinuous or not smooth along the main diag-

onal, is presented. This scheme is of spectral accuracy when k(t, s) is infinitely
differentiable away from the diagonal t = s. Relation to the singular value de-
composition is indicated. Application to integro-differential Schrödinger equa-
tions with nonlocal potentials is given.

1. Introduction

Let the integral operator,

(Kx)(t) =
∫ b

a

k(t, s)x(s)ds, a ≤ t ≤ b,

map Cq[a,b], q > 1, into itself. In the present paper, we consider the numerical
solution of the corresponding Fredholm integral equation of the second kind,

x(t) +
∫ b

a

k(t, s)x(s)ds = y(t), y ∈ Cq, a ≤ t ≤ b.(1)

When the kernel k(t, s) has a discontinuity either by itself or in its partial deriva-
tives along the main diagonal t = s, one cannot expect a high accuracy Nyström
quadrature based on Newton-Cotes or Gaussian integration rules, see, e.g., Figure
2 of Section 5, since, except for the trapezium rule, the standard error bounds for
these rules are not applicable. If the function x(t) were known, then the discretiza-
tion of the integral operator in (1) would be straightforward: for any fixed t the
interval [a, b] can be partitioned so that in each subinterval the integrand is smooth.
When x(t) is unknown it is generally not possible to get an accurate discretization
of (1) with x(t) and x(s) sampled at the same support points, without using some
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sort of interpolation. The main purpose of this paper is to introduce a high accu-
racy Nyström-Gauss quadrature for a certain class of discontinuous kernels which
we call semi-smooth, for which this difficulty can be overcome.

Definition 1. A kernel k(t, s) is called p-semi-smooth, if

k(t, s) =
{
k1(t, s) if a ≤ s ≤ t,
k2(t, s) if t ≤ s ≤ b,

where k1,2(t, s) ∈ Cp[a,b]×[a,b] for some p > 1.

The Gauss type integration rule which we use here is the Clenshaw-Curtis rule,
[7], and hence the resulting quadrature is called Nyström-Clenshaw-Curtis, or NCC
for short.

Note that for our purpose each of the auxiliary kernels k1(t, s) and k2(t, s) must
be defined in the whole square [a, b]× [a, b]. The convergence of our method is of or-
der O(n1−r), where r = min{p, q}.When r =∞, the convergence is superalgebraic,
or spectral. For kernels with some singularities, when the obtained error estimates
are not applicable, the method still shows good accuracy on numerical examples.
The 2-step method of deferred approach to the limit, based on the trapezium rule
(see, e.g., [5], p 363), works well for nonsingular kernels, but it is much more time
consuming, for comparable accuracy, and is not applicable to kernels with singu-
larities. For kernels with singularities of certain types, corrected trapezoidal rules
of [29], [17] and [2] can be used.

A well-known example of semi-smooth kernels are the semi-separable kernels,
with k1 and k2 being of a low rank α, ki(t, s) =

∑α
j=1 f

(i)
j (t)g(i)

j (s), i = 1, 2. In
fact, semi-smooth kernels can be approximated with semi-separable kernels using
the singular value decomposition of k1,2(t, s). However, NCC is less costly and more
accurate than the discretization based on the semi-separable approximation. The
classical Green kernels for two point boundary value problems are semi-separable
of rank α = 2. Semi-separable kernels of rank α = 4 occur in nuclear scattering
with exchange terms, [23]. For low rank semi-separable kernels, the numerical tech-
niques developed in [15] and [13] are adequate and give fast and accurate solutions.
Semi-smooth kernels which are not semi-separable occur in nuclear scattering with
nonlocal potentials which are not of the exchange type, as described in the Appen-
dix. For such kernels the discretization technique developed in the present paper is
appropriate. This situation is examined in more detail in Section 6.

Another useful example of semi-smooth kernels is the displacement kernels,
k(t, s) = k(|t − s|). Such kernels occur in radiative transfer, Wiener filter the-
ory, resonance scattering, etc. We refer to [16] for an up-to-date review of the
literature on Wiener-Hopf type integral equations with displacement kernels. Our
discretization technique is highly accurate for such kernels, and at the same time
preserves the displacement structure in the discrete equations.

In Section 2, we describe the discretization of equation (1) based on the Nyström-
Clenshaw-Curtis quadrature for a smooth kernel k(t, s). This discretization is dif-
ferent from the usual Gauss-Chebyshev quadrature (e.g., Delves-Mohamed, [8])
and from that of Reichel [25], based on Chebyshev polynomial expansions. In Sec-
tion 3 we consider semi-smooth kernels and show that the application of Nyström-
Clenshaw-Curtis quadrature results in a linear system of equations whose coefficient
matrix is defined in terms of Schur, or componentwise, products of given matrices.
The accuracy of approximation is determined by the smoothness of k1 and k2 only,
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and is not affected by the discontinuity along the diagonal t = s. For smooth ker-
nels this discretization is identical with the one described in Section 2. In Section
4 we detail the relation of NCC to the singular value decomposition of k1,2(t, s). In
Section 5 we describe the NCC composite rule. In Section 6 we describe numerical
experiments and comparisons with some existing methods for kernels with various
discontinuities and singularities. In Section 7 we apply our technique to the solution
of radial Schrödinger integro-differential equations with a nonlocal potential. The
physical motivation for such integro-differential equations is given in the Appendix.

2. Discretization of a smooth kernel

Let k(t, s) be differentiable in t and s. Assume that for any a ≤ tk ≤ b,
k(tk, s)x(s) as a function of s can be expanded in a finite set of polynomials, i.e.,

k(tk, s)x(s) =
n∑
j=0

αkjTj(s), −1 ≤ s ≤ 1,(2)

where Tj(s) = cos(j arccos(s)), j = 0, 1, ..., n, are the Chebyshev polynomials.
Without any loss of generality we assume for now that a = −1 and b = 1 in
equation (1). Let

F (r) =
∫ r

−1

k(tk, s)x(s)ds =
n+1∑
j=0

βkjTj(r).

Clenshaw and Curtis [7] showed that

[βk0, βk1, ..., βkn+1]T = SL [αk0, αk1, ..., αkn]T ,

where

SL =



1 1 −1 1 · · · (−1)n

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

. . . . . .
...

0 0 0 0 1 0
0 0 · · · 0 0 1





0 0 0 0 · · · 0
1 0 −1

2 0 · · · 0
0 1

4 0 −1
4 · · · 0

...
...

. . .
. . .

. . .
...

0 · · · 0 1
2(n−1) 0 −1

2(n−1)

0 · · · 0 0 1
2n 0


is the so-called left spectral integration matrix. Here [ν]T denotes the transpose of
the column vector ν. Since Tj(1) = 1 for j = 0, 1, ..., n, it follows that

F (1) =
∫ 1

−1

k(tk, s)x(s)ds =
n+1∑
j=0

βkj

= [1, ..., 1] [βk0, βk1, ..., βkn+1]T = [1, ..., 1]SL [αk0, αk1, ..., αkn]T .

Let τk, k = 0, 1, ..., n, denote the zeros of Tn+1, viz.,

τk = cos
(2k + 1)π
2(n+ 1)

,

so that

Tj(τk) = cos
(2k + 1)jπ
2(n+ 1)

, k, j = 0, 1, ..., n.
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Substituting s = τk, k = 0, 1, ..., n, into (2), we obtain that
αk0

αk1

...
αkn

 = C−1


k(tk, τ0)x(τ0)
k(tk, τ1)x(τ1)

...
k(tk, τn)x(τn)

 ,
where C−1 is an inverse of the discrete cosine transformation matrix C whose
elements are specified by

Ckj = Tj(τk), k, j = 0, 1, ..., n.

