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SATOH’S ALGORITHM IN CHARACTERISTIC 2

BERIT SKJERNAA

ABSTRACT. We give an algorithm for counting points on arbitrary ordinary
elliptic curves over finite fields of characteristic 2, extending the O(log® q)
method given by Takakazu Satoh, giving the asymptotically fastest point
counting algorithm known to date.

INTRODUCTION

The mathematical aspects of elliptic curves have been studied during the 20th
century, and have been used in connection with factorization and primality testing,
and were a key ingredient in Wiles’ proof of Fermat’s last theorem.

Since elliptic curves were suggested for cryptography independently by N. Koblitz
[Kob87] and V. Miller [Mil86] in 1985, a lot of work has been carried out to find
methods to construct suitable curves. A requirement to avoid certain attacks on the
cryptosystem is that the curve chosen has group order divisible by a large prime.
Several attempts at choosing special kinds of curves where the group order is easily
computable have proven to give insecure curves. Even though some special kinds
might still be secure, using the full space of elliptic curves is widely recommended
as the best method. However, even with Schoof’s pioneering method [Sch&5], it was
not practically possible to count points on curves of cryptographic interest, before
it was improved by Elkies and Atkin for the case of large characteristic, and by
Couveignes for characteristic 2.

In 1999, T. Satoh [Sat00] gave a new method for counting points on an arbitrary
elliptic curve over a field IF; of small characteristic p greater than 5. The algorithm
runs in O(log® q) with straightforward arithmetic but is heavily dependent on p,
whereas the improvements of Schoof’s method runs in O(log6 q) with reasonable
assumptions. Thus, for fixed characteristic, the asymptotic behavior of Satoh’s
algorithm is faster than for previously known algorithms.

In this paper, we will generalize the results of Satoh to the characteristic 2 case,
which is the most interesting case for applications. We will start by giving an
outline of the algorithm, before proceeding with the details. After the conclusions,
we will give a small illustrative example, and discuss the performance for curves of
cryptographic interest.

Received by the editor September 4, 2000 and, in revised form, March 15, 2001.

2000 Mathematics Subject Classification. Primary 11G20, 11T71; Secondary 11G07, 14H52.
Key words and phrases. Satoh’s algorithm, elliptic curves, finite fields, order counting.
Research supported in part by a Ph.D. grant from CRYPTOMAThIC.

(©2002 American Mathematical Society



478 BERIT SKJERNAA

1. OUTLINE

Let E : y? + 2y = 2 + Gg be an elliptic curve defined over the finite field Fon,
with j(F) ¢ F,. We want to count the number of points in E(Fy~).

As in Schoof’s algorithm, our aim is to calculate the trace of the 2V’th power
Frobenius: Fron € End(E), since #E(Fyn ) = 2V +1—Tr(Fryn). To do this we split
the Frobenius into N small Frobenius maps, giving rise to the following sequence:

_ Fr. — Fr Fr — _
E 2 B 2 > ~Ey=E.

Let Q2 denote the 2-adic numbers, and let K be the unramified extension of Qo
of degree N given by QQ[X]/JC(X>Q2[X], where f(X) € Zy[X] is the polynomial
with only 0’s and 1’s as coefficients, whose reduction modulo 2 is used to define
Fon. Denote by R the valuation ring of K. We want to simultaneously lift the
j-invariants of the above curves to R, in such a way that the small Frobenius maps
can all be lifted to isogenies between the lifted curves. Thus having lifted the j-
invariants modulo 2™ for a well chosen value M, we will use the fact that the
trace of an endomorphism is not altered by reduction, to get an explicit formula
for Tr(Fran)? mod 29 Now using Hensel’'s Lemma we can find 4 Tr(Fryn)
mod 2M~10 by lifting a square root modulo 8. Finally, we determine Tr(Fry~) by
using #E(Fox) =0 mod 4 and | Tr(Fryn )| < 2v/2N.

Note that all calculations will be carried out in R mod 2™ for some M, and that
this ring can be represented as polynomials of degree less than N, with coefficients
in Z/QM 7.

Throughout the paper, a bar over an object (e.g., an elliptic curve or an element)
will denote that it is over the finite field. A bar over an object of R denotes the
reduction modulo the prime in question (mostly 2).

Where no other references are given, the theory can be found in [Sil86].

