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A HOLISTIC FINITE DIFFERENCE APPROACH
MODELS LINEAR DYNAMICS CONSISTENTLY

A. J. ROBERTS

Abstract. I prove that a centre manifold approach to creating finite difference
models will consistently model linear dynamics as the grid spacing becomes
small. Using such tools of dynamical systems theory gives new assurances
about the quality of finite difference models under nonlinear and other pertur-
bations on grids with finite spacing. For example, the linear advection-diffusion
equation is found to be stably modelled for all advection speeds and all grid
spacings. The theorems establish an extremely good form for the artificial in-
ternal boundary conditions that need to be introduced to apply centre manifold
theory. When numerically solving nonlinear partial differential equations, this
approach can be used to systematically derive finite difference models which
automatically have excellent characteristics. Their good performance for fi-
nite grid spacing implies that fewer grid points may be used and consequently
there will be less difficulties with stiff rapidly decaying modes in continuum
problems.

1. Introduction

Following the introduction of holistic finite differences in [18, 11], we would like to
investigate numerical models for the dynamics of a field u(x, t) evolving according to
nonlinear reaction-diffusion equations such as ut = uxx + f(u, ux) . This particular
class includes Burgers’ equation, f = −uux, and autocatalytic reactions, such as
f = u(1− u). However, before attacking such nonlinear problems, here we restrict
attention to proving that the new methodology accurately models the dynamics of
quite general linear pde’s.

Modern dynamical systems theory has had to date very little impact on classical
numerical approximations. Indeed, the very first sentence in Garćia-Archilla and
Titi [9] says “Finite-element methods seem not to have benefited as much as spec-
tral methods from some of the recent advances in the Dynamical Systems approach
to partial differential equations.” The concept of inertial manifolds has been devel-
oped to capture the long-term, low-dimensional dynamics of dissipative pde’s [20].
However, most efforts to construct approximations to an inertial manifold have
been based upon the global nonlinear Galerkin method of Roberts [15], Foias et al.
[5] and Marion and Temam [12]. This is so even for the variants explored by Jolly
et al. [10] and Foias and Titi [8]. In contrast, the approach proposed here is based
purely upon the local dynamics on relatively small elements while maintaining, as
do inertial manifolds, fidelity with the solutions of the original pde.
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I propose [18] to use centre manifold theory to construct finite difference models.
For problems in one spatial dimension I consider implementing the method of lines
by discretising in space x and integrating in time t as a set of ordinary differential
equations, sometimes called a semi-discrete approximation [6, 8, e.g.]. I only address
spatial discretisation and treat the resulting set of ordinary differential equations
as a continuous time dynamical system. Classical finite difference approximations
are made by appealing to consistency in the limit as the grid spacing h→ 0; tradi-
tionally one constructs models to errors O

(
h2
)

or O
(
h4
)

depending upon small h
asymptotics, shown schematically by the rightward-pointing arrows in Figure 1. In
contrast, we here analyse the dynamics at fixed grid spacing h and use centre man-
ifold theory to accurately model the nonlinear dynamics—theory [1, e.g.] assures us
that the low-dimensional, numerical model then accurately captures the dynamics
in an expansion in the nonlinearity, shown schematically as the forward-pointing
arrows in Figure 1. The analysis rests upon the exponential decay of the small,
subgrid structures in each local element. Being essentially local in space, the analy-
sis here is flexible enough to subsequently cater for spatial boundaries and spatially
varying coefficients (the subject of ongoing research). I call the model “holistic”
because the centre manifold is made up of actual solutions of the pde, thereby
accounting for all interactions between physical processes, including subgrid inter-
actions; the model is also consequently invariant under algebraic rewriting of the
governing equations. However, to apply the centre manifold theory we have to use a
homotopy in a parameter γ: when γ = 0 the discrete finite elements of the domain
are completely uncoupled from each other; when γ = 1, the requisite continuity
is reclaimed and the physical pde solved. The caveat is that the centre manifold
model has to be used at γ = 1 whereas the supporting theory only guarantees
accuracy in a neighbourhood of γ = 0; we aim to make the useful neighbourhood
big enough to include the relevant γ = 1 (this sort of technique has proven effective
in thin fluid flows [16, e.g.]). One way to reasonably secure the centre manifold
model, and the way explored herein, is to require that the model is also consistent
with the pde as the grid spacing h→ 0. Thus we aim to construct finite difference
numerical models that not only are justified by their asymptotic expansions in non-
linearity and γ, but are also justified by asymptotics in h (see Figure 1). This dual
justification is the completely novel feature of the approach.

