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THE TAME KERNEL OF IMAGINARY QUADRATIC FIELDS
WITH CLASS NUMBER 2 OR 3

HONG YOU AND SHENG CHEN

Abstract. This paper presents improved bounds for the norms of exceptional
finite places of the group K2OF , where F is an imaginary quadratic field of
class number 2 or 3. As an application we show that K2Z[

√
−10] = 1.

1. Introduction

Tate [9] has determined the tame kernel of all imaginary quadratic Euclidean
fields F and of F = Q(

√
−15). He and Bass [2] proved that when the norm of

the finite place v of the field F is sufficiently large, then a certain associated map
∂v (see section 2 below) is an isomorphism. It follows that in order to compute
the tame kernel we need only investigate the remaining v’s (those whose norms
are smaller than the bound of the exceptional v’s), and perform the appropriate
computations with Steinberg symbols. Skalba [8] used a generalization of Thue’s
theorem to get a reasonable bound for norms of exceptional v’s, and proved that
K2OF = 1 when F = Q(

√
−19) and F = Q(

√
−20). Modifying the method of

Tate, Qin [6, 7] did the same for F = Q(
√
−24) and F = Q(

√
−35). Recently

Browkin [4] improved the estimates of Skalba and Qin for the bounds of norms of
exceptional v’s and applied his result to the case F = Q(

√
−23). In the present

paper we present a certain adaptation of Tate, Skalba and Browkin’s method for
computing the tame kernel of imaginary quadratic fields with class number 2 or 3,
and we get much smaller bounds for norms of exceptional v’s. We apply this result
in the case F = Q(

√
−40).

2. Notation

Let F be a number field and let v1, v2, v3, . . . be all finite places of F , ordered in
a certain way. For m ≥ 0 let Sm = {v1, . . . , vm}, thus S0 = φ. Denote the ring of
Sm-integers of F by OSm , the group of Sm-units by USm . Let Pm be the maximal
ideal of OSm−1 corresponding to the place vm. The residue field of the place vm is
denoted by kvm (kvm = OSm−1/Pm) and the norm of vm is definded to be Nvm =
cardkvm . Thus OS0 is the ring OF of integers of F ; we denote it by O below.
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Let KSm
2 (F ) be the subgroup of K2F generated by symbols {a, b}, where a, b ∈

Usm . Then K2F =
⋃∞
m=1K

Sm
2 (F ).

Let ∂vm : K2F → k∗vm be the tame symbol corresponding to vm. Since KSm−1
2 (F )

⊂ ker(∂vm), there is an induced map (also denoted by ∂vm)

∂vm : KSm
2 (F )/KSm−1

2 (F )→ k∗vm .

By Quillen’s exact sequence

1→ K2O→ K2F =
∞⋃
m=1

KSm
2 (F ) ∂−→

∞∐
m=1

k∗vm → 1,(2.1)

where ∂ =
∐∞
m=1 ∂vm , we know that if ∂vj are isomorphisms for all j > m, then

K2O ⊆ KSm
2 (F ).

Since in the sequel we shall assume that m is fixed, we simplify the notation as
follows:

S = Sm−1, P = Pm
⋂
O, v = vm, ∂v = ∂vm , U = USm−1 , k∗ = k∗vm .

Now let F = Q(
√
d) be the imaginary quadratic field with discriminant d and

class number 2 or 3. Under the embedding σ : F → C : a+ b
√
d→ a+ b

√
|d|i of the

field F into C, we can consider F as a subfield of C. For all x ∈ O, Nx = |x|2 = xx.
Suppose that λ = p is the least prime number such that p is not inertial in O

and all factors in the prime decomposition of pO are nonprincipal. Let pO = Q1Q2,
whereQ1,Q2 are nonprincipal primes in O (Q2 may equalQ1 when the class number
of F is 2). Set A = {Q1, Q2}. For any nonprincipal prime P in O, there is an
element Q ∈ A such that QP is principal and the norm of QP is λN(P ).

