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CONVERGENCE OF THE UNITARY QR ALGORITHM
WITH A UNIMODULAR WILKINSON SHIFT

TAI-LIN WANG AND WILLIAM B. GRAGG

Abstract. In applying the QR algorithm to compute the eigenvalues of a
unitary Hessenberg matrix, a projected Wilkinson shift of unit modulus is
proposed and proved to give global convergence with (at least) a quadratic
asymptotic rate for the QR iteration. Experimental testing demonstrates that
the unimodular shift produces more efficient numerical convergence.

1. Introduction

To compute the eigenvalues of a unitary Hessenberg matrix, nonzero shifts must
be used in applying the QR algorithm to avoid cycling and invariance of the matrix
[5]. In a previous work [9] we showed that global convergence of the QR iteration is
guaranteed with the Wilkinson shift in the unitary case, if only the starting value
of the shift sequence is not zero, and an initial-value modification of the shift was
proposed in the exceptional case (when the starting shift is zero). A general mixed
shift strategy, devised with selective use of the modified Rayleigh and Wilkinson
shifts, was also presented. The asymptotic rate of convergence was shown to be
cubic with these shift strategies. Nevertheless, there are special unitary Hessenberg
matrices in which decrease of the last subdiagonal element can be extremely slow in
the early stages of the QR iteration. As numerical examples illustrate (see Section
4), it may take a considerable number of iterations in such special cases for the
iterating matrix to deflate. A similar phenomenon was observed by Wilkinson in
the symmetric tridiagonal QR with the Rayleigh shift [12, p.414].

In this paper a further improvement is made over the shift strategy to elimi-
nate the above-mentioned drawback. Based on the fact that eigenvalues of unitary
matrices are all located on the unit circle, we modify the Wilkinson shift by pro-
jecting an appropriate Schur parameter of the iterating unitary Hessenberg matrix
onto the unit circle so that the shift chosen (as an eigenvalue of the modified lower
right 2-by-2 submatrix) is always unimodular.1 (In the conventional form, the shift
is situated inside the circle and, in extreme cases, could be fairly small or even
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zero.) The idea of using unimodular shifts in the unitary case is quite natural, but
the hard part is the mathematical proof of global convergence with this modified
Wilkinson shift. Use is made of the fact that, on the unit circle, the modulus form
of the Szegö recurrence relations for a unitary matrix is simpler to deal with. The
main results are, with the unimodular Wilkinson shift, the QR iteration converges
globally and the asymptotic rate is at least quadratic [7]; experimental testing also
indicates that the modified shift gives more rapid numerical convergence than its
traditional counterpart, especially in those extreme cases.

2. Notation and background

Throughout, U ∈ Cn×n will represent a unitary Hessenberg matrix with positive
elements βk := e∗k+1Uek, 1 ≤ k < n, on the subdiagonal and zero entries below it,
where ek denotes the kth column of the identity matrix and e∗k the conjugate trans-
pose of ek. The same structure and similar symbols for the subdiagonal elements
apply to Û and U (k), which are defined later. In general, small Greek letters are
reserved for scalars. The set of the eigenvalues of U is denoted by λ(U), and the
order of U is assumed to be at least 3.

2.1. The unitary QR algorithm. Given a unitary Hessenberg matrix U and a
nonzero shift λ ∈ C, consider the unitary-triangular factorization of

U − λI =: QR,(2.1)

where Q is unitary and R is upper triangular with nonnegative diagonal elements.
This factorization is the matrix formulation of the Gram-Schmidt orthonormalizing
process applied to the columns of U − λI from left to right, and hence Q is also
Hessenberg. Let σk := e∗k+1Qek, 1 ≤ k < n, be the subdiagonal elements of Q
and let ρk := e∗kRek, 1 ≤ k ≤ n, be the diagonal elements of R. Note that the
factorization is unique if λ 6∈ λ(U). From Q we define Û , the QR transform of U ,
by Û := Q∗UQ. It is easy to check that

Û − λI = RQ,(2.2)

and that Û is also (unitary) Hessenberg. We assume, with no loss of generality in
theoretical analysis, that all the subdiagonal elements {βk}n−1

k=1 of U are positive;
consequently, with λ 6∈ λ(U) and {ρk}nk=1 being positive, all the subdiagonal ele-
ments {σk}n−1

k=1 of Q and {β̂k}n−1
k=1 of Û are also positive for each QR step U → Û .