The matrix C has orthogonal columns, that is, CTC = diag(n, n2 , ...,
n
2 ). Therefore,

C−1 = diag( 1
n ,

2
n , ...,

2
n )CT . By choosing tk in (2) to be Chebyshev points and by

substituting t = τk into (1), we get

y(τk) = x(τk) + [1, ..., 1]SLC−1 diag(k(τk, τ0), k(τk, τ1), ..., k(τk, τn))


x(τ0)
x(τ1)

...
x(τn)

 .
Introducing [σ0, σ1, ..., σn] = [1, 1, ..., 1]SLC−1, we can write

y(τk) = [σ0, σ1, ..., σn] diag(k(τk, τ0), k(τk, τ1), ..., k(τk, τn))


x(τ0)
x(τ1)

...
x(τn)

 ,
or equivalently,

y(τk) = [k(τk, τ0), k(τk, τ1), ..., k(τk, τn)] diag(σ0, σ1, ..., σn)


x(τ0)
x(τ1)

...
x(τn)

 .
Therefore the discretization of the equation (1) for the case a = −1 and b = 1 is as
follows:

[I + KDσ] x̄ = ȳ,(3)

where

K = (k(τi, τj))ni,j=0,

Dσ = diag(σ0, σ1, ..., σn),

x̄ = [x(τ0), x(τ1), ..., x(τn)]T ,

ȳ = [y(τ0), y(τ1), ..., y(τn)]T .

The formulas (3) can be generalized for intervals [a, b] other than [−1, 1] by the
linear change of the variable h(τ) = 1

2 (b−a)τ + 1
2 (a+ b). Thus if ηj = h(τj), j =

0, 1, ..., n, we have [
I +

b− a
2

KDσ

]
x̄ = ȳ,
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where

K = (k(ηi, ηj))ni,j=0, Dσ = diag(σ0, σ1, ..., σn),

x̄ = [x(η0), x(η1), ..., x(ηn)]T , ȳ = [y(η0), y(η1), ..., y(ηn)]T .

The accuracy of this discretization when k and x are not polynomials is discussed
in a more general setting in the next section.

3. Gauss type quadrature for a semi-smooth kernel

We consider now more general semi-smooth kernels, as in Definition 1, for which
we write

x(t) +
∫ t

a

k1(t, s)x(s)ds+
∫ b

t

k2(t, s)x(s)ds = y(t), a ≤ t ≤ b.(4)

In this section we describe the numerical technique for discretizing the equation
(4). It is based on the Clenshaw-Curtis quadrature described in Section 2, which is
well suited for computing antiderivatives. First assume that a = −1, b = 1 and let

F (t) =
∫ t

−1

k1(t, s)x(s)ds, G(t, λ) =
∫ λ

−1

k1(t, s)x(s)ds,

such that F (t) = G(t, t), and let

H(t) =
∫ 1

t

k2(t, s)x(s)ds, J(t, λ) =
∫ 1

λ

k2(t, s)x(s)ds.

Further, assume that k1(tk, s)x(s) can be expanded in a finite set of polynomials,
i.e., k1(tk, s)x(s) =

∑n
i=0 αkiTi(s). As we have seen in Section 2, if

G(tk, λ) =
n+1∑
j=0

βkjTj(λ),(5)

then

[βk0, βk1, ..., βkn+1]T = SL [αk0, αk1, ..., αkn]T .(6)

Similarly, assume that k2(tk, s)x(s) =
∑n

j=0 α̃kjTj(s). If

J(tk, λ) =
∫ 1

λ

k2(tk, s)x(s)ds =
n+1∑
j=0

β̃kjTj(λ),

then [
β̃k0, β̃k1, ..., β̃kn+1

]T
= SR [α̃k0, α̃k1, ..., α̃kn]T ,(7)

where

SR =



1 1 1 1 · · · 1
0 −1 0 0 · · · 0
0 0 −1 0 · · · 0
...

...
...

. . . . . .
...

0 0 0 0 −1 0
0 0 · · · 0 0 −1





0 0 0 0 · · · 0
1 0 −1

2 0 · · · 0
0 1

4 0 −1
4 · · · 0

...
...

. . .
. . .

. . .
...

0 · · · 0 1
2(n−1) 0 −1

2(n−1)

0 · · · 0 0 1
2n 0


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is the right spectral integration matrix. Let τk, k = 0, 1, ..., n, denote the zeros of
Tn+1. Substituting λ = τk, k = 0, 1, ..., n, into (5), we obtain that

G(tk, τ0)
G(tk, τ1)

...
G(tk, τn)

 = CSLC−1 diag(k1(tk, τ0), ..., k1(tk, τn))

 x(τ0)
...

x(τn)


and, similarly,

J(tk, τ0)
J(tk, τ1)

...
J(tk, τn)

 = CSRC−1 diag(k2(tk, τ0), ..., k2(tk, τn))

 x(τ0)
...

x(τn)

 .
We remark that in writing the equality sign in (6) and (7), we assume that βn+1

is set to zero. This is an acceptable assumption, because in practical applications
the kernel k(t, s) and the right-hand side y(t) are not polynomials and the equality
in (2) is only approximate. In fact, following Clenshaw and Curtis, [7], we use
the size of the αn’s and βn’s as a readily available tool to control the accuracy of
approximation, and chose n large enough so that the αn’s and βn’s are less than
a prescribed tolerance (see also Remark 1 in Section 5). Therefore setting βn+1 to
zero does not affect the overall accuracy.

Since F (τk) = G(τk, τk), we get

F (τk) = [0, ..., 0, 1, 0, ..., 0]CSLC−1 diag(k1(τk, τ0), ..., k1(τk, τn))

 x(τ0)
...

x(τn)


= [wk0, wk1, ..., wkn] diag(k1(τk, τ0), ..., k1(τk, τn))

 x(τ0)
...

x(τn)


= [wk0, wk1, ..., wkn] diag(x(τ0), ..., x(τn))

 k1(τk, τ0)
...

k1(τk, τn)

 ,
where [wk0, ..., wkn] is the (k + 1)-st row of the matrix W def= CSLC−1. We need
now the following identity, which can be verified by direct calculation.

Lemma 1. Let A and B be n×n matrices and c = [c1, ..., cn]T . Then (A◦B)c =
diag(A diag(c1, ..., cn)BT ), where A ◦ B denotes the Schur product of A and B,
(A ◦B)ij = aijbij , i, j = 1, ..., n.

Using this lemma, we find that
F (τ0)
F (τ1)

...
F (τn)

 = diag(W diag(x(τ0), ..., x(τn))KT
1 ) = (W ◦K1)

 x(τ0)
...

x(τn)

 ,(8)
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where K1 = (k1(τi, τj))ni,j=0. Similarly,
H(τ0)
H(τ1)

...
H(τn)

 = (V ◦K2)

 x(τ0)
...

x(τn)

 ,(9)

where V = CSRC−1. The formulas (8) and (9) can be generalized for an interval
[a, b] other than [−1, 1] by the linear change of variables h(τ) = 1

2 (b−a)τ+ 1
2 (a+b).

Thus if ηj = h(τj), j = 0, 1, ..., n, and with the notation

Fa(t) =
∫ t

a

k1(t, s)x(s)ds, Hb(t) =
∫ b

t

k2(t, s)x(s)ds,

we have 
Fa(η0)
Fa(η1)

...
Fa(ηn)

 =
b− a

2
(W ◦K1)


x(η0)
x(η1)

...
x(ηn)

(10)

and 
Hb(η0)
Hb(η1)

...
Hb(ηn)

 =
b− a

2
(V ◦K2)


x(η0)
x(η1)

...
x(ηn)

 .(11)

Using (10) and (11), we can now discretize the equation (4) as follows:[
I +

b− a
2

(W ◦K1 + V ◦K2)
]

x̄ = ȳ,(12)

where x̄ = [x(η0), ..., x(ηn)]T and ȳ = [y(η0), ..., y(ηn)]T . We refer to this discretiza-
tion as the NCC quadrature. Next we show that if the kernel function k(t, s) is
smooth, such that k1 = k2, then the discretization (12) reduces to (3).