Definition 2.1. Let P be a prime ideal of O. Define the principal norm M(P ) of
P as follows:

M(P ) =
{
N(P ), if P is principal in O,
λN(P ), if P is nonprincipal in O.

For the finite place v corresponding to a prime ideal P ofO, we writeMv = M(P )
and call Mv the principal norm of v. If P is principal in O, we say the place v is
principal and we have Mv = Nv. Otherwise, v is nonprincipal and Mv = λNv.

For finite places vi and vj , if i < j, we say that vi precedes vj .
Let M be a real number satisfying λ ≤M . We assume that the ordering on the

set of all finite places of F satisfies the property: for all finite places v and v′, if
Mv < Mv′ and M < Mv′ , then v precedes v′.

When the ordering on the set of finite places satisfies the preceding condition, we
say that the ordering is normal for finite places with principal norm greater than
M .

In the two sections below, we always assume that M <Mv. Thus the prime ideal
POS corresponding to v in OS is principal. We write POS as πOS , where π ∈ O and
Nπ = Mv. Let β be the homomorphism from U to k∗ given by β(u) = u(mod π)
(sometimes we write u(mod π) as u(mod v)). Denote by U1 the subgroup of U
generated by (1 + πU) ∩ U . It is easy to see that U1 ⊆ kerβ. Let a, b ∈ U ; then
a ∼ b means a ∈ bU1.
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3. Preliminary information on the finite place v

Lemma 3.1. 1. If x ∈ O and 0 < Nx < Mv, then x ∈ U .
2. W = {x ∈ O ∩ U

∣∣ Nx ≤Mv} generates U .

Proof. (1) Suppose that ( x ) = ( y )( z ) where ( y ) = P1P2 · · ·Pr, ( z ) =
Q1Q2 · · ·Qs, Pi (i = 1, . . . , r) is principal prime in O and Qj (j = 1, . . . , s) is
nonprincipal prime in O respectively. For Pi, we have N(Pi) ≤ Nx < Mv and for
Qj, we have λ ≤ N(Qj) ≤ Nz/λ ≤ Nx/λ < Mv/λ, i.e., M(Qj) < Mv. That means
the finite places corresponding to Pi or Qj precede v, so x ∈ U .

(2) In fact U is generated by the set {a ∈ O ∩ U
∣∣ Na = 1 or Na = Mv′ ,

v′ precedes v}.

Lemma 3.2. Suppose v is principal. Let a, b ∈ O ∩ U satisfy |a| + |b| < Nv and
a ≡ b(mod v). Then a ∼ b.

Proof. Assume a 6= b. Since a ≡ b(mod v), π|a − b (note that POS = πOS). By
|a|+ |b| < Nv, we have N(a−bπ ) < Nv. Then a−b

π ∈ U by Lemma 3.1, so a− b ∈ πU ,
a ∼ b.

Now we assume v is nonprincipal and let Q be a nonprincipal prime in A such
that QP is principal in O. Then N(QP ) = λNv = Mv.

Lemma 3.3. Suppose v is nonprincipal and let a, b ∈ O ∩ U .
1. If |a|+ |b| < Nv and a ≡ b(mod v), then a ∼ b.
2. Further, if a, b ∈ Q satisfy |a|+ |b| < Mv and a ≡ b(mod v), then a ∼ b.

Proof. Assume a 6= b. As an ideal of O, (a−b) = ( y )( z ), where ( y ) = P1P2 · · ·Pr,
( z ) = PQ1 · · ·Qs, Pi (i = 1, . . . , r) is principal prime in O andQj (j = 1, . . . , s, s ≥
1) is nonprincipal prime in O respectively and PQ1 or PQ1Q2 is a principal ideal
denoted by ( c ).

(1) First we show that POS = cOS , where ( c ) = PQ1 or PQ1Q2. This follows
from the fact that the finite place corresponding to Qj (j = 1, 2, . . . , s) precedes v.
In fact, N(Qj) ≤ N(a− b)/N(P ) < N2

v /Nv = Nv. Then a−b
c ∈ U, a− b ∈ cU, a ∼ b.

