THE TAME KERNEL OF IMAGINARY QUADRATIC FIELDS WITH CLASS NUMBER 2 OR 3

HONG YOU AND SHENG CHEN

Abstract

This paper presents improved bounds for the norms of exceptional finite places of the group $K_{2} O_{F}$, where F is an imaginary quadratic field of class number 2 or 3 . As an application we show that $K_{2} Z[\sqrt{-10}]=1$.

1. Introduction

Tate 9 has determined the tame kernel of all imaginary quadratic Euclidean fields F and of $F=Q(\sqrt{-15})$. He and Bass [2] proved that when the norm of the finite place v of the field F is sufficiently large, then a certain associated map ∂_{v} (see section 2 below) is an isomorphism. It follows that in order to compute the tame kernel we need only investigate the remaining v 's (those whose norms are smaller than the bound of the exceptional v 's), and perform the appropriate computations with Steinberg symbols. Skalba 8] used a generalization of Thue's theorem to get a reasonable bound for norms of exceptional v 's, and proved that $K_{2} O_{F}=1$ when $F=Q(\sqrt{-19})$ and $F=Q(\sqrt{-20})$. Modifying the method of Tate, Qin [6, 7] did the same for $F=Q(\sqrt{-24})$ and $F=Q(\sqrt{-35})$. Recently Browkin [4] improved the estimates of Skalba and Qin for the bounds of norms of exceptional v 's and applied his result to the case $F=Q(\sqrt{-23})$. In the present paper we present a certain adaptation of Tate, Skalba and Browkin's method for computing the tame kernel of imaginary quadratic fields with class number 2 or 3 , and we get much smaller bounds for norms of exceptional v 's. We apply this result in the case $F=Q(\sqrt{-40})$.

2. Notation

Let F be a number field and let $v_{1}, v_{2}, v_{3}, \ldots$ be all finite places of F, ordered in a certain way. For $m \geq 0$ let $S_{m}=\left\{v_{1}, \ldots, v_{m}\right\}$, thus $S_{0}=\phi$. Denote the ring of S_{m}-integers of F by $O_{S_{m}}$, the group of S_{m}-units by $U_{S_{m}}$. Let P_{m} be the maximal ideal of $O_{S_{m-1}}$ corresponding to the place v_{m}. The residue field of the place v_{m} is denoted by $k_{v_{m}}\left(k_{v_{m}}=O_{S_{m-1}} / P_{m}\right)$ and the norm of v_{m} is definded to be $N_{v_{m}}=$ $\operatorname{card} k_{v_{m}}$. Thus $O_{S_{0}}$ is the ring O_{F} of integers of F; we denote it by O below.

[^0]Let $K_{2}^{S_{m}}(F)$ be the subgroup of $K_{2} F$ generated by symbols $\{a, b\}$, where $a, b \in$ $U_{s_{m}}$. Then $K_{2} F=\bigcup_{m=1}^{\infty} K_{2}^{S_{m}}(F)$.

Let $\partial_{v_{m}}: K_{2} F \rightarrow k_{v_{m}}^{*}$ be the tame symbol corresponding to v_{m}. Since $K_{2}^{S_{m-1}}(F)$ $\subset \operatorname{ker}\left(\partial_{v_{m}}\right)$, there is an induced map (also denoted by $\partial_{v_{m}}$)

$$
\partial_{v_{m}}: K_{2}^{S_{m}}(F) / K_{2}^{S_{m-1}}(F) \rightarrow k_{v_{m}}^{*} .
$$

By Quillen's exact sequence

$$
\begin{equation*}
1 \rightarrow K_{2} O \rightarrow K_{2} F=\bigcup_{m=1}^{\infty} K_{2}^{S_{m}}(F) \xrightarrow{\partial} \coprod_{m=1}^{\infty} k_{v_{m}}^{*} \rightarrow 1 \tag{2.1}
\end{equation*}
$$

where $\partial=\coprod_{m=1}^{\infty} \partial_{v_{m}}$, we know that if $\partial_{v_{j}}$ are isomorphisms for all $j>m$, then $K_{2} O \subseteq K_{2}^{S_{m}}(F)$.

Since in the sequel we shall assume that m is fixed, we simplify the notation as follows:

$$
S=S_{m-1}, \quad P=P_{m} \bigcap O, \quad v=v_{m}, \quad \partial_{v}=\partial_{v_{m}}, \quad U=U_{S_{m-1}}, \quad k^{*}=k_{v_{m}}^{*}
$$

Now let $F=Q(\sqrt{d})$ be the imaginary quadratic field with discriminant d and class number 2 or 3 . Under the embedding $\sigma: F \rightarrow \mathcal{C}: a+b \sqrt{d} \rightarrow a+b \sqrt{|d|} i$ of the field F into \mathcal{C}, we can consider F as a subfield of \mathcal{C}. For all $x \in O, N x=|x|^{2}=x \bar{x}$.