The first step, taken in this paper, is to establish a centre manifold approach
that is also guaranteed to construct a consistent finite difference model for a gen-
eral linear pde, shown schematically in Figure 1 as the disc in the γh-plane (zero
nonlinearity). We leave to later research the problem of guaranteeing the consistent
modelling of nonlinear dynamics. Herein we explore the finite difference modelling
of the linear pde

∂u

∂t
= Au + εBu ,(1)

where the linear operator A, presumed generally dissipative, is even (it contains
only even order derivatives in x with constant coefficients), and B is an odd linear
operator (it contains only odd order derivatives with constant coefficients); A is
assumed dissipative for all modes except u = const. The case of space-time varying
coefficients to the linear problem is also left for later study; however, I expect that
because the analysis here is local in x, then such varying coefficients can be treated
as a perturbing influence to the basic analysis herein. As a specific example, we
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Figure 1. Conceptual diagram showing: the traditional finite
difference modelling approaches (rightward-pointing arrows) the
physical problem (upper disc) via asymptotic consistency as the
grid size h → 0 (left circles); whereas the holistic method
approaches (forward-pointing arrows) the physical problem via
asymptotics in nonlinearity and the inter-element coupling γ (from
right circle). Herein we establish how to use the holistic approach
to do both in order to model a general linear problem (lower disc).

discuss in §3 the linear advection-diffusion equation ut = −εux + uxx and discover
many remarkable properties of the holistic finite difference models. The separation
between the two types of linear terms into Au and εBu occurs because first we
prove consistency for even terms, §4, before moving on to prove consistency for the
odd terms, §5.

Introduce a regular grid as shown in Figure 2 with grid points a distance h apart,
xj = jh for example, and, using uj to denote the value of the field at each grid
point,

uj(t) = u(xj , t) .(2)

We express the field in the neighbourhood of the jth grid point by u = vj(x, t).
We do not restrict the function vj to just the jth element, but allow it to extend
analytically out to at least the adjacent grid points as shown in Figure 2.

Herein we establish that small h consistency follows from using the nonlocal,
internal “boundary conditions”

vj(xj±1, t) = (1− γ)vj(xj , t) + γvj±1(xj±1, t) .(3)

That is, the field of the jth element when evaluated at the surrounding gridpoints,
vj(xj±1, t), is a continuation between two critical extremes: when γ = 1, it is the
field at those grid points, vj±1(xj±1, t), to in effect recover the physical continuity
as shown schematically in Figure 2; but when γ = 0, the field is just identical to the
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Figure 2. Schematic picture of the equi-spaced grid, xj spacing
h, the unknowns uj , the artificial internal boundaries between each
element (vertical lines), and in the neighbourhood of xj the field
vj(x, t) which extends outside the element and, if γ = 1, passes
through the neighbouring grid values uj±1.

mid-element value vj(xj , t) so that an element becomes isolated from all neighbours.
Equivalently, (3) is transformed to the following appealing two difference equations1

evaluated at the centre of the element, x = xj ,

µxδxvj(x, t) = γµδ vj(xj , t) and δ2
xvj(x, t) = γδ2vj(xj , t) .(4)

That is, in the two extremes: when γ = 0 the first and second differences have
to be zero; whereas when γ = 1 the first two differences of the field centred on
each element have to agree with the first two differences of the grid values. Note
a distinction which is very important throughout this work: unadorned difference
operators, such as the central mean µ = (E1/2 + E−1/2)/2 and central difference
δ = E1/2 − E−1/2 written in terms of the shift operator Euj = uj+1 [13, p. 64,
e.g.], apply to the grid index j (with step 1) whereas those with subscript x, as
in µx and δx, are differences in x only (with step h). Using the definition of the
amplitudes (2), these internal boundary conditions (ibc) simplify to the following
form which we use throughout §§3–5: evaluated at x = xj :

µxδxvj(x, t) = γµδ uj and δ2
xvj(x, t) = γδ2uj .(5)

In actually developing finite difference models these ibc’s may take any of many
equivalent forms [18, e.g.]. Small h consistency seems easiest to establish in this
particular discrete form.

2. The dynamics collapses onto a centre manifold

I establish here the basis of a centre manifold analysis of the linear pde (1). It
appears necessary, and is the route taken here, to separate the linear effects into
those generated by even terms, represented by A and presumed generally dissipative
on the grid scale h but with one 0 eigenvalue corresponding to u = const,2 and
those generated by odd terms, represented by εB. The analysis is to be based on the
situation when the coefficient of the odd terms ε = 0 and when adjacent elements are
decoupled, γ = 0 (the right-hand circle in Figure 1). Then centre manifold theory

1Natural symmetry also makes the general results most easy to express in terms of centred
difference operators, and so I use them throughout this paper.

