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A MIXED MULTISCALE FINITE ELEMENT METHOD
FOR ELLIPTIC PROBLEMS

WITH OSCILLATING COEFFICIENTS

ZHIMING CHEN AND THOMAS Y. HOU

Abstract. The recently introduced multiscale finite element method for solv-
ing elliptic equations with oscillating coefficients is designed to capture the
large-scale structure of the solutions without resolving all the fine-scale struc-
tures. Motivated by the numerical simulation of flow transport in highly het-
erogeneous porous media, we propose a mixed multiscale finite element method
with an over-sampling technique for solving second order elliptic equations
with rapidly oscillating coefficients. The multiscale finite element bases are
constructed by locally solving Neumann boundary value problems. We pro-
vide a detailed convergence analysis of the method under the assumption that
the oscillating coefficients are locally periodic. While such a simplifying as-
sumption is not required by our method, it allows us to use homogenization
theory to obtain the asymptotic structure of the solutions. Numerical exper-
iments are carried out for flow transport in a porous medium with a random
log-normal relative permeability to demonstrate the efficiency and accuracy of
the proposed method.

1. Introduction

Many problems of fundamental and practical importance in science and engi-
neering have multiple-scale solutions. Typical examples include composite materi-
als with fine micro-structures and highly heterogeneous porous media. The direct
numerical simulation of problems involving multiscale solutions is difficult, due to
the requisite of tremendous amount of computer memory and CPU time, which
can easily exceed the limit of today’s computer resources. On the other hand, in
practice, it is often sufficient to predict the large scale solutions to a certain accu-
racy. Thus, various methods of upscaling or homogenization have been developed
which replace the governing equations with multiscale solutions by the homogenized
equations, whose solutions can be resolved on a coarse-scale mesh.

The recently developed multiscale finite element method [18], [19], [13] provides
an effective way to capture the large-scale structures of the solutions on a coarse
mesh. The central idea of the method is to incorporate the local small-scale infor-
mation of the leading-order differential operator into the finite element bases. It is
through these multiscale bases and the finite element formulation that the effect of
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small scales on the large scales is correctly captured. Apart from the computational
advantages, such as saving in computer memory and good parallel efficiency [18]
of the multiscale finite element method, we stress that the real significance of the
method lies in its ability to solve the problems in coarse meshes. This is particu-
larly advantageous when multiple simulations or realizations are necessary due to
changes of boundary conditions or source functions for given fine microstructures of
composite materials or highly heterogeneous permeability of porous media. Other
relevant works on constructing special finite element bases can be found in [3] for
layered microstructures and in [6] for convection-dominated diffusion problems.

The motivation of this paper is to explore the possibility of applying the multi-
scale finite element method to numerical computation of flow transport in highly
heterogeneous porous media. In its simplest form, neglecting the effect of grav-
ity, compressibility, capillary pressure, and considering constant porosity and unit
mobility, the governing equations for the flow transport can be described by the
following partial differential equations (see [21], [31], and [12]):

div(K(x)∇p) = 0,(1.1)
∂S

∂t
+ v · ∇S = 0,(1.2)

where p is the pressure, S is the water saturation, K(x) = (Kij(x)) is the relative
permeability tensor, and v = −K(x)∇p is the Darcy velocity. The highly heteroge-
neous properties of the medium are built into the permeability tensor K(x), which
is generated through the use of sophisticated geological and geostatistical model-
ing tools. The detailed structure of the permeability coefficients makes the direct
simulation of the above model infeasible. For example, it is common in real simu-
lations to use millions of grid blocks, with each block having a dimension of tens of
meters, whereas the permeability measured from cores is at a scale of centimeters
[24]. This gives more than 105 degrees of freedom per spatial dimension in the
computation. This makes a direct simulation to resolve all small scales prohibitive
even with today’s most powerful supercomputers. On the other hand, from an en-
gineering perspective, it is often sufficient to predict the macroscopic properties of
the solutions. Thus it is highly desirable to derive effective coarse grid models to
capture the correct large solution without resolving the small-scale features. Nu-
merical upscaling is one of the commonly used approaches in practice. There are
extensive studies in the literature on the numerical upscaling of two-phase flows
through porous media, see, e.g., [1], [21], [11], [14], [30].

Mixed finite element approximations for second order elliptic problems, which
approximate the source variable and flux simultaneously, have been studied by
many authors (cf., e.g., [27] and the book [5]). The local conservation of velocity
flux is an important property in the mixed finite element methods. The violation
of this local conservation property will lead to leakage of velocity flux. This will
deteriorate the accuracy of the numerical solution for long-time computations. This
is the reason why mixed finite element methods are attractive for porous medium
simulations [28] (see also the numerical results in §5.1 of this paper). In this pa-
per, we first propose and analyze a mixed multiscale finite element method with an
over-sampling technique for solving elliptic equations with oscillating coefficients,
and then apply the method to compute the above flow model (1.1)-(1.2). The use
of the over-sampling technique is crucial in eliminating large resonance errors from
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the element boundaries. This point has already been well demonstrated in the pre-
vious study [18, 13] for the displacement multiscale finite element method. We will
demonstrate that this technique applies also to the mixed multiscale finite element
method. Our computational results show that the mixed multiscale method with
the over-sampling technique gives more accurate results than the corresponding
method without such technique.

We have performed careful numerical experiments to validate our mixed multi-
scale finite element method. To test how well our method works in a realistic appli-
cation, we apply our method to a flow in porous media with a random log-normal
relative permeability tensor. This is one of the practical benchmark test cases for
oil recovery problems. Our computational results demonstrate convincingly the
importance of the local conservation property in the flow simulation. When the
local conservation property is not satisfied, the fractional flow curve deviates signif-
icantly from that obtained from the well-resolved mixed finite element calculation
after a short time. The mixed multiscale finite element method, on the other hand,
provides an accurate numerical approximation even on a coarse grid, with accuracy
comparable to that obtained using the standard fine-mesh mixed finite element
method. Finally, we compare the performance of the mixed multiscale method
studied in this paper with the displacement multiscale finite element method stud-
ied in [18], [19], [13] when applied to the flow transport problem in heterogeneous
porous media. The two methods give similar results at an early stage. But the
fractional flow curve obtained by the displacement multiscale method deviates sig-
nificantly from that obtained by the well-resolved calculation after a short time,
clearly suffering from the violation of the local conservation property. The mixed
multiscale method gives a more accurate solution than the displacement multiscale
method for long-time calculations, due to the inherent local conservation property
of the mixed multiscale method.

The ultimate goal of this study is to produce an effective coarse grid model for
the two-phase flow with heterogeneous porous media. To this end, we need to
upscale the saturation equation. Without capillary pressure, the saturation equa-
tion is hyperbolic. The effective equation is difficult to derive and has a nonlocal
memory effect [29]. Using an upscaling technique recently developed in [14] for
the saturation equation, we show how the proposed mixed multiscale finite element
method leads to a complete coarse grid algorithm. Our numerical results demon-
strate convincingly that the fractional flow curve obtained from the resulting coarse
grid model gives a very good approximation to that obtained from the fine grid cal-
culation. Typically, many realizations on the same microstructure (permeability
field) are made due to changes in boundary conditions and source fields. In such a
case, the multiscale finite element bases are only constructed once, and can be used
in the subsequent computations. Thus, the coarse grid model offers substantial
saving in both memory and computing time. The saving could be as large as a
factor of 10,000 if one can scale up by a factor of 10 in each space dimension (three
space dimensions plus time).

The outline of the paper is as follows. In §2 we introduce the mixed multiscale
finite element methods and present the main convergence results. In §3 we review
the homogenization results for elliptic problems with Neumann boundary condi-
tions. These results are the basis of our convergence analysis. In §4 we prove the
error estimate for the mixed multiscale finite element method with over-sampling
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introduced in §2.3. The analysis depends on an abstract formulation for noncon-
forming mixed finite element methods, the homogenization theory, and a technique
of “freezing coefficients” to deal with the local periodic coefficients. In §5 we apply
our method to simulate the flow transport model (1.1)-(1.2) for a practical random
log-normal permeability.

2. Mixed multiscale finite element methods

2.1. Notation and background. Let Ω be a polyhedral domain in Rd (d = 2, 3)
with boundary ∂Ω whose unit outer normal is denoted by n. LetD ⊆ Ω be a domain
in Rd with the Lipschitz boundary Γ. For each integer m ≥ 0 and 1 ≤ p ≤ ∞, we
denote by Wm,p(D) the standard Sobolev space of real functions having all their
weak derivatives of order up to m in the Lebesgue space Lp(D). The norm and
the seminorm of Wm,p(D) will be denoted by ‖ · ‖m,p,D and | · |m,p,D, respectively.
As usual, when p = 2, Wm,2(D) is denoted by Hm(D) with the norm ‖ · ‖m,D and
the seminorm | · |m,D. In the following, we let V (D) denote the subspace of H1(D)
whose functions have zero average over D.

We consider the following second order elliptic equations with locally periodic
coefficients [4]:

Lεuε : = − ∂

∂xi

(
aij

(
x,
x

ε

)∂uε
∂xj

)
= f in Ω,(2.1)

−a
(
x,
x

ε

)
∇uε · n = g on ∂Ω.(2.2)

In this paper the usual Einstein summation convention for repeated indices is used.
Here, ε is assumed to be a small parameter, and a(x, x/ε) = (aij(x, x/ε)) is a
symmetric matrix which satisfies the uniform ellipticity condition:

γ |ξ|2 ≤ aij(x, y)ξiξj ≤ γ−1 |ξ|2 ∀ξ ∈ Rd, x ∈ Ω̄, y ∈ Rd,(2.3)

for some positive constant γ. Furthermore, we assume that aij ∈ C1(Ω̄;C1
p(Rd)),

where C1
p (Rd) stands for the collection of all C1(Rd) periodic functions with respect

to the unit cube Y .
Let u0 be the solution of the homogenized problem of (2.1)-(2.2):

L0u0 := − ∂

∂xi

(
a∗ij(x)

∂u0

∂xj

)
= f in Ω,(2.4)

−a∗(x)∇u0 · n = g on ∂Ω,(2.5)

where a∗(x) = (a∗ij(x)) with

a∗ij(x) =
1
|Y |

∫
Y

aik(x, y)
(
δkj −

∂χj

∂yk
(x, y)

)
dy,(2.6)

and χj(x, y) is the periodic solution of the cell problem

∂

∂yi

(
aik(x, y)

∂χj

∂yk
(x, y)

)
=

∂

∂yi
aij(x, y) in Y,

∫
Y

χj(x, y) dy = 0.(2.7)

Here δkj is the Kronecker delta, i.e., δkj = 1 for k = j and δkj = 0 for k 6= j.
Note that in (2.7) x plays the role of a parameter. However, since aij(x, y) is
differentiable in x, we can easily show that χj(x, y) is also differentiable in x. The
convergence property of uε to u0 will be studied in detail in the next section.
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Throughout the paper we impose the following assumptions on the data:
(H1) f ∈ H1(Ω), g = q0 · n on ∂Ω for some q0 ∈ H1(Ω)d.
(H2) Compatibility:

∫
Ω
f dx =

∫
∂Ω

g ds.
We remark that the assumption on the boundary value g is not very restrictive.

