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A MASS FORMULA
FOR UNIMODULAR LATTICES WITH NO ROOTS

OLIVER D. KING

Abstract. We derive a mass formula for n-dimensional unimodular lattices
having any prescribed root system. We use Katsurada’s formula for the Fourier
coefficients of Siegel Eisenstein series to compute these masses for all root sys-
tems of even unimodular 32-dimensional lattices and odd unimodular lattices
of dimension n ≤ 30. In particular, we find the mass of even unimodular 32-
dimensional lattices with no roots, and the mass of odd unimodular lattices
with no roots in dimension n ≤ 30, verifying Bacher and Venkov’s enumera-
tions in dimensions 27 and 28. We also compute better lower bounds on the
number of inequivalent unimodular lattices in dimensions 26 to 30 than those
afforded by the Minkowski-Siegel mass constants.

1. Introduction

First we review some definitions. For more information, see [9] and [21].
An n-dimensional lattice Λ is the set Zv1 + · · ·+Zvn of all integer linear combina-

tions of a basis {v1, . . . , vn} for Rn. We associate with Λ the Gram matrix A with
i, j-th entry the inner product (vi, vj). (The matrix A is a positive definite quadratic
form, and much of what follows may be reformulated in the language of quadratic
forms.) The determinant of Λ is defined to be det(A), and Λ is called unimodular if
its determinant is 1. We say that Λ is integral if (v, v′) is an integer for all v, v′ ∈ Λ.
Such a lattice is called even (or Type II ) if (v, v) is always even, and odd (or Type
I ) otherwise. The dual of Λ is Λ′ = {v ∈ Rn : (v, x) ∈ Z for all x ∈ Λ}, and the
determinant of Λ is the order of the finite abelian group Λ′/Λ. Since we shall (with
the exception of the occasional dual lattice) primarily be concerned with integral
lattices, we generally omit the adjective integral in what follows. The norm of a
vector v ∈ Λ is defined to be (v, v), the square of its length. We say that a lattice
is decomposable (or reducible) if it can be written as an orthogonal direct sum of
two nonzero sublattices, and is indecomposable (or irreducible) otherwise.

Each n-dimensional unimodular lattice Λ has a vector u such that (u, x) ≡ (x, x)
(mod 2) for all x ∈ Λ. Such a vector is called a parity vector [9, Preface to 3rd
edition, p. xxxiv], or a characteristic vector [4], or a canonical element [32]. The
set of parity vectors forms a coset u+ 2Λ in Λ/2Λ, and each parity vector satisfies
(u, u) ≡ n (mod 8).

Let N be an n-dimensional lattice with Gram matrix A, and let M be an m-
dimensional lattice with Gram matrix B. We say that N is represented by M if
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there exists an m × n integral matrix X for which XtBX = A. We let r(M,N)
denote the number of representations of N by M . When m = n, we say that M and
N are (integrally) equivalent if there exists an integral matrix X with determinant
±1 for which XtBX = A. M and N are in the same genus if they are equivalent
over the p-adic integers Zp for each prime p (including p =∞, for which Zp = Q).
We define Aut(N) to be the group of n×n integral matricesX for whichXtAX = A.
(Note that the definitions of det(N), r(M,N) and equivalence are independent of
the integral bases chosen for the lattices, and so is Aut(N), up to isomorphism.)
The theta series of a lattice Λ is defined by

ΘΛ(q) =
∑
v∈Λ

q(v,v) =
∞∑
k=0

r(Λ, k)qk,

where q = eπiz .
For our purposes, a root is a vector of norm 1 or 2, and the root system of Λ is

the set of roots in Λ. The lattice generated by a root system is called a root lattice,
and we define the rank of a root system to be the dimension of the corresponding
root lattice. Root lattices are completely classified: they are direct sums of the
irreducible root lattices Z, An (n ≥ 1), Dn (n ≥ 4), E6, E7, and E8. We use the
same notation to refer to root systems, and for brevity we sometimes write the root
system

n1A1 ⊕ · · · ⊕ njE8 as An1
1 · · ·E

nj
8 .

In this paper we are concerned with the problem of classifying unimodular lat-
tices, and also the subproblem of classifying unimodular lattices without roots
(which correspond to denser sphere-packings), up to equivalence.

The Minkowski-Siegel mass formula (see [7]) gives the sum of the reciprocals of
the orders of the automorphism groups of all inequivalent lattices in a given genus.
The mass constants can be used to verify that an enumeration of inequivalent
lattices in a given genus is complete. They also give a lower bound for the number
of inequivalent lattices in a given genus (sometimes called the class number).