2. PRELIMINARIES

First note that none of the restrictions in the outline are crucial. If j(F) € Fy,
then #FE(Fyn) is easily found from #E(F,) (JEng99, Theorem 3.66]). If E is the
curve given by y?+xy = 2° 4+ a2 +ag, either E is isomorphic to E Y2 4oy = 23+
ag (if Tr(az) = 0), or E' is the twist of E by @, and #E/(IFQN)—F#E(FQN) =2N42
(see [Eng99| Section 3.10]).

In this text we will always choose the form 2+ 2y = 2> — j(E)‘?fNQBx — j(E)i1728

for our elliptic curves ([Sil86l p. 52]). Note that if an elliptic curve E over an
unramified extension of Q2 has good reduction mod 2 to a nonsupersingular elliptic
curve, then the chosen form is a minimal Weierstrass equation, i.e., the 2-valuation
of the discriminant is 0.

To lift the j-invariants in such a way that the small Frobenius maps can be lifted,
we use the 2nd modular polynomial, ®o, which, by [Coh93), p. 379], is given by

Oy(X,Y) = X3 +Y? - X2Y? + 23 31(X?Y + XV?) — 243153 (X2 + Y?)
+ 34534027XY + 28375%(X + V) — 212395,
Recall that the n’th modular polynomial, ®,,, is a symmetric polynomial in 2 vari-

ables with the property that two curves E and E’, over a field of characteristic zero,
have an n-isogeny iff ®,,(j(E),j(F’)) = 0 [Lan87, Theorem 5.3.5, p. 59].
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We want to lift a solution (2o, 21, ..., zy—1) of the system of equations

o (20, 21) = Pa(21,22) =+ = Pa(2n-1,20) =0 mod 2,
Z_z:j(E’L)a ’i:O,...,N—l,

to a solution (wp, w1, ...,wn—1) in K of the system of equations

Oy (wo, w1) = Po(wr, we) =+ = Pa(wy—_1,wp) =0,
E:j(Ez); Z':Oa"'vN_]-a

thus giving us j-invariants for which 2-isogenies exist between the corresponding
curves.

The following theorem now shows that this allows us to lift the small Frobenius
maps.

Theorem 2.1. Let E be an ordinary elliptic curve defined over a finite field of
characteristic p > 0, with j(E) ¢ Fy2, and let E® be the curve obtained from E by
applying the small Frobenius, Fry, to its coefficients. If E and E’ are two curves

reducing to E and E(p) respectively, and there exists a p-isogeny between E and E’,
then Fr, can be lifted to an isogeny between E and E’.

Proof. Let f be a p-isogeny between E and E’; then its reduction f has degree p

(degrees are invariant under reduction), and since it cannot be separable (by going
p— p— 2 p—

to duals this is easily seen to imply F & E(p )), it must be of the form f = AoFrp,

where A is an automorphism. Thus A = [£1], and Fr,, is the reduction of either f
or of —f. O

Remark. The above theorem implies that we can avoid the theory of the canonical
lift.

To find out more about the trace of Frobenius, we will use the following propo-
sition:

Proposition 2.2. Let 5/K be an elliptic curve, and let f € Endg (£) be of degree
d. Let T = —% be the local parameter at O, and assume that the reduction f of f
modulo p is separable. Then Tr(f) =c1 + %, where To f =30 | cp,T".

Proof. fof— fo[Tt(f)]+I[d] = [0] in End(£); thus (¢? —c1 Tr(f) +d)T+O(7?) = 0
in the formal group £. Hence the coefficient of 7 must vanish. Since f is separable,
¢1 must be nonzero, and Tr(f) = ¢ + %. O

Since the Frobenius map is not itself separable, we will have to work with its
dual. Fortunately, the dual of the lift is precisely equal to the lift of the dual, and
it is composed of the lifts of the duals of the small Frobenius maps. We will denote
the dual of the small Frobenius Fry € Isog(E;_1,E;), i =1,...,N, by V;, and its
lift by V;. We will later need the fact that KerV; is a group of order 2, thus

{0} #KerV; C E;[2],

where F;, i =1, ..., N, are the lifted curves.
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The preceding can be visualized in the following diagram:

Vi Vo VN
E Ey o Exn

Fry, Fry, Fr,
e D T e D e > = —
FE — F1 — — En=F

Vi Va VN

To proceed, we need the following lemma:

Lemma 2.3. Let E/Fya and assume that we have a curve E in characteristic 0,
which reduces to E mod 2, such that Froa can be lifted to ¥ € End(E). Then
Tr(X) = Tr(Froa).