For example, in the case when Ω is a convex polygon in R2 with sides Γj , 1 ≤ j ≤ J ,
and g ∈ ΠJ

j=1H
1/2(Γj), such a flux q0 can be constructed through q0 = −∇u∗ with

u∗ ∈ H1(Ω) being the solution of the equation −∆u∗ + u∗ = 0 in Ω with the
Neumann boundary condition ∇u∗ · n = g on ∂Ω. The regularity results in [17]
then ensure q0 ∈ H1(Ω). We also stress that the explicit formula of such a flux q0

is not required in the definition of our methods.
Denote by L2

0(Ω) the subspace of L2(Ω) whose functions have zero average over
Ω, and let H0(div; Ω) be the subspace of H(div; Ω) given by

H0(div; Ω) = {v ∈ L2(Ω)d : div v ∈ L2(Ω), v · n = 0 on ∂Ω }.

The norm of H(div; Ω) will be denoted by ‖ · ‖div,Ω. Let pε = −a(x, x/ε)∇uε and
a−1(x, y) the inverse matrix of a(x, y); then ∇uε = −a−1(x, x/ε)pε. The mixed
formulation to (2.1)-(2.2) then reads as follows: find a pair (pε, uε) ∈ H(div; Ω)×
L2

0(Ω) such that pε · n = g on ∂Ω and

(div pε, v) = (f, v) ∀v ∈ L2(Ω),(2.8)
(a−1(x, x/ε)pε,q)− (uε, div q) = 0 ∀q ∈ H0(div; Ω).(2.9)

Here (·, ·) stands for the inner product of L2(Ω) or L2(Ω)d. The existence of a unique
solution of problem (2.8)-(2.9) and its equivalence to (2.1)-(2.2) follow directly from
the abstract Babuska-Brezzi theory [5], [27].

Let us assume that Th is a regular and quasi-uniform partition of Ω into simplices.
For anyK ∈ Th, let hK be its diameter, |K| its Lebesgue measure, νK the unit outer
normal to ∂K, and {eKj }d+1

j=1 the surfaces or edges of ∂K with |eKj | being the measure
of eKj . The mixed multiscale finite element method that we are going to introduce
is closely related to the Raviart-Thomas elements [27]. For any K ∈ Th, we denote
by RT0(K) the lowest order Raviart-Thomas approximation of H(div,K):

RT0(K) = P0(K)d + xP0(K), x = (x1, · · · , xd)T ∈ Rd,

where P0(K) is the constant element space. Let {RKi }d+1
i=1 be the basis of RT0(K)

which satisfies

RKi · νK =


1
|eKi |

on eKi ,

0 on eKj , j 6= i.

Since divRKi is constant in K, it follows easily from Green’s formula that divRKi =
1/|K|. Let Wh ⊂ H(div; Ω) be the lowest order Raviart-Thomas finite element
space. It is well-known that there exists an interpolation operator rh : H(div,Ω) ∩
H1(Ω)d →Wh such that rK := rh|K satisfies the relations∫

eKj

(rKq− q) · νK ds = 0 ∀q ∈ H1(K)d, j = 1, · · · , d+ 1,(2.10)

and the error estimate

‖q− rKq‖m,K ≤ Ch1−m
K |q |1,K ∀q ∈ H1(K)d, m = 0, 1.(2.11)
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Let Mh ⊂ L2
0(Ω) be the standard piecewise constant finite element space for ap-

proximating uε. Then the standard mixed finite element method using the lowest
order Raviart-Thomas element leads to the following discrete problem: find a pair
(ph, uh) ∈Wh ×Mh such that ph · n = rhq0 · n on ∂Ω and

(div ph, vh) = (f, vh) ∀vh ∈Mh,

(a−1(x, x/ε)ph,qh)− (uh, div qh) = 0 ∀qh ∈Wh ∩H0(div; Ω).

The following well-known error estimate can be obtained by using the Babuska-
Brezzi theory [27], [5]

‖pε − ph ‖div,Ω + ‖ uε − uh ‖0,Ω ≤ Ch(‖pε ‖1,Ω + ‖ uε ‖1,Ω).(2.12)

Note that since ‖pε ‖1,Ω ≤ Cε−1 [19], the error estimate (2.12) implies that the
mesh size h must satisfy h << ε to obtain accurate approximations. The purpose
of the mixed multiscale finite element methods to be introduced next is to remove
such a strong requirement on the mesh size h. This is achieved by building the
local small-scale information into the finite element bases.

2.2. Mixed multiscale finite element method. Recalling that V (K) denotes
the subspace of H1(K) whose functions have zero average over K, we define wKi ∈
V (K) as the solution of the following Neumann problem overK, for i = 1, · · · , d+1:∫

K

a
(
x,
x

ε

)
∇wKi ∇ϕdx =

1
|K|

∫
K

ϕdx− 1
|eKi |

∫
eKi

ϕds ∀ϕ ∈ H1(K),(2.13)

Equation (2.13) is the weak formulation of the following boundary value problem

Lεw
K
i =

1
|K| in K, −a

(
x,
x

ε

)
∇wKi · νK =


1
|eKi |

on eKi ;

0 on eKj , j 6= i.

Now let pKi = −a(x, x/ε)∇wKi and denote by MS(K) the multiscale finite element
space spanned by pKi , i = 1, · · · , d+ 1. Recall that divRKi = 1

|K| . We have

div pKi = divRKi in K, and pKi · νK = RKi · νK on ∂K.

Moreover, for any qh ∈MS(K), the relations∫
eKi

qh · νK ds = 0, i = 1, · · · , d+ 1,

imply qh = 0 in K. The degrees of freedom for qh ∈ MS(K) can be chosen
as the zeroth order moments of qh · νK on the sides or faces of K. In practical
applications, the base functions pKi of MS(K) will be approximated by solving
(2.13) on a triangulation of K with a mesh size resolving ε using the lowest-order
Raviart-Thomas mixed finite element method.

Let Σ = H(div; Ω), Q = H0(div; Ω), and M = L2
0(Ω). We define Σh as the

following multiscale finite element space for approximating the flux pε:

Σh = {qh ∈ H(div; Ω) : qh|K ∈ MS(K), ∀K ∈ Th }.

Let Qh = Σh ∩Q. To introduce an approximation of the boundary data g, we let
Bh be the collection of all sides or faces of the triangulation Th which lie on the
boundary ∂Ω. For any e ∈ Bh such that e = ∂K ∩ ∂Ω, we let pe ∈ MS(K) be the
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corresponding multiscale basis and define gh = q0,h ·n on ∂Ω with q0,h ∈ Σh given
by

q0,h =
∑
e∈Bh

( ∫
e

g ds
)

pe.

We can now introduce the following discretization of (2.8)-(2.9): find a pair (ph, uh)
∈ Σh ×Mh such that ph · n = gh on ∂Ω and

(div ph, vh) = (f, vh) ∀vh ∈Mh,(2.14)
(a−1(x, x/ε)ph,qh)− (uh, div qh) = 0 ∀qh ∈ Qh.(2.15)

We have the following theorem concerning the convergence of this discrete problem.

Theorem 2.1. The discrete problem (2.14)-(2.15) has a unique solution (ph, uh) ∈
Σh × Mh such that ph · n = gh on ∂Ω. Moreover, if the homogenized solution
u0 ∈ H2(Ω) ∩ W 1,∞(Ω) and the assumptions (H1)-(H2) are satisfied, then there
exists a constant C > 0, independent of h and ε, such that

‖pε − ph ‖div,Ω + ‖ uε − uh ‖0,Ω

≤ C(h+ ε)(‖ u0 ‖2,Ω + ‖ f ‖1,Ω + ‖q0 ‖div,Ω) + C

√
ε

h
‖ u0 ‖1,∞,Ω.(2.16)

The proof of this theorem is simpler than that of Theorem 2.2 below for the over-
sampling mixed multiscale finite element method, and will be omitted. We remark
that the error estimate (2.16) is uniform as ε → 0, which is in strong contrast to
the error estimate (2.12), which blows up as ε→ 0. We also observe that the error
estimate (2.16) deteriorates when ε is of the same order as the mesh size h. This
is due to the boundary layer effect of the multiscale bases, that is, the mismatch of
the oscillating structure of pε and the linear behavior of the finite element solution
ph on the boundaries ∂K, K ∈ Th. This phenomenon is called resonant error in
[18]. The resonant error can be significantly reduced by an over-sampling technique
introduced in [18]. The over-sampling technique is based on the observation that
the width of the boundary layer is of order O(ε). Thus, if one first constructs
some intermediate base functions on a larger sample domain (with size larger than
(h + O(ε))) and uses only the interior information from these intermediate base
functions to construct the actual computational bases, then the boundary layer
effect can be substantially reduced, resulting in more accurate approximations.

2.3. Over-sampling technique. In this subsection we will use the over-sampling
technique [18] to construct new multiscale finite element bases for which the bound-
ary layer effect of the bases pKi , i = 1, · · · , d+ 1, is reduced.

For any K ∈ Th, we denote by S = S(K) a macro-element which contains K
and satisfies following condition:

(H3): hS ≤ C0hK and dist(∂K, ∂S) ≥ δ0hK for some positive constants C0, δ0

independent of h. The minimum angle of S(K) is bounded below by some
positive constant θ0 independent of h.

Let {RSi }d+1
i=1 be the basis of RT0(S) which satisfies

RSi · νS =


1
|eSi |

on eSi ,

0 on eSj , j 6= i.
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Recall that V (S) stands for the subspace of H1(S) whose functions have zero av-
erage over S. Let {pSi }d+1

i=1 be the multiscale finite element basis of MS(S) defined
as in (2.13), i.e., pSi = −a(x, x/ε)∇wSi , where wSi ∈ V (S) is the solution of the
following problem over S, i = 1, · · · , d+ 1:∫

S

a
(
x,
x

ε

)
∇wSi ∇ϕdx =

1
|S|

∫
S

ϕdx − 1
|eSi |

∫
eSi

ϕds ∀ϕ ∈ H1(S).(2.17)

Then we define the over-sampling finite element basis over K by

p̄Ki = cKijp
S
j |K in K,(2.18)

where the constants cKij are chosen such that

RKi = cKijR
S
j |K .(2.19)

The existence of the constants cKij is guaranteed because {RSj }d+1
j=1 also forms the

basis of RT0(K). Since div pSj = divRSj = 1/|S|, we know that

div p̄Ki = divRKi in K.(2.20)

Here again, in practical applications, the base functions pSi of MS(S) will be further
approximated by solving (2.17) on a triangulation of S with a mesh size resolving
ε using the lowest order Raviart-Thomas finite element method. When applying
the multiscale finite element method to solve (1.1)-(1.2), these base functions can
be precomputed initially to generate the coarse grid operator. So this will be only
a small overhead of the overall computations. This is also a common practice in
many upscaling methods [10], [11].

We define X =
∏
K∈ThH(div;K) with norm ‖q‖X = (

∑
K∈Th ‖q ‖2div,K)1/2.

Let Λ(K) = span{p̄Ki }d+1
i=1 and ΠK : Λ(K)→ RT0(K) be the projection

ΠKq = ciR
K
i if q = cip̄Ki ∈ Λ(K).