Proposition 1. Suppose that k(t, s) ∈ Cp[a,b]×[a,b], and that k1(t, s) = k2(t, s) =
k(t, s). Then,[

I +
b − a

2
(W ◦K1 + V ◦K2)

]
x̄ =

[
I +

b− a
2

KDσ

]
x̄.

Proof. Without any loss of generality we assume that a = −1 and b = 1. For
t = tk, −1 ≤ tk ≤ 1, we see that the equality

x(tk) +G(tk, λ) + J(tk, λ) = y(tk)(13)
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holds for any λ, −1 ≤ λ ≤ 1. Therefore if λ = 1, then J(tk, 1) = 0 and

G(tk, 1) =
n∑
j=0

βkj = [1, ..., 1]SL

 αk0

...
αkn


= [1, ..., 1]SLC−1 diag(k(tk, τ0), ..., k(tk, τn))

 x(τ0)
...

x(τn)


= [σ0, σ1, ..., σn] diag(k(tk, τ0), ..., k(tk, τn))

 x(τ0)
...

x(τn)



= [k(tk, τ0), k(tk, τ1), ..., k(tk, τn)] diag(σ0, σ1, ..., σn)


x(τ0)
x(τ1)

...
x(τn)

 .
Substituting tk = τk for k = 0, 1, ..., n into (13), we obtain that

[I + KDσ] x̄ = ȳ.

The assertion now follows.

We compared the numerical behavior of the discretization (3) and (12) for a
number of smooth kernels and found that numerical answers differed in accuracy
at the level of machine precision only.

We now estimate the accuracy of approximation of the integral equation (4)
with the linear system of equations (12). The following property of Chebyshev
expansions can be derived along the lines of an argument in Gottlieb and Orszag
([14], p.29).

Proposition 2. Let f ∈ Cr[−1, 1], r > 1, and let

f(t) =
∞∑
j=0

αjTj(t), −1 ≤ t ≤ 1.

Then

|αj | ≤
2
π

∫ π

0

∣∣∣∣ drdθr f(cos θ)
∣∣∣∣ dθ 1

jr
=

c

jr

and ∣∣∣∣∣∣f(t)−
n∑
j=0

αjTj(t)

∣∣∣∣∣∣ ≤ c

r − 1
1

nr−1
.

This implies that if f(r) is analytic then the convergence of Chebyshev expan-
sions is superalgebraic. Now let Fl(x) =

∫ x
−1
f(t)dt and Fr(x) =

∫ 1

x
f(t)dt. The

following result can be found in Greengard and Rokhlin [15].

Proposition 3. Suppose that f ∈ Cr[−1,1], r > 1, and that f̄ = (f(τ0), ..., f(τn))T

is the vector of the function values at the roots of Tn+1(x). Suppose further that F̄l
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and F̄r are defined by

F̄l = (Fl(τ0), ..., Fl(τn))T , F̄r = (Fr(τ0), ..., Fr(τn))T .

Then

||F̄l −CSLC−1f̄ ||∞ = O(
1

nr−1
)

and

||F̄r −CSRC−1f̄ ||∞ = O(
1

nr−1
).

Furthermore, all elements of the matrices CSLC−1 and CSRC−1 are strictly pos-
itive.

Now let ηi = b−a
2 τi + a+b

2 , where τi is a zero of Tn+1(x), for i = 0, 1, ..., n, be
the shifted Chebyshev points, and let x̂ = (x(η0), x(η1), ..., x(ηn))T be the vector of
values of solution x(t) of equation (4) at ηi. The following proposition follows im-
mediately from standard properties of the Riemann integral (see, e.g., [26], p.105).

Proposition 4. Let k(t, s) be p-semi-smooth and let y(t) ∈ Cq[a,b], with r =
min{p, q} > 1. Let the equation (4) define an invertible operator on Cr[a,b]. Then
x ∈ Cr[a,b].

Now let

F̄a = (Fa(η0), ..., Fa(ηn))T

and

H̄b = (Hb(η0), ..., Hb(ηn))T .

It follows from Proposition 3 that in the conditions of Proposition 4

||F̄a −
b− a

2
(W ◦K1)x̂||∞ = O(

1
nr−1

)

and

||H̄b −
b− a

2
(V ◦K2)x̂||∞ = O(

1
nr−1

).

Combining the above results, we obtain the following estimate for the residual.

Theorem 1. Let x̄ be a solution vector of the equation (12), and x̂ the vector of
values of the solution x(t) at t = ηi, i = 0, 1, ..., n. Suppose that k(t, s) is p-semi-
smooth, and that y(t) ∈ Cq[a,b]. Suppose further that the equation (4) defines an
invertible operator on Cr[a,b], where r = min{p, q} > 1. Then,

||(I +
b− a

2
(W ◦K1 + V ◦K2))(x̂ − x̄)||∞ = O(

1
nr−1

).

It follows from the collectively compact operator theory, see Anselone [3], that
for sufficiently large n the matrices I + b−a

2 (W ◦K1 + V ◦K2), which depend on
n, are invertible and their inverses are uniformly bounded. Therefore Theorem
3.1 implies that for increasing n, the convergence of x̄ to x̂ is of order O(n1−r). If
p = q =∞, then the convergence is superalgebraic. Numerical examples in Section
5 indeed demonstrate this type of convergence.
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4. SVD and semi-separable approximation

The Clenshaw-Curtis quadrature is very effective for semi-separable kernels,

k(t, s) =

{ ∑α
j=1 f

(i)
j (t)g(i)

j (s) if t > s,∑α
j=1 p

(i)
j (t)q(i)

j (s) if t < s,

see [15]. A natural way to extend its application to semi-smooth kernels is by
approximating semi-smooth kernels with semi-separable ones. This can be done in
the following way. Let

k1(t, s) =
∞∑
j=1

σ
(1)
j φ

(1)
j (t)ψ(1)

j (s)

be the singular value decomposition (SVD) of k1(t, s). Since the integral operator
K1 with the kernel k1(t, s) is of Hilbert-Schmidt type, such a decomposition exists
and has the following optimal property. Let K(α)

1 denote the integral operator with
the kernel

k
(α)
1 (t, s) =

α∑
j=1

σ
(1)
j φ

(1)
j (t)ψ(1)

j (s).

Then ||K1−K(α)
1 || = σα+1 minimizes the distance between K1 and any finite rank

operator whose rank does not exceed α. Here || || denotes the operator norm on
L2

[a,b], see [12], Chapter 6. In this sense k(α)
1 (t, s) provides the best approximation

to k1(t, s). Moreover, if k1(t, s) ∈ Cp[a,b]×[a,b], then σn = O(n−p). In a similar way
k2(t, s) is approximated with

k
(α)
2 (t, s) =

α∑
j=1

σ
(2)
j φ

(2)
j (t)ψ(2)

j (s).

Consider now the approximate integral equation

x(t) +
α∑
j=1

σ
(1)
j φ

(1)
j (t)

∫ t

a

ψ
(1)
j (s)x(s)ds +

α∑
j=1

σ
(2)
j φ

(2)
j (t)

∫ b

t

ψ
(2)
j (s)x(s)ds = y(t).