Suppose that $\lambda=p$ is the least prime number such that p is not inertial in O and all factors in the prime decomposition of $p O$ are nonprincipal. Let $p O=Q_{1} Q_{2}$, where Q_{1}, Q_{2} are nonprincipal primes in $O\left(Q_{2}\right.$ may equal Q_{1} when the class number of F is 2). Set $A=\left\{Q_{1}, Q_{2}\right\}$. For any nonprincipal prime P in O, there is an element $Q \in A$ such that $Q P$ is principal and the norm of $Q P$ is $\lambda N(P)$.

Definition 2.1. Let P be a prime ideal of O. Define the principal norm $M(P)$ of P as follows:

$$
M(P)= \begin{cases}N(P), & \text { if } P \text { is principal in } O \\ \lambda N(P), & \text { if } P \text { is nonprincipal in } O\end{cases}
$$

For the finite place v corresponding to a prime ideal P of O, we write $M_{v}=M(P)$ and call M_{v} the principal norm of v. If P is principal in O, we say the place v is principal and we have $M_{v}=N_{v}$. Otherwise, v is nonprincipal and $M_{v}=\lambda N_{v}$.

For finite places v_{i} and v_{j}, if $i<j$, we say that v_{i} precedes v_{j}.
Let M be a real number satisfying $\lambda \leq M$. We assume that the ordering on the set of all finite places of F satisfies the property: for all finite places v and v^{\prime}, if $M_{v}<M_{v^{\prime}}$ and $M<M_{v^{\prime}}$, then v precedes v^{\prime}.

When the ordering on the set of finite places satisfies the preceding condition, we say that the ordering is normal for finite places with principal norm greater than M.

In the two sections below, we always assume that $M<M_{v}$. Thus the prime ideal $P O_{S}$ corresponding to v in O_{S} is principal. We write $P O_{S}$ as πO_{S}, where $\pi \in O$ and $N \pi=M_{v}$. Let β be the homomorphism from U to k^{*} given by $\beta(u)=u(\bmod \pi)$ (sometimes we write $u(\bmod \pi)$ as $u(\bmod v)$). Denote by U_{1} the subgroup of U generated by $(1+\pi U) \cap U$. It is easy to see that $U_{1} \subseteq \operatorname{ker} \beta$. Let $a, b \in U$; then $a \sim b$ means $a \in b U_{1}$.

3. Preliminary information on the finite place v

Lemma 3.1. 1. If $x \in O$ and $0<N x<M_{v}$, then $x \in U$.
2. $W=\left\{x \in O \cap U \mid N x \leq M_{v}\right\}$ generates U.

Proof. (1) Suppose that $(x)=(y)(z)$ where $(y)=P_{1} P_{2} \cdots P_{r},(z)=$ $Q_{1} Q_{2} \cdots Q_{s}, P_{i}(i=1, \ldots, r)$ is principal prime in O and $Q_{j}(j=1, \ldots, s)$ is nonprincipal prime in O respectively. For P_{i}, we have $N\left(P_{i}\right) \leq N x<M_{v}$ and for Q_{j}, we have $\lambda \leq N\left(Q_{j}\right) \leq N z / \lambda \leq N x / \lambda<M_{v} / \lambda$, i.e., $M\left(Q_{j}\right)<M_{v}$. That means the finite places corresponding to P_{i} or Q_{j} precede v, so $x \in U$.
(2) In fact U is generated by the set $\left\{a \in O \cap U \mid N a=1\right.$ or $N a=M_{v^{\prime}}$, v^{\prime} precedes $\left.v\right\}$.
Lemma 3.2. Suppose v is principal. Let $a, b \in O \cap U$ satisfy $|a|+|b|<N_{v}$ and $a \equiv b(\bmod v)$. Then $a \sim b$.

Proof. Assume $a \neq b$. Since $a \equiv b(\bmod v), \pi \mid a-b\left(\right.$ note that $\left.P O_{S}=\pi O_{S}\right)$. By $|a|+|b|<N_{v}$, we have $N\left(\frac{a-b}{\pi}\right)<N_{v}$. Then $\frac{a-b}{\pi} \in U$ by Lemma 3.1, so $a-b \in \pi U$, $a \sim b$.

Now we assume v is nonprincipal and let Q be a nonprincipal prime in A such that $Q P$ is principal in O. Then $N(Q P)=\lambda N_{v}=M_{v}$.

Lemma 3.3. Suppose v is nonprincipal and let $a, b \in O \cap U$.

1. If $|a|+|b|<N_{v}$ and $a \equiv b(\bmod v)$, then $a \sim b$.
2. Further, if $a, b \in Q$ satisfy $|a|+|b|<M_{v}$ and $a \equiv b(\bmod v)$, then $a \sim b$.