Let X̄h be the finite element space

X̄h = {qh ∈ X : qh|K ∈ Λ(K), ∀K ∈ Th}
and define Πh : X̄h →

∏
K∈Th RT0(K) through the relation Πhqh|K = ΠKqh for

any K ∈ Th, qh ∈ X̄h. The over-sampling mixed multiscale finite element space for
approximating the flux pε = −a(x, x/ε)∇uε is then defined as

Xh = {qh ∈ X̄h : Πhqh ∈Wh ⊂ H(div; Ω)}.
We remark that, in general, Xh 6⊂ Σ = H(div; Ω). Here, we require Πhqh ∈ Wh

to impose some intrinsic continuity of the zeroth order moment of the normal
components of qh ∈ Xh across the interelement boundaries of the triangulation Th.
Finally, let Gh be the closed subspace of Xh defined by

Gh = {qh ∈ X̄h : Πhqh ∈Wh ∩H0(div; Ω)}.
The over-sampling mixed finite element approximation of (2.14)-(2.15) can be

formulated as follows: find a pair (ph, uh) ∈ Xh ×Mh such that ph · n = ḡh on ∂Ω
and ∑

K∈Th

∫
K

a−1ph · qh dx−
∑
K∈Th

∫
K

div qh · uh dx = 0 ∀qh ∈ Gh,(2.21)

∑
K∈Th

∫
K

div ph · vh dx = (f, vh) ∀vh ∈Mh.(2.22)
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Here ḡh = q̄0,h ·n is the approximation of the boundary value with q̄0,h ∈ Xh given
by

q̄0,h =
∑
e∈Bh

( ∫
e

g ds
)

p̄e,

for any e ∈ Bh such that e = ∂K ∩ ∂Ω, and p̄e ∈ Λ(K) is the corresponding
over-sampling multiscale basis.

We have the following theorem about the convergence of the over-sampling mixed
multiscale finite element method. The assumption (H4) will be made precise in §4,
see equation (4.8). This is an assumption on the maximum bound of a boundary
corrector term (in the multiple scale expansion) in terms of the gradient of the
homogenized solution. The validity of this assumption can be easily proved for the
corresponding Dirichlet boundary value problem, due to the maximum principle.

Theorem 2.2. The discrete problem (2.21)-(2.22) has a unique solution (ph, uh) ∈
Xh × Mh such that ph · n = ḡh on ∂Ω. Moreover, if the homogenized solution
u0 ∈ H2(Ω)∩W 1,∞(Ω) and the assumptions (H1)-(H4) are satisfied, then there exist
constants δ > 0 and C > 0, independent of h and ε, such that if hK ≤ δ, ε/hK ≤ δ
for all K ∈ Th, the following error estimate holds:

‖pε − ph ‖X + ‖ uε − uh ‖0,Ω
≤ C(ε + h)(‖ u0 ‖2,Ω + ‖ f ‖1,Ω + ‖q0 ‖div,Ω)

+ C
( ε
h

+
√
ε
)

(‖ u0 ‖1,∞,Ω + ‖ f ‖0,Ω + ‖q0 ‖div,Ω).

The proof of this theorem, which will be given in §4, depends on an abstract
formulation for nonconforming mixed finite element methods, the homogenization
results for elliptic equations with locally periodic coefficients in §3, and a technique
of “freezing coefficients” to deal with the local periodicity of the coefficients. This
new technique can also be used to extend the convergence analysis in [19], [13] for
displacement multiscale finite element methods to elliptic equations with locally
periodic coefficients. We remark that locally periodic coefficients model a wide class
of microstructures which include, in particular, the layered structures. Previous
numerical experiments in [13] and our numerical experiments indicate that the
over-sampling technique leads to significant improvement over the direct mixed
multiscale finite element method (2.14)-(2.15).

3. Homogenization results

In this section we summarize some homogenization results for the Neumann
problem in the form to be used in this paper.

Let D ⊆ Ω be a domain in Rd with Lipschitz boundary Γ. Given f ∈ L2(D)
and g ∈ L2(Γ) which satisfy the compatibility condition∫

D

f dx =
∫

Γ

g ds,(3.1)

we consider the following Neumann problem with rapidly oscillating coefficients:
find wε ∈ V (D) such that∫

D

a
(
x,
x

ε

)
∇wε∇ϕdx =

∫
D

fϕ dx−
∫

Γ

gϕ ds ∀ϕ ∈ H1(D).(3.2)
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It is well-known that this problem admits a unique solution in V (D) due to the
compatibility condition (3.1). Let w0 ∈ V (D) be the unique solution of the homog-
enized problem∫

D

a∗(x)∇w0∇ϕdx =
∫
D

fϕ dx−
∫

Γ

gϕ ds ∀ϕ ∈ H1(D),(3.3)

where a∗(x) is given by (2.6).
In the following we will assume that w0 ∈ H2(D)∩W 1,∞(D). This regularity is

valid, for example, when f ∈ Lp(Ω), g = q0 · n on Γ for some q0 ∈ W 1,p(Ω), where
p > 2, and D is a smooth domain [15] or a convex polyhedral domain in R2 or R3

[17], [23].
Now we set

wε1(x) = w0(x) − εχk
(
x,
x

ε

)∂w0

∂xk
,

where χk(x, y) is the solution of the cell problem (2.7). Then by simple calculations
we get

aij

(
x,
x

ε

)∂wε1
∂xj

= a∗ij(x)
∂w0

∂xj
−Gki

(
x,
x

ε

)∂w0

∂xk
(3.4)

− εaij

(
x,
x

ε

)∂χk
∂xj

(
x,
x

ε

)∂w0

∂xk

− εaij

(
x,
x

ε

)
χk
(
x,
x

ε

) ∂2w0

∂xj∂xk
,

where

Gki (x, y) = a∗ik(x) − aij(x, y)
(
δkj −

∂χk

∂yj
(x, y)

)
.(3.5)

Due to (2.6) and (2.7) we know that
∫
Y G

k
i (x, y) dy = 0 and ∂Gki (x, y)/∂yi = 0.

Thus there exist skew-symmetric matrices αk(x, y) = (αkij(x, y)) such that [20, p.6]

Gki (x, y) =
∂

∂yj

(
αkij(x, y)

)
,

∫
Y

αkij(x, y) dy = 0.

With this notation, we can rewrite

Gki

(
x,
x

ε

)∂w0

∂xk
= ε

∂

∂xj

(
αkij

(
x,
x

ε

)∂w0

∂xk

)
− εαkij

(
x,
x

ε

) ∂2w0

∂xj∂xk

− ε
∂αkij
∂xj

(
x,
x

ε

)∂w0

∂xk
.

(3.6)

We define θε ∈ V (D) as the solution of the following problem:∫
D

a
(
x,
x

ε

)
∇θε∇ϕdx =

∫
D

∂

∂xj

(
αkij

(
x,
x

ε

)∂w0

∂xk

) ∂ϕ
∂xi

dx ∀ϕ ∈ H1(D).(3.7)

Note that αkij = −αkji. This problem can be regarded as the weak formulation of
the elliptic problem

Lεθε = 0 in D, a
(
x,
x

ε

)
∇θε · νD =

∂

∂xj

(
αkij

(
x,
x

ε

)∂w0

∂xk

)
· νDi on Γ,
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where νD = (νD1 , · · · , νDd ) is the unit outer normal to Γ. Hence θε plays the role of
a boundary corrector in the asymptotic expansion for wε. The following theorem
generalizes similar results in [20, §1.4] for periodic coefficients.

Theorem 3.1. Assume that w0 ∈ H2(D)∩W 1,∞(D). Then there exists a constant
C, independent of ε, the domain D, and the data f and g, such that

‖∇wε −∇(wε1 + εθε) ‖0,D ≤ Cε(|w0 |2,D + |w0 |1,D).(3.8)

Moreover, the boundary corrector θε satisfies the estimate

‖ ε∇θε ‖0,D ≤ Cε(|w0 |2,D + |w0 |1,D) + C
√
ε|Γ| |w0 |1,∞,D,(3.9)

where |Γ| stands for the length of the boundary Γ if d = 2, and the surface area of
Γ if d = 3.

Proof. For the sake of completeness, we sketch the proof here in order to track
down the exact dependence of the constant C in (3.8) and (3.9). First, we deduce
from (3.2), (3.3), (3.5)-(3.6), and (3.7) that∫

D

a
(
x,
x

ε

)
∇(wε − wε1 − εθε)∇ϕdx

= ε

∫
D

[
aij

(
x,
x

ε

)
χk
(
x,
x

ε

) ∂2w0

∂xj∂xk
+ aij

(
x,
x

ε

)∂χk
∂xj

(
x,
x

ε

)∂w0

∂xk

] ∂ϕ
∂xi

dx

− ε

∫
D

[
αkij

(
x,
x

ε

) ∂2w0

∂xj∂xk
+
∂αkij
∂xj

(
x,
x

ε

)∂w0

∂xk

] ∂ϕ
∂xi

dx ∀ϕ ∈ H1(D).

This implies (3.8) after taking ϕ = wε−wε1− εθε ∈ H1(D) and using the ellipticity
condition (2.3).

To show (3.9), we introduce a cutoff function ζε ∈ C∞0 (D), 0 ≤ ζε ≤ 1 in D,
ζε = 1 outside the ε-neighborhood of the boundary Γ, and |∇ζε| ≤ Ĉ/ε in D with
Ĉ independent of ε and D. Then, we have

∂

∂xj

(
αkij

(
x,
x

ε

)∂w0

∂xk

)
=

∂

∂xj

(
αkij

(
x,
x

ε

)∂w0

∂xk
ζε

)
+

∂

∂xj

(
αkij

(
x,
x

ε

)∂w0

∂xk
(1 − ζε)

)
.

Note that the first term is divergence free since the matrix αk is skew-symmetric
and with compact support. We have from (3.7) that∫

D

a
(
x,
x

ε

)
∇θε∇ϕdx =

∫
D

∂

∂xj

(
αkij

(
x,
x

ε

)∂w0

∂xk
(1− ζε)

) ∂ϕ
∂xi

dx ∀ϕ ∈ H1(D).

Denote Dε = supp (1 − ζε); then |Dε| ≤ ε|Γ| and thus

ε
∥∥∥ ∂

∂xj

(
αkij

(
·, ·
ε

)∂w0

∂xk
(1− ζε)

) ∥∥∥
0,D

≤ ε
∥∥∥ ∂αkij
∂xj

(
·, ·
ε

)∂w0

∂xk
(1− ζε)

∥∥∥
0,D

+ ε
∥∥∥αkij(·, ·ε) ∂2w0

∂xj∂xk
(1− ζε)

∥∥∥
0,D

+
∥∥∥( ∂

∂yj
αkij

)(
·, ·
ε

)∂w0

∂xk
(1 − ζε)

∥∥∥
0,Dε

+ ε
∥∥∥αkij(·, ·ε)∂w0

∂xk

∂ζε
∂xj

∥∥∥
0,Dε

≤ Cε(|w0 |2,D + |w0 |1,D) + C
√
ε|Γ| |w0 |1,∞,D.

This completes the proof.
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An important open question is to show that the boundary corrector θε is of
first order, i.e., ‖ εθε ‖0,∞,D ≤ Cε|w0 |1,∞,D for some constant C independent of
ε. Similar results for the boundary corrector for Dirichlet problem are known (cf.,
e.g., [4], [2]).

4. Convergence analysis

The purpose of this section is to prove Theorem 2.2. We first recall the abstract
formulation for the nonconforming mixed finite element method in §4.1, then es-
tablish the discrete inf-sup condition in §4.2, and finally prove the error estimate
in §4.3.

