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A STABLE, DIRECT SOLVER FOR THE GRADIENT EQUATION

ROB STEVENSON

Abstract. A new finite element discretization of the equation grad p = g is
introduced. This discretization gives rise to an invertible system that can be
solved directly, requiring a number of operations proportional to the number
of unknowns. We prove an optimal error estimate, and furthermore show that
the method is stable with respect to perturbations of the right-hand side g.
We discuss a number of applications related to the Stokes equations.

1. Introduction and applications

This paper concerns a finite element discretization of the following problem: On
some bounded, connected domain Ω ⊂ R2 with Lipschitz continuous boundary Γ,
and for some right-hand side g = (g1, g2)T with 0 = rot g (:= ∂1g2 − ∂2g1), find p
with

∫
Ω
pdx = 0, such that

grad p = g.

More precisely, we consider this problem in its variational form: Let L2
0(Ω) := {q ∈

L2(Ω) :
∫

Ω
qdx = 0}, H0(div; Ω) := {v ∈ L2(Ω)2 : div v ∈ L2(Ω),v · n|Γ = 0},

b(v, p) := −
∫

Ω

p div vdx,

and let V ⊂ H0(div; Ω) be a Hilbert space that will be specified below. Given
g ∈ V′ with g(v) = 0 when div v = 0, we search for p ∈ L2

0(Ω) such that

b(v, p) = g(v) (v ∈ V).(1.1)

It is well-known that (1.1) has a unique solution p, with ‖p‖L2 . ‖g‖V′ , when

|b(v, q)| . ‖v‖V‖q‖L2 (v ∈ V, q ∈ L2
0(Ω))(1.2)

and

‖q‖L2 . sup
06=v∈V

|b(v, q)|
‖v‖V

(q ∈ L2
0(Ω)),(1.3)

see e.g. [Bre74]. (Here and subsequently, by C . D we mean that C can be
bounded by a multiple of D, independently of parameters which C and D may
depend on. Obviously, C & D is defined as D . C, and C h D as C . D and
C & D.) It is known (see [GR86, Corollary 2.4]) that (1.3) is valid for V = H1

0 (Ω)2,
and thus also for V = H0(div; Ω). Obviously (1.2) is also valid for both choices.
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With V = H1
0 (Ω)2 or V = H0(div; Ω) respectively, problem (1.1) naturally

arises in connection with the (Navier)-Stokes problem or a mixed formulation of
the Poisson equation. Our discussion of applications will be focussed on the Stokes
problem.

Assuming that Ω is a polygon, starting from some conforming initial triangu-
lation τ0 of Ω, we consider a sequence of triangulations (τk)k≥0, where τk+1 is
constructed from τk by subdividing each triangle from τk into four congruent sub-
triangles. Although generalizations to piecewise polynomials of higher order are
possible, for ease of presentation we consider trial spaces Qk of the lowest order.
That is, we take Qk as the space of piecewise constants with respect to τk with zero
mean. In Section 2, we will construct test spaces Vk ⊂ H1

0 (Ω)2 such that

dimVk = dimQk,(1.4)

and

γ := inf
k

inf
06=qk∈Qk

sup
06=vk∈Vk

|b(vk, qk)|
‖vk‖(H1)2‖qk‖L2

> 0,(1.5)

which latter property is known as the Ladyshenskaja-Babuška-Brezzi (LBB) sta-
bility condition.

Because of (1.4) and (1.5), for any gk ∈ V′k, the problem of finding pk ∈ Qk
such that

b(vk, pk) = gk(vk) (vk ∈ Vk)(1.6)

has a unique solution. Moreover, it will be shown that for usual approximations gk
of the right-hand side g of (1.1), the square system (1.6) can be constructed and
solved in O(dimQk) operations.

Remark 1.1. In fact the results from this paper can be generalized to certain types
of locally refined triangulations and corresponding spaces Qk. More precisely, those
triangulations are covered where
• a triangle from τk+1 either is a triangle from τk or it is generated by subdi-

viding a triangle from τk into four congruent subtriangles,
• a triangle that is contained in both τk and τk+1 is part of τ` for any ` ≥ k,
• two triangles from τk that have a nonempty intersection have comparable

diameters, uniformly in k.
Yet, since it requires some technicalities to show that in these local refinement cases
the resulting system can be constructed (and solved) in O(dimQk) operations, for
ease of presentation in the remainder of this paper we restrict ourselves to the
uniform refinement case.