Proof. Assume $a \neq b$. As an ideal of $O,(a-b)=(y)(z)$, where $(y)=P_{1} P_{2} \cdots P_{r}$, $(z)=P Q_{1} \cdots Q_{s}, P_{i}(i=1, \ldots, r)$ is principal prime in O and $Q_{j}(j=1, \ldots, s, s \geq$ 1) is nonprincipal prime in O respectively and $P Q_{1}$ or $P Q_{1} Q_{2}$ is a principal ideal denoted by (c).
(1) First we show that $P O_{S}=c O_{S}$, where ($\left.c\right)=P Q_{1}$ or $P Q_{1} Q_{2}$. This follows from the fact that the finite place corresponding to $Q_{j}(j=1,2, \ldots, s)$ precedes v. In fact, $N\left(Q_{j}\right) \leq N(a-b) / N(P)<N_{v}^{2} / N_{v}=N_{v}$. Then $\frac{a-b}{c} \in U, a-b \in c U, a \sim b$.
(2) Similarly to the proof of (1), suppose $P Q=(c)$; then $N c=M_{v}, c \mid a-b$. We have $N\left(\frac{a-b}{c}\right)<M_{v}$. By Lemma 3.1, $a-b \in c U, a \sim b$.

4. Conditions for ∂_{v} BEING BiJective

Tate [9] has proved the following useful result
Theorem 4.1 (9, Prop. 1]). Suppose that W, C and G are subsets of U such that

1. $W \subset C U_{1}$ and W generates U,
2. $C G \subset C U_{1}$ and $\beta(G)$ generates k^{*},
3. $1 \in C \cap \operatorname{ker} \beta \subset U_{1}$.

Then ∂_{v} is bijective.
In this section we will give some other conditions for ∂_{v} being bijective.
Proposition 4.2. Suppose that W, D, E and E^{\prime} are subsets of U such that

1. $W \subset D D^{-1} U_{1}$, where $D^{-1}=\left\{d^{-1} \mid d \in D\right\}$ and W generates U,
2. $1 \in E, E^{\prime} \subset E$, and the map: $E^{\prime} \times E^{\prime} \times E \rightarrow k^{*} \times k^{*}$ given by $\left(e_{1}, e_{2}, e\right) \rightarrow$ $\left(\beta\left(e_{2} / e_{1}\right), \beta\left(e / e_{1}\right)\right)$ is surjective,
3. for any $x \in\{1\} \cup D, e_{1}, e_{2}, e^{\prime} \in E^{\prime}$ and $e \in E$,
(a) if $x e_{1} \equiv e e_{2}(\bmod v)$, then $x e_{1} \sim e e_{2}$,
(b) if $e^{\prime} \equiv e(\bmod v)$, then $e^{\prime} \sim e$.

Then ∂_{v} is bijective.
Proof. Let $u \in U$. Write $u \sim \prod_{i=1}^{r} d_{i}^{s_{i}}$, where $d_{i} \in D$ and $s_{i}=1$ or $s_{i}=-1$ by condition (1). We want to show, by induction on r, that
(4.1) for any $u \in U$, there are $e^{\prime} \in E^{\prime}$ and $e \in E$ such that $u \sim e^{\prime} / e$.

When $r=1$ we have $u \sim d^{s}$, where $s=1$ or $s=-1$. If $s=1$, there are $e_{1}, e_{2} \in$ E^{\prime} such that $d \equiv e_{2} / e_{1}(\bmod v)$ by condition $(2)($ since $(\beta(d), 1)$ has preimage in $\left.E^{\prime} \times E^{\prime} \times E\right)$. We have $d \sim e_{2} / e_{1}$ from condition (3). So (4.1) holds (note that $\left.E^{\prime} \subset E\right)$. When $s=-1$, replacing u by u^{-1}, we have the same proof.

Assume (4.1) is true for $r-1$. Writing $u \sim d^{s} \prod_{i=2}^{r} d_{i}^{s_{i}}$, we have that there are $e^{\prime} \in E^{\prime}$ and $e \in E$ such that $u \sim d^{s} e^{\prime} / e$, where $s=1$ or $s=-1$, by the inductive assumption.

When $s=1$, by condition (2) there are $e_{1}, e_{2} \in E^{\prime}$ and $e_{3} \in E$ such that $d / e \equiv$ $e_{2} / e_{1}(\bmod v), 1 / e^{\prime} \equiv e_{3} / e_{1}(\bmod v)$. Then we have $d / e \sim e_{2} / e_{1}, 1 / e^{\prime} \sim e_{3} / e_{1}$ by condition (3). Hence $u \sim\left(e_{2} / e_{1}\right) /\left(e_{3} / e_{1}\right)=e_{2} / e_{3}$, and (4.1) holds. When $s=-1$, replacing $d / e \equiv e_{2} / e_{1}(\bmod v)$ and $1 / e^{\prime} \equiv e_{3} / e_{1}(\bmod v)$ by $1 / e \equiv e_{2} / e_{1}(\bmod v)$ and $d / e^{\prime} \equiv e_{3} / e_{1}(\bmod v)$, where $e_{1}, e_{2} \in E^{\prime}$ and $e_{3} \in E$, respectively, we can prove it by the same line of argument as the case $s=1$.