2The analysis presented here could be applied to modelling unstable dynamics, such as that
from negative diffusion ut = −uxx. The difference is that the relevance theorem would no longer
apply—M would not be attractive and the finite difference model would not capture the long
term dynamics. The centre manifold model would, however, capture all the finite solutions, if any.
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[1, e.g.] guarantees the existence and relevance of a numerical model parametrised
by the discrete values of the field at the grid points, uj . The constructed model is
accurate to the order of the residuals of the differential equation (1).

The spectrum of the linear dynamics is used to show there exists a centre man-
ifold. Adjoin to (1) the trivial dynamical equations

γ̇ = ε̇ = 0 ,(6)

so that terms multiplied by ε or γ become “nonlinear terms” in the asymptotic
expansion we develop about γ = ε = 0. Setting ε = 0 eliminates the odd terms
to leave simply the linear equation ut = Au; for example, the diffusion equation
ut = uxx. This is to be solved in the vicinity of xj for a field u = eλtw(x), where
here the dependence upon j is implicit in the eigenfunction w of Aw = λw. This
is a constant coefficient ode and so has trigonometric general solutions w ∝ eiαx

with corresponding eigenvalue λ(α) which is negative for nonzero wavenumber α,
as A is presumed generally dissipative; for example, λ = −α2 for the diffusion
equation. The appropriate boundary conditions come from the nonlocal decoupling
conditions that w(xj±1) = w(xj) from (3) with γ = 0. Thus within each element
the eigenmodes are: exp[iαn(x − xj)] for even integers n, where αn = nπ/h; and
also sin[αn(x − xj)] for odd integers n. The spectrum is then λn = λ(nπ/h); for
example, λn = −n2π2/h2 for the diffusion equation. Consequently, in the absence
of inter-element coupling, generally expect all modes to decay exponentially quickly
to zero on a time scale O

(
h2
)

as λ(α) will be symmetric, except for the neutral
mode, n = 0, which is constant in x, vj(x, t) = uj . Thus for small enough ε and γ,
theory ([2, p. 281] or [21, p. 96]) assures us that there exists a centre manifold M
for the system (1) coupled across elements by (3). The centre manifold M is here,
by (2), to be parametrised by the values of the field at the grid points, uj . Thus
using u to denote the set of grid values uj , the “amplitudes”, theory [1, 2, 21]
supports our description of the centre manifold and the evolution thereon as

u(x, t) = v(u, x) , such that u̇j = gj(u)(7)

(translational invariance in x leads to identical expressions in each element except
for appropriate changes of the subscript j). The evolution u̇j = gj(u) forms the
holistic finite difference model. When the model is constructed to errors O

(
γ`
)
,

then we account for interactions among ` − 1 elements on either side of any given
element, and so the resulting finite difference model has a stencil of width 2` − 1
on the spatial grid. I call these models “holistic” because, unlike traditional finite
difference modelling which just analyses separately each term in the equations, here
M is made up of actual solutions of the pde and so here the discretisation models
all the possible interactions between all the terms in the equations [18, 11, e.g.].

Moreover, the evolution on the centre manifold forms an accurate low-dimen-
sional model of the dynamics of the pde (1). Again provided ε and γ are small
enough, theory, [2, p. 282] or [21, p. 128], assures us that all solutions sufficiently
near the centre manifoldM are not only attracted toM but exponentially quickly
approach the actual solutions of the pde that make up M. (The rate of attrac-
tion is approximated for practical purposes by the leading negative eigenvalue; for
example, λ1 = −π2/h2 for the diffusion equation.) In the development of inertial
manifolds by Temam [20] and others, this property is sometimes called the asymp-
totic completeness of the model, for example see Robinson [19] or Constantin et al.
[3, §12-3], and sometimes as exponential tracking [7, e.g.]. Observe that this is one
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of the crucial new aspects brought to finite difference modelling by centre manifold
theory. It asserts that on a finite grid spacing we will faithfully track the solutions
of the original pde. There will be some limitations: steep gradients and large non-
linearities will test the model as always. But the centre manifold theory, as seen
here in §3 and in introductory work [18, 11], provides a rationale and a method to
construct the requisite adjustments to a finite difference model to robustly model a
wide range of dynamics on a finite grid spacing. The main limitation is the rate of
attraction toM: the centre manifold model should be able to capture any dynamics
occurring on a time-scale longer than 1/|λ1| (h2/π2 for diffusion). Thus the model
evolution on M, (7), captures all the long term dynamics with some provisos.