In dimensions divisible by 8 there are two genera of unimodular lattices, Type I
and Type II (except in dimension 0, in which there is just one lattice, of Type II).
In all other dimensions there is only one genus of unimodular lattices, Type I. The
lower bounds provided by the mass constants show that the number of unimodular
lattices increases super-exponentially as a function of the dimension. Unimodular
lattices have been completely enumerated in dimensions n ≤ 25, but number more
than 900 million in dimension 30. Unimodular lattices without roots have been
completely enumerated in dimensions n ≤ 28, but number more than 8 × 1020 in
dimension 33. In both cases, somewhere between dimension 26 and dimension 32
there is a transition from being completely classified to being numerous enough to
make classification unappealing, so information about what is going on in these
dimensions is of interest.

Our approach is based on a suggestion by Borcherds that the Fourier coefficients
of Siegel Eisenstein series of degree 4k could be used to derive something analogous
to the Minkowski-Siegel mass formula, but which gives the mass of all the even
unimodular lattices of dimension 8k having any given root system.

We wrote a computer program that uses Katsurada’s formula (see [15]) for the
Fourier coefficients to calculate the masses for all possible root systems of even
unimodular 32-dimensional lattices. From these masses, we used the methods of
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[9, Chapter 16] to compute the masses, for each root system, of unimodular lattices
in dimensions n ≤ 30.

In particular, we have a mass formula for those lattices which have the empty
root system (that is, which have no roots). This formula verifies the known masses
in dimensions n ≤ 28, and provides new lower bounds for the number of unimodular
lattices without roots in dimensions 29 to 32.

We also used our program to compute better lower bounds on the total number
of odd unimodular lattices in dimensions 26 to 30, and even unimodular lattices in
dimension 32, than those gotten from the Minkowski-Siegel mass constants.

Our results may be viewed as a coarse classification of lattices, as inequivalent
lattices may have the same root system. For dimensions n ≤ 23, in which it happens
to be the case that a unimodular lattice in a given genus is completely determined
by its root system, our results coincide with the previously known enumerations.
The same is true for the even unimodular 24-dimensional lattices (which are known
as the Niemeier lattices).

2. A mass formula for even unimodular lattices

having any given root system

Let Ω be the set of inequivalent even unimodular lattices of dimension 8k. We
define the mass m of Ω by

m =
∑
Λ∈Ω

1
|Aut(Λ)| .

By the Minkowski-Siegel mass formula, for k > 0 we have

m =
|B4k|

8k

4k−1∏
j=1

|B2j |
4j

,

where Bi is the ith Bernoulli number. (See [9] and [7] for this, and for the mass
formulae for other genera of lattices.)

For an n-dimensional lattice N , we define a weighted average number of repre-
sentations of N by the lattices Λ ∈ Ω by

a(N) =
1
m

∑
Λ∈Ω

r(Λ, N)
|Aut(Λ)| .

Let {R1, ..., Rs} be the set of all the root lattices of dimension n or less with
no vectors of norm 1. Each Ri is the direct sum of lattices Aj (j ≥ 1), Dj (j ≥
4), E6, E7, and E8. Let Ωi be the set of lattices in Ω having root system Ri, and
let m(Ri) =

∑
Λ∈Ωi

|Aut(Λ)|−1 be the mass of those lattices in Ω which have root
system Ri, so that m = m(R1) + · · ·+m(Rs).

Proposition 1. Let U be the s × s matrix with i, j-th entry r(Rj , Ri), let v be
the vector (m(R1), . . . ,m(Rs))t, and let w be the vector (a(R1), . . . , a(Rs))t. Then
1
mUv = w. Furthermore, U is invertible, so m(Ri) = (mU−1w)i gives the mass of
the lattices in Ω having root system Ri.
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Proof. Observe that if R is any root lattice and if S is the root system of a lattice
Λ, then r(Λ, R) = r(S,R), so for j = 1, . . . , s we have

a(Rj) =
1
m

∑
Λ∈Ω

r(Λ, Rj)
|Aut(Λ)| =

1
m

s∑
i=1

∑
Λ∈Ωi

r(Λ, Rj)
|Aut(Λ)|

=
1
m

s∑
i=1

r(Ri, Rj)
∑

Λ∈Ωi

1
|Aut(Λ)|

=
1
m

s∑
i=1

r(Ri, Rj)m(Ri).