Applying the Clenshaw-Curtis quadrature to this equation, we get

x+ [
α∑
j=1

σ
(1)
j D

φ
(1)
j
WD

ψ
(1)
j

+
α∑
j=1

σ
(2)
j D

φ
(2)
j
V D

ψ
(2)
j

]x = y.(14)

Here x denotes the array of values of x(t) at Chebyshev mesh points, and Da, a =
[a1, ..., an], denotes the diagonal matrix whose diagonal elements are a1, ..., an. A
direct calculation shows that

α∑
j=1

σ
(1)
j D

φ
(1)
j
WD

ψ
(1)
j

= (
α∑
j=1

σjφ
(1)
j ψ

(1)T

j ) ◦W,

and similarly
α∑
j=1

σ
(2)
j D

φ
(2)
j
WD

ψ
(2)
j

= (
α∑
j=1

σjφ
(2)
j ψ

(2)T

j ) ◦ V,
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where ◦ denotes the Schur matrix product defined in the previous section. With
the notation

Kα
i =

α∑
j=1

σ
(i)
j φ

(i)
j ψ

(i)T

j , i = 1, 2,

we can rewrite (14) as follows:

x+ [Kα
1 ◦W +Kα

2 ◦ V ]x = y,(15)

which has the same form as the equation (12) of the previous section. However,
(12) has a clear advantage over (15), as it uses values of ki(t, s) rather than the
values of the corresponding semi-separable approximations k(α)

i (t, s), and more im-
portantly, it avoids the costly numerical SVD. In fact, the realization that the SVD
approximation combined with the Clenshaw-Curtis quadrature gives (15) leads us
to the much simpler and more accurate discretization of (12).

5. The composite rule

In this section, we describe the composite rule corresponding to the quadrature
of (12). Let

a = b0 ≤ b1 ≤ · · · ≤ bm = b

be a partition of the interval [a, b], and let

τ
(j)
k =

1
2

(bj − bj−1)τk +
1
2

(bj + bj−1), k = 0, 1, ..., nj,

be the Chebyshev support points mapped into [bj−1, bj ]. Define

x(t) =


x1(t) if b0 ≤ t ≤ b1,
x2(t) if b1 < t ≤ b2,

...
xm(t) if bm−1 < t ≤ bm,

and

y(t) =


y1(t) if b0 ≤ t ≤ b1,
y2(t) if b1 < t ≤ b2,

...
ym(t) if bm−1 < t ≤ bm,

and rewrite the equation (1) as a system of m equations, for j = 1, ...,m,

xj(t) +
∫ b1

b0

k1(t, s)x1(s)ds+ · · ·+
∫ t

bj−1

k1(t, s)xj(s)ds+
∫ bj

t

k2(t, s)xj(s)ds

+ · · ·+
∫ bm

bm−1

k2(t, s)xm(s)ds = yj(t).(16)

Applying the quadrature of (12) to each of the integrals, we obtain a system of
linear equations as follows, for j = 1, ...,m:
b1 − b0

2
[(W + V) ◦K1j ]x̄1 + · · ·+ [I +

bj − bj−1

2
(W ◦Kjj + V ◦ K̃jj)]x̄j

+ · · ·+ bm − bm−1

2
[(W + V) ◦Kmj ]x̄m = ȳj ,



740 S.-Y. KANG, I. KOLTRACHT, AND G. RAWITSCHER

where

x̄j = [x(τ (j)
0 ), x(τ (j)

1 ), ..., x(τ (j)
nj )]T , ȳj = [y(τ (j)

0 ), y(τ (j)
1 ), ..., y(τ (j)

nj )]T ,

Kjj = (k1(τ (j)
p , τ (j)

q ))njp,q=0, K̃jj = (k2(τ (j)
p , τ (j)

q ))njp,q=0,

Kij = (k1(τ (j)
p , τ (i)

q ))nj ,nip,q=0, if i < j,

Kij = (k2(τ (j)
p , τ (i)

q ))nj ,nip,q=0, if i > j,

or, in a block matrix form,
A11 A12 · · · A1m

A21 A22 · · · A2m

...
Am1 Am2 · · · Amm




x̄1

x̄2

...
x̄m

 =


ȳ1

ȳ2

...
ȳm

 ,(17)

where

Ajj = [I +
bj − bj−1

2
(W ◦Kjj + V ◦ K̃jj)],

Aij =
bj − bj−1

2
[(W + V) ◦Kji], if i 6= j.

Remark 1. In this paper we do not consider the issue of how to partition the interval
[a, b]. An adaptive quadrature rule is possible here along the same lines as in [13],
[23], namely, by using the size of the last Chebyshev coefficients of k1, k2 and y in a
given subinterval of the partition to determine whether this subinterval should be
further subdivided. This adaptive rule is a part of our research project in which we
are going to compare the algorithm of the present paper with existing algorithms
for Schrödinger equations with nonlocal potentials.

Remark 2. In general, the matrix (17) is not structured, and is solved by standard
Gaussian elimination at the cost of O(m3) arithmetic operations (we assume here
that m is much larger than the nj ’s). If, however, the semi-smooth kernel k(t, s)
has some additional structure, then this structure is usually inherited by the matrix
in (17). For example, if k1 and k2 are low rank kernels, then the matrix A becomes
semi-separable, and can be solved by existing linear complexity algorithms. We
remark that in the case of the Schrödinger equation with nonlocal potentials dis-
cussed in Section 6 below, the overall kernel is obtained as the composition of the
semi-separable Green function with nonlocal potential. If the nonlocal potential is
also semi-separable, which is the case when the nonlocality arises from exchange
terms, then the overall kernel is semi-separable as well, and the numerical tech-
niques presented here, although still applicable, can be replaced by the methods of
[15] and [13]. These methods give highly accurate linear complexity algorithms for
the integral equation itself.

If the kernel k(t, s) depends on the difference of the arguments,

k(t, s) = k(|t− s|) =
{
k1(t− s) if 0 ≤ s ≤ t,
k2(t− s) if t < s ≤ T,

and if we use a uniform partition with the same number of points per partition,
then

kr(τ (i)
p , τ (i)

q ) = kr(τp − τq), r = 1, 2,
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and we obtain a block Toeplitz matrix,
A1 Ã2 Ã3 · · · Ãm

A2 A1 Ã2 · · · Ãm−1

A3 A2 A1 · · · Ãm−2

. . . . . . . . .
Am Am−1 · · · A2 A1




x̄1

x̄2

...
x̄m

 =


ȳ1

ȳ2

...
ȳm

 .(18)

This Toeplitz system of equations can be efficiently solved by the iterative conju-
gate gradients methods in O(m log(m)) arithmetic operations, or by direct divide-
and-conquer type algorithms in O(m log2(m)) arithmetic operations, or by direct
Levinson type algorithms in O(m2) arithmetic operations. Each of these techniques
has its uses, depending on the properties of the Toeplitz matrix and the underly-
ing science model. References to Toeplitz solvers can be found, for example, in
an expository paper by Chan and Ng [6]. We did some preliminary numerical
experiments with the Wiener-Hopf integral equation

x(t) +
∫ ∞

0

1
1 + |t− s|3 x(s)ds = e−t, 0 ≤ t ≤ ∞.(19)

With the truncation limit at t = 32, and with 128 partitions with 4 points per
partition, the NCC quadrature combined with the block-Levinson algorithm for
block Toeplitz matrices gave the accuracy of 2.43e−07. The best accuracy reached
by Gaussian elimination for 64 partitions with 4 points, per partition was 8.47e−
0.5. For 128 partitions the application of Gaussian elimination became impossible
because the CPU time limit was exceeded. Our study of the application of the
NCC quadrature to Wiener-Hopf type equations in combination with appropriate
direct and iterative Toeplitz solvers is now in progress.