This is readily seen by equating the corresponding subdiagonal elements on each
side of the matrix equations (2.1) and (2.2), respectively:

βk = σkρk,(2.3)

β̂k = σkρk+1, 1 ≤ k < n.(2.4)

Observe that

λ ∈ λ(U)⇐⇒ ρn = 0⇐⇒ β̂n−1 = 0 =⇒ α̂nn := e∗nÛen = λ.



CONVERGENCE OF THE UNITARY QR ALGORITHM 377

The unitary QR algorithm [2] iterates the QR transformation U → Û , with an
appropriate nonzero shift λ selected at each step:

U (1) := U,

for k = 1, 2, 3, . . .

U (k) − λ(k)I =: Q(k)R(k),

U (k+1) := R(k)Q(k) + λ(k)I,

and a sequence of unitarily similar Hessenberg matrices U (k) (unreduced if λ(k) 6∈
λ(U)) is produced. The remarkable fact is that, with the shift strategy suitably
devised, β(k)

n−1 → 0 rapidly as k → ∞ [12], [1], [4], [9]. Numerically, as β(k)
n−1

becomes negligible to working accuracy, α(k)
nn := e∗nU

(k)en can be accepted as an
(approximate) eigenvalue of U and the computation continues with the submatrix
obtained by deleting the last row and column; sequentially all the eigenvalues are
computed and come out in turn [11], [6], [8].

2.2. Schur parameterization. Every unitary Hessenberg matrix U with positive
subdiagonal elements {βk}n−1

k=1 can be uniquely represented in the Schur parametric
form U(α1, α2, . . . , αn) [2], [9]:

U =


−ᾱ0α1 −ᾱ0β1α2 · · · −ᾱ0β1β2 · · ·βn−2αn−1 −ᾱ0β1β2 · · ·βn−1αn
β1 −ᾱ1α2 · · · −ᾱ1β2 · · ·βn−2αn−1 −ᾱ1β2 · · ·βn−1αn

β2
. . .

...
...

. . . −ᾱn−2αn−1 −ᾱn−2βn−1αn
βn−1 −ᾱn−1αn

 ,
(2.5)

where α1, α2, . . . , αn are called the Schur parameters of U, α0 := 1, |αn| = 1,

|αk|2 + β2
k = 1, αk ∈ C, βk > 0, 1 ≤ k < n,(2.6)

and

αjk := e∗jUek = −ᾱj−1βjβj+1 · · ·βk−1αk, 1 ≤ j ≤ k ≤ n.
Similarly, the matrix Q in the QR factorization of U − λI is also unitary Hes-
senberg with positive subdiagonal elements {σk}n−1

k=1 and, accordingly, can also be
represented in the Schur form Q(γ1, γ2, . . . , γn) as (2.5) with parameters γ0 := 1,
|γn| = 1, and

|γk|2 + σ2
k = 1, γk ∈ C, σk > 0, 1 ≤ k < n.(2.7)

2.3. A unimodular Wilkinson shift. Based upon the fact that the eigenvalues
of U are all situated on the unit circle, we invariably use shifts of unit magnitude
throughout the QR iteration, and we modify the conventional definition of the
Wilkinson shift by projecting the Schur parameter αn−2, which appears in the
lower right 2-by-2 submatrix of U (see (2.5)), onto the unit circle so that the
shift λ (hereafter briefly called the W-shift), taken as one of the eigenvalues of the
projected unitary submatrix, is always of unit modulus (|λ| = 1). That is, the
W-shift is chosen as that eigenvalue of[

− ᾱn−2
|αn−2|αn−1 − ᾱn−2

|αn−2|βn−1αn
βn−1 −ᾱn−1αn

]
(2.8)
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which is closer to −ᾱn−1αn, if αn−2 6= 0; in case αn−2 = 0, replace the unimodular
factor αn−2

|αn−2| in (2.8) by αn. In terms of the Schur parameters of U , the W-shift λ
satisfies the following characteristic relations: If αn−2 6= 0, then

λ2 +
(
ᾱn−2

|αn−2|
αn−1 + ᾱn−1αn

)
λ+

ᾱn−2

|αn−2|
αn = 0,(2.9)

|ᾱn−1αn + λ| ≤ βn−1 ≤
∣∣∣∣ ᾱn−2

|αn−2|
αn−1 + λ

∣∣∣∣ ;(2.10)

if αn−2 = 0, replace αn−2
|αn−2| in the above two relations by αn.