From (1.4), (1.5) we obtain the following optimal error estimate:

Theorem 1.2. For gk,g ∈ H−1(Ω)2, such that g(v) = 0 when div v = 0, let
pk ∈ Qk, p ∈ L2

0(Ω) be the solutions of

b(vk, pk) = gk(vk) (vk ∈ Vk),

b(v, p) = g(v) (v ∈ H1
0 (Ω)2).

Then

‖p− pk‖L2 ≤ (1 +
√

2
γ ) inf

qk∈Qk
‖p− qk‖L2 + 1

γ ‖g− gk‖(H−1)2 .
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Proof. With p̃k ∈ Qk being the solution of b(vk, p̃k) = g(vk) (vk ∈ Vk), from (1.5)
we infer that

‖p̃k − pk‖L2 ≤ 1
γ

sup
06=vk∈Vk

|g(vk)− gk(vk)|
‖vk‖(H1)2

≤ 1
γ
‖g− gk‖(H−1)2 .

Let

σ := inf
k

inf
06=qk∈Qk

sup
06=vk∈Vk

|b(vk, qk)|
‖div vk‖L2‖qk‖L2

.

For arbitrary qk ∈ Qk, we have ‖p− p̃k‖L2 ≤ ‖p− qk‖L2 + ‖qk − p̃k‖L2 , whereas

‖qk − p̃k‖L2 ≤ 1
σ sup

06=vk∈Vk

|b(vk, qk − p̃k)|
‖div vk‖L2

= 1
σ sup

06=vk∈Vk

|b(vk, qk − p)|
‖div vk‖L2

≤ 1
σ‖qk − p‖L2 ,

so that ‖p− p̃k‖L2 ≤ (1 + 1
σ ) infqk∈Qk ‖p− qk‖L2 . The proof is completed by noting

that ‖div vk‖L2 ≤
√

2 ‖vk‖(H1)2 and thus 1
σ ≤

√
2
γ .

Remark 1.3. In the above theorem, suppose that also gk satisfies gk(v) = 0 when
div v = 0. Then the continuous problem of finding p̃ ∈ L2

0(Ω) with b(v, p̃) = gk(v)
(v ∈ H1

0 (Ω)) has a solution, and the stability of this problem shows that there
exists a C > 0 such that ‖p − p̃‖L2 ≤ C‖g − gk‖(H−1)2 . The above proof shows
that ‖p̃− pk‖L2 ≤ (1 + 1

σ ) infqk∈Qk ‖p̃− qk‖L2, and so

‖p− pk‖L2 ≤ (1 +
1
σ

) inf
qk∈Qk

‖p̃− qk‖L2 + C‖g− gk‖(H−1)2 .

In other words, for this case it is already sufficient when σ > 0. Yet, a crucial point
of this paper is that the much stronger LBB condition (1.5) is valid, which yields
stability of the gradient solver with respect to perturbations of g in any direction
in H−1(Ω)2.

We now discuss some applications of our gradient solver and comment on some
existing alternative approaches. Consider the Stokes equations in its primitive
variables: Given f = (f1, f2)T, find u = (u1, u2)T and p, with

∫
Ω
pdx = 0, satisfying

−4u + grad p = f in Ω,
div u = 0 in Ω,

u = 0 on ∂Ω.

For Ω being a bounded, convex polygon and f ∈ L2(Ω)2, it is known that the unique
solution (u, p) is in (H2(Ω) ∩H1

0 (Ω))2 ×H1(Ω) with ‖u‖(H2)2 + ‖p‖H1 . ‖f‖(L2)2 .
Standard mixed finite element discretizations yield approximations for the veloc-

ities which are only discretely divergence-free. Approaches to obtain approximate
velocities that are exactly divergence-free are based on approximating a “stream-
function” ψ, which is a function that satisfies u = curlψ (:= (∂2ψ,−∂1ψ)T ). In-
deed, note that an approximation ψk ∈ H1(Ω) of ψ yields an approximate velocity
vector uk := curlψk ∈ H(div; Ω) with div uk = 0.

A computation of an approximation ψk of ψ can be based on the biharmonic
equation

42ψ = rot f in Ω,
ψ = ∂nψ = 0 on ∂Ω.
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Yet, discretizing this equation requires C1, or, in case of nonconforming approxi-
mations, “nearly” C1 finite elements.