3. Advection-diffusion is modelled robustly

Here we explore perhaps the simplest nontrivial example in the class of pde’s:
the advection-diffusion equation

ut = −εux + uxx ,(8)

where ε is the advection speed; in other sections I treat ε as small but not in this
section. This pde fits into the scheme outlined in the previous sections with the
operators A = ∂2

x and B = −∂x. We show consistency for small grid spacing h,
and find interesting and stable upwind approximations for large εh. The associated
sophisticated dependence upon ε is perhaps indicative of the need to treat odd
operators differently from even.

Following the framework discussed in the previous section, seek a centre manifold
and the evolution thereon, equation (7), in a power series in the inter-element
coupling parameter γ:

u(x, t) = vj =
∞∑
k=0

γkvkj (u, x) , s.t. u̇j = gj =
∞∑
k=1

γkgkj (u) ,(9)

where the superscripts on vj and gj are an index and do not denote exponentiation.
Substitute (9) into the advection-diffusion equation (8) and equate like powers of γ
to determine ∑

i

k∑
l=1

gli
∂vk−lj

∂ui
= −ε

∂vkj
∂x

+
∂2vkj
∂x2

, k = 0, 1, 2, . . . .(10)

Similarly, substituting (9) into the amplitude condition (2) and equating powers
of γ requires

v0
j (u, xj) = uj , and vkj (u, xj) = 0 for 1 ≤ k < ` ,(11)

whereas substituting (9) into the ibc (5) requires, evaluating the left-hand sides at
xj ,

µxδxv
k
j =

{
µδ uj , k = 1 ,

0 , k 6= 1 ,(12)

and

δ2
xv
k
j =

{
δ2uj , k = 1 ,

0 , k 6= 1 .(13)

We proceed to solve the first few steps in this hierarchy of equations and interpret
the resultant hierarchy of finite difference approximations.
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First explore the holistic finite difference model with only first-order interactions
between adjacent elements, that is, solve for 0 ≤ k < ` = 2 so that errors are
O
(
γ2
)
. In polynomials, the k = 0 equations of (10–12) have solution

v0
j = uj .(14)

The solution of the k = 1 equations give

v1
j =

[
eεx − 1

4 sinh2 (εh/2)
− cosh (εh/2)

2h sinh (εh/2)
x

]
δ2uj + x

µδ

h
uj(15)

and

g1
j = −µδ

h
uj + ν1

δ2

h2
uj ,(16)

where

ν1 =
εh cosh (εh/2)
2 sinh (εh/2)

(17)

is plotted in Figure 3. Substitute γ = 1 to obtain the finite difference model for the
advection-diffusion pde (8):

u̇j = −εµδ
h
uj + ν1

δ2

h2
uj ;(18)

as h→ 0 this is equivalent to

ut = −εux + uxx +
h2

12
(ε− ∂x)2uxx +O

(
h4
)
,(19)

and so is indeed consistent to O
(
h2
)

, independent of ε, with the advection-diffusion
pde (8). Introduced automatically in this analysis is the novel enhancement of the
dissipation term δ2uj by the factor ν1 which grows from 1 with εh. Alternatively,
for small εh from (17) ν1 − 1 ≈ ε2

12δ
2uj involves the square of the advection speed;

thus one may also view this term as an upwind correction to the finite difference
approximation of the first derivative:

− ε
h
µδ +

ε2

12
δ2 = − ε

h

[(
1
2
− εh

12

)
E1/2 +

(
1
2

+
εh

12

)
E−1/2

]
δ ,

which increases the weight of the upwind grid point (E−1/2 is upwind if ε is positive).
Either interpretation, as enhanced dissipation or upwind correction, is well known
to be stabilising for finite advection speeds ε.

It is interesting to explore the large εh limit when there is strong advection across
each element. From (17) ν1 ∼ εh/2 as εh→∞ and is indeed within a few percent
of this value for εh > 4 , see Figure 3. Thus for large advection speed ε on a finite
width grid, the centre manifold analysis promotes the model3 (written in terms of
the backward difference operator ∇)

u̇j ≈ −
ε

h
∇uj = − ε

h
(uj − uj−1) .(20)

This is not, and need not be, consistent with the pde (8) as h → 0, because
it applies for finite εh. That it should be relevant to (8) comes from the centre
manifold expansion in γ, albeit evaluated at γ = 1 (via the “holistic” arrows in

3If the advection velocity is negative, ε < 0, then various signs change and the large εh model
remains an upwind model, but is consequently written in terms of forward differences. This also
occurs for the later model (25), accurate to errors O

(
γ3
)

.
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Figure 1). Exact solutions of (20) are readily obtained. For example, consider a
point release from j = 0 at t = 0: uj(0) = 1 if j = 0 and is 0 otherwise. Then the
moment generating function G(z, t) =

∑∞
j=0 z

juj(t) is seen to be that for a Poisson
probability distribution with parameter εt/h, namely G(z, t) = exp[(z − 1)εt/h].
Hence the mean location and variance of uj are

µj = σ2
j =

εt

h
⇒ µx = εt and σ2

x = εht .(21)

Thus for εh not small : this model has precisely the correct advection speed ε;
and although the variance is quantitatively wrong, εht instead of 2t, at least it
is qualitatively correct for finite εh. The centre manifold model (18) is consistent
for small h and has the virtue of being always stable, and will always maintain
nonnegativity of solutions no matter how large the advection speed ε.