Further, we have $\operatorname{ker} \beta \subseteq U_{1}$ and hence $\operatorname{ker} \beta=U_{1}$, since if $u \sim e^{\prime} / e \in \operatorname{ker} \beta$, i.e., $\beta\left(e^{\prime} / e\right)=1$, then $e^{\prime} / e \sim 1$.

Let α be the homomorphism from U to $K_{2}^{S_{m}} F / K_{2}^{S_{m-1}} F$ given by $\alpha(u)=$ $\{u, \pi\}\left(\bmod K_{2}^{S_{m-1}}\right)$, where $\pi \in O$ satisfies $P O_{S}=\pi O_{S}$. Then, as in the proof of Lemma 3.2 in [2], we have $\beta=\partial_{v} \circ \alpha$. To prove ∂_{v} is bijective, it suffices to show that
(i) α is surjective, and
(ii) β is surjective and $\operatorname{ker} \beta \subset \operatorname{ker} \alpha$.

From [2 pages 405-406], (i) is true. By condition (2), β is surjective. If $1-$ $u \pi \in U_{1}$, where $u \in U$, then $\{1-u \pi, \pi\}=\{1-u \pi, u\}^{-1} \in K_{2}^{S_{m-1}} F$ and so $\operatorname{ker} \beta=U_{1} \subset \operatorname{ker} \alpha$. We are done.

Let $h>0$ be a real number. Define $D(h)=\{x \in O|0<|x| \leq h\}$. For simplicity, let $K=\frac{2}{\pi} \sqrt{|d|}$.

Lemma 4.3. Suppose that v is nonprincipal and $N_{v}>K^{2}$. Let $h^{2}=\lambda K N_{v}^{\frac{1}{2}}$ and $D=D(h) \cap Q \cap U$, where Q is in A and such that $Q P$ is a principal ideal in O. For any $a \in O \backslash P$, there are $x, y \in D$ such that $a \equiv y / x(\bmod v)$.
Proof. We only sketch the line of the proof, since it is similar to that of Lemmas $1-3$ in 8 .

For any $a \in O$, define $F_{a}: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ by the formula $(x, y) \rightarrow y-a x$. Let $K_{a}=F_{a}^{-1}(P) \cap(Q \times Q)$. Then K_{a} is a lattice in $R^{4} \simeq \mathcal{C} \times \mathcal{C}$, and we have

$$
\operatorname{vol} K_{a}=\operatorname{vol} K_{0}=\operatorname{vol}(Q \times(Q \cap P))=\left(\frac{\sqrt{|d|}}{2}\right)^{2} N(Q)^{2} N_{v}
$$

Let $S_{h}=\left\{(x, y) \in \mathcal{C} \times \mathcal{C}| | x|\leq h,|y| \leq h\}\right.$. We have $\operatorname{vol} S_{h}=\left(\pi h^{2}\right)^{2}$ and $2^{4} \operatorname{vol} K_{a}=\operatorname{vol} S_{h}$. Applying Minkowski's theorem, we can get $x, y \in S_{h} \bigcap K_{a}$, where $(x, y) \neq(0,0)$. Note that $N x, N y \leq h^{2}<M_{v}$. If $a \in O \backslash P$, then $x, y \neq 0$.

By Lemma 3.1, $x, y \in U$. Then $a \equiv y / x(\bmod v)$ (see Skalba's GTT in [8, page 306]).

Lemma 4.4. Suppose that v is nonprincipal and $M_{v}>K^{3}$. Let $\tilde{h}>0$ and $\tilde{h}^{2}=$ $K M_{v}^{\frac{2}{3}}\left(=K \lambda^{\frac{2}{3}} N_{v}^{\frac{2}{3}}\right)$, and let $E=D(\tilde{h}) \cap U, E^{\prime}=E \cap Q$. For any $a, b \in O \backslash P$, there exist $e_{1}, e_{2} \in E^{\prime}$ and $e \in E$ such that $a \equiv e_{2} / e_{1}(\bmod v)$ and $b \equiv e / e_{1}(\bmod v)$.
Proof. For any $a, b \in O$, define $F_{a, b}: \mathcal{C} \times \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C} \times \mathcal{C}$ by the formula $(x, y, z) \rightarrow$ $(y-a x, z-b x)$. Let $K_{a, b}=F_{a, b}^{-1}(P \times P) \cap(Q \times Q \times O)$. The remaining procedure is as in Lemma 4.3 (you also can refer to [5]).