Remark. In the extreme case αn−2 = 0, it does not matter how we define the W-
shift λ, as long as the conditions |λ| = 1 and |ᾱn−1αn + λ| ≤ βn−1 (the lower
bound in (2.10)) are satisfied; this is made clear later in the proof of Lemma 4(a)
in Section 3.

2.4. Szegö recurrence relations. Consider the factorization U − λI = QR. Let
{χk}nk=1 be the characteristic polynomials of the successive leading principal subma-
trices {Uk}nk=1 of U . Then, with Q in its Schur parametric form Q(γ1, γ2, . . . , γn),
each χk can be expressed as a product of the parameter γk and the diagonal ele-
ments {ρj}kj=1 of R (for details, see [9]):

χk = χk(λ) := det(λIk − Uk) = ρ1ρ2 · · · ρkγk, 1 ≤ k ≤ n.(2.11)

These polynomials are usually called the (monic) Szegö polynomials associated with
U(α1, α2, . . . , αn), and they satisfy the Szegö recurrence relations [2], [9]:

χ0 := 1, χ̃0 := 1;
χk = λχk−1 + αkχ̃k−1,(2.12)
χ̃k = χ̃k−1 + ᾱkλχk−1, 1 ≤ k ≤ n,

where the auxiliary polynomials χ̃k satisfy the relation χ̃k(λ) = λkχck(1/λ), with
the superscript c denoting conjugation of the coefficients of a polynomial. We may
also put χ̃k in product form similar to that in (2.11) for χk:

χ̃k =: ρ1ρ2 · · · ρkγ̃k, 1 ≤ k ≤ n.(2.13)

Then, since ρ1ρ2 · · · ρn−1 > 0, (2.12) can be replaced by

γ0 := 1, γ̃0 := 1;
ρkγk = λγk−1 + αkγ̃k−1,(2.14)
ρkγ̃k = γ̃k−1 + ᾱkλγk−1, 1 ≤ k ≤ n.

We have, as a special case of the Christoffel-Darboux-Szegö formula [3, p.192],

|γ̃k|2 + |λ|2σ2
k = 1, 1 ≤ k ≤ n,(2.15)

where σn := 0. (See [9] for a simple proof of this identity.) Note that for |λ| = 1
we obtain, from (2.7), (2.15), (2.11), and (2.13),

|γk| = |γ̃k| and |χk| = |χ̃k|, 1 ≤ k ≤ n.(2.16)
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3. Convergence of the QR iteration

3.1. Properties related to convergence. We say the QR iteration converges
if the last subdiagonal element β(k)

n−1 of U (k) converges to zero. The following
theorem about convergence is analogous to Theorem 6 of [9] with the conventional
shifts for normal matrices, and the proof is therefore omitted. Here, we use instead
a projected unimodular shift for unitary matrices in the iteration.

Theorem 1 (Properties of convergence). Let U (k) be the QR iterates of U with the
W-shift λ(k). If β(k)

n−1 → 0 as k →∞, then

(a) λ(k) → λn for some λn ∈ λ(U),
(b) |χ(k)

n−1(λ(k))| ≥ δn−1 +O(ε), where δ := min
j 6=k
{|λj−λk| : λj , λk ∈ λ(U)} >

0 and ε is an arbitrarily small number,
(c) ρ

(k)
n → 0, and {ρ(k)

j }n−1
j=1 are bounded away from zero.