Remark 3. Numerical examples in the next section demonstrate that the NCC
quadrature shows good accuracy when the semi-smooth kernel has some singular-
ities on the boundary of the square [a, b]× [a, b], e.g., see Example 3. The kernels
with a “running” singularity along the diagonal t = s, like k(t, s) = |t − s|−1, are
not semi-smooth, and hence the NCC quadrature is not applicable to such kernels.
If, however, the singularities on the diagonal occur at a finite number of isolated
points, then the adaptive NCC quadrature which has all the singular points as
end-points of partitions is applicable, since the restriction of the kernel onto each
of the subrectangles of the partition is semi-smooth with possible singularities on
the boundary only. Example 4 in the next section illustrates this point.

6. Numerical examples

In this section we compare our methods with some existing algorithms for the
following types of kernels:
• Type 1: Discontinuity along the diagonal t = s.
• Type 2: Discontinuity in the first order partial derivatives along the diagonal
t = s.
• Type 3: Singularity on the boundary of the square and Type 2.
• Type 4: Singularity on the main diagonal.

These are the methods which have been implemented for comparison purposes:
G-Leg: Nyström quadrature based on the Gauss-Legendre rule.
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T-Def: Two step deferred approach to the limit. Approximate solutions x1,
x2, and x3 for subintervals of partition h, h

2 , and h
4 , respectively, are

computed. Then the numerical solution x(s) is obtained by (see, e.g., Baker
[5])

x(s) =
64x3(s) + x1(s)− 20x2(s)

45
.

Atk-T: Atkinson’s iteration with the composite trapezium rule, applied to ker-
nels k(t, s) which have discontinuities in the first order partial derivatives
along the diagonal t = s.

Alg-1: Algorithm of Section 2, (3).
NCC: Algorithm of Section 3, (12).
NCC-C: Algorithm of Section 4, (17).
The number of points used in discretizations is denoted by n. Error denotes

||x − xτ ||/||x||, where x and xτ are the analytic and the numerical solutions, re-
spectively. In each plot, log(Error) is the common logarithm of the Error. All
computations were done on a DELL Workstation with operating system RedHat
Linux 5.2 in double precision. All examples are set up by choosing a simple analytic
solution and then computing the corresponding right hand side. We remark that
the values of x(t) are found inside the interval (or each of the subintervals of par-
tition) at Chebyshev points τ0, τ1, ..., τn. The value of x(t) for t 6= τk can be found
as follows. Applying C−1, we can find “Chebyshev-Fourier” coeffcients of x(t),

α0

α1

...
αn

 = C−1


x(τ0)
x(τ1)

...
x(τn)

 .
Thus,

x(t) ∼=
n∑
j=0

αjTj(h(t)), a ≤ t ≤ b.

The value of Tj(t) for t 6= τk is now found using the recursion satisfied by Chebyshev
polynomials, Tj+1(t) = 2tTj(t)− Tj−1(t).

Example 1.

x(t) + λ

∫ 1

−1

k(t, s)x(s)ds = y(t), −1 ≤ t ≤ 1,

where y(t) = λ(e+ e−1) + (1− 2λ)e−t, and

k(t, s) =
{

1 if − 1 ≤ s ≤ t,
−1 if t < s ≤ 1.

The analytical solution is x(t) = e−t. Since this kernel is discontinuous along the
diagonal t = s, Gauss-Legendre quadrature gives low accuracy. The accuracy in
the Atkinson’s iteration improves very slowly. The algorithm of Section 3 gives
accuracy of order 10−15 with only 16 support points, whereas the 2-step method
of deferred approach to the limit requires n = 256 points to achieve comparable
accuracy (see Figure 1). Moreover, it requires computation of x2(t) and x3(t) at
the cost of O((2n)3) and O((4n)3), respectively.
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Figure 1. Comparison of numerical solutions of Example 1, λ = 0.1.

Example 2.

x(t) + λ

∫ T

0

k(t, s)x(s)ds = y(t), 0 ≤ t ≤ T,

where y(t) = (1− λ sin2(T )
2 + λ) sin(t) + (T2 − t−

sin(2T )
4 )λ cos(t), and

k(t, s) = sin(|t− s|) =
{

sin(t− s) if 0 ≤ s ≤ t,
sin(s− t) if t < s ≤ π

2 .

The analytical solution is x(t) = sin(t). This kernel has discontinuities in the first
order partial derivatives along the diagonal, t = s. Again standard Nyström-type
discretization methods fail to give high accuracy in this case. In the first experiment
we take T = π

2 and λ = − 4
π . Our method shows accuracy of order 10−14 with only

16 points in [0, π2 ] without any partitioning. The 2-step method of the deferred
approach to the limit gives accuracy O(10−14) with n = 256, but at much higher
cost than our method (see Figure 2). The second part of Example 2 is to compare
the composite rule described in Section 4 with the basic quadrature (12) of Section
3 when the length of the interval of integration [a, b] becomes increasingly large.
Here M denotes the number of subintervals in [0, T ], and Mn stands for the total
number of support points in [0, T ].

Without partitioning, i.e., with M = 1, we increase the number of support points
from n = 128 to n = 1024. For n = 512 the accuracy is of order O(10−2), but for
n = 1024 the CPU time limit is exceeded. When the interval is partitioned into

Table 1. (T = 200π, λ = − 4
π )

M 1 1 1 2 4 8

Mn 256 512 1024 256 512 1024

Error 2.4e+01 3.0e−02 CPU time limit exceed 1.2e+01 7.8e−02 2.2e−11
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Figure 2. Comparison of numerical solutions of Example 2.

8 subintervals and n = 128, i.e., the total number of points is 1024, the accuracy
now is of order O(10−11) (see Table 1).

Example 3.

x(t) +
∫ 1

−1

k(t, s)x(s)ds = y(t), −1 ≤ t ≤ 1,

where y(t) = 1− t2 + 1
1−t2 (arctan(t)− arctan(−1))− 1

(1+t)(1+t2) , and

k(t, s) =

{
1

(1−t2)(1−s4) if − 1 ≤ s ≤ t,
−1

(1−t4)(1−s2) if t < s ≤ 1.

The analytical solution is x(t) = 1 − t2. Since this kernel has singularities along
the boundaries of the square [−1, 1] × [−1, 1], methods based on the trapezium
rule are not applicable. Therefore we compare our algorithms of Section 2 and
Section 3 with the Nyström-Gauss-Legendre discretization only. The algorithm of
Section 2 shows the same accuracy of numerical solution as the Gauss-Legendre
quadrature. The method of Section 3 gives O(10−13) accuracy with n = 32 points,
whereas Nyström-Gauss-Legendre quadrature gives O(10−3) with n = 256 points
(see Figure 3).

Example 4.

x(t) +
∫ 1

−1

k(t, s)x(s)ds = y(t), −1 ≤ t ≤ 1,

where y(t) = 2(1− t2 + 2t3) + (1 + 2t4) ln(t2 + t4)− ln(1 + t2)− 2t4 ln(1 + t4), and

k(t, s) =
{

1/(t2 + s4) if − 1 ≤ s ≤ t,
1/(s2 + t4) if t < s ≤ 1.

The analytical solution is x(t) = 4t3. The kernel k(t, s) has a singularity at (0, 0).
Also y(t) is singular at t = 0. Therefore we partition [−1, 1] into [−1, 0] and [0, 1].
The choice of n = 256 Chebyshev points in each subinterval with the total of
n = 512 points gives O(10−11) accuracy. For comparison, the best accuracy of the
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Figure 3. Comparison of numerical solutions of Example 3.
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Figure 4. Comparison of numerical solutions of Example 4.

Gauss-Legendre quadrature without partitions and with n = 512 support points is
O(10−4), while the best accuracy of the algorithm of Section 3 without partitions
is O(10−6) (see Figure 4).