4.1. Abstract results. The abstract results in this section modify slightly the
standard Babuška-Brezzi theory [5], [16] in that we take into account the dis-
cretization of inhomogeneous boundary conditions. Another way to deal with the
approximation of boundary conditions is considered in [7], which, however, is not
applicable here due to the oscillatory nature of the coefficient in (2.8)-(2.9). Let Σ
and M be two Hilbert spaces with norms ‖ · ‖Σ and ‖ · ‖M respectively. Denote
by Σ′ and M ′ the corresponding dual spaces, and by 〈·, ·〉Σ′×Σ and 〈·, ·〉M ′×M the
duality pairings. Let a : Σ×Σ→ R and b : Σ×M → R be two continuous bilinear
forms. Let Q be a closed subspace of Σ. Given p0 ∈ Σ, l ∈ Σ′, and ρ ∈ M ′, we
consider the following variational problem: find a pair (p, λ) ∈ Σ ×M such that
p− p0 ∈ Q and

a(p, q) + b(q, λ) = 〈l, q〉Σ′×Σ ∀q ∈ Q,(4.1)
b(p, µ) = 〈ρ, µ〉M ′×M ∀µ ∈M.(4.2)

Define V = {q ∈ Q : b(q, µ) = 0, ∀µ ∈ M}. The following result concerning
the existence and uniqueness of solutions of the abstract problem (4.1)-(4.2) can
be easily proved by rewriting (4.1)-(4.2) in terms of p̃ = p− p0 ∈ Q and using the
standard theory in [5, §II.1], [16, §I.4].

Lemma 4.1. Assume that the bilinear form a(·, ·) is V -elliptic, i.e., there exists a
constant α > 0 such that

a(q, q) ≥ α‖q‖2Σ ∀q ∈ V,
and the bilinear form b(·, ·) satisfies the following inf-sup condition for some con-
stant β > 0:

inf
06=µ∈M

sup
06=q∈Q

b(q, µ)
‖q‖Σ‖µ‖M

≥ β.

Then, the abstract problem (4.1)-(4.2) has a unique solution (p, λ) ∈ Σ ×M such
that p− p0 ∈ Q.

We consider now nonconforming approximations of the mixed problem (4.1)-
(4.2). Let X be a Hilbert space with the norm ‖ · ‖X such that Σ ⊂ X . We denote
by ah : X × X → R and bh : X ×M → R continuous bilinear forms which are
approximations of the bilinear forms a : Σ×Σ→ R and b : Σ×M → R, respectively.
The index h will eventually refer to the mesh for which these approximations are
derived. Furthermore, we assume that l ∈ X ′, where X ′ is the dual space of X .
Let Xh ⊂ X and Mh ⊂ M be finite dimensional spaces. Denote by Gh a closed
subspace of Xh. Let p0,h ∈ Xh be an approximation of p0 ∈ Σ. We consider the
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following approximation of (4.1)-(4.2): find a pair (ph, λh) ∈ Xh ×Mh such that
ph − p0,h ∈ Gh and

ah(ph, qh) + bh(qh, λh) = 〈l, qh〉X′×X ∀qh ∈ Gh,(4.3)
bh(ph, µh) = 〈ρ, µh〉M ′×M ∀µh ∈Mh.(4.4)

Note that we have not assumed Xh ⊂ Σ, so (4.3)-(4.4) is a nonconforming dis-
cretization of the variational problem (4.1)-(4.2). Let Zh = {qh ∈ Gh : bh(qh, µh) =
0, ∀µh ∈ Mh}. We have the following abstract result, which accounts for the in-
homogeneous boundary conditions and can be proved by modifying the argument
in [5, §II.2.6].

Lemma 4.2. Assume that ah(·, ·) is uniformly coercive in Zh, i.e., there exists a
constant α∗ > 0, independent of h, such that

ah(qh, qh) ≥ α∗‖qh‖2X ∀qh ∈ Zh,

and bh(·, ·) satisfies the following discrete inf-sup condition for some constant β∗ >
0 independent of h:

inf
06=µh∈Mh

sup
06=qh∈Gh

bh(qh, µh)
‖qh‖X‖µh‖M

≥ β∗.

Then, the discrete problem (4.3)-(4.4) has a unique solution (ph, λh) ∈ Xh ×Mh

such that ph− p0,h ∈ Gh. Moreover, the solution (ph, λh) fulfills the following error
estimate:

‖p− ph‖X + ‖λ− λh‖M
≤ C( inf

σh∈Xh,σh−p0,h∈Gh
‖p− σh‖X + inf

µh∈Mh

‖λ− µh‖M )

+ C sup
06=qh∈Gh

〈l, qh〉X′×X − ah(p, qh)− bh(qh, λ)
‖qh‖X

,

where the constant C > 0 depends only on α∗, β∗ and the operator norms ‖ah‖,
‖bh‖.

The last term at the right-hand side of the above abstract error estimate, which
vanishes if Xh ⊂ Σ, represents the nonconforming error.

4.2. The discrete inf-sup condition. We will use the abstract framework in §4.1
to study the discrete problem (2.21)-(2.22). Thus we define X =

∏
K∈Th H(div;K)

with the norm ‖q‖X = (
∑
K∈Th ‖q ‖2div,K)1/2, and introduce the bilinear forms

ah : X ×X → R and bh : X × L2(Ω)→ R as

ah(p,q) =
∑
K∈Th

∫
K

a−1
(
x,
x

ε

)
p · q dx ∀p,q ∈ X,

bh(q, v) = −
∑
K∈Th

∫
K

div q · v dx ∀q ∈ X, v ∈ L2(Ω).

It is clear that the operator norms satisfy ‖ah‖ ≤ γ−1 and ‖bh‖ ≤ 1, where γ is the
constant in (2.3).

The over-sampling mixed finite element approximation (2.21)-(2.22) is then equi-
valent to the following form: find a pair (ph, uh) ∈ Xh ×Mh such that ph · n = ḡh
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on ∂Ω and

ah(ph,qh) + bh(qh, uh) = 0 ∀qh ∈ Gh,(4.5)
bh(ph, vh) = −(f, vh) ∀vh ∈Mh.(4.6)

To study the properties of this discrete problem, we need the following lemma,
which is crucial to the derivation of the discrete inf-sup condition for the bilinear
form bh.

Lemma 4.3. There exists a linear operator τh : Wh → Xh such that for any
q ∈ Wh and K ∈ Th we have div τhq = div q in K and ‖ τhq ‖div,K ≤ C‖q ‖div,K

for some constant C independent of h.

Proof. For any q ∈ Wh and K ∈ Th, we have q|K = βKi R
K
i ∈ RT0(K) for some

constants βKi , i = 1, · · · , d + 1. We are going to define the desired operator τh
through the relation τh|K = τK for any K ∈ Th with the local form of the operator
τK defined by

τKq = βKi p̄Ki .

This implies that ΠK(τKq) = q in K. Thus, Πh(τhq) = q ∈Wh, i.e., the operator
τh : Wh → Xh is well-defined. Moreover, by (2.20), we have div τhq = div q in K.

It remains to show the stability estimate in this lemma. To do so, we let
w̄Sε = βKi c

K
ijw

S
j , where wSj is defined in (2.17); then we have τKq = βKi c

K
ijp

S
j |K =

−a(x, x/ε)∇w̄Sε . Define q̂ = βKi c
K
ijR

S
j and τ̂Kq = βKi c

K
ijp

S
j in S. Then from the

definition of pSj , we have div q̂ = div τ̂Kq in S and q̂ · νS = τ̂Kq · νS on ∂S. Now,
for any ϕ ∈ H1(S), we have, after integration by parts,∫

S

a
(
x,
x

ε

)
∇w̄Sε∇ϕdx = −

∫
S

τ̂Kq · ∇ϕdx

=
∫
S

div τ̂Kq · ϕdx−
∫
∂S

(τ̂Kq · νS)ϕdx

=
∫
S

div q̂ · ϕdx−
∫
∂S

(q̂ · νS)ϕdx

= −
∫
S

q̂ · ∇ϕdx.

By taking ϕ = w̄Sε in above equality, we get ‖ τ̂Kq ‖0,S ≤ C‖ q̂ ‖0,S . To conclude
the proof we only need to notice that

‖ q̂ ‖0,S ≤ C‖ q̂ ‖0,K = C‖q ‖0,K

by the assumption (H3) and (2.19). This completes the proof.

Lemma 4.4. The discrete problem (4.5)-(4.6) has a unique solution (ph, uh) ∈
Xh×Mh such that ph ·n− ḡh ∈ Gh. Moreover, the following error estimate holds:

‖pε − ph ‖X + ‖ uε − uh ‖0,Ω
≤ C( inf

vh∈Mh

‖ uε − vh ‖0,Ω + inf
qh∈Xh,qh·n−ḡh∈Gh

‖pε − qh ‖X)

+ C sup
06=qh∈Gh

|ah(pε,qh) + bh(qh, uε)|
‖qh ‖X

.

(4.7)
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Proof. We apply the abstract Lemma 4.2. First, we note that, for any K ∈ Th and
qh ∈ Gh, by (2.20), div qh = div Πhqh in K. Therefore, bh(qh, 1) = bh(Πhqh, 1) =
0 since Πhqh ·n = 0 on ∂Ω for any qh ∈ Gh. Now, since div qh is constant over K,
we have

Zh = {qh ∈ Gh : bh(qh, vh) = 0 ∀vh ∈Mh}
= {qh ∈ Gh : div qh = 0},

which implies clearly the Zh ellipticity of the bilinear form ah(·, ·) after using (2.3).
Next, we check the discrete inf-sup condition. It follows from (2.10)-(2.11) that

the discrete inf-sup condition is true for the Raviart-Thomas element [27], [5]:

inf
06=vh∈Mh

sup
06=qh∈W 0

h

b(qh, vh)
‖qh ‖div,Ω‖vh‖0,Ω

≥ C1,

where W 0
h = Wh ∩H0(div; Ω) and C1 > 0 is a constant independent of h. We now

use Lemma 4.3 to conclude that, for any vh ∈Mh,

sup
06=qh∈Gh

bh(qh, vh)
‖qh ‖X

≥ sup
06=q∈W 0

h

bh(τhq, vh)
‖ τhq ‖X

≥ 1
C

sup
06=q∈W 0

h

bh(q, vh)
‖q ‖div,Ω

=
1
C

sup
06=q∈W 0

h

b(q, vh)
‖q ‖div,Ω

≥ C1

C
‖ vh ‖0,Ω.

This completes the proof.

4.3. Proof of Theorem 2.2. The error analysis in this subsection depends cru-
cially on the behavior of the boundary corrector in the homogenization theory. Let
wε ∈ V (D) and w0 ∈ V (D) be the respective solutions of problems (3.2) and (3.3)
in §3. Let θε ∈ V (D) be the boundary corrector defined in (3.7). We make the
following assumption on the behavior of θε:
(H4) There exists a constant C, independent of ε and D, such that the following

estimate is valid:

‖ θε ‖0,∞,D ≤ C‖∇w0 ‖0,∞,D.(4.8)

This assumption, which is evident from our numerical experiments, is the basis
of the over-sampling technique to reduce the resonant error. We notice that here θε
is the boundary corrector for the homogenization problem with Neumann boundary
conditions. Such an estimate has been obtained for the homogenization problem
with Dirichlet boundary conditions, for which the maximum principle can be used.
However, this estimate is yet to be proved for the homogenization problem with
Neumann boundary conditions.