(2) Similarly to the proof of (1), suppose PQ = ( c ); then Nc = Mv, c|a − b.
We have N(a−bc ) < Mv. By Lemma 3.1, a− b ∈ cU, a ∼ b.

4. Conditions for ∂v being bijective

Tate [9] has proved the following useful result

Theorem 4.1 ([9, Prop. 1]). Suppose that W,C and G are subsets of U such that
1. W ⊂ CU1 and W generates U ,
2. CG ⊂ CU1 and β(G) generates k∗,
3. 1 ∈ C ∩ kerβ ⊂ U1.

Then ∂v is bijective.

In this section we will give some other conditions for ∂v being bijective.

Proposition 4.2. Suppose that W,D,E and E′ are subsets of U such that
1. W ⊂ DD−1U1, where D−1 = {d−1

∣∣ d ∈ D} and W generates U ,
2. 1 ∈ E,E′ ⊂ E, and the map: E′ × E′ × E → k∗ × k∗ given by (e1, e2, e) →

(β(e2/e1), β(e/e1)) is surjective,
3. for any x ∈ {1} ∪D, e1, e2, e

′ ∈ E′ and e ∈ E,
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(a) if xe1 ≡ ee2(mod v), then xe1 ∼ ee2,
(b) if e′ ≡ e(mod v), then e′ ∼ e.

Then ∂v is bijective.

Proof. Let u ∈ U . Write u ∼
∏r
i=1 d

si
i , where di ∈ D and si = 1 or si = −1 by

condition (1). We want to show, by induction on r, that

for any u ∈ U , there are e′ ∈ E′ and e ∈ E such that u ∼ e′/e.(4.1)

When r = 1 we have u ∼ ds, where s = 1 or s = −1. If s = 1, there are e1, e2 ∈
E′ such that d ≡ e2/e1(mod v) by condition (2) (since (β(d), 1) has preimage in
E′ × E′ × E). We have d ∼ e2/e1 from condition (3). So (4.1) holds (note that
E′ ⊂ E). When s = −1, replacing u by u−1, we have the same proof.

Assume (4.1) is true for r − 1. Writing u ∼ ds
∏r
i=2 d

si
i , we have that there are

e′ ∈ E′ and e ∈ E such that u ∼ dse′/e, where s = 1 or s = −1, by the inductive
assumption.

When s = 1, by condition (2) there are e1, e2 ∈ E′ and e3 ∈ E such that d/e ≡
e2/e1(mod v), 1/e′ ≡ e3/e1(mod v). Then we have d/e ∼ e2/e1, 1/e′ ∼ e3/e1 by
condition (3). Hence u ∼ (e2/e1)/(e3/e1) = e2/e3, and (4.1) holds. When s = −1,
replacing d/e ≡ e2/e1(mod v) and 1/e′ ≡ e3/e1(mod v) by 1/e ≡ e2/e1(mod v) and
d/e′ ≡ e3/e1(mod v), where e1, e2 ∈ E′ and e3 ∈ E, respectively, we can prove it
by the same line of argument as the case s = 1.

Further, we have kerβ ⊆ U1 and hence kerβ = U1, since if u ∼ e′/e ∈ kerβ, i.e.,
β(e′/e) = 1, then e′/e ∼ 1.

Let α be the homomorphism from U to KSm
2 F/K

Sm−1
2 F given by α(u) =

{u, π}(mod K
Sm−1
2 ), where π ∈ O satisfies POS = πOS . Then, as in the proof

of Lemma 3.2 in [2], we have β = ∂v ◦α. To prove ∂v is bijective, it suffices to show
that

(i) α is surjective, and
(ii) β is surjective and kerβ ⊂ kerα.
From [2, pages 405-406], (i) is true. By condition (2), β is surjective. If 1 −

uπ ∈ U1, where u ∈ U , then {1 − uπ, π} = {1 − uπ, u}−1 ∈ K
Sm−1
2 F and so

kerβ = U1 ⊂ kerα. We are done.