Theorem 4.5. Suppose that v is nonprincipal $\left(M_{v}=\lambda N_{v}\right)$. If the inequalities

1. $N_{v}>\max \left\{K^{2}, K^{3} / \lambda\right\}$,
2. $N_{v}>\left(1+M_{v}^{-\frac{1}{2}}\right)^{4} \cdot K^{2}$,
3. $M_{v}>\left[\left(1+\lambda^{\frac{1}{4}} M_{v}^{-\frac{1}{12}}\right) K\right]^{3}$,
4. $N_{v}>\lambda^{\frac{1}{2}}(4 K)^{\frac{3}{4}}$
hold, then ∂_{v} is bijective.
Proof. Let us check that the subsets W as in Lemma 3.1, D as in Lemma 4.3, and E, E^{\prime} as in Lemma 4.4, of U satisfy the conditions of Proposition 4.2.
(i) Let $w \in W$. Since $N_{v}>\max \left\{K^{2}, K^{3} / \lambda\right\}$, by Lemma 4.3 there exist $d_{1}, d_{2} \in$ D such that $w \equiv d_{1} / d_{2}(\bmod v)$. The condition (2) above provides $\left|w d_{2}\right|+\left|d_{1}\right|<M_{v}$, so $w \in D D^{-1} U_{1}$ by Lemma 3.3.
(ii) That $E^{\prime} \subset E, 1 \in E$ is clear. The condition (1) above allows us to apply Lemma 4.4 to get that the map from $E^{\prime} \times E^{\prime} \times E$ to $k^{*} \times k^{*}$ is surjective.
(iii) Let $x \in\{1\} \cup D, e_{1}, e_{2}, e^{\prime} \in E^{\prime}$ and $e \in E$. By conditions (3) and (4) above, the following inequalities hold:

$$
\left|x e_{1}\right|+\left|e e_{2}\right|<M_{v}, \quad\left|e^{\prime}\right|+|e|<N_{v}
$$

Applying Lemma 3.3, we know that condition (3) of Proposition 4.2 holds.
When v is principal, the results of Lemma 3.1 and Lemma 3.2 allow us to apply Theorem 1 in [5] to obtain the following result.
Theorem 4.6. Suppose that v is principal and $|d| \geq 3$. If the inequalities

1. $N_{v}>K^{3}$,
2. $N_{v}>\left(1+N_{v}^{-\frac{1}{2}}\right)^{4} \cdot K^{2}$,
3. $N_{v}>\left[\left(1+N_{v}^{-\frac{1}{12}}\right) K\right]^{3}$
hold, then ∂_{v} is bijective.
Note. We take $a=1$ and $\lambda=1$ in Theorem 1 of [5].
In Table 1, for every discriminant d such that the class number of $F=Q(\sqrt{d})$ is 2 or 3 , we give the estimates of N_{v} from Theorem 4.5 and Theorem 4.6
Note. 1) From [1], we know that all d such that the class number of $F=Q(\sqrt{d})$ is 3 are listed in the above table.
2) When computing the bound of N_{v}, note that the right sides of the inequalities (2) and (3) in Theorems 4.5 and 4.6 are decreasing functions on M_{v} and N_{v} respectively.
Remark 4.7. Comparing the estimates of N_{v} above with Browkin's in [4], we can see that the bound for norms of exceptional v 's is much smaller here.

Table 1.

$-d$	23	24	31	35	40	51	52	59	83	88	91
λ	2	2	2	3	2	3	2	3	3	2	5
N_{v}	132	140	198	234	281	391	402	478	763	827	866
$\begin{gathered} (v \text { principal }) \\ N_{v} \\ (v \text { nonprincipal }) \\ \hline \end{gathered}$	81	85	120	107	170	177	243	216	342	496	271
-d	107	115	123	139	148	187	211	232	235	267	283
λ	3	5	3	5	2	7	5	2	5	3	7
$\begin{gathered} N_{v} \\ (v \text { principal) } \end{gathered}$	1082	1195	1311	1551	1691	2336	2760	3147	3203	3822	4142
$\begin{gathered} N_{v} \\ (v \text { nonprincipal) } \\ \hline \end{gathered}$	483	371	583	479	1008	565	842	1865	975	1677	988
-d	307	331	379	403	427	499	547	643	883	907	
λ	7	5	5	11	7	5	11	7	13	13	
$\begin{gathered} N_{v} \\ (v \text { principal) } \end{gathered}$	4637	5146	6209	6761	7326	9096	10334	12940	20126	20893	
$\begin{gathered} N_{v} \\ (v \text { nonprincipal) } \end{gathered}$	1103	1551	1865	1160	1724	2712	1752	3004	2974	3084	

5. Computation of $K_{2} Z[\sqrt{-10}]$

In this section we apply the general method of previous sections to the special case $F=Q(\sqrt{-40})$. Note that the class number of F is 2 .

Let $\omega=\sqrt{-10}$. Then $O=Z[\omega]$. Take $Q=(2, \omega)$; we have $Q^{2}=(2), \lambda=$ $N(Q)=2 . O$ and Q can be considered as a lattice in \mathcal{C}.

Let δ and δ^{\prime} denote the maximal distance from \mathcal{C} to O and Q respectively. Then $\delta^{2}=\frac{11}{4}, \delta^{2}=\frac{7}{2}$.

Lemma 5.1. Let A be a principal ideal of O. Then there is a representative element c in every residue class modulo A such that $N c \leq \frac{11}{4} N(A)$.
Lemma 5.2. Let A be a nonprincipal ideal of O. Then there is a representative element c in every residue class modulo A such that $N c \leq \frac{7}{4} N(A)$.