Now for any subdomain D′ ⊂ D̄′ ⊂ D with R = dist(D′, ∂D) > 0, the interior
estimate in [2] yields

‖∇θε ‖0,D′ ≤ CR−1‖ θε ‖0,D.

Thus, the assumption (H4) implies that there exists a constant C, independent of
ε,R, and the domains D′ and D, such that

‖∇θε ‖0,D′ ≤ CR−1|D|1/2‖∇w0 ‖0,∞,D.(4.9)
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The starting point of our error analysis is the error estimate in Lemma 4.4. We
are going to estimate the three terms on the right-hand side of (4.7) in order.

Lemma 4.5. There exists a constant C > 0, independent of h and ε, such that

inf
vh∈Mh

‖ uε − vh ‖0,Ω ≤ Ch(‖ f ‖0,Ω + ‖q0 ‖div,Ω).

Proof. It is easy to see from (2.1)-(2.2) that

‖∇uε ‖0,Ω + ‖pε ‖0,Ω ≤ C(‖ f ‖0,Ω + ‖q0 ‖div,Ω).

For uε ∈ V (Ω), let us define a function

ūh =
1
|K|

∫
K

uε dx in K,

whose average over Ω vanishes because uε ∈ L2
0(Ω), and thus ūh ∈ Mh. Now

standard finite element interpolation estimates imply that

inf
vh∈Mh

‖ uε − vh ‖0,Ω ≤ ‖ uε − ūh ‖0,Ω ≤ Ch‖∇uε ‖0,Ω

≤ Ch(‖ f ‖0,Ω + ‖q0 ‖div,Ω).

This completes the proof.

Lemma 4.6. Under the assumptions (H1)-(H4) there exists a constant C > 0,
independent of h and ε, such that

inf
qh∈Xh,qh·n−ḡh∈Gh

‖pε − qh ‖X ≤ C(ε + h)(‖ u0 ‖2,Ω + ‖ f ‖1,Ω)

+ C
( ε
h

+
√
ε
)
‖ u0 ‖1,∞,Ω.

To prove this lemma, we let p0 = −a∗(x)∇u0 ∈ H(div; Ω) and define th ∈ X̄h

on each K ∈ Th as

th|K = γKi p̄Ki with γKi =
∫
eKi

p0 · νK ds.

By the definition of RKi we know that Πhth|K = γKi R
K
i = rKp0 = rhp0|K , where

the operator rh : H(div; Ω) ∩ H1(Ω)d → Wh is defined in §2. Thus, Πhth ∈ Wh,
which implies th ∈ Xh. Moreover, we have th · n− ḡh ∈ Gh. The proof of Lemma
4.6 is then reduced to estimating ‖pε − th ‖X .

First, we obtain from (2.20) that

div(th|K) = γKi div p̄Ki = γKi divRKi = div(rKp0),

which, along with (2.4), yields

div(th|K) =
1
|K|

∫
K

div p0 dx =
1
|K|

∫
K

f dx.

Thus, since div pε = f by (2.1), we get

‖ div pε − div th ‖0,Ω ≤ Ch‖ f ‖1,Ω.(4.10)

It remains to estimate ‖pε − th ‖0,Ω, which we are going to do locally. For any
K ∈ Th, we denote by r̂Kp0 ∈ RT0(S) the extension of the linear function rKp0 ∈
RT0(K) to S defined as follows. Let rKp0 = cKi R

K
i ∈ RT0(K); then r̂Kp0 = dSj R

S
j

with dSj = cKi c
K
ij , where cKij is given in (2.19). Now let t̂h = dSj pSj in S; then

rS t̂h = dSj R
S
j = r̂Kp0, where rS : H1(S)d → RT0(S) is defined in (2.10). Therefore,
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from (2.17) we know that t̂h = −a(x, x/ε)∇wSε , where wSε ∈ V (S) is the solution
of the problem∫

S

a
(
x,
x

ε

)
∇wSε∇ϕdx =

∫
S

div(r̂Kp0)ϕdx(4.11)

−
∫
∂S

(r̂Kp0 · νS)ϕds ∀ϕ ∈ H1(S).

Let wS0 ∈ V (S) be the solution of the corresponding perturbed homogenized prob-
lem ∫

S

ā∗S∇wS0∇ϕdx =
∫
S

div(r̂Kp0)ϕdx(4.12)

−
∫
∂S

(r̂Kp0 · νS)ϕds ∀ϕ ∈ H1(S),

where ā∗S = (ā∗ij,S) ∈ Rd×d is the local average of a∗ over S, defined as

ā∗ij,S =
1
|S|

∫
S

a∗ij(x) dx.(4.13)

Since r̂Kp0 ∈ RT0(S) and ā∗S is a constant symmetric matrix, it is easy to check
that

curl ((ā∗S)−1r̂Kp0) = 0.

Hence, there exists a unique function ΦS ∈ V (S) such that −ā∗S∇ΦS = r̂Kp0,
which implies wS0 = ΦS in S by the uniqueness of the solution of the Neumann
problem (4.13) in V (S). We remark that this technique of “freezing coefficients” is
crucial in dealing with the locally periodic coefficients.

Lemma 4.7. The solution wS0 of the problem (4.12) belongs to H2(S) ∩W 1,∞(S)
and satisfies the following stability estimates:

|wS0 |1,S ≤ C‖ u0 ‖1,K , |wS0 |2,S ≤ C‖ u0 ‖2,K ,

|wS0 |1,∞,S ≤ Ch
− d2 +1

K ‖ u0 ‖2,K + C‖ u0 ‖1,∞,K .

Moreover, the following error estimate is valid:

‖∇(wS0 − u0) ‖0,K ≤ ChK‖ u0 ‖2,K .

Proof. Since −ā∗S∇wS0 = r̂Kp0 and r̂Kp0 ∈ L∞(S), it is obvious that wS0 ∈ H2(S)
∩W 1,∞(S). By (2.11) and the assumption hS ≤ C0hK , we have

‖∇(wS0 − u0) ‖0,K ≤ C‖ rKp0 − p0 ‖0,K + ‖ (a∗ − ā∗S)∇u0 ‖0,K
≤ ChK |p0 |1,K + ChK‖∇u0 ‖0,K ≤ ChK‖ u0 ‖2,K ,

and

|wS0 |1,K ≤ C‖ r̂Kp0 ‖0,S ≤ C‖ rKp0 ‖0,K ≤ C‖p0 ‖0,K ≤ C‖ u0 ‖1,K ,
|wS0 |2,K ≤ C| r̂Kp0 |1,S ≤ C| rKp0 |1,K ≤ C|p0 |1,K ≤ C‖ u0 ‖2,K .
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Next, let PKp0 = 1
|K|
∫
K

p0 dx; then by an inverse estimate and (2.11) we obtain
that

|wS0 |1,∞,K ≤ C‖ r̂Kp0 ‖0,∞,S ≤ C‖ rKp0 ‖0,∞,K
≤ C‖ rKp0 − PKp0 ‖0,∞,K + C‖PKp0 ‖0,∞,K
≤ Ch

− d2
K ‖ rKp0 − PKp0 ‖0,K + C‖PKp0 ‖0,∞,K

≤ Ch
− d2 +1

K ‖ u0 ‖2,K + C‖ u0 ‖1,∞,K .

This completes the proof.

Lemma 4.8. Let wSε be the solution of (4.12) and wS1 = wS0 − εχj
(
x, xε

)
∂wS0
∂xj

.
Then there exists a constant C, independent of h and ε, such that

‖∇wSε −∇wS1 ‖0,K ≤ Cε‖ u0 ‖2,K + C(hK + ε)‖ u0 ‖1,K + Cεh
d
2−1

K ‖ u0 ‖1,∞,K .

Proof. Note that in the definition of the homogenized problem (4.13) we have used
the constant coefficient ā∗S instead of a∗(x). Thus, the homogenization result in
Theorem 3.1 cannot be directly used. However, if we let θSε ∈ H1(S)/R be the
solution of the problem∫

S

a
(
x,
x

ε

)
∇θSε∇ϕdx =

∫
S

∂

∂xj

(
αkij

(
x,
x

ε

)∂wS0
∂xk

) ∂ϕ
∂xi

dx ∀ϕ ∈ H1(S),

then, using an argument similar to the proof of Theorem 3.1, we obtain from (4.12)-
(4.13) that

∫
S

a
(
x,
x

ε

)
∇(wSε − wS1 − εθSε )∇ϕdx

=
∫
S

(ā∗S − a∗(x))∇wS0∇ϕdx

+ ε

∫
S

[
aij

(
x,
x

ε

)
χk
(
x,
x

ε

) ∂2wS0
∂xj∂xk

+ aij

(
x,
x

ε

)∂χk
∂xj

(
x,
x

ε

)∂wS0
∂xk

] ∂ϕ
∂xi

dx

− ε
∫
S

[
αkij

(
x,
x

ε

) ∂2wS0
∂xj∂xk

+
∂αkij
∂xj

(
x,
x

ε

)∂wS0
∂xk

] ∂ϕ
∂xi

dx ∀ϕ ∈ H1(S)

=: I + II + III.

(4.14)

From the definition of ā∗S in (4.13) we know that ‖ ā∗S−a∗ ‖0,∞,S ≤ ChS | a∗ |1,∞,S ≤
ChS ≤ ChK . Hence

I ≤ ChK |wS0 |1,S‖∇ϕ ‖0,S.(4.15)

Next, since aij(x, y), χk(x, y), (∂χk/∂xj)(x, y), αkij(x, y) and (∂αkij/∂xj)(x, y) are
bounded functions in Ω̄× Ȳ , we deduce that

II + III ≤ Cε(|wS0 |2,S + |wS0 |1,S)‖∇ϕ ‖0,S.(4.16)

By taking ϕ = wSε − wS1 − εθSε in (4.14) and using (4.15), (4.16), we have that

‖∇(wSε − wS1 − εθSε ) ‖0,S ≤ Cε|wS0 |2,S + C(hK + ε)|wS0 |1,S
≤ Cε‖ u0 ‖2,K + C(hK + ε)‖ u0 ‖1,K ,
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where we have used Lemma 4.7 in the second inequality. Finally, by (4.9) and
Lemma 4.7, we have, since dist(∂K, ∂S) ≥ δ0hK from (H3),

‖ ε∇θSε ‖0,K ≤ Cεh
d
2−1

K |wS0 |1,∞,S ≤ Cε‖ u0 ‖2,K + Cεh
d
2−1

K ‖ u0 ‖1,∞,K .
This completes the proof.

Now we are ready to complete the proof of Lemma 4.6.

Proof of Lemma 4.6. Let uε1 = u0 − εχj
(
x, xε

)
∂u0
∂xj

. Then it is easy to show by
Lemma 4.7 that

‖∇wS1 −∇uε1 ‖0,K ≤ C(hK + ε)‖ u0 ‖2,K .
Thus, we have, by Lemma 4.8,

‖pε − th ‖0,K
≤ C‖∇uε −∇wSε ‖0,K
≤ C‖∇uε −∇uε1 ‖0,K + C‖∇uε1 −∇wS1 ‖0,K + C‖∇wS1 − wSε ‖0,K

≤ C‖∇uε −∇uε1 ‖0,K + C(hK + ε)‖ u0 ‖2,K + Cεh
d
2−1

K ‖ u0 ‖1,∞,K .
Finally, by Theorem 3.1 we arrive at

‖pε − th ‖0,Ω ≤ C(h+ ε)‖ u0 ‖2,Ω + C
( ε
h

+
√
ε
)
‖ u0 ‖1,∞,Ω.