To estimate the order of convergence of β(k)
n−1 to zero, a relation between βn−1

and β̂n−1 is needed for one QR step. Jiang and Zhang [4, Lemma 2] gave a relation
for real symmetric tridiagonal matrices. A similar relation has been extended to
(upper) Hessenberg matrices in [9, Lemma 4], which is given below:

Rate estimate. For each QR transformation U → Û (unitariness is not a require-
ment),

β̂n−1 =
[

ρ1ρ2 · · · ρn−2|χn(λ)|
(ρ1ρ2 · · · ρn−2βn−1)2 + |χn−1(λ)|2

]
βn−1.(3.1)

This relation is indeed an identity, and can be easily checked through the use of
(2.3), (2.4), (2.11), and (2.7).

3.2. A fundamental upper bound. The Schur parameters {αk}nk=1, {γk}nk=1 of
U and Q, plus the diagonal elements {ρk}nk=1 of R, are interrelated through the
equation U −λI = QR. With a unimodular shift |λ| = 1, inequalities involved with
the recurrence relations (2.14) can be greatly simplified by exploiting the equal-
modulus relation (2.16). In the following lemma a least upper bound for σk can
be expressed in terms of βk and σk−1 [7]. This bound is fundamental to the proof
of global convergence of QR and will be used repeatedly in the subsequent section.
To simplify the mathematical expressions in our analysis, we use the notational
convention

〈βk〉 :=

(
βk

1 +
√

1− β2
k

)2

, 1 ≤ k < n.(3.2)

Then clearly

0 < 〈βk〉 ≤ βk ≤ 1(3.3)

and

βk → 0⇐⇒ 〈βk〉 → 0,
βk → 1⇐⇒ 〈βk〉 → 1.

Note the one-to-one correspondence between βk and 〈βk〉.
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Lemma 2. Let U − λI = QR with |λ| = 1. Then, for 1 ≤ k < n,

0 <
1√

1 + 〈βk〉−1(1 − σ2
k−1)

≤ σk ≤
1√

1 + 〈βk〉(1− σ2
k−1)

< 1.(3.4)

Proof. Applying the triangle inequality to the recurrence relations in (2.14), using
(2.16), and squaring both sides of the inequality, we obtain

ρ2
k|γk|2 ≥ (1− |αk|)2|γk−1|2,

which is equivalent to

1
σ2
k

≥ 1 +

(
βk

1 +
√

1− β2
k

)2

(1− σ2
k−1),

using the fact that ρ2
k = β2

k/σ
2
k, |γk|2 = 1 − σ2

k, and 1 − |αk| = β2
k/(1 +

√
1− β2

k)
(cf. (2.3), (2.7), and (2.6)). Therefore,

σk ≤
1√

1 +
(

βk

1+
√

1−β2
k

)2

(1− σ2
k−1)

=:
1√

1 + 〈βk〉(1 − σ2
k−1)

.

Since γ0 := 1, σ0 := 0 and 0 < βk ≤ 1, the right-hand side of the inequality is
strictly less than unity. The lower bound on σk follows similarly by applying the
triangle inequality to (2.14) the other way and squaring:

ρ2
k|γk|2 ≤ (1 + |αk|)2|γk−1|2.

3.3. Convergence with the unimodular shift. The proof of global convergence
is based on the monotonic decrease of β(k)

n−2β
(k)
n−1 and its connection with β

(k+1)2
n−1

[7]. To establish these relations (in Lemma 4), we begin with a preparatory lemma.

Lemma 3. Let U − λI = QR with |λ| = 1. Then

(a)
√

1− σ2
n−3 σn−2σ

2
n−1 <

√
1+〈βn−2〉

1+〈βn−2〉+〈βn−2〉〈βn−1〉 ,

(b) (i) (1 + 〈βn−2〉)
√

1− σ2
n−3 σ

2
n−2σn−1 ≤ ω(〈βn−2〉, 〈βn−1〉) < 1,

(ii) ω(〈βn−2〉, 〈βn−1〉) → 1 =⇒ 〈βn−2〉〈βn−1〉 → 0 ⇐⇒ βn−2βn−1 → 0,
where the defining formula and basic properties of ω(〈βn−2〉, 〈βn−1〉)
are given in the Appendix.