Let h > 0 be a real number. Define D(h) = {x ∈ O
∣∣ 0 < |x| ≤ h}. For

simplicity, let K = 2
π

√
|d|.

Lemma 4.3. Suppose that v is nonprincipal and Nv > K2. Let h2 = λKN
1
2
v and

D = D(h) ∩ Q ∩ U , where Q is in A and such that QP is a principal ideal in O.
For any a ∈ O \ P , there are x, y ∈ D such that a ≡ y/x(mod v).

Proof. We only sketch the line of the proof, since it is similar to that of Lemmas
1–3 in [8].

For any a ∈ O, define Fa : C × C → C by the formula (x, y) → y − ax. Let
Ka = F−1

a (P ) ∩ (Q×Q). Then Ka is a lattice in R4 ' C × C, and we have

volKa = volK0 = vol(Q× (Q ∩ P )) = (

√
|d|
2

)2N(Q)2Nv.

Let Sh = {(x, y) ∈ C × C
∣∣ |x| ≤ h, |y| ≤ h}. We have volSh = (πh2)2 and

24volKa = volSh. Applying Minkowski’s theorem, we can get x, y ∈ Sh
⋂
Ka,

where (x, y) 6= (0, 0). Note that Nx,Ny ≤ h2 < Mv. If a ∈ O \ P , then x, y 6= 0.
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By Lemma 3.1, x, y ∈ U . Then a ≡ y/x(mod v) (see Skalba’s GTT in [8, page
306]).

Lemma 4.4. Suppose that v is nonprincipal and Mv > K3. Let h̃ > 0 and h̃2 =
KM

2
3
v (= Kλ

2
3N

2
3
v ), and let E = D(h̃)∩U,E′ = E ∩Q. For any a, b ∈ O \P , there

exist e1, e2 ∈ E′ and e ∈ E such that a ≡ e2/e1(mod v) and b ≡ e/e1(mod v).

Proof. For any a, b ∈ O, define Fa,b : C × C × C → C × C by the formula (x, y, z)→
(y− ax, z− bx). Let Ka,b = F−1

a,b (P ×P )∩ (Q×Q×O). The remaining procedure
is as in Lemma 4.3 (you also can refer to [5]).

Theorem 4.5. Suppose that v is nonprincipal (Mv = λNv). If the inequalities
1. Nv > max{K2,K3/λ},
2. Nv > (1 +M

− 1
2

v )4 ·K2,

3. Mv > [(1 + λ
1
4M
− 1

12
v )K]3,

4. Nv > λ
1
2 (4K)

3
4

hold, then ∂v is bijective.

Proof. Let us check that the subsets W as in Lemma 3.1, D as in Lemma 4.3, and
E,E′ as in Lemma 4.4, of U satisfy the conditions of Proposition 4.2.

(i) Let w ∈ W . Since Nv > max{K2,K3/λ}, by Lemma 4.3 there exist d1, d2 ∈
D such that w ≡ d1/d2(mod v). The condition (2) above provides |wd2|+|d1| < Mv,
so w ∈ DD−1U1 by Lemma 3.3.

(ii) That E′ ⊂ E, 1 ∈ E is clear. The condition (1) above allows us to apply
Lemma 4.4 to get that the map from E′ × E′ × E to k∗ × k∗ is surjective.

(iii) Let x ∈ {1}∪D, e1, e2, e
′ ∈ E′ and e ∈ E. By conditions (3) and (4) above,

the following inequalities hold:

|xe1|+ |ee2| < Mv, |e′|+ |e| < Nv.

Applying Lemma 3.3, we know that condition (3) of Proposition 4.2 holds.

When v is principal, the results of Lemma 3.1 and Lemma 3.2 allow us to apply
Theorem 1 in [5] to obtain the following result.

Theorem 4.6. Suppose that v is principal and |d| ≥ 3. If the inequalities
1. Nv > K3,
2. Nv > (1 +N

− 1
2

v )4 ·K2,
3. Nv > [(1 +N

− 1
12

v )K]3

hold, then ∂v is bijective.