This estimate, together with (4.10), completes the proof.

To estimate the nonconforming error in (4.7), we first recall the following result,
whose proof can be found in [13, Lemma 3.2].

Lemma 4.9. Let N ∈ L∞(Rd) be a periodic function with respect to the unit cube
Y and assume that its average over Y vanishes. Then, for any ζ ∈ H1(K)∩L∞(K),
K ∈ Th, we have∣∣∣ ∫

K

ζ(x)N
(
x,
x

ε

)
dx
∣∣∣ ≤ Cεh d2K‖∇ζ ‖0,K + Cεhd−1

K ‖ ζ ‖0,∞,K .

For any qh ∈ Xh and K ∈ Th, since qh|K ∈ Λ(K), there exist constants βKi such
that qh|K = βKi p̄Ki , and thus qh|K = βKi c

K
ijp

S
j |K by (2.18). Let q̂h = βKi c

K
ijp

S
j

in S; then we have rSq̂h = βKi c
K
ijR

S
j , where rS : H1(S)d → RT0(S) is defined in

(2.10). From (2.19) we have Πhqh = rSq̂h|K in K. Now from the definition of the
basis function pSj ∈ Σ(S) in (2.17) we know that q̂h = −a(x, x/ε)∇WS

ε in S, where
WS
ε ∈ V (S) is the solution of the problem∫

S

a
(
x,
x

ε

)
∇WS

ε ∇ϕdx =
∫
S

div(rS q̂h)ϕdx(4.17)

−
∫
∂S

(rSq̂h · νS)ϕds ∀ϕ ∈ H1(S).

Let WS
0 ∈ V (S) be the solution of the corresponding perturbed homogenized prob-

lem ∫
S

ā∗S∇WS
0 ∇ϕdx =

∫
S

div(rS q̂h)ϕdx(4.18)

−
∫
∂S

(rS q̂h · νS)ϕds ∀ϕ ∈ H1(S),
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where ā∗S = (ā∗ij,S) ∈ Rd×d with

ā∗ij,S =
1
|S|

∫
S

a∗ij(x) dx.

Again, the argument before Lemma 4.7 implies that rSq̂h = −ā∗S∇WS
0 in S. By the

finite element inverse estimates and the assumption hS ≤ ChK , we easily obtain

|WS
0 |1,∞,S ≤ Ch

− d2
K |WS

0 |1,K , |WS
0 |m,S ≤ Ch1−m

K |WS
0 |1,K , m = 1, 2.(4.19)

Let WS
1 = WS

0 − εχj
(
x, xε

)
∂WS

0
∂xj

. Then, using an argument similar to the proof of
Lemma 4.8, we deduce that

‖∇WS
ε −∇WS

1 ‖0,K

≤ Cε|WS
0 |2,S + C(hK + ε)|WS

0 |1,S + Cεh
d
2−1

K |WS
0 |1,∞,S

≤ Cε|WS
0 |2,S + C(hK + ε+ εh−1

K )|WS
0 |1,S ,

(4.20)

where we have used inverse estimate in the last inequality. Now we are going
to prove the following stability estimate, which plays an important role in the
subsequent analysis.

Lemma 4.10. Under the assumptions (H1)-(H4) there exist constants δ > 0 and
C > 0, independent of h and ε, such that if hK ≤ δ and ε/hK ≤ δ for all K ∈ Th,
the following stability estimate is valid:

|WS
0 |1,K ≤ C‖qh ‖0,K ∀K ∈ Th.

Proof. From (2.3), (4.20), and (4.19) we have

‖qh ‖0,K = ‖ a∇WS
ε ‖0,K

≥ C‖∇WS
ε ‖0,K

≥ C‖∇WS
1 ‖0,K − Cε|WS

0 |2,S − C(hK + ε+ εh−1
K )|WS

0 |1,S
≥ C‖∇WS

1 ‖0,K − C(hK + ε+ εh−1
K )|WS

0 |1,K .

(4.21)

Next, by simple calculations we get

aij

(
x,
x

ε

)∂WS
1

∂xj
= a∗ij(x)

∂WS
0

∂xj
−Gji

(
x,
x

ε

)∂WS
0

∂xj

− εaij
(
x,
x

ε

)
χk
(
x,
x

ε

) ∂2WS
0

∂xj∂xk

− εaij
(
x,
x

ε

)∂χk
∂xj

(
x,
x

ε

)∂WS
0

∂xk
,

(4.22)

where Gji (x, y) is given by

Gji (x, y) = a∗ij(x)− aik(x, y)
(
δkj −

∂χj

∂yk
(x, y)

)
.
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Multiplying the above equality by ∇WS
0 and then integrating over K, we obtain∫

K

a∗∇WS
0 · ∇WS

0 dx

=
∫
K

a
(
x,
x

ε

)
∇WS

1 · ∇WS
0 dx

+
∫
K

Gji

(
x,
x

ε

)∂WS
0

∂xj

∂WS
0

∂xi
dx

+ ε

∫
K

aij

(
x,
x

ε

)
χk
(
x,
x

ε

) ∂2WS
0

∂xj∂xk

∂WS
0

∂xi
dx

+ ε

∫
K

aij

(
x,
x

ε

)∂χk
∂xj

(
x,
x

ε

)∂WS
0

∂xk

∂WS
0

∂xi
dx.

(4.23)

Now let gKij (y) = 1
|K|
∫
K G

j
i (x, y)dx; then gKij is periodic with respect to the unit

cube Y and
∫
Y g

K
ij (y)dy = 0. Moreover, by finite element interpolation theory, we

have

‖ gKij (y)−Gji (·, y) ‖0,∞,K ≤ ChK‖∇xG(·, y) ‖0,∞,K ≤ ChK , ∀y ∈ Rd.

Now by Lemma 4.9 and (4.19) we know that∣∣∣ ∫
K

Gji

(
x,
x

ε

)∂WS
0

∂xj

∂WS
0

∂xi
dx
∣∣∣

=
∣∣∣ ∫
K

(
Gji

(
x,
x

ε

)
− gKij

(x
ε

))∂WS
0

∂xj

∂WS
0

∂xi
dx
∣∣∣

+
∣∣∣ ∫
K

gKij

(x
ε

)∂WS
0

∂xj

∂WS
0

∂xi
dx
∣∣∣

≤ ChK |WS
0 |21,K + Cεh

d
2
K |WS

0 |2,K |WS
0 |1,∞,K + Cεh−1

K |WS
0 |21,K

≤ C(hK + εh−1
K )|WS

0 |21,K .

(4.24)

Moreover, the estimates in (4.19) imply that∣∣∣ε ∫
K

aij

(
x,
x

ε

)
χK
(
x,
x

ε

) ∂2WS
0

∂xj∂xk

∂WS
0

∂xi
dx
∣∣∣ ≤ Cεh−1

K |WS
0 |21,K ,∣∣∣ε ∫

K

aij

(
x,
x

ε

)∂χk
∂xj

(
x,
x

ε

)∂WS
0

∂xk

∂WS
0

∂xi
dx
∣∣∣ ≤ Cε|WS

0 |21,K .

Substituting these estimates into (4.23), we conclude that

‖∇WS
1 ‖0,K ≥ C|WS

0 |1,K − C(ε + hK + εh−1
K )|WS

0 |1,K .
Now the desired estimate follows from (4.21) under the condition that ε/hK is
sufficiently small. This complete the proof.

From this lemma and (4.19), we deduce that

|WS
0 |1,S ≤ C‖qh ‖0,K and |WS

0 |1,∞,S ≤ Ch
− d2
K ‖qh ‖0,K .(4.25)

Moreover, since −ā∗S∇WS
0 = rS q̂h ∈ RT0(S) and div rS q̂h = div qh in K, we have

|WS
0 |2,S ≤ C| rS q̂h |1,S = C‖ div srSq̂h ‖0,S(4.26)

= C‖ div q̂h ‖0,S ≤ C‖ div qh ‖0,K .
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Proof of Theorem 2.2. By Lemmas 4.5 and 4.6 we know that we only need to
estimate the nonconforming error in Lemma 4.4. Since div Πhqh = div qh by
definition, we have bh(qh, uε) = bh(Πhqh, uε) for any qh ∈ Gh. Thus, since
Πhqh ∈ Wh ∩H0(div; Ω), we get from (2.9) that

ah(pε,qh) + bh(qh, uε) = ah(pε,qh −Πhqh) + bh(qh − Πhqh, uε)
= ah(pε,qh −Πhqh)

= −
∑
K∈Th

∫
K

∇uε · (qh −Πhqh) dx, ∀qh ∈ Gh.

For any qh ∈ Xh and K ∈ Th, since qh = −a(x, x/ε)∇WS
ε in K and Πhqh =

−ā∗S∇WS
0 in K with WS

ε ,W
S
0 ∈ V (S) the respective solutions of (4.18) and (4.19),

we deduce from (4.22) that∫
K

∇uε · (qh −Πhqh) dx = −
∫
K

∇uε · a
(
x,
x

ε

)
∇(WS

ε −WS
1 ) dx

+
∫
K

∇uε · (ā∗S − a∗)∇WS
0 dx

+
∫
K

Gji

(
x,
x

ε

)∂uε
∂xi

∂WS
0

∂xj
dx

+ ε

∫
K

aij

(
x,
x

ε

)∂χk
∂xj

(
x,
x

ε

)∂uε
∂xi

∂WS
0

∂xk
dx

+ ε

∫
K

aik

(
x,
x

ε

)
χj
(
x,
x

ε

)∂uε
∂xi

∂2WS
0

∂xj∂xk
dx

:= I + · · ·+ V .

Now we are going to estimate the terms I , · · · , V , term by term. First, by (4.20)
and (4.25)-(4.27) we get

| I | ≤ C‖∇uε ‖0,K‖∇(WS
ε −WS

1 ) ‖0,K
≤ C(ε + hK + εh−1

K )‖∇uε ‖0,K‖qh ‖div,K .

Next, by (4.25)-(4.27) and Lemma 4.10, we obtain

| II |+ | IV |+ |V | ≤ C(ε + hK)‖∇uε ‖0,K‖qh ‖div,K .

To estimate the term III , we write uε1 = u0 + εχj
(
x, xε

)
∂u0
∂xj

and derive

III =
∫
K

Gji

(
x,
x

ε

)∂(uε − uε1)
∂xi

∂WS
0

∂xj
dx

+
∫
K

Gji

(
x,
x

ε

)∂u0

∂xi

∂WS
0

∂xj
dx

+
∫
K

Gji

(
x,
x

ε

)∂χk
∂yi

(
x,
x

ε

)∂u0

∂xk

∂WS
0

∂xj
dx

+ ε

∫
K

Gji

(
x,
x

ε

)
χk
(
x,
x

ε

) ∂2u0

∂xi∂xk

∂WS
0

∂xj
dx

+ ε

∫
K

Gji

(
x,
x

ε

)∂χk
∂xi

(
x,
x

ε

)∂u0

∂xk

∂WS
0

∂xj
dx

:= III 1 + · · ·+ III 5.
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By Cauchy’s inequality and (4.25) we obtain

| III 1| ≤ C‖∇uε −∇uε1 ‖0,K‖∇WS
0 ‖0,K ≤ C‖∇uε −∇uε1 ‖0,K‖qh ‖0,K .