Proof. (a) From Lemma 2 we have

1− σ2
n−2 ≥ 1− 1

1 + 〈βn−2〉(1 − σ2
n−3)

=
〈βn−2〉(1 − σ2

n−3)
1 + 〈βn−2〉(1− σ2

n−3)

and

σ2
n−1 ≤ 1

1 + 〈βn−1〉(1 − σ2
n−2)

≤ 1

1 + 〈βn−1〉
[
〈βn−2〉(1−σ2

n−3)

1+〈βn−2〉(1−σ2
n−3)

]
=

1 + 〈βn−2〉(1 − σ2
n−3)

1 + 〈βn−2〉(1 + 〈βn−1〉)(1 − σ2
n−3)

.(3.5)
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Therefore, √
1− σ2

n−3 σn−2σ
2
n−1

≤

√
(1− σ2

n−3)
1 + 〈βn−2〉(1− σ2

n−3)

[
1 + 〈βn−2〉(1− σ2

n−3)
1 + 〈βn−2〉(1 + 〈βn−1〉)(1 − σ2

n−3)

]
,

from (3.4) and (3.5),

=

√
(1 − σ2

n−3)[1 + 〈βn−2〉(1− σ2
n−3)]

1 + 〈βn−2〉(1 + 〈βn−1〉)(1 − σ2
n−3)

<

√
1 + 〈βn−2〉

1 + 〈βn−2〉+ 〈βn−2〉〈βn−1〉
,

by a simple derivative calculation using the fact that 0 < 1− σ2
n−3 < 1.

(b) Again from (3.4) and (3.5) it follows that

(1+〈βn−2〉)
√

1−σ2
n−3 σ

2
n−2σn−1

≤ (1+〈βn−2〉)
√

(1− σ2
n−3)

[1+〈βn−2〉(1−σ2
n−3)][1+〈βn−2〉(1+〈βn−1〉)(1−σ2

n−3)]
.

For each 0 < 〈βn−2〉 ≤ 1, 0 < 〈βn−1〉 ≤ 1, the above expression, treated as a
function of (1− σ2

n−3), has a least upper bound ω(〈βn−2〉, 〈βn−1〉) which, together
with the properties stated in (i) and (ii), is derived in the Appendix. Note that
〈βn−2〉〈βn−1〉 → 0⇐⇒ βn−2βn−1 → 0 follows directly from (3.2).

Lemma 4. Let Û be the QR transform of U with the W-shift λ. Then
(a) |χn(λ)| ≤ (1 + 〈βn−2〉)β2

n−2βn−1|χn−3(λ)|,

(b) β̂n−1 <

[
(1+〈βn−2〉)

√
1+〈βn−2〉

1+〈βn−2〉+〈βn−2〉〈βn−1〉

]
βn−2 <

√
2 βn−2,

(c) β̂n−2β̂n−1 ≤ ω(〈βn−2〉, 〈βn−1〉)βn−2βn−1 < βn−2βn−1,
(d) β̂n−1 ≤

√
2βn−1.

Proof. With recurrence relations (2.12) χn can be expressed in terms of χn−3 and
χ̃n−3:

χn = λ[λ2 + (ᾱn−2αn−1 + ᾱn−1αn)λ+ ᾱn−2αn]χn−3(3.6)
+[αn−2λ

2 + (αn−2ᾱn−1αn + αn−1)λ + αn]χ̃n−3.

Assume αn−2 6= 0. Then, combining (3.6) with the characteristic equation (2.9) for
the W-shift λ, we get

χn = αnλ(1− |αn−2|)(αn−1ᾱn + λ̄)
(
− ᾱn−2

|αn−2|
λχn−3 + χ̃n−3

)
.

Taking the modulus on each side and applying the triangle inequality to the last
factor on the right, we obtain, on condition that |λ| = 1,

|χn| ≤ 2(1− |αn−2|)|ᾱn−1αn + λ||χn−3|, by (2.16),
≤ 2(1− |αn−2|)βn−1|χn−3|, from (2.10),
= (1 + 〈βn−2〉)β2

n−2βn−1|χn−3|, using (2.6) and (3.2).