7. Application to nonlocal Schrödinger equations

In this section we demonstrate that the developed numerical technique is also
applicable to problems other than integral equations, for example, to integro-
differential equations. We chose here the radial Schrödinger equation which models
the quantum mechanical interaction between particles represented by spherically
symmetric potentials. These potentials are usually local, i.e., they depend only on
the distance between the two particles, in which case the equation is a differential
equation which is routinely solved in computational physics. However, if there are
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more than two particles present, then the potentials can become nonlocal and the
differential Schrödinger equation becomes an integro-differential equation for the
wave function ψ,

d2ψ(r)
dr2

+ κ2ψ(r) =
∫ T

0

v(r, r′)ψ(r′)dr′,(20)

which is defined for 0 < r < ∞, satisfies the condition ψ(0) = 0, and is bounded
at infinity. It is assumed that v(r, r′) is negligible for r > T or r′ > T, see, e.g.,
[21]. Because it is numerically more difficult to solve the Schrödinger equation
in the presence of a nonlocal potential, the latter is customarily replaced by an
approximate local equivalent potential. There is, however, a renewed interest in the
nonlocal equations, and a significant number of papers on this subject appeared in
the past few years (our database search returned over 50 related publications).

Using the technique of [13], it easy to show that (20) is equivalent to the following
integral equation:

ψ(r) +
cos(κr)
κ

∫ r

0

sin(κr′)
∫ T

0

v(r′, p)ψ(p)dpdr′

+
sin(κr)
κ

∫ T

r

cos(κr′)
∫ T

0

v(r′, p)ψ(p)dpdr′ = sin(κr).

or

ψ(r) +
cos(κr)
κ

∫ T

0

k1(r, r′)ψ(r′)dr′ +
sin(κr)
κ

∫ T

0

k2(r, r′)ψ(r′)dr′(21)

= sin(κr),

where

k1(r, r′) =
∫ r

0

sin(κp)v(p, r′)dp, k2(r, r′) =
∫ T

r

cos(κp)v(p, r′)dp.

We consider now the case when v(p, r′) is semi-smooth, such that

v(p, r′) =
{
v1(p, r′) if 0 ≤ p ≤ r′,
v2(p, r′) if r′ ≤ p ≤ T.

In order to use the method which we developed in previous sections, we rewrite
equation (21) as follows:

ψ(r) +
c(r)
κ

∫ r

0

k1(r, r′)ψ(r′)dr′ +
c(r)
κ

∫ T

r

k1(r, r′)ψ(r′)dr′

+
s(r)
κ

∫ r

0

k2(r, r′)ψ(r′)dr′ +
s(r)
κ

∫ T

r

k2(r, r′)ψ(r′)dr′ = s(r),(22)

where for notational convenience we abbreviate c(r) = cos(κr), s(r) = sin(κr). We
have

k1(r, r′) =
{
k11(r, r′) if 0 ≤ r′ ≤ r,
k12(r, r′) if 0 ≤ r ≤ r′,

and

k2(r, r′) =
{
k21(r, r′) if r′ ≤ r ≤ T,
k22(r, r′) if r ≤ r′ ≤ T,
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where

k11(r, r′) =
∫ r′

0

s(p)v1(p, r′)dp+
∫ r

r′
s(p)v2(p, r′)dp

=
∫ r′

0

s(p)v1(p, r′)dp+
∫ r

0

s(p)v2(p, r′)dp−
∫ r′

0

s(p)v2(p, r′)dp,

k12(r, r′) =
∫ r

0

s(p)v1(p, r′)dp,

k21(r, r′) =
∫ T

r

c(p)v2(p, r′)dp,

k22(r, r′) =
∫ r′

r

c(p)v1(p, r′)dp+
∫ T

r′
c(p)v2(p, r′)dp

=
∫ T

r

c(p)v1(p, r′)dp−
∫ T

r′
c(p)v1(p, r′)dp+

∫ T

r′
c(p)v2(p, r′)dp.

Thus,

ψ(r) +
c(r)
κ

∫ r

0

k11(r, r′)ψ(r′)dr′ +
c(r)
κ

∫ T

r

k12(r, r′)ψ(r′)dr′

+
s(r)
κ

∫ r

0

k21(r, r′)ψ(r′)dr′ +
s(r)
κ

∫ T

r

k22(r, r′)ψ(r′)dr′ = s(r).(23)

Applying our quadrature to this equation, we get

[ I +
T

2κ
Dc(W ◦K11 + V ◦K12) +

T

2κ
Ds(W ◦K21 + V ◦K22) ]ψ̄ = s̄,(24)

where, in more detail,

ψ̄ = [ψ(t0), ψ(t1), ..., ψ(tn)]T ,
Dc = diag(cos(κt0), cos(κt1), ..., cos(κtn)),
Ds = diag(sin(κt0), sin(κt1), ..., sin(κtn)),
Dσ = diag([1, ..., 1]SLC−1),

s̄ = [sin(κt0), sin(κt1), ..., sin(κtn)]T ,
W = CSLC−1, V = CSRC−1,

K11 = (k11(ti, tj))ni,j=0

=
T

2
[diag(WDs(V1 −V2)) + (WDsV2)],

K12 = (k12(ti, tj))ni,j=0

=
T

2
(WDsV1),

K21 = (k21(ti, tj))ni,j=0,

=
T

2
(VDcV2)

K22 = (k22(ti, tj))ni,j=0

=
T

2
[(VDcV1) + diag(VDc(V2 −V1))].
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Now we illustrate our discretization with examples. In the first example we use a
prototype of the Yukawa potential, (e.g., [18], 23.c), which is simplified to a degree
such that an analytic solution can be found. In our terminology this potential is
semi-separable. We note once more that the case of this semi-separable potential
could be treated more easily by the techniques already presented in [13], and we
use it here only because the comparison with the analytic solution is possible.

Example 1. Let

v(p, r′) =
{
λep−r

′
if 0 ≤ p ≤ r′,

λer
′−p if r′ ≤ p ≤ T.

It is easy to see that if ψ(r) = e−r, then the right-hand side has the form

y(r) = (1− 3λκ
4

)e−r +
3λκ

4
cos(r)− λκ

2
re−r.

By comparing the analytical solution given above with the numerical solution of
(24) at the discretization points, we get the following relative errors in the case of
λ = 0.1, κ = 1 and T = 20.

n 16 32 64 128 256
Error 1.2e+ 01 3.4e− 07 8.1e− 09 3.4e− 09 6.0e− 09

In the second example we consider a more interesting case for which the tech-
niques of [13] are not applicable. This time the nonlocality is a prototype of the
optical model Perey-Buck potential, see the Appendix for details. In our terminol-
ogy this potential is semi-smooth, but not semi-separable.

Example 2. Let

v(p, r′) =
λe−

|r′−p|
A

1 + e−
|r′−p|
A

=


λe

p−r′
A

1+e
p−r′
A

if 0 ≤ p ≤ r′,

λe
r′−p
A

1+e
r′−p
A

if r′ ≤ p ≤ T.

Solving (24) at n shifted Chebyshev support points t(n)
i , i = 1, ..., n, and 2n points

s
(2n)
i , i = 1, ..., 2n, we obtain numerical solutions ψ(n)(r) and ψ(2n)(r), respectively.

To get the values of ψ(2n)(r) at t(n)
i , we follow the procedure described in the

beginning of Section 5. The error en is obtained by comparison of the solutions
ψ(n) and ψ(2n) as follows:

en = ||ψ(2n)(t(n)
i )− ψ(n)(t(n)

i )||∞/||ψ(2n)(t(n)
i )||∞.

Here we take λ = 0.1, κ = 1, A = 100, and T = 20.

n 8 16 32 64 128 256
en 1.0e− 0 1.2e− 03 1.6e− 09 7.7e− 15 1.6e− 14 4.8e− 14

We see that for this choice of λ the discrete equations are well conditioned and
the double precision accuracy is obtained with 64 points.
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In the third and fourth examples we consider a more difficult case, which models
the nonlocalities corresponding to a nucleon-nucleon interaction as explained in the
Appendix. In this case the kernel is continuous, but its first or second derivatives
are singular along the main diagonal. These singularities affect spectral accuracy
of the NCC quadrature, which now gives only a single precision accuracy.