Note. We take a = 1 and λ = 1 in Theorem 1 of [5].

In Table 1, for every discriminant d such that the class number of F = Q(
√
d)

is 2 or 3, we give the estimates of Nv from Theorem 4.5 and Theorem 4.6

Note. 1) From [1], we know that all d such that the class number of F = Q(
√
d) is

3 are listed in the above table.
2) When computing the bound of Nv, note that the right sides of the inequal-

ities (2) and (3) in Theorems 4.5 and 4.6 are decreasing functions on Mv and Nv
respectively.

Remark 4.7. Comparing the estimates of Nv above with Browkin’s in [4], we can
see that the bound for norms of exceptional v’s is much smaller here.
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Table 1.

−d 23 24 31 35 40 51 52 59 83 88 91
λ 2 2 2 3 2 3 2 3 3 2 5
Nv 132 140 198 234 281 391 402 478 763 827 866

(v principal)
Nv 81 85 120 107 170 177 243 216 342 496 271

(v nonprincipal)
−d 107 115 123 139 148 187 211 232 235 267 283
λ 3 5 3 5 2 7 5 2 5 3 7
Nv 1082 1195 1311 1551 1691 2336 2760 3147 3203 3822 4142

(v principal)
Nv 483 371 583 479 1008 565 842 1865 975 1677 988

(v nonprincipal)
−d 307 331 379 403 427 499 547 643 883 907
λ 7 5 5 11 7 5 11 7 13 13
Nv 4637 5146 6209 6761 7326 9096 10334 12940 20126 20893

(v principal)
Nv 1103 1551 1865 1160 1724 2712 1752 3004 2974 3084

(v nonprincipal)

5. Computation of K2Z[
√
−10]

In this section we apply the general method of previous sections to the special
case F = Q(

√
−40). Note that the class number of F is 2.

Let ω =
√
−10. Then O = Z[ω]. Take Q = (2, ω); we have Q2 = ( 2 ), λ =

N(Q) = 2. O and Q can be considered as a lattice in C.
Let δ and δ′ denote the maximal distance from C to O and Q respectively. Then

δ2 = 11
4 , δ

′2 = 7
2 .

Lemma 5.1. Let A be a principal ideal of O. Then there is a representative ele-
ment c in every residue class modulo A such that Nc ≤ 11

4 N(A).

Lemma 5.2. Let A be a nonprincipal ideal of O. Then there is a representative
element c in every residue class modulo A such that Nc ≤ 7

4N(A).

The proofs of the two lemmas are elementary.
Suppose that all finite places of F are ordered in the following way:
(1) v1, v2 and v3 correspond to the prime ideals ( 3 ), (2, ω) and ( 5 ), respectively

(these ideals are in O, OS1 and OS2 , respectively). The remaining finite places with
principal norm not greater than 41 correspond to the ideal (am), m = 4, 5, . . . , 13,
in OSm−1 where a4 = 2− ω, a6 = 1 + ω, a8 = 3 + ω, a10 = 4 + ω, a12 = 1 + 2ω, and
a2k+1 = a2k (k = 2, 3, 4, 5, 6).

(2) The ordering is normal for finite places with principal norm greater than 41.
In fact this ordering is even normal on the set of finite places with principal norm

greater than 14.
In the following propositions we set G = {x ∈ O ∩ U

∣∣ |x| ≤ |g|}, where |g| is
the least number such that β(G) generates k∗ and W as in Lemma 3.1, and choose
a suitable subset C of U satisfying the conditions of Theorem 4.1 so as to apply
Theorem 4.1 to show ∂v is bijective for some v with small norm.

Proposition 5.3. If v is nonprincipal and Nv > 13 (i.e., Mv > 26), then ∂v is
bijective.

Proof. According to the table for the bound of Nv in Section 4, we only need to
consider the case Nv ≤ 170.