An alternative approach (cf. [GR86, Ch.III, §§2-3]) is to discretize the problem
of finding ψ ∈ H1

0 (Ω), ω ∈ H1(Ω) such that

(curl ω, curlφ)(L2)2 = f(curl φ) (φ ∈ H1
0 (Ω)),

(curlψ, curlµ)(L2)2 = (ω, µ)(L2) (µ ∈ H1(Ω)),(1.7)

where ω = rot u is called the vorticity.
Instead of solving for ψ and ω = 4ψ, it is also possible to set up equations for

ψ and all its second derivatives ∂2
i,jψ, leading to the so-called Hellan-Herrmann-

Johnson scheme (cf. [GR86, Ch.III, §4]).
The above formulations have in common that the pressure p is eliminated, and so

a post-processing procedure is needed to obtain approximations of p. Our gradient
solver (1.6) can be applied for this goal.

As an example, we consider the stream function-vorticity formulation (1.7).
Given some approximation ωk of ω, based on the equation grad p = f − curlω, we
can compute pk ∈ Qk from

b(pk,vk) = f(vk)− (curl ωk,vk)(L2)2 (vk ∈ Vk).(1.8)

Application of Theorem 1.2 with

g(v) := f(v) − (curl ω,v)(L2)2 ,

gk(v) := f(v) − (curl ωk,v)(L2)2 ,

and so ‖g− gk‖(H−1)2 ≤
√

2‖ω − ωk‖L2 , shows that

‖p− pk‖L2 ≤ (1 +
√

2
γ ) inf

qk∈Qk
‖p− qk‖L2 +

√
2
γ ‖ω − ωk‖L2.(1.9)

A different approach, for example discussed in [GR86, Ch.III, §2], is for some
finite element space Q̂k ⊂ H1(Ω) ∩ L2

0(Ω), to solve p̂k ∈ Q̂k from

(grad p̂k,grad q̂k)(L2)2) = f(grad q̂k)− (curl ωk,grad q̂k)(L2)2 (q̂k ∈ Q̂k).
(1.10)

A disadvantage of this discretized Neumann’s problem for the Laplace operator is
that it requires an iterative solver. Moreover, without assuming more regularity of
p than that it is in H1(Ω), a complicated analysis is needed to demonstrate that
this method yields convergent approximations, where in any case the error bound
is qualitatively not better than (1.9). Necessarily this analysis exploits the special
form of the right-hand side of (1.10), where it is needed that ωk is the second
component of the solution (ψk, ωk) of a finite element discretization of (1.7). It
is not easily seen what the effect is on the solution p̂k of algebraic error in ωk, cf.
Remark 1.3. Note that (1.9) is valid for any approximation ωk of ω.

Another possibility, first proposed in [GR79], is to solve (1.8) using our space
Qk, but with a test space V̂k ⊂ H0(div,Ω) being the lowest order Raviart-Thomas
finite element space with respect to τk. For this pair it is known that

inf
k

inf
06=qk∈Qk

sup
06=v̂k∈V̂k

|b(v̂k, qk)|
‖v̂k‖H(div)‖qk‖L2

> 0.(1.11)

If τk contains an internal vertex, then dimV̂k > dimQk. Yet, if ωk is such that
f(v̂k) = (curlωk, v̂k)(L2)2 for all divergence-free v̂k ∈ V̂k, then the system (1.8)
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with Vk replaced by V̂k has a unique solution p̂k ∈ Qk. To handle the case of a
perturbed ωk, analogously to the construction that will be set out in Section 2, a
subspace of V̂k can be selected with dimension equal to that of Qk such that (1.11)
is retained. Yet, in any case, since V̂k 6⊂ H1(Ω)2, (1.11) with ‖v̂k‖H(div) replaced
by ‖v̂k‖(H1)2 is not valid, and so a bound on ‖p − p̂k‖(L2)2 similar to (1.9) will
depend on a norm of ω − ωk which is stronger than the L2-norm.

To discuss the final application of our gradient solver, we consider the Stokes
equations in the primitive variables written in variational form: Given f ∈ H−1(Ω)2,
find u ∈ H1

0 (Ω)2 and p ∈ L2
0(Ω) such that

a(u,v) + b(v, p) = f(v) (v ∈ H1
0 (Ω)2),

b(u, q) = 0 (q ∈ L2
0(Ω)),(1.12)

where

a(w,v) :=
∫

Ω

∇w : ∇vdx.