Example 3. Let

v(p, r′) = (p− r′)2 ln((p− r′)2)e−|p−r
′|e−(p+r′).

The right-hand side is chosen to be y(r) = sin(r). Note that the right hand side
is bounded and does not approach zero at infinity, which is typical for nuclear
scattering applications. We use T = 14 and k = 1. The best accuracy of our
algorithm is achieved for the choice of 32 partitions with 16 points per partition
with the error of 6.7e− 06.

Example 4. Let

v(p, r′) = |p− r′| ln((p− r′)2)e−|p−r
′|e−(p+r′).

The right-hand side is chosen to be y(r) = sin(r), and we use T = 14 and k = 1.
Again, the best accuracy of our algorithm is achieved for the choice of 32 partitions
with 16 points per partition with the error of 5.6e− 04.

8. Summary and conclusions

In this paper, which is one of a sequence treating integral equations, we describe
a new accurate discretization technique for integral equations whose kernels can be
discontinuous along the main diagonal. It has the following advantages for a large
class of such kernels:

(i) For semi-smooth kernels it gives a much higher accuracy than was ever pos-
sible with standard Gauss type quadrature rules.

(ii) It is of comparable accuracy with Gauss type quadratures for smooth kernels.
(iii) It exploits additional structure of the kernel such as a low semi-rank, or a

displacement structure, for example, to allow for reduced complexity algorithms for
the discretized equations.

(iv) The numerical examples provided in the present study illustrate increased
accuracy of our method compared to other more conventional methods.

Our method is applicable to the solution of integral equations, to the computa-
tion of eigenvalues and eigenfunctions of integral and differential operators, and to
the solution of integro-differential equations.

Our method is expected to find applications in quantum mechanical atomic and
nuclear physics problems, where the requirement of indistinguishability of the elec-
trons leads to nonlocalities in the potential contained in the Schrödinger equation
due to the presence of exchange terms. These, in turn, lead to integro-differential
equations which are usually solved by iterative finite difference methods, or by or-
thogonal function expansion methods. We plan to compare our new method with
some of the existing methods in future investigations.

9. Appendix: Physical examples of nonlocalities

for quantum mechanical calculations

9.1. Introduction. The quantum mechanical wave function of a system of parti-
cles obeys the Schrödinger wave equation. For the case of a particle moving in a
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force field ~F (~r), where ~r is the position vector of the particle from the origin, the
time independent form of the Schrödinger equation is

[− ~
2

2m
∇2
~r + V (~r)]Ψ(~r) = EΨ(~r),(25)

where E is the energy of the particle, m is the mass, ~ is Planck’s constant divided
by 2π, V (~r) is the potential, so that ~F (~r) = −~∇V (~r), and

∇2
~r =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is the Laplacian. In the above equation the potential is local. For a nonlocal
potential, the term V (~r)Ψ(~r) is replaced by

V (~r)Ψ(~r) =⇒
∫
U(~r, ~r ′)Ψ(~r ′)d3~r ′,(26)

and the equation becomes an integro-differential equation.
Nonlocal potentials can occur in the case of the interaction of one particle with

a system of particles. Examples are as follows:
a) The exchange terms required for identical particles so as to obey the Pauli ex-

clusion principle, [21], Chapter 18, lead to nonlocalities usually of a semi-separable
form.

b) When explicit reference to some particles is suppressed, and is replaced in
terms of expressions involving integrals over Green functions between the remaining
particles [10], then the resulting nonlocal potential becomes nonsemi-separable. An
example given below refers to the interaction of two nucleons (protons or neutrons),
mediated by the exchange of mesons, whose coordinates are suppressed.

c) Phenomenological nonlocalities have also been introduced in the past to sim-
ulate effects a) and b) mentioned above. A well known example in nuclear physics
is the Perey-Buck nonlocality, [22], used to simulate the energy dependence of an
equivalent local potential which describes the scattering of an incident nucleon from
a nucleus.

9.2. Reduction to a one dimensional equation. In many applications the po-
tential in (1) or (2) does not depend on the choice of the direction of the axes of
the coordinate system. In this case

V (~r) = V (r),(27)

U(~r, ~r ′) = U(r, r′, x),(28)

where r = |~r| is the length of the vector ~r, and x is the cosine of the angle between
~r and ~r ′. In this case a partial wave expansion of the wave function (e.g., [18])
in terms of spherical harmonics Ylm(r̂), where r̂ is the unit vector pointing in the
direction ~r, is given by

Ψ(~r) =
∑
l

1
r
<l(r)

∑
m

AlmYlm(θ, φ), l = 0, 1, 2, ..., m = −l,−l+ 1, ..., l.(29)

Since the spherical harmonics are eigenfunctions of a piece of the Laplacian in polar
coordinates, the partial wave expansion permits one to reduce the three dimensional
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equation (1) into a sequence of one dimensional equations for the radial partial
waves <l(r):

− ~
2

2m
d2

dr2
<l(r) + [Vl − E]<l(r) +

∫ ∞
0

Ul(r, r′)<l(r′)dr′ = 0,(30)

and the constants Alm are determined from the boundary conditions. The local
part of the overall potential is given by

Vl(r) =
~2

2m
l(l+ 1)
r2

+ V (r),

and the nonlocal part is given by

Ul(r, r′) = 2πrr′(2l + 1)
∫ 1

−1

U(r, r′, x)Pl(x)dx,(31)

where Pl(x) are the Legendre polynomials.
The result of (31), which is equivalent to equation (18) in [22], is obtained by

inserting equation (29) into (25), multiplying (25) by Y ∗lm(θ, φ), integrating over the
solid angle dΩ, using the scalar nature of the potentials (27) and (28), and using
an addition theorem for the product of two spherical harmonics.

By introducing ρ = |~r − ~r ′|, and since

ρ2 = (~r − ~r ′)2 = r2 + (r′)2 − 2rr′x,

one has ρdρ = −rr′dx, and hence (31) can be written in the form

Ul(r, r′) = (2l+ 1)2π
∫ r+r′

|r−r′|
U(r, r′, x)Pl(x)ρdρ.(32)

The results of equations (31) and (32) are equivalent to the expansion of a
function F (r, r′, x) into Legendre polynomials in the variable x,

F (r, r′, x) =
∑
l

(l + 1/2)Fl(r, r′)Pl(x),(33)

which, as a result of the orthogonality of Legendre polynomials, gives

Fl(r, r′) =
∫ 1

−1

F (r, r′, x)Pl(x)dx.(34)

A well known example of the above is the expansion of |~r − ~r ′|−1,
1
ρ

=
∑
l

C
(1)
l (r, r′)Pl(x),

which, in view of (33) and (34), provides the well known semi-separable represen-
tation of the coefficients,

C
(1)
l =

rl

(r′)l+1
, r < r′,

C
(1)
l =

(r′)l

rl+1
, r′ < r.

However, the expansion of 1/ρ2 has coefficients which are no longer semi-separable.
Rather, that expansion,

1
ρ2

=
∑
l

C
(2)
l (r, r′)Pl(x),
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has coefficients with logarithmic singularities of the form

C
(2)
0 =

1
2rr′

ln
r + r′

|r − r′| ,

C
(2)
1 =

3
2rr′

[
r2 + (r′)2

2rr′
ln

r + r′

|r − r′| − 1],

etc. Other cases will be treated further on.
The next step is to replace the integro-differential equation (30) by an integral

equation, by first writing (30) in the form

(
d2

dr2
+ k2)<l = V̄l<l +

∫ ∞
0

Ūl(r, r′)<l(r′)dr′.