Let C = {x ∈ O
∣∣ 0 < Nx ≤ 7

4Nv}. By Lemma 3.1 we know that C ⊂ U . From
Lemma 3.3 and Lemma 5.2 we see that if Nv satisfies the inequalities

(1)
√

2Nv +
√

7
4Nv < Nv, i.e., 7.5 ≈ (

√
2 +

√
7
4 )2 < Nv,
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(2)
√

7
4Nv(|g|+ 1) < Nv, i.e., 7

4 (|g|+ 1)2 < Nv,
then we can apply Theorem 4.1 to obtain that ∂v is bijective. Thus for the following
cases the consequence holds:

Nv = 23, 37, 47, 53, 103, 167, here |g| = 2;

Nv = 127, here |g| = 3;

Nv = 157, here |g| =
√

11.

Let h > 0. Denote h′ = max{|x|
∣∣ x ∈ D(h)} (note that D(h) = {x ∈ O

∣∣ 0 <
|x| ≤ h}).

Lemma 5.4 (Lemma 3.2 in [5]). Suppose Nv >K2, D1 =D(h1) and D2 =D(h2),
where h1, h2 > 0 satisfy the following conditions:

(1) h1h2 = KN
1
2
v ,

(2) max(h′21 , h
′2
2 ) < Nv.

Then for any a ∈ O \ P , there exist x ∈ D1 and y ∈ D2 such that a ≡ x/y(mod v).

Proposition 5.5. If v is principal and Nv > 41, then ∂v is bijective.

Proof. We only need to consider the case Nv < 281 by the table in Section 4. Take
h1, h2 and D1, D2 as in Lemma 5.4 and let C = D1D

−1
2 . By Lemma 3.1 we know

that D1, D2 ⊂ U , so C ⊂ U . From Lemma 3.2 and Lemma 5.4 we see that if the
two inequalities

(1) N
1
2
v h′2 + h′1 < Nv,

(2) (1 + |g|)h′1h′2 < Nv
hold, then ∂v is bijective by Theorem 4.1.

It is easy to show the consequence holds for the following cases. Here we list the
values of Nv, |g|, h2

2, h
′2
1 and h′22 , where h1 is determined by condition (1) in Lemma

5.4 (in fact the method was used by Skalba [8]).

Nv |g| h2
2 h′21 h′22

251 3 18.99 211 16
211 2 58.49 56 56
179 2 53.87 49 49
139 2 18.99 115 16
131 2 18.99 110 16

For the remaining cases we apply Qin’s method [6, 7] to construct C.
Let C′ = {x ∈ O

∣∣ 0 < Nx ≤ 11
4 Nv}, T = C′ \ U = {t1, t2, . . . , tr}. Choose

S = {s1, s2, . . . , sr} ⊂ O∩U , where si ≡ ti(mod v), i = 1, . . . , r. Let C = (C′\T )∪S
(the choice of elements in S should make m(C) = max{|x|

∣∣ x ∈ C} as small as
possible).

By Lemma 3.1 and Lemma 5.1, if the inequalities
(1) m(C) +

√
Nv < Nv,

(2) m(C)(1 + |g|) < Nv
hold, then ∂v is bijective. So the result is true for the remaining cases:

Nv 241 89 59
|g|

√
14 3 2

m(C) ≤
√

2124 22
√

304



1508 HONG YOU AND SHENG CHEN

We have stated that the finite places with principal norm not greater than 41
correspond to the ideals (am), m = 4, 5, . . . , 13, in OSm−1 (except for v1, v2, v3).
For convenience, we write ∂vm as ∂m, where m = 4, 5, . . . , 13.

Proposition 5.6. ∂m is bijective for m = 5, 6, . . . , 13.