The proofs of the two lemmas are elementary.
Suppose that all finite places of F are ordered in the following way:
(1) v_{1}, v_{2} and v_{3} correspond to the prime ideals $(3),(2, \omega)$ and (5), respectively (these ideals are in $O, O_{S_{1}}$ and $O_{S_{2}}$, respectively). The remaining finite places with principal norm not greater than 41 correspond to the ideal $\left(a_{m}\right), m=4,5, \ldots, 13$, in $O_{S_{m-1}}$ where $a_{4}=2-\omega, a_{6}=1+\omega, a_{8}=3+\omega, a_{10}=4+\omega, a_{12}=1+2 \omega$, and $a_{2 k+1}=\overline{a_{2 k}}(k=2,3,4,5,6)$.
(2) The ordering is normal for finite places with principal norm greater than 41.

In fact this ordering is even normal on the set of finite places with principal norm greater than 14.

In the following propositions we set $G=\{x \in O \cap U| | x|\leq|g|\}$, where $|g|$ is the least number such that $\beta(G)$ generates k^{*} and W as in Lemma 3.1, and choose a suitable subset C of U satisfying the conditions of Theorem 4.1 so as to apply Theorem 4.1 to show ∂_{v} is bijective for some v with small norm.

Proposition 5.3. If v is nonprincipal and $N_{v}>13$ (i.e., $M_{v}>26$), then ∂_{v} is bijective.

Proof. According to the table for the bound of N_{v} in Section 4, we only need to consider the case $N_{v} \leq 170$.

Let $C=\left\{x \in O \left\lvert\, 0<N x \leq \frac{7}{4} N_{v}\right.\right\}$. By Lemma 3.1 we know that $C \subset U$. From Lemma 3.3 and Lemma 5.2 we see that if N_{v} satisfies the inequalities
(1) $\sqrt{2 N_{v}}+\sqrt{\frac{7}{4} N_{v}}<N_{v}$, i.e., $7.5 \approx\left(\sqrt{2}+\sqrt{\frac{7}{4}}\right)^{2}<N_{v}$,
(2) $\sqrt{\frac{7}{4} N_{v}}(|g|+1)<N_{v}$, i.e., $\frac{7}{4}(|g|+1)^{2}<N_{v}$,
then we can apply Theorem 4.1 to obtain that ∂_{v} is bijective. Thus for the following cases the consequence holds:

$$
\begin{aligned}
& N_{v}=23,37,47,53,103,167, \text { here }|g|=2 \\
& N_{v}=127, \text { here }|g|=3 \\
& N_{v}=157, \text { here }|g|=\sqrt{11} .
\end{aligned}
$$

Let $h>0$. Denote $h^{\prime}=\max \{|x| \mid x \in D(h)\}$ (note that $D(h)=\{x \in O \mid 0<$ $|x| \leq h\}$).

Lemma 5.4 (Lemma 3.2 in [5]). Suppose $N_{v}>K^{2}, D_{1}=D\left(h_{1}\right)$ and $D_{2}=D\left(h_{2}\right)$, where $h_{1}, h_{2}>0$ satisfy the following conditions:
(1) $h_{1} h_{2}=K N_{v}^{\frac{1}{2}}$,
(2) $\max \left(h_{1}^{\prime 2}, h_{2}^{\prime 2}\right)<N_{v}$.

Then for any $a \in O \backslash P$, there exist $x \in D_{1}$ and $y \in D_{2}$ such that $a \equiv x / y(\bmod v)$.
Proposition 5.5. If v is principal and $N_{v}>41$, then ∂_{v} is bijective.
Proof. We only need to consider the case $N_{v}<281$ by the table in Section 4. Take h_{1}, h_{2} and D_{1}, D_{2} as in Lemma 5.4 and let $C=D_{1} D_{2}^{-1}$. By Lemma 3.1 we know that $D_{1}, D_{2} \subset U$, so $C \subset U$. From Lemma 3.2 and Lemma 5.4 we see that if the two inequalities
(1) $N_{v}^{\frac{1}{2}} h_{2}^{\prime}+h_{1}^{\prime}<N_{v}$,
(2) $(1+|g|) h_{1}^{\prime} h_{2}^{\prime}<N_{v}$
hold, then ∂_{v} is bijective by Theorem 4.1.
It is easy to show the consequence holds for the following cases. Here we list the values of $N_{v},|g|, h_{2}^{2}, h_{1}^{\prime 2}$ and $h_{2}^{\prime 2}$, where h_{1} is determined by condition (1) in Lemma 5.4 (in fact the method was used by Skalba [8]).

N_{v}	$\|g\|$	h_{2}^{2}	$h_{1}^{\prime 2}$	$h_{2}^{\prime 2}$
251	3	18.99	211	16
211	2	58.49	56	56
179	2	53.87	49	49
139	2	18.99	115	16
131	2	18.99	110	16

For the remaining cases we apply Qin's method [6, 7] to construct C.
Let $C^{\prime}=\left\{x \in O \left\lvert\, 0<N x \leq \frac{11}{4} N_{v}\right.\right\}, T=C^{\prime} \backslash U=\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}$. Choose $S=\left\{s_{1}, s_{2}, \ldots, s_{r}\right\} \subset O \cap U$, where $s_{i} \equiv t_{i}(\bmod v), i=1, \ldots, r$. Let $C=\left(C^{\prime} \backslash T\right) \cup S$ (the choice of elements in S should make $m(C)=\max \{|x| \mid x \in C\}$ as small as possible).