This equation in turn leads to the integral equation

<l(r) = Φl(r) +
∫ ∞

0

G(r, r′)V̄l(r′)<l(r′)dr′ +
∫ ∞

0

kl(r, r′)<l(r′)dr′,(35)

where G(r, r′) is the Green function corresponding to the inverse of the operator
(d2/dr2 + k2),

G(r, r′) = −1
k

sin(kr) cos(kr′), r < r′,

G(r, r′) = −1
k

cos(kr) sin(kr′), r′ < r.

In the above k is the asymptotic wave number,

k = (
2m
~2
E)1/2, V̄ =

2m
~2
V, Ū =

2m
~2
U,

the kernel kl(r, r′) is given by

kl(r, r′) =
∫ ∞

0

G(r, r′′)Ūl(r′′, r′)dr′′,(36)

and Φl(r) is a documented function, such as a Ricatti-Bessel function krJl(kr), for
example.

The solution of the equation (35) in the absence of the nonlocal term kl has
been described in the atomic-physics literature, see, for example, [28] and references
therein. A new accurate and economical spectral solution has been given in [13].
The emphasis in the present paper is to investigate under which conditions the
solution of (35) in terms of the NCC quadrature is feasible. Two physical examples
will be discussed in what follows.

9.2.1. The Perey-Buck example. The nonlocal Perey-Buck [22] potential is of the
form

UPB(r, r′, x) = NPB(ρ)VPB(R) =
1

(π1/2β)3
e−ρ

2/β2
· V0

1 + e(R−R0)/α
,(37)

where β, V0, R0 and α are given constants, and where ρ = |~r−~r ′| and 2R = |~r+~r ′|.
In conventional applications of the Perey-Buck potential the variable R is replaced
with (r+ r′)/2. In this case the factor VPB(R) can be taken outside the integral in
(31), with the result, for l = 0,

U0(r, r′) = 2π(
1√
πβ

)3 1
2
β2[e−(r−r′)2/β2

− e−(r+r′)2/β2
] · V0

1 + e(R−R0)/α
.
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In this case the integration kernel k0(r, r′) is the same whether r is greater or less
than r′, and the NCC quadrature described in this paper is unnecessary.

Even if the variable R were kept in its original form 2R = |~r + ~r′|, the resulting
expression for U0(r, r′) would still depend only weakly on |~r − ~r′| in situations
encountered in nuclear physics for which the range of the factor NPB (β ∼ 1) is
much smaller than the range of VPB (2α ≥ 6). This is because the integrand in
(31) near the lower limit x ≈ −1 of the integral, exp[−(r+r′)2/β2]VPB(|r−r′|/2α),
is then much smaller than the value of the integrand near the upper limit, x ≈ 1,
exp[−(r−r′)2/β2]VPB((r+r′)/2α), and the overall result depends weakly on |r−r′|.

This situation would however be quite different if the factor NPB(ρ) were to
depend on ρ exponentially, ∝ exp(−ρ/β), rather than ∝ exp[−(ρ/β)2]. The domi-
nant contribution to the integral (31) would again come from the upper limit x ≈ 1,
where the integrand is exp[−|r − r′|/β]VPB((r + r′)/2α), and U0(r, r′) would now
depend strongly on whether r < r′ or r > r′. In this case the NCC quadrature
would be relevant, and for this reason Example 2 was described in Section 6.

9.2.2. The interaction between two nucleons. The interaction between two nucleons
can be expressed in terms of the exchange of mesons following the original ideas
of Yukawa, and is now used extensively by many researchers, see, for example, [20]
and [9]. The resulting n−n potential is usually given in the momentum space, but
can also be converted to configuration space by means of Fourier integrals of the
momentum space representation. If certain approximations are made, the resulting
potential is local and has the form

Vn−n = δ(~r − ~r ′)Yreg(r).

The regularized potential Yreg(r), [9], is such that

Yreg(r)r→0 = constant +O(r2), Yreg(r)r→∞ ∝ 1
r
e−µr,(38)

where µ is proportional to the mass of the exchanged meson. In the above result,
the factor

√
m2/(EqEq′) has been replaced by a certain approximation, see [20]. If

however, the exact factor
√
m2/(EqEq′ ) is used, then the corresponding nucleon-

nucleon potential becomes nonlocal in configuration space, see [20], and is shown
in [9] to be of the form

Vn−n(~r, ~r ′) ∝ Nn−n(ρ)Yreg(R).(39)

In the above ρ and R have the same meaning as in the Perey-Buck example, Vreg

is given by the expression (38) with r replaced by R, and

Nn−n(ρ) =
m2

2π2

1
ρ
K1(mρ),

where K1(z) is a modified Bessel function defined in reference [1] in Section 9.6.
For small values of z we have K1(z) ≈ (1/z)(1 +O(z2)), and hence, when ρ→ 0,

Nn−n(ρ) ≈ m2

2π2
ρ−2,

while for large values of z an asymptotic expansion of K1 gives for Nn−n the
approximation

Nn−n ≈
m2

2π2
(
π

2m
)1/2ρ−3/2e−mρ.
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For the purpose of the present study, we will approximate Vn−n(r, r′, x) by

Vn−n(r, r′, x) ≈ 1
ρ2
e−mρe−µR,(40)

since this expression captures the nature of the singularity at ρ→ 0, and the nature
of the exponential decay at large values of ρ or R.

The value of m (940/200 ≈ 5) is larger than the value of µ ≈ 1.5, and hence,
similarly to the Perey-Buck case, the factor N(ρ) decays faster than Yreg(R). Thus,
the discussion in the previous subsection on the Perey-Buck example shows that
U0(r, r′) should depend strongly on |r − r′|, as is indeed the case, as will be shown
below. The singularity ρ−2 introduces a logarithmic singularity ln |r − r′| which
completely dominates the overall kernel k(r, r′), as will also be described.

The l = 0 (P0 ≡ 1) value of Vn−n is obtained from (7) by considering the
contributions to the integral ∫ 1

−1

Vn−n(r, r′, x)dx

near the lower and upper endpoints, x = −1 and x = 1 respectively, and then taking
the sum of the two. Accordingly, an approximation to (Un−n)l=0, with Vn−n given
in (40), is

(Un−n)0 ≈ 2π ln
r̄

|r − r′|e
−m|r−r′|e−µ(r+r′)/2(41)

+ 2π ln
r + r′

r̄
e−m(r+r′)e−µ|r−r

′|/2,

where r̄ is the half-way point between |r − r′| and r + r′. Its value is r̄ = r′ for
r < r′ and r̄ = r for r′ < r. Comparisons of the numerical evaluations of (31) using
the expression in (40) for Vn−n, with the approximate expression (41), showed that
the two quantities were equal within a factor of two; in particular, the singularity
due to ln |r − r′| was well represented.

When according to equation (36) (Un−n)0 is convoluted with the Green function
so as to obtain the final kernel in the integral equation, the logarithmic singularity
is propagated into this final kernel. This occurs when the integration variable r′′

sweeps over the region which surrounds r′. One finds that when both r and r′ are
close to zero, the singularity of k(r, r′) is proportional to

k(r, r′) ∝ (r − r′)2 ln |r − r′|,

and when both r and r′ are not close to the origin, the singularity is

k(r, r′) ∝ |r − r′| ln |r − r′|.

The presence of this singular behavior affects the spectral accuracy of the NCC
quadrature. In the numerical calculations of the accuracy achieved for such singular
kernels, presented in the text, the following form of k was assumed based on the
discussion above:

a) k(r, r′) = (r − r′)2 ln(r − r′)2 · e−|r−r′|e−(r+r′);
b) k(r, r′) = |r − r′| ln(r − r′)2 · e−|r−r′|e−(r+r′).
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