Next, by the argument used in deriving (4.24) and by Lemma 4.9, we have

| III 2| ≤ C(ε+ hK)‖ u0 ‖2,K‖qh ‖div,K + Cεh
d
2−1

K ‖ u0 ‖1,∞,K‖qh ‖div,K .

Since ∂Gji (x, y)/∂yi = 0 in Y , integration by parts gives∫
Y

Gji (x, y)
∂χk

∂yi
(x, y) dy = 0.

Thus, again by the argument used in deriving (4.24) and by Lemma 4.9, we get

| III 3| ≤ C(ε+ hK)‖ u0 ‖2,K‖qh ‖div,K + Cεh
d
2−1

K ‖ u0 ‖1,∞,K‖qh ‖div,K .

Finally, by Cauchy’s inequality and (4.25), we have

| III 4|+ | III 5| ≤ Cε‖ u0 ‖2,K‖qh ‖0,K .

Combining the above estimates, we conclude that∑
K∈Th

∫
K

∇uε · (qh −Πhqh) dx

≤ C(ε + h+
ε

h
)‖∇uε ‖0,Ω‖qh ‖X + C‖∇uε −∇uε1 ‖0,Ω‖qh ‖X

+ C(ε + h)‖ u0 ‖2,Ω‖qh ‖X + C
ε

h
‖ u0 ‖1,∞,Ω‖qh ‖X ,

which, after using Theorem 3.1, yields

sup
qh∈Gh

|ah(pε,qh) + bh(qh, uε)|
‖qh ‖X

≤ C(ε+ h)(‖ u0 ‖2,Ω + ‖ f ‖0,Ω + ‖q0 ‖div,Ω)

+ C(
ε

h
+
√
ε)(‖ f ‖0,Ω + ‖q0 ‖div,Ω + ‖ u0 ‖1,∞,Ω).

This completes the proof.

To conclude this section, we remark that in the proofs of Lemma 4.3 and Theorem
2.2, the choice of the constants cKij through the relation RKi = cKijR

S
j |K in (2.18)

to define the over-sampling multiscale bases plays a crucial role. Another natural
method to define the over-sampling multiscale bases is p̃Ki = c̃Kijp

S
j |K in K with

the coefficients c̃Kij so chosen that∫
eKj

p̃Ki · νK ds =
{

1 if j = i,
0 if j 6= i.

(4.27)

We have carried out numerical experiments for both methods to define the over-
sampling multiscale bases and found that both methods perform quite well. But a
rigorous theoretical justification of the choice (4.27), i.e., the derivation of an error
estimate like that in Theorem 2.2, is left for future study.
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K

S(K)

K

S(K)

Figure 1. The element K and its over-sampling element S(K):
lower right elements (left) and upper right elements (right). The
length of the horizontal and vertical edges of S(K) is four times
the corresponding length of the edges of K.

5. Numerical results

In this section we first test the accuracy of the over-sampling mixed multiscale
finite element method for solving (1.1) with periodically oscillating coefficients.
Then we consider the application of our method to the flow transport problem
(1.1)-(1.2) (the core-plug model) with a practical random log-normal permeability.
In particular, using an upscaling technique recently developed in [14], we show how
the proposed mixed multiscale finite element method leads to a complete coarse
grid algorithm.

Let Ω = (0, 1)× (0, 1) be the unit square in R2. A uniform finite element mesh
Mh is constructed by first dividing the domain Ω into NX×NY subrectangles and
then connecting the lower left and the upper right vertices of each subrectangle.
In the following such a mesh is referred to the NX × NY mesh. We divide the
finite elements in the triangulation into two groups: the lower right and upper left
elements. For each triangle K, an over-sampling element S(K) is created according
to whether K is a lower-right element or an upper-left element as shown in Figure
1. Here we assume that the permeability field is known outside the domain Ω when
the over-sampling element S(K) is extended outside Ω. This assumption is not
a restriction for practical applications, because the permeability is generated by
a geostatistical method based on the statistical characteristics, which are usually
known outside the domain of interest. On the other hand, it is also possible to
apply over-sampling only to the portion of the element that is inside the physical
domain [18].

5.1. Accuracy of the multiscale finite element method. In this subsection,
we test the over-sampling mixed multiscale finite element method by solving (2.1)-
(2.2) with

aij(x, x/ε) = a(x/ε)δij , a(x/ε) =
2 + P sin(2πx1/ε)
2 + P sin(2πx2/ε)

+
2 + P sin(2πx2/ε)
2 + P cos(2πx1/ε)

,

f(x) = 2π2 cos(πx1) cos(πx2) and g(x) = 0,
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Table 1. Results for the over-sampling method ε/h = 0.5 and
N = 32.

M ε RE1 rate RE2 rate

8 1/16 12.6155E-2 11.4035E-2

16 1/32 7.3081E-2 0.7870 6.5842E-2 0.7920

32 1/64 4.6645E-2 0.6478 4.1563E-2 0.6637

64 1/128 3.6665E-2 0.3473 2.5297E-2 0.7163

Table 2. Results for the over-sampling method (ε = 1/128 = 0.0078125)

.
Mesh

N M RE1 rate RE2 rate

128 16 6.6152E-2 6.0833E-2

64 32 4.2149E-2 0.6503 3.4530E-2 0.8170

32 64 3.6664E-2 0.2011 2.5297E-2 0.4489

16 128 5.1504E-2 -0.4903 2.8311E-2 -0.1624

where P = 1.8. The exact solution of the test problem is unknown, and so we
compare the coarse grid solutions obtained by the over-sampling multiscale method
with the resolved solution ph = −a(x/ε)∇uh, where uh is computed by using the
standard conforming linear finite element method on the 2048× 2048 mesh.

The test problem is computed on the M ×M mesh by the over-sampling mixed
multiscale method. For each triangle K, the over-sampling multiscale base func-
tions on the over-sampling element S(K) are computed on a uniform triangular
mesh which divides the horizontal and vertical edges of S(K) into 4N subintervals,
respectively. So the mesh size for solving the base functions is 1/NM in each space
direction.

The results of the computations are shown in Tables 1 and 2. In the tables

REi =
‖pexact

i − pos
i ‖0,Ω

‖pexact
i ‖0,Ω

, i = 1, 2,

is the relative error between the i-th component of the resolved flux pexact and
the corresponding component of the computed flux pos using the over-sampling
multiscale method.

Recall from Theorem 2.2 that the convergence rate is O(
√
ε+h+ ε/h). In Table

1, we test the convergence of our method when ε/h is fixed at 0.5. We can see
that the solution still converges as ε decreases. This shows that the constant in
the ε/h term in the error estimate is small. We also observe that the convergence
rate is better than

√
ε when the resonant error term ε/h is not dominant. On the

other hand, the method still suffers from the secondary cell resonance as pointed
out in [13]. In Table 2, we show the errors for a fixed ε = 1/128. We observe that
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the errors increase as h decreases, indicating the existence of the error term ε/h in
the error estimate. The resonant error is the strongest when ε = h. We remark
that previous studies [18, 13] indicate that the cell resonance error is more visible
for periodic coefficients, especially when ε/h is a rational number. But the cell
resonance error is generically small for random coefficients.

5.2. The core-plug model: local conservation property. Now we consider
the application of the over-sampling mixed multiscale finite element method to the
core-plug of the flow transport problem (1.1)-(1.2). Let Ω be the cross-section of the
reservoir through which the flow moves. Let Γin = {(x1, x2) : x1 = 0, x2 ∈ (0, 1)},
Γout = {(x1, x2) : x1 = 1, x2 ∈ (0, 1)}, and ΓN = {(x1, x2) : x1 ∈ (0, 1), x2 =
0 or 1}. We impose the following boundary conditions for the pressure equation
(1.1):

p = 1 on Γin, p = 0 on Γout, −K(x)∇p · n = 0 on ΓN ,

which represents a flow from Γin to Γout with no-flow boundary conditions on ΓN .
For the saturation equation (1.2), we impose the following initial condition and
boundary condition on the inflow boundary Γin:

S(x, 0) = 0 in Ω, S(x, t) = 1 on Γin.

Recall that S stands for the saturation of water. Denote by I the identity matrix
in R2×2, and assume the relative permeability tensor K(x) = k(x)I. Geostatistical
models often suggest that the logarithm of the permeability field k(x) is weakly or
second order stationary in space, so that the mean log permeability is constant and
its covariance only depends on the relative distance of two points rather than their
actual location [1], [10], [11], [21] and [31]. This is to say that the permeability field
is generically a log-normal random field. In this section, we will test the performance
of our mixed multiscale finite element method for a random log-normal permeability
field. Here we generate the random log-normal permeability field k(x) by using the
moving ellipse average technique [10] with the variance of the logarithm of the
permeability σ2 = 1, and the correlation lengths l1 = 0.3 and l2 = 0.01 in the x1

and x2 directions, respectively. One realization of the resulting permeability field
in our numerical experiments is depicted in Figure 2.

Throughout we are interested in the fractional flow curves. A fractional flow
curve F (t) at time t is defined as the production rate on Γout by the following
formula:

F (t) =
(∫ 1

0

v1(1, x2, t)(1− S(1, x2, t)) dx2

)/(∫ 1

0

v1(1, x2, t) dx2

)
.

Here 1 − S stands for the saturation of the produced fluid (e.g., oil), and thus
F (t) represents the percentage of the produced oil over water. We also use the
dimensionless time PVI in our computations. One PVI is the time required to fill
the whole reservoir by injecting water at Γin. It is equal to [12]

PV I =
tvaverage

1 L2

L1L2
= tvaverage

1 ,

where L1 and L2 are the lengths of the cross-section of the reservoir in the x1 and
x2 directions (L1, L2 are scaled to be 1 in our simulations), t is the real time and
vaverage

1 is the average velocity on Γin in the x1 direction. It is clear that in the
unit of PVI, the time now is equal to the fraction of the water left in the whole
reservoir, due to the heterogeneities of the medium.
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Figure 2. The random log-normal permeability field k(x). The
ratio of maximum to minimum is 168.65.

The saturation equation (1.2) will be solved by an upwinding scheme in the finite
element formulation; see [22] and [8]. Given the discrete velocity field vh, for any
K ∈ Mh with unit outer normal ν, we divide its boundary ∂K into two parts:

∂K− =
⋃
{ e ⊂ ∂K : vh(xe) · ν < 0}, inflow,

∂K+ =
⋃
{ e ⊂ ∂K : vh(xe) · ν ≥ 0}, outflow.

Here xe is the midpoint of the side e. For any piecewise constant function ηh over
the mesh Mh, we define its upwinding value on ∂K as

η̃h =
{
η+
h (interior trace of ηh) on ∂K+,
η−h (exterior trace of ηh) on ∂K−,

and assume η−h = 1 on ∂K−∩Γin. Let τ be the time step and tn = nτ, n ≥ 1. Then,
denoting by SnK the approximation of the water saturation in K at time tn, we use
the following upwinding scheme to solve (1.2):

Sn+1
K − SnK

τ
+
∫
∂K

(vh · ν)S̃nK ds = 0 ∀K ∈ Mh.(5.1)

We note that in the scheme (5.1) only the normal components of the discrete velocity
on the sides of each element K are required. For the mixed finite element methods
solving (1.1), such normal components are directly computed as part of the method.
In the following simulations, the “exact” fractional flow curve is referred to the
one computed by solving (1.1) by the lowest order Raviart-Thomas finite element
method and (1.2) by the scheme (5.1) on the fine 1024× 1024 mesh.