By Lemma 3.1 and Lemma 5.1, if the inequalities
(1) $m(C)+\sqrt{N_{v}}<N_{v}$,
(2) $m(C)(1+|g|)<N_{v}$
hold, then ∂_{v} is bijective. So the result is true for the remaining cases:

$$
\begin{array}{rccc}
N_{v} & 241 & 89 & 59 \\
|g| & \sqrt{14} & 3 & 2 \\
m(C) \leq & \sqrt{2124} & 22 & \sqrt{304}
\end{array}
$$

We have stated that the finite places with principal norm not greater than 41 correspond to the ideals $\left(a_{m}\right), m=4,5, \ldots, 13$, in $O_{S_{m-1}}$ (except for v_{1}, v_{2}, v_{3}). For convenience, we write $\partial_{v_{m}}$ as ∂_{m}, where $m=4,5, \ldots, 13$.

Proposition 5.6. ∂_{m} is bijective for $m=5,6, \ldots, 13$.
Proof. We will construct the subsets W, C and G of U directly. Let $a_{0}=-1, a_{1}=$ $2, a_{2}=3, a_{3}=\omega$ (note that the meaning of $a_{m}, m=4,5, \ldots, 13$, has been given before). Set $W_{m}=\left\{a_{j} \mid j=0,1, \ldots, m-1\right\}$, where $m=5,6, \ldots, 13$. We will list the sets C and G just for ∂_{m}, where $m=2 r+1, r=2,3,4,5,6$. For $m=$ $2 r, r=3,4,5,6$, as the sets C and G for $\partial_{2 r}$ we take the conjugates of C and G for $\partial_{2 r+1}$ respectively. Let X be a number set. Denote by $\pm X$ the set $-X \cup X$, where $-X=\{-x \mid x \in X\}$.

$$
\begin{aligned}
& m=13, C= \pm\{1,2,4,8,18, \omega, \omega+1,2(\omega+1), 4(\omega+1), \omega+2,2(\omega+2), \\
& 3(\omega+2), \omega+3,2(\omega+3), 3(\omega+3), \omega+4,2(\omega+4), \omega+5, \\
&2(\omega+5), 9 \omega(\omega+1) / 2,9 \omega(\omega+1)\}, G=\{2,3\} ; \\
& m=11, \quad C= \pm\{1,2, \omega, 2 \omega,-\omega / 5,-10\}, G=\{2\} ; \\
& m=9, C= \pm\{1,2,4,5,4 / 5, \omega / 2, \omega / 5, \omega / 10,2 \omega, 4 \omega, 2(\omega+2)\}, G=\{2\} ; \\
& m=7, C= \pm\{1,2,5 / 2, \omega / 2, \omega / 3, \omega+2\}, G=\{2\} ; \\
& m=5, C= \pm\{1,2,4\}, G=\{-2\} .
\end{aligned}
$$

We can use the method used in [5] and [8] to check that the subsets W, C and G of U satisfy the conditions of Theorem 4.1.

Theorem 5.7. $K_{2} Z[\sqrt{-10}]=1$.
Before proving the assertion, we list some identities on symbols and some results on the elements of $K_{2} F$ which are useful for our proof.

1) Let $x \in F^{*}$ and assume that the polynomials of x make sense of the following symbols. We have

$$
\{x, x\}^{2}=\{x,-1\}^{2}=1,\{x, x+1\}^{2}=1,\left\{x, x^{2} \pm 1\right\}^{4}=1,\left\{x, x^{2}+x+1\right\}^{3}=1
$$

2) If $x, y, z \in F^{*}$ and $z=x \pm y$, then $\left\{\frac{x}{z}, \frac{y}{z}\right\}^{2}=1$, and hence $\{x, y\}^{2} \cdot\{y, z\}^{2}=$ $\{x, z\}^{2}$.
3) If $\left\{\frac{a}{b}, \frac{c c^{\prime}}{d}\right\}^{n}=1$, where $a, b, c, d \in U_{S_{m}}, c^{\prime} \in F^{*}$, then $\left\{a, c^{\prime}\right\}^{n} \equiv\left\{b, c^{\prime}\right\}^{n}$ $\left(\bmod K_{2}^{S_{m}}(F)\right)$.
4) From the proof of Proposition 3 in [2], we know that there is no element of order 2 in $K_{2} O$. Note that the class number of $Q(\sqrt{3 \times 40})$ is prime to 3 , so there is no element of order 3 in $K_{2} O$ by the results on p-rank of $K_{2} O$ in [3]. Thus if $x \in K_{2} O$ and $x^{2^{r} 3^{k}} \in A$, where A is a subgroup of $K_{2} F$ and $r, k \in N$, we have $x \in A$.