We describe the usual mixed finite element discretization. For k ∈ N, let Sk and
Q̌k be finite element spaces that serve as (increasingly better) approximations of
H1

0 (Ω)2 and L2
0(Ω) respectively. It is no restriction to assume that Q̌k ⊂ L2

0(Ω),
but we do allow nonconforming finite element spaces Sk, i.e., Sk 6⊂ H1

0 (Ω)2. As
a consequence, we generally need extensions of a( , ) and b( , ) to a scalar product
ak( , ) and a bilinear form bk( , ) on (H1

0 (Ω)2 + Sk)× (H1
0 (Ω)2 + Sk) and (H1

0 (Ω)2 +
Sk) × L2

0(Ω) respectively. We equip H1
0 (Ω)2 + Sk with the energy-norm ‖ · ‖1,k =√

ak(·, ·). We assume that bk( , ) is uniformly bounded, and that the following
LBB-condition is valid:

inf
k

inf
06=qk∈Q̌k

sup
06=vk∈Sk

|bk(vk, qk)|
‖vk‖1,k‖qk‖L2

> 0.(1.13)

Assuming that f ∈ S′k, we arrive at the following approximation scheme: Find
uk ∈ Sk, pk ∈ Q̌k such that

ak(uk,vk) + bk(vk, pk) = f(vk) (vk ∈ Sk),
bk(uk, qk) = 0 (qk ∈ Q̌k).

(1.14)

Because of (1.13), this system has a unique solution, and, depending on the possible
consistency error, the approximation properties of Sk and Q̌k, and the regularity
of u and p, appropriate bounds on ‖u− uk‖1,k and ‖p− pk‖L2 are known.

Defining the space of discretely divergence-free velocities

Zk = {vk ∈ Sk : bk(vk, qk) = 0 ∀qk ∈ Q̌k},

the velocity component uk of the solution of (1.14) can be characterized as the
unique solution of the problem: Find uk ∈ Zk such that

ak(uk,vk) = f(vk) (vk ∈ Zk).(1.15)

For some pairs (Sk, Q̌k) a local basis for Zk is known. This opens a way to compute
uk by solving the elliptic problem (1.15) only, instead of solving the original saddle-
point problem (1.14).

An example of a pair for which such a basis is available (cf. [Cro72, Tho81])
is given by the case that, with respect to some conforming triangulation τk of Ω,
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Sk = S2
k with Sk being the nonconforming P1 finite element space, i.e.,

Sk={v∈
∏
T∈τk P1(T ), v is continuous at the midpoints me of the interelement

boundaries e, and it vanishes at the midpoints me of edges along ∂Ω},

and Q̌k (= Qk) is the space of piecewise constant functions with zero mean value.
In this case

ak(wk,vk) :=
∑
T∈τk

∫
T

∇wk : ∇vkdx, bk(vk, qk) := −
∑
T∈τk

∫
T

qk div vkdx.

For this pair, optimal multi-grid, domain decomposition and cascade multi-level
methods for solving uk from (1.15) were proposed and analyzed in [Bre90], [Bre96]
and [Ste99] respectively.

Other examples of pairs, all involving nonconforming spaces Sk, for which a local
basis for the resulting Zk has been constructed can be found in [CSS86, Tur94].
Constructions based on wavelets were discussed in [Urb96].

Knowing uj , we are left with the problem of finding an approximation for the
pressure. The obvious approach is to solve pk ∈ Q̌k from

bk(vk, pk) = f(vk)− ak(uk,vk) (vk ∈ Sk).(1.16)

Indeed, existence and uniqueness of this pk are already known, and suitable error
estimates are available.

The number of equations in (1.16) exceeds the number of unknowns. However,
since (1.16) is trivially valid for vk ∈ Zk, it is sufficient to satisfy

bk(vk, pk) = f(vk)− ak(uk,vk) (vk ∈ Rk),(1.17)

where Rk is some subspace of Sk satisfying Rk ∩ Zk = {0} and dim Rk = dim Q̌k,
or equivalently, Sk = Rk ⊕ Zk.

In [CSS86, Tur94, Urb96] we find similar choices of Rk which give rise to direct
solvers that can be implemented efficiently. In the following, we describe the idea
for the nonconforming P1, piecewise constant finite element pair.

For all pairs T, T̃ ∈ τk, such that e := T ∩ T̃ is an edge, let

we = |e|−1gene ∈ Sk,

where ne is a unit vector normal to e, and ge ∈ Sk is the standard basis function

defined by ge(mẽ) =
{

1 if ẽ = e,
0 if ẽ 6= e,

see Figure 1. It is easily verified that, assuming

ne points into T ,

div we = ∂nege =


−(volT )−1 on T,
(vol T̃ )−1 on T̃ ,

0 elsewhere.
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Figure 1. ge and we.