Our first experiment in this subsection is designed to show the importance of
the local conservation property in the flow transport simulations. Let vh be the
approximation of the Darcy velocity v = −k(x)∇p; then the local conservation
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property means ∫
∂K

(vh · ν) ds = 0 ∀K ∈ Mh.(5.2)

This is an important property, because if it is violated it would introduce unphysical
numerical sources or sinks. It is clear that (5.2) is always satisfied when the mixed
finite element method is used to solve (1.1). In this experiment we first solve the
pressure equation (1.1) by using a standard conforming linear finite element method
on the 1024× 1024 mesh to get ph, and then we recover the normal components of
the velocity by two different methods. For anyK ∈Mh, in the first method we take
vh ·ν|∂K as the interior trace of vh = −k(x)∇ph. The resulting fractional flow curve
is depicted in Figure 3(a). We note that in this method the normal components of
the velocity are in general discontinuous across the interelement boundaries, but the
local conservation property (5.2) is satisfied since k(x) is constant on each element
K and so is ∇ph. In the second method, we take vh · ν on any side e ⊂ ∂K as
the average of its values in two adjacent elements. The resulting fractional flow
curve is shown in Figure 3(b). We can see clearly that the fractional flow curve
obtained from the second method deviates significantly from the solid line obtained
from the “exact” solution. Note that in this method the normal components are
continuous across the interelement boundaries, but the local conservation property
is violated. This shows that the local conservation property is more important than
the continuity of the normal components. Moreover, we observe that the fractional
flow curve computed by the first method is in good agreement with the “exact”
one obtained by using the mixed method on the fine 1024×1024 mesh. We remark
that the mixed finite element method involves the computation of the solution of a
discrete problem which has many more degrees of freedom than solving the pressure
equation (1.1) using a linear finite element method. Thus, when one can afford
to solve the whole system (1.1)-(1.2) on a fine mesh, instead of using the mixed
finite element method, one should use the linear finite element method to solve the
pressure equation (1.1) and then generate the velocity field by the first method
mentioned above. However, we remark that the linear finite element method is a
special case. If one uses higher order displacement finite element methods to solve
(1.1), there are no obvious ways to recover the velocity field such that the local
conservation property (5.2) is satisfied.

Next we compare the performance of the mixed multiscale finite element method
and the displacement multiscale finite element method [18]. One important feature
of the multiscale finite element method is its ability to reconstruct locally the fine-
scale velocity field from the coarse grid pressure solver. The key idea is to use the
multiscale base functions to interpolate the fine grid solution. To demonstrate that
we can accurately capture the correct small-scale velocity field, we first solve the
pressure equation (1.1) on a coarse 64×64 mesh and use the multiscale finite element
basis functions to reconstruct the velocity field on the fine 1024× 1024 mesh. We
then use this locally reconstructed fine grid velocity field to solve the saturation
equation (1.2) on the fine 1024×1024 mesh. In Figure 4(a), the resulting fractional
flow curve is compared with the “exact” fractional flow curve which is obtained
by solving the pressure and the saturation equations on the fine 1024× 1024 mesh
using the mixed finite element method. As we can see from Figure 4(a), the two
fractional flow curves agree very well.
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Figure 3. Comparison of two different methods recovering the
normal components of the velocity from piecewise linear pressure
ph. Each solid line is the “exact” fractional flow curve using the
mixed finite element method solving the pressure equation. (a)
The dotted line is the fractional flow curve obtained from the first
method of local velocity recovery, which satisfies the local conser-
vation property. (b) The dotted line is the fractional flow curve
obtained from the second method of local velocity recovery, which
violates the local conservation property.

We then solve the pressure equation (1.1) by the displacement over-sampling
multiscale finite element method on a coarse 64 × 64 mesh and use the displace-
ment multiscale finite element bases to reconstruct the velocity field on the fine
mesh. Again the saturation equation (1.2) is solved on the fine 1024× 1024 mesh.
The resulting fractional flow curve and the “exact” fraction curve are shown in Fig-
ure 4(b). Due to the violation of the local conservation property, the displacement
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Figure 4. Comparison of the mixed multiscale finite element
method and the displacement multiscale finite element method.
Each solid line is the “exact” fractional flow curve using the mixed
finite element method to solve the pressure equation. (a) The dot-
ted line is the fractional flow curve using the velocity by the mixed
multiscale finite element method. (b) The dotted line is the frac-
tional flow curve using the velocity recovered from the displacement
multiscale finite element method.

multiscale finite element method begins to deviate significantly from the “exact”
fractional flow curve after some time (beyond t = 0.6). This numerical exam-
ple demonstrates that the over-sampling mixed multiscale finite element method
provides a better way to locally reconstruct the fine grid velocity field which is
suitable for long-time computations of the saturation field. This is an important
consideration from a practical viewpoint.
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5.3. The core-plug model: a coarse mesh algorithm. Now we describe how
the proposed mixed multiscale finite element can be combined with the existing
upscaling technique for the saturation equation (1.2) to get a complete coarse grid
algorithm for the problem (1.1)-(1.2). The numerical upscaling of the saturation
equation has been under intensive study in the literature, see [11], [14], [12], and
[21]. Here, we use the upscaling method proposed in [14] and [12] to design an
overall coarse grid model for the problem (1.1)-(1.2). The work of [14] for upscaling
the saturation equation involves a moment closure argument. The velocity and the
saturation are separated into a local mean quantity and a small-scale perturbation
with zero mean. For example, the Darcy velocity is expressed as v = v0 + v′

in (1.2), where v0 is the average of the velocity v over each coarse element and
v′ = (v′1,v

′
2) is the deviation of the fine-scale velocity from its coarse-scale average.

After some manipulations, an average equation for the saturation S can be derived
as follows [14]:

∂S

∂t
+ v0 · ∇S =

∂

∂xi

(
Dij(x, t)

∂S

∂xj

)
,(5.3)

where the diffusion coefficients Dij(x, t) are defined by

Dii(x, t) = 〈|v′i(x)|〉L0
i (x, t), Dij(x, t) = 0, for i 6= j,

〈|v′i(x)|〉 stands for the average of |v′i(x)| over each coarse element and L0
i (x, t) is

the length of the coarse grid streamline in the xi direction which starts at time t
at point x, i.e.,

L0
i (x, t) =

∫ t

0

yi(s) ds,
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Figure 5. The accuracy of the coarse grid algorithm. The solid
line is the “exact” fractional flow curve using the mixed finite ele-
ment method for solving the pressure equation. The slash-dotted
line is the fractional flow curve using the above coarse grid algo-
rithm.
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where y(s) is the solution of the following system of ODEs:

dy(s)
ds

= v0(y(s)), y(t) = x.

Note that the hyperbolic equation (1.2) is now replaced by a convection-diffusion
equation. The convection-dominant parabolic equation (5.3) is solved by the char-
acteristic linear finite element method [9], [26] in our simulation. The flow transport
model (1.1)-(1.2) is solved in the coarse grid as follows:

1. Solve the pressure equation (1.1) by the over-sampling mixed multiscale finite
element method and obtain the fine-scale velocity field using the multiscale
basis functions.

2. Compute the coarse grid average v0 and the fine-scale deviation 〈|v′i(x)|〉 on
the coarse grid.

3. At each time step, solve the convection-diffusion equation (5.3) by the char-
acteristic linear finite element method on the coarse grid in which the lengths
L0
i (x, t) of the streamline are computed for the center of each coarse grid

element.

The mixed multiscale finite element method can be readily combined with the
above upscaling model for the saturation equation. The local fine grid velocity v′

will be constructed from the multiscale finite element base functions. The main cost
in the above algorithm lies in the computation of multiscale bases, which can be
done a priori and completely in parallel. This algorithm is particularly attractive
when multiple simulations must be carried out due to the change of boundary
and source distribution, as is often the case in engineering applications. In such
situation, the cost of computing the multiscale base functions is just overhead.
Moreover, once these base functions are computed, they can be used for subsequent
time integration of the saturation. Because the evolution equation is now solved on a
coarse grid, a larger time step can be used. This also offers additional computational
saving. For many oil recovery problems, due to the excessively large fine grid data,
upscaling is a necessary step before performing many simulations and realizations
on the upscaled coarse grid model. If one can coarsen the fine grid by a factor of
10 in each dimension, the computational saving of the coarse grid model over the
original fine model could be as large as a factor 10,000 (three space dimensions plus
time).

We perform a coarse grid computation of the above algorithm on the coarse
64 × 64 mesh. The fractional flow curve using the above algorithm is depicted
in Figure 5. It gives excellent agreement with the “exact” fractional flow curve.
The contour plots of the saturation S at times t = 0.25 and t = 0.5 are depicted
in Figure 6. The contour plots of the saturation S on the fine 1024 × 1024 mesh
at times t = 0.25 and t = 0.5 computed by using the “exact” velocity field are
displayed in Figure 7. We observe that the contour plots in Figure 6 approximate
the “exact” ones in Figure 7 in accuracy, but the sharp oil/water interfaces in
Figure 7 are smeared out. This is due to the parabolic nature of the upscaled
equation (5.3). We have also performed many other numerical experiments to test
the robustness of this combined coarse grid model. We found that for permeability
fields with strong layered structure, the above coarse grid model is very robust. The
agreement with the fine grid calculations is very good. We are currently working
towards a qualitative and quantitative understanding of this upscaling model. It is
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Figure 6. The contour plots of the saturation S computed using
the upscaled model on a 64× 64 mesh at time t = 0.25 (left) and
t = 0.5 (right)

likely that one can justify this upscaling model for a periodic layered permeability
field.

Finally, we remark that the upscaling equation (5.3) uses small-scale information
v′ of the velocity field to define the diffusion coefficients. This information can
be constructed locally through the mixed multiscale basis functions. This is an
important property of our multiscale finite element method. It is clear that solving
directly the homogenized pressure equation

div(K∗(x)∇p∗) = 0

will not provide such small-scale information. On the other hand, whenever one can
afford to resolve all the small-scale features by a fine grid, one can use fast linear
solvers, such as multigrid methods, to solve the pressure equation (1.1) on the fine
mesh. From the fine grid computation, one can easily construct the average velocity
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Figure 7. The contour plots of the saturation S computed on
the fine 1024× 1024 mesh using the “exact” velocity field at time
t = 0.25 (left) and t = 0.5 (right)

v0 and its deviation v′. However, when multiple simulations must be carried out due
to the change of boundary conditions, the pressure equation (1.1) will then have to
be solved again on the fine mesh. The multiscale finite element method only solves
the pressure equation once on a coarse mesh, and the fine grid velocity can be
constructed locally through the finite element bases. This is the main advantage of
our mixed multiscale finite element method. This process becomes more difficult for
a nonlinear two-phase flow, due to the dynamic coupling between the pressure and
the saturation. We are now investigating the possibility of upscaling the two-phase
flow by using multiscale finite element base functions that are constructed from the
one-phase flow (time-independent). In this case, we need to provide corrections
to the pressure equation to account for the scale interaction near the oil/water
interface.
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