Second, explore the holistic finite difference model with second-order interactions
between adjacent elements, that is, solve for 0 ≤ k < ` = 3 so that errors are O

(
γ3
)
.

The details of v2
j are of little direct interest here. The finite difference model depends

directly upon

g2
j = +

ε

h
κ2µδ

3uj +
1
h2

(
δ2 − ν1δ

2 − ν2δ
4
)
uj ,(22)

where

ν2 =
εh cosh (εh/2)
4 sinh (εh/2)

− 1
2

+
εh cosh (εh/2)
8 sinh3 (εh/2)

− 1
4 sinh2 (εh/2)
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and

κ2 =
1
2

+
1

2 sinh2 (εh/2)
− cosh (εh/2)
εh sinh (εh/2)

.

Observe the marvellous feature that when we form γg1
j + γ2g2

j evaluated at γ = 1
the terms in ν1(εh)δ2 neatly cancel. The model for the advection-diffusion thus
reduces to

u̇j = − ε
h

(
µδ − κ2µδ

3
)
uj +

1
h2

(
δ2 − ν2δ

4
)
uj .(23)

We see in this model that, as h → 0, the hyperdiffusion coefficient ν2 ∼ 1/12 and
the dispersion coefficient κ2 ∼ 1/6, to give the classic second-order in h corrections
to the central difference approximations of the first two derivatives. Indeed, as
h→ 0 the model (23) is equivalent to

ut = −εux + uxx +
h4

90
(ε− ∂x)3uxxx +O

(
h6
)
,(24)

and so is consistent to O
(
h4
)

, independent of ε, with the advection-diffusion
pde (8).

For large advection speed or grid size, large εh, the model (23) is astonishingly
good. Using the large εh approximations plotted in Figure 3 for ν2 and κ2, the
model (23) reduces to simply

u̇j = − ε
h

(
∇+

1
2
∇2

)
uj +

1
h2
∇2uj

= − ε

2h
(uj−2 − 4uj−1 + 3uj) +

1
h2

(uj−2 − 2uj−1 + uj) .(25)

This large εh model uses only backward differences to incorporate second-order
upwind estimates of the derivative, ∇ + 1

2∇2, and the second derivative, ∇2. To
show its good properties,4 consider again a point release from j = 0 at time t = 0.
The moment generating function G(z, t) =

∑∞
j=0 z

juj(t) for the evolution governed
by (25) is readily shown to be

G(z, t) = exp
[
− εt

2h
(z − 1)(z − 3) +

t

h2
(z − 1)2

]
.(26)

Then, since

∂G

∂z

∣∣∣∣
z=1

=
εt

h
and

∂2G

∂z2

∣∣∣∣
z=1

=
(
εt

h

)2

− εt

h
+

2t
h2
,

we determine the mean position and variance of the spread in uj to be

µj =
εt

h
and σ2

j =
2t
h2

⇒ µx = εt and σ2
x = 2t .(27)

This predicted mean and variance following a point release are exactly correct for
all time for the advection-diffusion pde (8). This specific result applies to all finite
advection speeds ε and all finite grid spacings h whenever εh is large enough.

It seems that creating finite differences which, as shown in Figure 1, are both
consistent for small grid spacing h and also holistically derived via centre manifold

4The upwind difference model (25) is only stable for εh > 2/3 . However, from Figure 3 the
approximation (25) is only applicable to (23) for εh greater than about 4; thus its instability for
very much smaller εh is irrelevant.
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theory thus can lead to models which are remarkably accurate and stable over a
wide range of parameters.

4. Models of the even terms are consistent

In this section I prove that the proposed centre manifold approach consistently
models all the even derivatives in A. That is, the equivalent pde of the finite
difference model on the centre manifold M matches ut = Au to some order in
grid spacing h; the order of error is controlled by the order of truncation, `, in
the coupling coefficient γ. The veracity of the following theorems is supported by
the results of suitable variants of a computer algebra program available from the
author.

Remarkably, the polynomials found here to describe the structure within each
element are independent of the linear operator A !

Theorem 1. The centre manifold model (7), constructed with the amplitude con-
dition (2), the internal boundary condition (3) and to errors O

(
γ`
)
, forms a semi-

discrete finite difference approximation to the pde ut = Au consistent to O
(
∂2`
x

)
,

where A is any even operator.