If αn−2 = 0, then (3.6) reduces to

χn = λ2(λ+ ᾱn−1αn)χn−3 + (αn−1λ+ αn)χ̃n−3
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and (a) still holds (with βn−2 = 〈βn−2〉 = 1), because for |λ| = 1,

|αn−1λ+ αn| = |λ+ ᾱn−1αn| ≤ βn−1, from (2.10),

and |χn−3| = |χ̃n−3|. This completes (a).
Next, applying relations (2.11), (2.7) and (2.3) to the inequality in (a) we obtain

ρn ≤ (1 + 〈βn−2〉)
√

1− σ2
n−3 σn−2σn−1βn−2(3.7)

and, equivalently,

ρn−1ρn ≤ (1 + 〈βn−2〉)
√

1− σ2
n−3 σn−2βn−2βn−1.(3.8)

Therefore we have

β̂n−1 = σn−1ρn, by (2.4),

≤
[
(1 + 〈βn−2〉)

√
1− σ2

n−3 σn−2σ
2
n−1

]
βn−2, from (3.7),

<

[
(1+〈βn−2〉)

√
1+〈βn−2〉

1+〈βn−2〉+〈βn−2〉〈βn−1〉

]
βn−2, from Lemma 3(a),

<
√

1 + 〈βn−2〉 βn−2 ≤
√

2 βn−2, using (3.3),

and

β̂n−2β̂n−1

= σn−2σn−1ρn−1ρn, by (2.4),

≤ (1 + 〈βn−2〉)
√

1− σ2
n−3 σ

2
n−2σn−1βn−2βn−1, from (3.8),

≤ ω(〈βn−2〉, 〈βn−1〉)βn−2βn−1 < βn−2βn−1, from Lemma 3(b)(i).

These give (b) and (c), respectively.
Finally, to prove (d), note that

β̂n−1 ≤ ρn

≤ ||Ren|| = ||QRen|| = ||(U − λI)en||

= ||e∗n(U − λI)|| =
√
β2
n−1 + |ᾱn−1αn + λ|2

≤
√

2βn−1,

from the basic properties related to the QR transformation U → Û and (2.10), a
characteristic inequality for the W-shift λ.

We now arrive at the major result of our theoretical analysis [7].

Theorem 5 (Global convergence). Let U (k) be the QR iterates of U with the ex-
clusive use of the W-shift. Then β

(k)
n−1 → 0.

Proof. From Lemma 4(c), we know that β
(k)
n−2β

(k)
n−1 form a bounded decreasing

sequence which has a limit, say β. We claim β = 0, because if β > 0, then it would
follow that ω(〈β(k)

n−2〉, 〈β
(k)
n−1〉)→ 1 and, from Lemma 3(b)(ii), that β(k)

n−2β
(k)
n−1 → 0,

a contradiction. Hence β(k)
n−1 → 0, because

β
(k+1)2
n−1 < 2 β(k)

n−2β
(k)
n−1 → 0

from (b) and (d) of Lemma 4.
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Unlike unitary QR with the Wilkinson shift (cubic order for β(k)
n−1 → 0, as proved

in [7], see also [9]), with the unimodular shift the order of convergence can only be
shown to be quadratic.

Theorem 6 (Local convergence). Let Û be the QR transform of U with the W-shift
λ. Then β̂n−1 = O(β2

n−2β
2
n−1) as βn−1 → 0.

Proof. The conclusion follows immediately from (3.1) and Lemma 4(a), since all
the elements involved in the QR transformation are bounded and, as βn−1 → 0,
|χn−1(λ)| is bounded from below by Theorem 1(b).

4. Numerical experiments

Two specific examples are given to demonstrate the superiority of the unimodular
shift introduced in this paper. In each case the starting matrix U =: U (1) in the
QR iteration is specified by assigning numerical values to its Schur parameters
{αj}nj=1. The test was focused on determining the number of iterations required

for β(k)
m−1, the last subdiagonal element of the iterating Hessenberg matrix U (k)

m of
size m, to become negligible at stages m = n, n−1, . . . , 2; and the criterion we
used is fl(1 + β

(k)
m−1) = 1, that is, when β

(k)
m−1 is smaller than the unit roundoff

ε. Computations were done in double-precision Fortran on an IBM compatible
PC-80486 with ε ≈ 10−19.