A STABLE, DIRECT SOLVER FOR THE GRADIENT EQUATION 47

Now on some T0 ∈ τk, fix pk, and let T1 ∈ τk be such that e = T0 ∩ T1 is an edge.
We will call such triangles neighbours. Then (1.16) for vk = we determines pk|T1

uniquely. In this way, by marching from neighbour to a still unvisited neighbour,
pk ∈

∏
T∈τk P0(T ) can be fixed completely. In the end, by subtracting a suitable

constant, pk is mapped into Qk. Clearly, this procedure for computing pk is equiv-
alent to solving (1.17), where Rk = span{we} with e running over all edges that
were crossed in the marching process.

In view of Remark 1.3, a potential pitfall with this approach of solving (1.17) is
that in practice, instead of the exact solution uk, only an approximation ũk ∈ Zk
will be at one’s disposal, since (1.15) will have been solved by an iterative method.
With uk replaced by ũk 6= uk, the system (1.16) does not have a solution, but
because of (1.13) and Sk = Rk ⊕ Zk, the system (1.17) does, which solution we
denote by p̃k. With Tk : Zk → Q̌k being the linear operator defined by

bk(vk, Tkwk) = −ak(wk,vk) (vk ∈ Rk),

we have

pk − p̃k = Tk(uk − ũk).

Remark 1.4. It is easily verified that

‖Tk‖L2←1,k ≤
(

inf
06=qk∈Q̌k

sup
06=vk∈Rk

|bk(vk, qk)|
‖vk‖1,k‖qk‖L2

)−1

,

so that LBB-stability of (Q̌k, Rk) would imply stability of the above procedure for
finding the pressure.

For the nonconforming P1, piecewise constant finite element pair, we have com-
puted ‖Tk‖L2←1,k numerically in the following situation: Ω = [0, 1]2, τk is a uniform
partition of Ω into right-angled isosceles triangles of which the equal sides have
length hk := 2−k, and Rk = span{we}, where e runs over all edges corresponding
to the dotted lines as indicated in Figure 2 for the case k = 2. The results given
in Table 1 indicate that ‖Tk‖L2(Ω)←1,k h h−2

k . In the case of f ∈ L2(Ω)2, and thus

Table 1.

k 1 2 3 4 5 6 7
‖Tk‖L2(Ω)←1,k 2.3 10 41 160 650 2600 10000
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Figure 2. Crossed edges in the marching process defining Rk
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‖u− uk‖1,k = O(hk) and ‖p− pk‖L2 = O(hk), this means that the algebraic error
uk− ũk in ‖ ‖1,k-norm should be of order h3

k to be sure that the resulting algebraic
error in the pressure will not dominate the discretization error. That is, thinking
of a linearly convergent iterative method, and an initial error that is of order 1,
one should triple the number of iterations sufficient for solving the velocities from
(1.15), if one wants to use the outcome to compute the pressure afterwards using
this marching process.

An alternative approach to solve for the pressure can be based on our gradient
solver: Given some approximation ũk ∈ Sk of u, solve p̃k ∈ Qk from

b(vk, p̃k) = f(vk)− ak(ũk,vk) (vk ∈ Vk).

Since u and p satisfy

b(v, p) = f(v) − ak(u,v) (v ∈ H1
0 (Ω)2),

an application of Theorem 1.2 shows the optimal error estimate

‖p− p̃k‖L2 ≤ (1 +
√

2
γ ) inf

qk∈Qk
‖p− qk‖L2 + 1

γ ‖u− ũk‖1,k,

where now ‖p− p̃k‖L2 and ‖u − ũk‖1,k are the “total” errors. In particular, with
this approach an algebraic error in the approximate velocities is not blown up.

2. Construction and implementation of the gradient solver

Let τ0 be some conforming triangulation of a polygon Ω ⊂ R2, and for k ≥ 0,
let τk+1 be constructed from τk by subdividing each triangle from τk into four
congruent subtriangles. For each k, Qk is defined as the space of piecewise constants
with respect to τk with zero mean. We will construct spaces Vk satisfying both
dimVk = dimQk ((1.4)) and the LBB condition (1.5).

We recall the marching process discussed in §1, which however here will be
applied on the coarsest level only. Starting from some T ∈ τ0, until we have
been in all triangles in τ0, we travel from already visited triangles to yet unvisited
neighbours, putting the edges that were crossed between such neighbours in a set
called E0. In case τ0 does not contain internal vertices and Ω is simply-connected,
E0 will be the set of all internal edges in τ0, but otherwise E0 will be a proper
subset of that set. In any case the number of elements in E0 will be equal to
dimQ0. For each e ∈ E0, e = T ∩ T̃ with T, T̃ ∈ τ0, let we ∈ H1