Proof. I construct the proof in stages beginning with the end result and finding
successive sufficient conditions for the preceding steps. Observe that I actually
prove a slightly stronger result: by allowing the even operator A to contain a
constant term a0, see (32), I prove the consistency of an invariant manifold model
based upon the mode with eigenvalue λ0 = a0. When a0 ≥ 0 this forms a centre-
unstable manifold model for which a relevance theorem also ensures asymptotic
completeness.

• To solve ut = Au to errors O
(
γ`
)
, expand the centre manifold model (7)

to O
(
γ`
)

as

u = v(u, x) =
`−1∑
k=0

γkvkj (u, x) , and u̇j = g(u) =
`−1∑
k=0

γkgkuj ,(28)

where hereafter gk are some finite difference operators (as before, superscripts
to γ denote exponentiation whereas those on v and g denote the index of
coefficients in the asymptotic expansion). Then substitution into the pde

and extracting powers of γ shows that we require

Avkj = g0vkj + g1vk−1
j + · · ·+ gk−1v1

j + gkv0
j for 0 ≤ k < ` .(29)

Similarly we require the amplitude condition (2) and the ibc (13). Equa-
tions (29) and (11–13) form a well-posed system of equations for vkj and gk.
In many applications of centre manifold theory, because A − g0 is singular,
we often solve each level in the hierarchy of equations in two steps: the first
is to find gk by ensuring that the right-hand side of (29) is in the range of
A−g0 (this is the so-called “solvability condition”); the second step is to find
vkj . However, here we proceed to construct straightforwardly the solution of
the entire set of equations in general.
• We show the hierarchy of differential equations (29) are satisfied by func-

tions vkj and give consistent finite difference operators gk, if vkj satisfy the
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recursive difference equation

δ2
xv
k
j = δ2vk−1

j for all x, and v0
j = constant .(30)

– By the following induction argument (30) implies that

δ2m
x vkj =

{
δ2mvk−mj , for m = 0, . . . , k ,
0 , m = k + 1, k + 2, . . . .

(31)

Now,

δ2m
x vkj = δ2m−2

x δ2
xv
k
j

= δ2m−2
x δ2vk−1

j by (30)

= δ2δ2(m−1)
x vk−1

j as δ and δx commute

= δ2δ2(m−1)vk−mj p.v. (31) holds for m− 1

= δ2mvk−mj .

Then since (31) is trivially true for m = 0, it follows by induction that (31)
holds for all m ≤ k. Further, since v0

j is constant by (30), δ2k
x v

k
j is

constant, so higher order differences (m > k) are all zero.
– By an “even” operator A I mean one which only involves even order

derivatives in x. Hence write A formally as an infinite sum of even powers
of the central difference operator

A =
∞∑
m=0

amδ
2m
x ,(32)

for some coefficients am; for example, for the diffusion operator in (8),
from [13, p. 65, e.g.],

∂2

∂x2
=

4
h2

arcsinh2(1
2δx) =

1
h2
δ2
x −

1
12h2

δ4
x +

1
90h2

δ6
x − · · · ;

more generally, A could be any symmetric convolution operator for which
the infinite sum (32) forms a reasonable representation. Then (31) en-
sures (29), since

Avkj =
∞∑
m=0

amδ
2m
x vkj

=
k∑

m=0

amδ
2mvk−mj by (31)

= g0vkj + g1vk−1
j + · · ·+ gk−1v1

j + gkv0
j ,

provided gk = akδ
2k, which are precisely the operators required to make

the model u̇j = g(u) of ut = Au consistent to O
(
∂2`
x

)
, when truncated as

in (28) to errors O
(
γ`
)
.

• By simple substitution, a sequence of functions vkj satisfying the recurrence
(30), amplitude conditions (11) and the internal boundary conditions (13) are

v0
j = uj , vkj = pk(ξ)µδ2k−1uj + qk(ξ)δ2kuj , for k ≥ 1 ,(33)
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Figure 4. Graphs of the polynomials pk(ξ) (solid) and qk(ξ)
(dashed), see (36), forming a basis for the fields of the approxi-
mations to the centre manifold.

where, as always, ξ = (x − xj)/h is a grid scaled coordinate, and provided
that for k ≥ 1