Proof. We will construct the subsets W,C and G of U directly. Let a0 = −1, a1 =
2, a2 = 3, a3 = ω (note that the meaning of am, m = 4, 5, . . . , 13, has been given
before). Set Wm = {aj

∣∣ j = 0, 1, . . . ,m − 1}, where m = 5, 6, . . . , 13. We will
list the sets C and G just for ∂m, where m = 2r + 1, r = 2, 3, 4, 5, 6. For m =
2r, r = 3, 4, 5, 6, as the sets C and G for ∂2r we take the conjugates of C and G for
∂2r+1 respectively. Let X be a number set. Denote by ±X the set −X ∪X , where
−X = {−x

∣∣ x ∈ X}.
m = 13, C = ±{1, 2, 4, 8, 18, ω, ω+ 1, 2(ω + 1), 4(ω + 1), ω + 2, 2(ω + 2),

3(ω + 2), ω + 3, 2(ω + 3), 3(ω + 3), ω + 4, 2(ω + 4), ω + 5,
2(ω + 5), 9ω(ω + 1)/2, 9ω(ω + 1)}, G = {2, 3};

m = 11, C = ±{1, 2, ω, 2ω,−ω/5,−10}, G = {2};
m = 9, C = ±{1, 2, 4, 5, 4/5, ω/2, ω/5, ω/10, 2ω, 4ω, 2(ω+ 2)}, G = {2};
m = 7, C = ±{1, 2, 5/2, ω/2, ω/3, ω+ 2}, G = {2};
m = 5, C = ±{1, 2, 4}, G = {−2}.

We can use the method used in [5] and [8] to check that the subsets W,C and G of
U satisfy the conditions of Theorem 4.1.

Theorem 5.7. K2Z[
√
−10] = 1.

Before proving the assertion, we list some identities on symbols and some results
on the elements of K2F which are useful for our proof.

1) Let x ∈ F ∗ and assume that the polynomials of x make sense of the following
symbols. We have

{x, x}2 = {x,−1}2 = 1, {x, x+ 1}2 = 1, {x, x2 ± 1}4 = 1, {x, x2 + x+ 1}3 = 1.

2) If x, y, z ∈ F ∗ and z = x± y, then {xz ,
y
z }2 = 1, and hence {x, y}2 · {y, z}2 =

{x, z}2.
3) If {ab ,

cc′

d }n = 1, where a, b, c, d ∈ USm , c′ ∈ F ∗, then {a, c′}n ≡ {b, c′}n
(mod KSm

2 (F )).
4) From the proof of Proposition 3 in [2], we know that there is no element of

order 2 in K2O. Note that the class number of Q(
√

3× 40) is prime to 3, so there
is no element of order 3 in K2O by the results on p-rank of K2O in [3]. Thus if
x ∈ K2O and x2r3k ∈ A, where A is a subgroup of K2F and r, k ∈ N , we have
x ∈ A.

Now let us complete the proof of Theorem 5.7.
By Quillen’s exact sequence (see (2.1) in Section 2) and the preceding results,

we have

K2O ⊆ KS4
2 (F ).(5.1)

a) By (5.1), K2O consists of products of symbols of the form {a, b}, where
a, b ∈ {−1, 2, ω, 3, 2− ω}. Since ω − (ω − 2) = 2, we have

{ω
2
,
ω − 2

2
}2 = 1.(5.2)
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Since (ω − 2)2 = ω2 − 4ω + 4 = −(4ω + 6), we have

{−4ω
6
,− (ω − 2)2

6
} = 1.(5.3)

From (5.2), (5.3), we obtain that K2O ⊆ 〈{2, ω − 2}〉KS3
2 (F ). Let x = ω−2

4 . Then
x2 + x+ 1 = 1

8 and {x, 1
2}9 = {x, 1

8}3 = 1. So

{x, 2}9 = 1, {2, x}9 = 1, and {2, ω − 2}9 = 1.(5.4)

(Note that {2, 4} = {2, 2}2 = 1.) Therefore K2O ⊆ KS3
2 (F ).

b) Since

{2, ω}8 = {24, ω2} = {16,−10} = {4,−10}2 = {4, 5}2{4,−2}2 = 1(5.5)

and

{3, ω}8 = {32, ω2}2 = {9,−10}2 = 1,(5.6)

we have K2O ⊆ KS2
2 (F ).

Since {2, 3}2 = 1, we obtain K2O = 1.

Remark 5.8. The result agrees with that conjectured in [3], and also that in [4].
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