Proof. Yo% — [Tr(X)] o X + [29] = [0] in End(FE), and by reducing we obtain the
following equality: FroFr —[Tr(X)] o Fr+[29] = [0] in End(E). Therefore we get
[Tr(¥)] = [Tr(Fr)], since FroFr —[Tr(Fr)] o Fr+[29] = [0] in End(E) as well, and
End(F) is an integral domain. Thereby, Tr(X) = Tr(Fr). O

Using this, we conclude that it is enough to find ¢ = vazl c1,; mod 2M for some
suitable M, where

oo
J— n
Ti—c10Vi = E Cn,iTi -
n=1

The squares of the ¢; ;’s turn out to be rational functions of the lifted j-invariants
and the z-coordinate of the nontrivial point in Ker V;, which we will also show to
be a rational function of the lifted j-invariants. Furthermore, these functions are
nice, in the sense that the 2-valuation of their numerators and denominators are
bounded.

We will now turn to the technical details.

3. LIFTING THE j-INVARIANTS
The first algorithm shows how to double the precision of the solution of

{@z(wo,wl) = Oy(wy,we) =+ = Po(wn—_1,wp) =0,

w = j(E;), i=0,...,N — L.

It is a slight modification of [Sai0(), Proposition 3.3].
Algorithm 3.1.
Input: zg,...,28v_1 € R, 2y = 29 satisfying:

(1) 2?2 = 241 mod 2

(2) zZi ¢ Fy

(3) P3(zi,2i41) =0 mod 2™
for all 0 <i < N, and for some m € N.
Output: {p,...,(n—1, unique modulo 2™

(i) ¢i =2 mod 2™

(11) ¢Q(Ci7 Ci-i—l) =0 mod 22m,
for all0 <i < N.

, satisfying:



SATOH’S ALGORITHM 481

Method: Define F: RN — RN by
.7:((1‘0 e xN_l)t) = ((I)Q(J)Q, 1‘1) (I)Q(J,‘l, 1‘2) . @2(1‘]\[_1, J,‘Q))t,
and let (DF)(z) be its Jacobian matriz:

%(‘fo’xl) %(xoaxl) 0 0
0 %(‘rl’x2) %(mlva) 0
0 0 0 %q;)f (J?N—Q,ZCN—1)
022 (wn-1,m0) 0 0 v 22 (anq,30)

Then (DF)(z) is invertible over My(R), and we take
(Co .. CN_1)'=2+42™0 with § := =27 (DF)(2) ' F(2).

Running time: The (;’s are found for all 0 < i < N with O(N) operations over
R mod 22™.

Proof. The (;’s clearly satisfy (i), provided 6 € RY. We use the Kronecker relation,
Py(X,Y) = (X2 —Y)(X —Y?) mod 2,
together with conditions (1) and (2), to achieve

0P
(1) a—XQ(Zi,ZiH) =zl — 211 =0 mod?2,
oD
(2) a—YQ(zi,ziH) =z—2l,=2%+2z #0 mod 2.
These equations assure that (DF)(z) is invertible, so J is in R.
Now for 2 = (29 ... z2y—_1)%, we have

F(z+2m6) = F(2) + (DF)(2)2™5 mod 2™,

which shows that the (;’s satisfy (ii) and are unique mod 22™.
For the computational complexity, see [Sat00], proposition 3.3]. |

The next algorithm shows that the F;’s exist and describes how we can find the
j(E;)’s modulo arbitrary powers of 2.

Algorithm 3.2.
Input: An integer M and an elliptic curve E with j(E) ¢ Fy.
Output: Numbers w; satisfying w; = j(F;) mod 2™, where E = Ey, By, ..., En_1
are representatives for the unique classes of curves satisfying the condition that the
reduction of F; is E; and that there exists a 2-isogeny from E; to Eiy1 for all
0<i<N. ‘
Method: Let wy; € R be a lift of j(E;) = j(E)T € Fon \F4. Then wo g, ..., wWo,N—1
satisfy the conditions of Algorithm[31, with m = 1.