δ2
xpk = pk−1 , pk(±k) = ±1 , and pk(ξ) = 0 for ξ = 0,±1 ,(34)

and similarly

δ2
xqk = qk−1 , qk(±k) = + 1

2 , and qk(ξ) = 0 for ξ = 0,±1 ,(35)

after defining q0(x) = 1 and p0(x) = 0.
• Analysing the difference tables for pk and qk and straightforward induction

using (34–35) proves that pk(ξ) = qk(ξ) = 0 for integers ξ ∈ [−k + 1, k − 1].
Then the following pk and qk are the unique polynomials, of degree 2k − 1
and 2k respectively, also satisfying pk(±k) = ±1 and qk(±k) = + 1

2 :

pk(ξ) =
1

(2k − 1)!

k−1∏
m=−k+1

(ξ −m) , and qk(ξ) =
ξ

2k
pk(ξ) ,(36)

as plotted in Figure 4. For example, p1(ξ) = ξ and q1(ξ) = 1
2ξ

2.
These polynomials pk and qk also need to satisfy the recurrences in (34–35)

pointwise in ξ. This is trivially true for k = 1. Now, δ2
xpk+1 is from (36) a

polynomial of degree 2k−1, from its difference table has the same zeros as pk,
it is ±1 at ±k, and so must be pk(ξ) for all ξ. Similarly for δ2

xqk+1.5

5One easily imagines other functions pk and qk that have all the requisite properties to ensure
a consistent finite difference approximation g(u). For example, p̃k(ξ) = pk(ξ) + a sin(2nπξ) .
However, as is often the case, if the method of construction of the centre manifold makes vkj a

polynomial of degree 2k, then the solution for vkj is the one given in (33) in terms of pk and qk.
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Corollary 2. It follows immediately from the theorem that if the highest deriva-
tive in the even operator A is of order n, then the finite difference model (28) is
consistent with ut = Au to O

(
h2`−n) as h→ 0.

5. Odd perturbations are also consistent

The results of the previous section on the modelling of even operators A are
extremely satisfactory. The modelling of odd operators is not quite so neat. In the
general linear pde (1) I introduced the odd terms, B, with a multiplying ε. The rea-
son is, as seen in §3, that such odd terms generate extra terms in the finite difference
model which are nonlinear in the coefficients of the odd derivatives, that is, O

(
ε2
)
.

As elaborated in §3 for the advection-diffusion equation, these higher-order contri-
butions seem to reflect the changes needed for stable discretisations of equations
with large amounts of advection, ux, or dispersion, uxxx. The extra complications
of these nontrivial effects of odd derivatives appear necessary. However, here we
restrict attention to proving consistency to an error quadratic in the odd coefficients
and leave to further research the investigation of higher-order consistency.

Theorem 3. The centre manifold model (7), constructed with the amplitude condi-
tion (2), the internal boundary condition (3) and to errors O

(
γ`, ε2

)
, forms a finite

difference approximation to the pde ut = Au+εBu consistent to O
(
∂2`
x +ε∂2`−1

x , ε2
)
,

where A is any even operator and B is any odd operator.

Proof. As in (28), we expand the the centre manifold ansatz (7) to errors O
(
γ`, ε2

)
:

u =
`−1∑
k=0

γkvkj + ε

`−1∑
k=0

γkwkj , and u̇j =
`−1∑
k=0

γkgkuj + ε

`−1∑
k=0

γkfkuj ,(37)

where fk and gk are difference operators (as before the superscript to v, w, g and h
denotes an index in the series, whereas the superscript to γ denotes exponentiation).
After substitution into the pde, terms in ε0 determine vkj and gk as in the previous
section. Upon extracting from the pde the coefficients of terms linear in ε and of
various powers of γ, we are required to solve

Awkj + Bvkj =
k∑
r=0

(
fk−rvrj + gk−rwrj

)
, for 0 ≤ k < ` .(38)

Substitution of the expansion (37) into the amplitude condition (2) and the ibc’s (5)
and equating coefficients of εγk leads to these internal boundary conditions for the
wkj (x):

wkj = 0 for x = xj , xj±1 .(39)

Since B is an odd operator, we formally write it as the following infinite sum of odd
powers of centred difference operators:

B =
∞∑
m=1

bmµxδ
2m−1
x ,(40)

for some coefficients bm; for example, from [13, p. 65, e.g.],

∂

∂x
=

2µx
h

arcsinh(1
2δx) =

1
h
µxδx −

1
6h
µxδ

3
x +

1
30h

µxδ
5
x − · · · ;
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and more generally, B could be any antisymmetric convolution operator for which
the infinite sum (40) is reasonable. I prove that there exist solutions wkj (x), odd
functions of x (about xj), with

fk = bkµδ
2k−1 ,(41)

so that the model (37) is consistent with the effect of the odd derivatives in εB
to errors O

(
δ2`−1
x

)
= O

(
∂2`−1
x

)
. Since we already know vkj and since wkj appears

to vary for different problems, the operators fk are determined by the solvability
condition that all terms except Awkj − g0wkj appearing in (38) combine to be in the
range of the singular A− g0.