0 (T ∪ T̃ )2 be some
function such that

∫
e
we · neds 6= 0, where ne is a unit vector normal to e. We

define V0 = span{we : e ∈ E0}.
For each 0 6= q ∈ Q0, there exists an e ∈ E0, e = T ∩ T̃ with T, T̃ ∈ τ0, such that

q|T 6= q|T̃ . From |b(we, q)| = |(q|T − q|T̃ )
∫
e
we · neds| 6= 0, we conclude that

inf
06=q∈Q0

sup
06=v∈V0

|b(v, q)|
‖v‖(H1)2‖q‖L2

> 0.(2.1)

For m ≥ 1, m ∈ N, we define Em as the set of new edges in τm, that is, all edges
that were added to refine T ∈ τm−1. For each e ∈ Em, e = T ∩ T̃ with T, T̃ ∈ τm,
let ` be the line connecting both vertices of T and T̃ which are not on e. Since,
because of the refinement procedure, T ∪ T̃ is a parallelogram, ` intersects e at its
midpoint me. Let ge ∈ H1

0 (T ∪ T̃ ) be the function that is 1 at me, and that is linear
on the four triangles generated by adding the line `. For a nonzero vector se in me



A STABLE, DIRECT SOLVER FOR THE GRADIENT EQUATION 49

��
��
��
��
��
��

��
��
��

Q
Q
Q
Q
Q
Q
Q
QQ�

�
�
�
�
�
�
�
�
�
��

��
��
��
���

Q
Q
Q
QQ

�
�
�
�
�
�

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

e
` •me

1
0 0

0 0

T̃ T ��
��
��
��
��
��
��
��
��

Q
Q
Q
Q
Q
Q
Q
QQ�

�
�
�
�
�
�
�
�
�
��

��
��
��
���

Q
Q
Q
QQ

�
�
�
�
�
�

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
Z
ZZ~

-se

ne

Figure 3. ge and we.

pointing along `, and with ne a unit vector normal to e, say pointing into T , we
put

we =
2gese
|e| se · ne

∈ H1
0 (T ∪ T̃ )2,

see Figure 3. By construction, div we = 2
|e| se·ne ∂sege is constant on both T and T̃ ,

and in particular

div we =


−(volT )−1 on T,
(vol T̃ )−1 on T̃ ,

0 elsewhere.

We infer that

div we ∈ Qm, div we ⊥L2 Qm−1,(2.2)

and, with Wk := span
⋃k
m=1{we : e ∈ Em}, that

div Wk = Qk 	⊥L2 Q0.(2.3)

Finally, using the fact that suppwe ∩ suppwẽ = ∅ for all e, ẽ ∈ Em that are not
contained in a common T ∈ τm−1, a homogeneity argument shows that

2m‖ · ‖(L2)2 . ‖div · ‖L2 on span{we : e ∈ Em}.(2.4)

Note that the latter relation is valid uniformly in all triangulations τ0 that satisfy
some minimal angle condition.

Defining Vk = V0 + Wk, we see that

dimVk = #

(
k⋃

m=0

Em

)
= dimQk.

In Theorem 2.3 we will prove that

inf
k

inf
06=q∈Qk	⊥L2Q0

sup
06=v∈Wk

|b(v, q)|
‖v‖(H1)2‖q‖L2

> 0.(2.5)

Since by (2.3), b(Wk, Q0) = 0, an application of Lemma 2.1 given below now shows
that (2.1) and (2.5) imply that

inf
k

inf
06=q∈Qk

sup
06=v∈Vk

|b(v, q)|
‖v‖(H1)2‖q‖L2

> 0,

i.e, both (1.4) and (1.5) are valid.
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Lemma 2.1. Let Q = Q1 + Q2 and V = V1 + V2 be normed linear spaces, b a
bilinear form on V ×Q for which

b(V2, Q1) = 0,

and C, γ1, γ2 > 0 constants such that

sup
06=q∈Q, 06=v∈V

|b(v, q)|
‖v‖V‖q‖Q

≤ C, inf
06=q∈Qi

sup
06=v∈Vi

|b(v, q)|
‖v‖V‖q‖Q

≥ γi (i ∈ {1, 2}).

Then there exists a γ > 0, depending only on C, γ1, γ2, such that

inf
06=q∈Q

sup
06=v∈V

|b(v, q)|
‖v‖V‖q‖Q

≥ γ.