Let n = [logy M]. For 1 < m < n we define Wn o, ..., Wm,N—1 to be the output
of Algorithm [31], with input z; = Wm—1,;. We then define w; := wy, ;.
Running time: The w;’s are obtained for all 0 < i < N with O(N log M) opera-
tions over R mod 2M.
Proof. Using induction on m, we see that

(1) w2, ; = wp,it1 mod 2,

m,i

(2) W, =Wo, & Fa,
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(3) @2 (wmjvwm,iJrl) =0 mod 22’",
(4) W41 = Wyi mod 227
forall 1 <m <n.
Since ®5(X,Y) is continuous with respect to the 2-adic norm, the set of values
(w; = limy,— 00 Wiy ;)N " (which exist for all i by (4)) is a solution to the system
of equations

Do (wo, w1) = Po(wr,we) =+ = Pa(wy—_1,wp) =0,
W= j(E;), i=0,...,N —1.

By the uniqueness part of the output of Algorithm B1] the w;’s are unique, and
by the discussion in the preliminaries, the corresponding elliptic curves have the
desired properties.

It also follows from (4) that wy, ; = j(E;) mod 22".

It is easy to see that this algorithm uses at most O(Nn) operations over R
mod 22", O

Remark. Since the limits of the sequences are in K, the lifted curves will all be
defined over K.

4. FINDING THE SQUARES OF THE ¢ ;'S

The next step is to calculate the squares of the c; ;’s, assuming that we are able
to find the nontrivial point in Ker V.

Proposition 4.1. c%z can be expressed as a rational function of j(E;) and the x-
coordinate of the montrivial point @Q; in KerV;. Furthermore, the denominator has
2-valuation 0.

Proof. As noted earlier, the rectangle in the following diagram is commutative.

3)

Vi

E;
7
X -\
E;

By

e
erV;

i —

Ei 1

We let 2(Q) (resp. y(Q)) denote the z- (resp. y-) coordinate of the point Q.
Let v : E; — Ei/KerVi be the isogeny constructed by Vélu [V71], which is
explicitly given by

v(X,Y)

= (¢(X,Y) +2((X,Y) + Qi) — 2(Q:),y(X,Y) + y((X,Y) + Qi) — y(Qi))-
Then Kerv = KerV;, which implies the existence of A\ € ISOg(Ei/KerX/;7Ei—1)
making the triangle in the diagram commutative. Since deg(V;) = deg(v) deg()),

we see that deg(\) = 1, so A is an isomorphism. We will now take a more careful
look at A.
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According to [V71], a Weierstrass model of Ei/Ker v, is given by

y? +ay =2+ Az + B;,

where
4= = S
Bi=— oy g — (1 Te(Q)n
with
t:=32(Q;)% — j(Ei)?)iflmS —y(Qi).

Since 2y(Q;) + z(Q;) = 0, the formulas for A; and B; depend only on j(E;) and
z(Q).
Let A be given by A\(X,Y) = (u?X +r,u3Y +u?sX +t). By letting Z = 7; and
looking at the Laurent series for X and Y,
X(Z2)=Z*-nZ ' —by...,

Y(Z)=-Z 3+ Z7%+...,

we get
NZ) = - wX(Z) +r vz Z Pyt —
B R < e e A T e e
wZ —ulh 2% — ... w?(—ud)

1
=T (udby +u2s)Z + ... - (—u3)? Z+0(2%) = EZ +0(7%),
Thus ¢1,; = 1, and all we need to do to find i ; is to find u?. Since X is just
a change of coordinates, we can find u? by solving the equations for a change of
variables. This gives
2 48A; — 1
T T 122, —6- 124, + 1

Thus, we can calculate u? from A; and B;. Hence, 01712 is given by a rational
function of j(F;) and z(Q;). Note that both the numerator and the denominator
of u? have 2-valuation 0. O

Note that the formula for u? will always contain a factor 23 in front of #(Q;) and

y(Q;), so we only need @ mod 2M73 to get the square of the trace mod 2M.

5. FINDING KerV;

Finally, we will show how to find the z-coordinate of the nontrivial point in
KerV;.