In each experiment the results for n = 8 are given. To facilitate the listing of
data, the following contractions are used:

EH Eberlein-Huang shift (proposed in [1]),

W
′

modified Wilkinson shift (described in [9]) ,

W unimodular Wilkinson shift (proposed in Section 2.3),
itmax maximum number of iterations required to get one eigenvalue,
itsum total number of iterations required to get all the eigenvalues.

Experiment 1. For 1 ≤ j ≤ n−2, αj = 1/
√

2 ; αn−1 = 10−7, αn = 1.

n = 8 EH W
′

W
itmax 63 5 4
itsum 80 22 21

Experiment 2. For 1 ≤ j ≤ n−2, αj = 0 ; αn−1 = 10−7, αn =
√
−1.

n = 8 EH W
′

W
itmax 28 38 4
itsum 45 55 21

Although the rate of β(k)
n−1 → 0 is ultimately cubic for both EH and W

′
[7], [9],

with these shifts it may take numerous iterations for the (first) deflation to occur,
as the above two examples demonstrate. This is mainly because, in the early stages
of the iteration, the shift is too small (but not zero) to make a significant change of
the iterating matrix from unitariness before the QR factorization. But eventually,
as the magnitude of the shift keeps growing toward unity, an asymptotic regime is
established and convergence is then very swift. In contrast, the W-shift produces
very efficient numerical convergence in these examples.
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Large numbers of random unitary Hessenberg matrices were also tested for con-
vergence with these shift strategies, and overall, the W-shift seems to be the choice
for the unitary QR, as the data in the following table illustrate. The numbers of
iterations shown in the rows are the numerical averages over 3000 sets of “randomly
selected” Schur parameters {αj}nj=1, and there are about ±1% fluctuations in these
averages when a different seed value is assigned to the random-number generator.

Experiment 3. Randomly selected {αj}nj=1:
for 1 ≤ j ≤ n−1, 0 < |αj | < 1; |αn| = 1.

n = 8 EH W
′

W
itmax 4.72 4.15 4.01
itsum 21.5 19.9 19.4

Appendix. Basic properties of ω(〈βn−2〉, 〈βn−1〉)
All the mathematical letter symbols used in this section represent positive real

numbers less than or equal to one. Before we define ω(〈βn−2〉, 〈βn−1〉), a lemma
with simpler notation is presented.

Lemma. Let f(x ; b1, b2) := (1 + b2)
√

x
(1+b2x)(1+b2(1+b1)x) , where 0 < x < 1, 0 <

b1 ≤ 1, 0 < b2 ≤ 1. Then:
(a)

g(b1, b2) := sup
0<x<1

f(x ; b1, b2) =


√

1+b2
1+b2+b1b2

if b2 ≤ 1√
1+b1

,

1+b2√
b2(1+

√
1+b1)

if b2 > 1√
1+b1

;

(b) 0 < g(b1, b2) < 1; if g(b1, b2)→ 1, then b1b2 → 0.

Proof. (a) Take the derivative of f(x ; b1, b2) with respect to x and calculate.
(b) If b2 ≤ 1√

1+b1
, then

g(b1, b2) =
√

1 + b2
1 + b2 + b1b2

< 1.(A.1)

If b2 > 1√
1+b1

, then
√

1 + b1 >
1
b2

and

g(b1, b2) =
1 + b2√

b2(1 +
√

1 + b1)
<

1 + b2√
b2(1 + 1

b2
)

=
√
b2 ≤ 1.(A.2)

Clearly, 0 < g(b1, b2) < 1. If g(b1, b2)→ 1, then

in case (A.1) : b1b2 → 0
in case (A.2) : b2 → 1 and b1 → 0

}
=⇒ b1b2 → 0.

Setting x := 1 − σ2
n−3, b1 := 〈βn−1〉, and b2 := 〈βn−2〉 in the above lemma, we

have

(1+〈βn−2〉)

√
(1− σ2

n−3)
[1+〈βn−2〉(1−σ2

n−3)][1+〈βn−2〉(1+〈βn−1〉)(1−σ2
n−3)]

= f(x ; b1, b2) ≤ g(b1, b2) =: ω(〈βn−2〉, 〈βn−1〉),
and this completes the proof of Lemma 3(b).
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