Proof. Let q = q1 + q2, where q1 ∈ Q1, q2 ∈ Q2.
In case ‖q2‖Q ≤ γ1

2C ‖q1‖Q, and thus ‖q‖Q ≤ (1 + γ1
2C )‖q1‖Q, let v1 ∈ V1 be such

that |b(v1, q1)| ≥ 3
4γ1‖v1‖V‖q1‖Q. Then

|b(v1, q1 + q2)| ≥ 3
4γ1‖v1‖V‖q1‖Q − C‖v1‖V‖q2‖Q

≥ 1
4γ1‖v1‖V‖q1‖Q ≥

(
1
4γ1/(1 + γ1

2C )
)
‖v1‖V‖q‖Q.

Otherwise, when ‖q2‖Q ≥ γ1
2C ‖q1‖Q, and so ‖q‖Q ≤ (2C

γ1
+ 1)‖q2‖Q, let v2 ∈ V2

be such that |b(v2, q2)| ≥ 1
2γ2‖v2‖V‖q2‖Q. Then

|b(q1 + q2,v2)| = |b(q2,v2)| ≥ 1
2γ2‖v2‖V‖q2‖Q ≥

(
1
2γ2/(2C

γ1
+ 1)

)
‖v2‖V‖q‖Q.

It remains to prove (2.5). At first for theoretical purposes, but later also for
constructing an efficient implementation of the gradient solver, for m ∈ N, we define
S̃m as the conforming P1 finite element space with respect to a refined triangulation
τ̃m defined below, i.e., S̃m = C(Ω) ∩ H1

0 (Ω) ∩
∏
T∈τ̃m P1(T ). The triangulations

τ̃m are constructed from τm by subdividing each T ∈ τm into 6 subtriangles by
connecting the vertices with the midpoints on the opposite edges, see Figure 4.
The resulting spaces S̃m are nested, i.e. S̃m ⊂ S̃m+1, and for m ≥ 1,

{we : e ∈ Em} ⊂ S̃m := S̃2
m.(2.6)

Remark 2.2. The construction of we ∈ H1
0 (T ∪ T̃ )2 directly generalizes to any pair

of triangles T , T̃ that share an edge e, and for the line ` connecting both vertices
of T and T̃ that are not on e intersects e in an interior point. The reason why we
only considered cases where ` intersects e at its midpoint is the property (2.6).

Theorem 2.3.

inf
k

inf
06=q∈Qk	⊥L2Q0

sup
06=v∈Wk

|b(v, q)|
‖v‖(H1)2‖q‖L2

> 0.
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Figure 4. Construction of the triangulation τ̃m underlying S̃m
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Proof. A so-called strengthened Cauchy-Schwarz inequality is valid on the sequence
(S̃m)m (cf. e.g. [BY93, Lemma 3.3]), i.e., there exists a δ < 1 such that for n > m,

|(vm,vn)(H1)2 | . δn−m‖vm‖(H1)22n‖vn‖(L2)2 (vm ∈ S̃m,vn ∈ S̃n).

Combined with the inverse inequality,

‖vm‖(H1)2 . 2m‖vm‖(L2)2 (vm ∈ S̃m),

we derive that

‖
k∑

m=0

vm‖2(H1)2 .
k∑

m=0

4m‖vm‖2(L2)2 (vm ∈ S̃m).(2.7)

Substituting vm =
∑

e∈Em cewe in (2.7), by (2.4) and (2.2) we find that

‖
k∑

m=1

∑
e∈Em

cewe‖2(H1)2 .
k∑

m=1

‖
∑
e∈Em

ce div we‖2L2 = ‖
k∑

m=1

∑
e∈Em

ce div we‖2L2,

or ‖ · ‖(H1)2 h ‖div · ‖L2 on Wk (uniformly in k).
Since by (2.3) any q ∈ Qk	⊥L2 Q0 can be written as q = div v for some v ∈Wk,

we arrive at

‖q‖L2 =
|b(v, q)|
‖div v‖L2

h
|b(v, q)|
‖v‖(H1)2

,

which completes the proof.

Finally, for given gk ∈ V′k, we discuss the implementation of setting up and
solving a system corresponding to the problem of finding pk ∈ Qk satisfying

b(vk, pk) = gk(vk) (vk ∈ Vk).(2.8)

Let Φ0 be some basis onQ0. If we equip Vk andQk with bottom-to-top level-wise
ordered bases

⋃k
m=0{we : e ∈ Em} and Φ0 +

⋃k
m=1{div we : e ∈ Em} respectively,

then (2.8) results in a matrix-vector system

BkPk = gk,

where Pk is the representation of pk with respect to above basis of Qk, gk =
[gk(we)]e∈Em,0≤m≤k, and Bk is the matrix having as elements the application of b
to all pairs of basis functions from Vk and Qk respectively. The multi-level ordering
of these bases induces a block partitioning Bk = ((Bk)mn)0≤m,n≤k, with the size
of (Bk)mn being #Em × #En. The property (2.2) now implies that (Bk)mn = 0
except for m = 0 or m = n. Moreover, with respect to a canonical ordering of the
basis functions within each level, the matrices (Bk)mm for 1 ≤ m ≤ k are block
diagonal matrices, with blocks of size 3× 3. We conclude that Bk can be inverted
in O(dimQk) operations.