Lemma 5.1. The x-coordinate of the the nontrivial point in KerV; is given by

L G(Ei_1)? + 1951205 (E;_1) + 40955 (E;) + 660960000
8(j(Ei—1)? — j(E:)(512j(E;_1) — 372735) + 5637605 (E;_1) + 8981280000)

The 2-valuation of the numerator and the denominator is 12.
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Proof. Since KerV; C E;[2], a nontrivial point (z,y) € KerV; satisfies 2y + = = 0.
Squaring this gives 4y? + 4y + 22 = 0, and using the equation for the curve,
y? +zy = 23 we get the polynomial

_ 3 22— 1
J(E.)—1728 J(E.)—1728"

36 1
4o + 2% — 4 —4 =0
T Ay —1mes” T V() — 1728

Since A in Diagram Blis an isomorphism, the j-invariant of Ei/Ker v; equals j(Ei1);
that is,

(1 —484;)3
(—(Bi — (A;)?) — 8(24;)% — 27(4B;)? + 72A;B;)’
This gives a sixth degree polynomial in F, with coefficients in Z[j(E;_1), j(Es)],
which also has to be satisfied. Letting z = 5, we get by carefully evaluating GCD’s

of the two resulting polynomials in z, and simplifying, that z must satisfy az+b = 0,
where a and b are given by

a = 8(j(Ei_1)? — j(E;)(512j(E;_1) — 372735) + 5637605 (F;_1) + 8981280000)
b= j(Ei_1)? 4 1951205 (E;_1) + 40955 (E;) 4 660960000.

Since x has 2-valuation one, a and b must have the same 2-valuation. We investigate
their values modulo 2'3:

a=8(j(Ei_1)? — j(E)(5125(E;_1) — 4095) + 67045 (E;_1) + 256) mod 2'3;
b= j(E;i_1)* +67045(E;_1) + 40955 (F;) + 4864 mod 2'3.
It is seen that a = 8b + 4096(j(E;)j(E;—1) + 1) mod 23, so a = 8b mod 2'2

and they both have to be zero mod 2!2. If they were both zero mod 2'3, then
0=j(E)j(Ei—1)+1=j(Ei—1)>+1 mod 2; thus j(E;_1)* — j(F;—1) = 0, which

J(Eicq) =

is not the case since j(F;_1) ¢ F4 by assumption. Therefore, z = —2% gives the
desired result. |

Note that this means that to get the value of § modulo 2M e need the j-
invariants mod 2M+12,

6. CONCLUSION

Since the cost of a multiplication over R mod 2V is O(N?!°823) when using
the Karatsuba method [Knu98, p. 295], the computations of the lifted j-invariants
modulo 2°2°+10 can be done in O(N2!°823+11og N') bit operations using Algo-
rithm 32, and this can be reduced to O(N?1°823+1) by [Sat00, Remark 3.6]. With

straightforward arithmetic it becomes O(N®).

Now we have given explicit formulas for finding ¢ mod 2°3°+1, and since
Tr(Fronv) = ¢+ 2 and | Tr(Fron)| < 2v2N, ¢ modulo 272" must be an integer.
We can find it by inductive use of the following algorithm, starting with a solution
mod 8 (which can easily be found).

Algorithm 6.1.
Input: An integer n and elements o, 3 € Zy™ such that n > 3 and 32 = a:mod 2.
Output: An element 3’ € Zo™, with 82 = o mod 2?2 and ' = mod 2" 1.
1082 4
Method: Take 3’ = [ — %
Finally, we note that to satisfy the condition #E(Fyx) =0 mod 4 we must have
Tr(Fronv) =1 mod 4.
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7. EXAMPLE

In this section, we will give a small example to illustrate the method, and then we
will discuss the performance of the algorithm for curves of cryptographic interest.
Let E be the elliptic curve given by y? + xy = 2% + 1/(X5 + X + 1) defined over
Fyr = F2 [X]/(X7 +X+1) Working modulo 2!5, which is needed to find the trace

(this might seem ridiculously high, but note that the +10 has a big influence on
these small numbers), we get the following lifted j-invariants:

J(Eo) = 7458 X%+ 15165X°+28102X 4+ 13134 X3+ 2870X 2+ 16133 X +30273,
J(E1) =27342X %+ 11862X°+ 31943 X 4+ 8739X3+20969X%+22810X+ 505,
J(B2) =31767X %+ 13154 X5+ 17419X 4+ 24778 X3+ 8797X%+22389X + 8979,
j(Bs) = 1183X6+25617X°+ 18181 X4+ 8360X°3+ 5160X 2+ 32737X+ 10851,
J(Es) = 9147X%+ 6081X°+ 1001X*+ 3855X3+21694X%+29887X+ 8315,
j(Es) = 3812X°%4 7433X°+28447X*+ T067X3+ 1334X2+ 4163X+31829,
J(Ee) =17595X5+18992X°+ 5979X*+32371X3+ 4712X2%+ 2953X +10875.