• First, prove the even part of Bvkj cancels with the even part of
∑k

r=0 f
k−rvrj

and so is eliminated from (38). As a preliminary step consider, using (36),

µxδxpk(ξ) =
1

(2k − 1)!
1
2

[
k−1∏

m=−k+1

(ξ + 1−m)−
k−1∏

m=−k+1

(ξ − 1−m)

]

=
1

(2k − 1)!

k−2∏
m=−k+2

(ξ −m)

×1
2

[(ξ + k)(ξ + k − 1)− (ξ − k)(ξ − k + 1)]

=
1

(2k − 1)(2k − 2)
pk−1(ξ)× (2k − 1)ξ

= qk−1(ξ) .(42)

Then from (33) and since pk is odd and qk is even, see Figure 4, Bqk is odd,
and so the even part of Bvkj is

Bpkµδ2k−1uj =
∞∑
m=1

bmµxδ
2m−1
x pk µδ

2k−1uj by (40)

=
k∑

m=1

bmµxδxpk−m+1 µδ
2k−1uj by (35) inductively

=
k∑

m=1

bmqk−m µδ
2k−1uj by (42),(43)

whereas on the right-hand side of (38) the even part of
∑k

r=0 f
k−rvrj is

k∑
r=0

fk−rqrδ
2ruj =

k∑
r=0

qrbk−rµδ
2(k−r)−1δ2ruj by (41)

=
k∑
r=0

qrbk−r µδ
2k−1uj ,(44)

which exactly cancels with (42) from the even part of Bvkj on the left-hand
side of (38).
• Second, since the even components of (38) that involve the various vkj cancel,

and since A and gk are even, then a particular solution wkj (x) of (38) may
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be found that is odd. The conditions (39) then force these odd wkj to be the
unique solutions in the space of finite degree polynomials.
• Third, consider evaluating the hierarchy of equations (38) at the centre grid

point of the element, x = xj or equivalently ξ = 0, and simplify the various
contributions.

– Now A is an even operator and wkj an odd function, so Awkj is an odd
function, and thus Awkj (xj) = 0.

– Since gk−r is a difference operator in j it does not affect the amplitude
condition that wrj (xj) = 0, and thus gk−rwrj (xj) = 0.

– I have already shown that the even parts of Bvkj and
∑k

r=0 f
k−rvrj agree

pointwise, so they certainly do at xj , at which the odd parts must also
trivially vanish together.

Thus the choice (41) is the unique one to satisfy this solvability condition
for (38).

Since the expansion (37) then contains the exact differences up to b`−1µδ
2`−3 and

a`−1δ
2`−2, the errors in the finite truncation of the finite difference model will be

O
(
∂2`
x

)
from the even terms and O

(
ε∂2`−1
x , ε2

)
from the odd.

Corollary 4. It follows immediately from the theorem that if the highest derivative
in the operator A+εB is of order n, then the finite difference model (37) is consistent
with ut = Au + εBu to O

(
h2`−1−n) as h→ 0 to an error O

(
ε2
)
.

6. Concluding remarks

We have seen that the artificial internal boundary conditions (3) together with
the application of centre manifold theory generate finite difference models that
have remarkably good properties, at least for linear systems. These are explicitly
shown for the example of the advection-diffusion equation (§3), where we saw not
only consistency for small h, but also an appropriate upwind model for large εh.
Although Theorem 3 only establishes consistency with the odd terms to O

(
ε2
)
,

the advection-diffusion example of §3 shows that higher-order consistency is possi-
ble. Further research is needed on the characteristics of higher orders in the odd
derivatives.

Also, further research, such as that for Burgers’ equation in [18], will explore
the performance of this holistic approach to discretisations of nonlinear systems
in various spatial dimensions. Since centre manifold theory is designed to analyse
nonlinear systems, I expect reliable models to be derived.

Throughout the analysis in this paper I have parametrised the centre manifold
model in terms of the field at each of the grid points, uj = u(xj , t). This was done
for simplicity. Other choices are possible for the parameters of the finite difference
model, for example we could choose to use the element average

uj(t) =
1
h

∫ xj+h/2

xj−h/2
u(x, t) dx .(45)

This choice would be appropriate to easily establish the conservation of total u,
or not, as the case may be. Computational experiments show that either of these
choices of amplitude produce equivalent results for linear systems.

Centre manifold theory is routinely applied to autonomous dynamical systems.
However, the geometric viewpoint it establishes leads to a rational treatment of
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the projection of initial conditions onto the finite dimensional model, and of the
projection of a perturbing forcing [17, 4, 14].
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