Remark 2.4. If for all e ∈ E0, e = T ∩ T̃ with T, T̃ ∈ τ0, the line ` connecting both
vertices of T and T̃ which are not on e intersects e at its midpoint, then, just as on
levels > 0, we can be selected in S̃0 with div we ∈ Q0. In this case, (Bk)0n = 0 for
n > 0, or Bk will be a block diagonal matrix.

Otherwise, a reasonable approach is to take we = 2fene
|e| , where fe ∈ H1

0 (T ∪ T̃ )

is defined by fe(me) = 1, and fe is linear on all T ∈ τ1. Note that we ∈ S̃1,∫
ewe · neds = 1, and that div we ∈ Q1, which means that (Bk)0n = 0 for n > 1.



52 ROB STEVENSON

Since the diameters of the supports of the basis functions we of Vk are not
all of order 2−k, but instead range from order 1 to order 2−k, a straightforward
computation of gk, or a sufficiently accurate approximation of this vector involving
numerical quadrature, can be expected to demand a number of operations of order
k dimQk.

Therefore, let us equip S̃k with the standard nodal basis {νm,x : x ∈ Nk}, where
Nk is the set of interior vertices of τ̃k. Since diam(suppνk,x) h 2−k, we may expect
that g̃k = [(g(1)

k (νk,x),g(2)
k (νk,x))]x∈Nk , or a sufficiently accurate approximation of

this vector, can be computed in O(dim S̃k) = O(dimQk) operations.
In view of Remark 2.4, we assume that V0 = span{we : e ∈ E0} ⊂ S̃1, and so

Vk ⊂ S̃k for k ≥ 1. For k ≥ 1, let Ik be the representation of the embedding of
Vk into S̃k. Then gk = IT

k g̃k. With span{we : e ∈ Em} being equipped with the
basis {we : e ∈ Em}, for m ≥ 1 let the uniformly sparse matrices qm and pm+1 be
the representations of the embeddings span{we : e ∈ Em} → S̃m and S̃m → S̃m+1

respectively, and let q̌0 be the representation of the embedding

span{we : e ∈ E0} → S̃1.

With these definitions, the mappings Ik satisfy

Ik+1 =
[

pk+1Ik qk+1

]
(k ≥ 1), I1 =

[
q̌0 q1

]
.

So for the transpose we get

IT
k+1 =

[
IT
k pT

k+1

qT
k+1

]
(k ≥ 1), IT

1 =
[

q̌T
0

qT
1

]
,

which induces a top-to-bottom recursive procedure to evaluate IT
k times vector, in

particular to compute gk = IT
k g̃k, in O(dimQk) operations.

As a result of the computation described above, one obtains a vector Pk that
represents the solution pk with respect to the multi-level basis Φ0 +

⋃k
m=1{div we :

e ∈ Em} of Qk. Yet, one often prefers to have a representation, denoted by P̃k,
of pk with respect to the canonical basis of

∏
T∈τk P0(T ). We follow an analogous

procedure as described above. We equip
∏
T∈τk P0(T ) with its canonical basis. Let

Îk be the representation of the embedding of Qk into
∏
T∈τk P0(T ). Equipping

spanΦ0 with the basis Φ0, and for m ≥ 1, span{div we : e ∈ Em} with the basis
{div we : e ∈ Em}, let q̂0 be the representation of the embedding spanΦ0 →∏
T∈τ0 P0(T ), and for m ≥ 1 let the uniformly sparse matrices q̂m and p̂m be the

representations of the embeddings span{div we : e ∈ Em} →
∏
T∈τm P0(T ) and∏

T∈τm−1
P0(T )→

∏
T∈τm P0(T ) respectively. Then the mappings Îk satisfy

Îk+1 =
[

p̂k+1Îk q̂k+1

]
(k ≥ 0), Î0 = q̂0,

which yield a bottom-to-top recursive procedure to evaluate Îk times vector, in par-
ticular to compute P̃k = ÎkPk, in O(dim

∏
T∈τk P0(T )) = O(dimQk) operations.

Summarizing: Assuming that g̃k is available, we can compute P̃k = ÎkB−1
k IT

k g̃k
taking O(dimQk) operations.
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