The halves of the z-coordinates modulo 22 are calculated to be:

20= 6X5+ TX5+ 4X34 6X2%4 1,
2 = 6X5°+ TX*4 TX34+ 4X%2+ 4X+ 5,
zo= XS+ 4X5°+ 2X*+ 6X3+ TX*+ X+ 7,
z3= bHX64+ 7X°+ 5X%4+ 2X3+ 5X%4+ 2X+ 7,
2= TXS+ 3X°+ 6X*+ 3X3+ X%+ 7X4+ 3,
25 = X5+ 5X3+ 5X2%4+ 2X+ 5,
26 = bXO0+ 4X54+ 4X*4 5X34+ 4X%4+ 7.

Now the square of the trace is computed to be ¢ = 9 mod 64, and the two
square roots mod 32 are +3; thus Tr(Fry7) = —3, since it should be 1 modulo 4,
and the number of points on the curve is 27 + 1 + 3 = 132, whereas the number of
points on its twist is 27 + 1 — 3 = 126.

For cryptographic applications the size of the prime dividing the group order
should have approximately 50 digits. When searching for such a curve, one can
choose j-invariants at random from a field of size approximately 22°°, and examine
the two possible group orders for prime factors greater than, for example, 80% of
the field size. This has been implemented with some optimizations, and run on a
32-bit 866 MHz (Pentium IIT) processor.

We evaluate the performance of our algorithm by finding 5 curves satisfying
the above condition for different field sizes. The following table shows the average
running time per j-invariant (i.e., the time for finding the trace, but not including
the time for checking the prime factors of the two group orders), the average number
of j-invariants that we tried before finding one giving a suitable curve, the maximal
number of j-invariants tried, and the average number of curves we checked (e.g., if
the twisted curve in the last try was the one we could use, the number of curves
checked is twice the number of the j-invariants; otherwise it is twice this number
minus 1). Between 3 and 5.2 MB of memory was used.
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Field size | avg Time/s | avg #j-inv | max #j-inv | avg #curves
163 5.74 1.6 3 3.0
167 5.95 1.8 2 3.2
173 7.84 3.8 11 7.0
179 9.10 24 5 4.6
181 9.38 3.2 6 5.8
191 10.40 1.6 4 2.4
193 10.78 1.6 2 2.6
197 11.65 1.6 3 2.6
199 11.93 4.4 8 8.6
211 13.91 2.2 5 3.8
223 15.85 24 6 4.6
227 16.81 1.8 2 3.2
229 17.22 4.0 8 7.2

Only the average time for counting has been included in the table, since the ratio
(max time)/(min time) is less than 1.03 in all the tested cases; thus fluctuations in
the running times are very small. For the last column, note that a randomly chosen
number has approximately 20% chance of having a prime divisor of bit size greater
than 80% of its own size (see e.g., [Knu98| p.383]); thus we would expect to find a
suitable curve in about 5 tries on average. So on average very few j-invariants have
to be tested, and one would be unlucky not to get a good cryptographic curve in a
minute.

REMARKS

An independent and different generalization of Satoh’s algorithm has been made
and implemented by Mireille Fouquet, Pierrick Gaudry, Robert Harley and Francois
Morain [GHO0], with amazing results. They have used it to count the number of
points on an elliptic curve over Faosooo in 13 days, using a 750 MHz Alpha EV6 and
16.9 GB of memory. The old record was 65 days for a 1999-bit curve. In this case,
their algorithm took 14 hours on a 500 MHz Alpha EV6. For more information see
their homepage:

http://www.lix.polytechnique.fr/Labo/Mireille.Fouquet/elliptic.html

A demo-version in an unoptimized environment of the algorithm described in this
paper can be found at:

http://wuw.cryptomathic.com
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