Now let us complete the proof of Theorem 5.7.
By Quillen's exact sequence (see (2.1) in Section 2) and the preceding results, we have

$$
\begin{equation*}
K_{2} O \subseteq K_{2}^{S_{4}}(F) \tag{5.1}
\end{equation*}
$$

a) By (5.1), $K_{2} O$ consists of products of symbols of the form $\{a, b\}$, where $a, b \in\{-1,2, \omega, 3,2-\omega\}$. Since $\omega-(\omega-2)=2$, we have

$$
\begin{equation*}
\left\{\frac{\omega}{2}, \frac{\omega-2}{2}\right\}^{2}=1 . \tag{5.2}
\end{equation*}
$$

Since $(\omega-2)^{2}=\omega^{2}-4 \omega+4=-(4 \omega+6)$, we have

$$
\begin{equation*}
\left\{-\frac{4 \omega}{6},-\frac{(\omega-2)^{2}}{6}\right\}=1 \tag{5.3}
\end{equation*}
$$

From (5.2), (5.3), we obtain that $K_{2} O \subseteq\langle\{2, \omega-2\}\rangle K_{2}^{S_{3}}(F)$. Let $x=\frac{\omega-2}{4}$. Then $x^{2}+x+1=\frac{1}{8}$ and $\left\{x, \frac{1}{2}\right\}^{9}=\left\{x, \frac{1}{8}\right\}^{3}=1$. So

$$
\begin{equation*}
\{x, 2\}^{9}=1,\{2, x\}^{9}=1, \text { and }\{2, \omega-2\}^{9}=1 \tag{5.4}
\end{equation*}
$$

(Note that $\{2,4\}=\{2,2\}^{2}=1$.) Therefore $K_{2} O \subseteq K_{2}^{S_{3}}(F)$.
b) Since

$$
\begin{equation*}
\{2, \omega\}^{8}=\left\{2^{4}, \omega^{2}\right\}=\{16,-10\}=\{4,-10\}^{2}=\{4,5\}^{2}\{4,-2\}^{2}=1 \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\{3, \omega\}^{8}=\left\{3^{2}, \omega^{2}\right\}^{2}=\{9,-10\}^{2}=1 \tag{5.6}
\end{equation*}
$$

we have $K_{2} O \subseteq K_{2}^{S_{2}}(F)$.
Since $\{2,3\}^{2}=1$, we obtain $K_{2} O=1$.
Remark 5.8. The result agrees with that conjectured in [3] and also that in [4].

Acknowledgments

The authors would like to thank the referees for many valuable suggestions on the earlier version of the paper.

References

1. S. Arno, M. L. Robinson, F. S. Wheeler, The imaginary quadratic fields with small odd class number, Acta Arith. 83(1998), 295-330. MR 99a:11123
2. Bass, H. and Tate, J., The Milnor ring of a global field, Lecture Notes in Math., 342, Berlin-Heidelberg-New York, Springer, 1973, 349-428. MR 48:3656b
3. Browkin, J. and Gangl, H., Tame and wild kernels of quadratic imaginary number fields, Math. of Computation, Vol. 68, No. 225(1999), 291-305. MR 99c:11144
4. Browkin, J., Computing the tame kernel of quadratic imaginary fields, Math. of Computation, Vol. 69, No. 232(2000), 1667-1683. MR 2001a:11189
5. Chen, S. and You, H., Computation of K_{2} for the ring of integers of quadratic imaginary fields, Science in China (Series A), Vol. 44, No. 7(2001), 846-855.
6. Qin Hourong, Computation of $K_{2} Z[\sqrt{-6}]$, J. of Pure and Appl. Algebra, 96(1994), 133-146. MR 95i:11135
7. Qin Hourong, Computation of $K_{2} Z\left[\frac{-1+\sqrt{-35}}{2}\right]$, Chinese Ann. Math., 17B,1(1996), 63-72. MR 97a:19004
8. Skalba, M., Generalization of Thue's theorem and computation of the group $K_{2} O_{F}$, J. of Number Theory, 46(1994), 303-322. MR 95d:19001
9. Tate, J., Appendix to "The Milnor ring of a global field" by H.Bass and J.Tate, Algebraic K-theory, Lecture Notes in Math., 342, Berlin-Heidelberg-New York, Springer, 1973, 429-446. MR 48:3656b

Department of Mathematics, Harbin Institude of Technology, Harbin, Heilongjiang 150001, People's Republic of China

E-mail address: hyou@hope.hit.edu.cn
Department of Mathematics, Harbin Institude of Technology, Harbin, Heilongjiang 150001, People's Republic of China

[^0]: Received by the editor July 10, 2000 and, in revised form, July 9, 2001 and September 26, 2001.

 2000 Mathematics Subject Classification. Primary 11R11; Secondary 11R70, 11Y40, 19C99, 19F27.

 Key words and phrases. Tame kernel, imaginary quadratic field, class number.
 This research is supported by the National Science Foundation of China.