Thus 1
mUv = w. We may assume the Ri’s are ordered so that their dimensions

are non-decreasing, and so that among those with the same dimension the determi-
nants are non-increasing. With this ordering, r(Rj , Ri) = 0 whenever i > j, so U
is upper triangular. Since each diagonal element r(Ri, Ri) = |Aut(Ri)| is positive,
we have det(U) 6= 0, so v = mU−1w.

Remark 2. The values a(Rj) are the Fourier coefficients of Siegel Eisenstein series.
Borcherds, Freitag and Weissauer [6] used a relation similar to 1

mUv = w to compute
the coefficients of a cusp form from the known values of m(Ri) in dimension 24. We
shall do the inverse in dimension 32: use the values of a(Rj) to derive the values
m(Ri). We discuss how to compute a(Rj) in Section 7. The problem of computing
r(Ri, Rj) is largely combinatorial; we discuss it in Section 8.

3. Masses of 32-dimensional even unimodular lattices

with any given root system

Let mII
n (R) and mI

n (R) denote the masses of the n-dimensional even and odd
unimodular lattices having root system R, and let mn(R) denote their sum. Let
w(R) denote the order of the Weyl group of R; w(R) is the product of the or-
ders of the Weyl groups of the irreducible components of R, where w(An) =
(n + 1)!, w(Dn) = 2n−1n!, w(E6) = 27345 · 7, w(E7) = 210345 · 7, and w(E8) =
21435527. It is sometimes more convenient to list the values of mII

n (R) ·w(R) than
it is to list the values of mII

n (R) alone, but the latter can easily be recovered from
the former.

We used a computer to calculate mII
32 (R) for each root system R with rank(R) ≤

32. The computation took about two weeks on a Sun Ultra 60, running a program
written in Common Lisp and compiled with Franz Inc.’s Allegro CL. (We discuss
several issues related to the implementation in Sections 7 to 9.)

Theorem 3. The nonzero values of mII
32 (R) · w(R) with rank(R) ≤ 9 are as listed

in Table 1. (The list of all 13218 nonzero values of mII
32 (R) · w(R) is available

electronically at [18].)

The root system R of a lattice Λ is called complete if the sublattice of Λ generated
by R has finite index in Λ, or equivalently if rank(R) = dim(Λ). The classification
of even unimodular lattices with complete root systems is closely related to the
classification of certain self-dual codes (see [33]).

Corollary 4 (Kervaire [17]). There are 119 complete root systems R that occur as
root systems of indecomposable 32-dimensional even unimodular lattices.
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Table 1. Masses of 32-dimensional even unimodular lattices

dim root system R mII
32 (R) · w(R) (as decimal) comments

0 ∅ 1310037331282023326658917
238863431761920000

5484461.50 no roots

1 A1
111536168182433

5677056
19646832.00

2 A2
1

72024731351193941
1857945600

38765792.00

2 A2
1327104974887

2939328
451499.44

3 A3
1

6904800898075
124416

55497696.00

3 A1A2
977951251237

445440
2195472.50

3 A3
329127961

74240
4433.30

4 A4
1

30223371257980501
471859200

64051672.00

4 A2
1A2

19867101805
3456

5748582.50

4 A2
2

1772535692573
42598400

41610.38

4 A1A3
21073837

768
27439.89

4 A4
8397751
384000

21.87

4 D4
35841940559
157212057600

0.23 see [2]

5 A5
1

14457125482723
230400

62747940.00

5 A3
1A2

10626384230783
995328

10676264.00

5 A1A
2
2

673556587
2560

263108.06

5 A2
1A3

200386803709
2211840

90597.34

5 A2A3
8085187

5760
1403.68

5 A1A4
46917823
269568

174.05

5 A1D4
473
240

1.97

5 A5
73
960

0.08

5 D5
433

3317760
0.00 see [2]

6 A6
1

355695555290333
6635520

53604776.00

6 A4
1A2

22484458507
1440

15614208.00

6 A2
1A

2
2

16820220686833
19169280

877457.06

6 A3
1A3

5452147363
25920

210345.19

6 A3
2

9785018477
1866240

5243.17

6 A1A2A3
680633479

61440
11078.02

6 A2
1A4

11264777
15360

733.38

6 A2
3

323400013
20447232

15.82

6 A2
1D4

622763
69120

9.01

6 A2A4
6059
512

11.83

6 A2D4
344077
2446080

0.14

6 A1A5
123853
159744

0.78

6 A1D5
1

648
0.00

6 A6
1

4608
0.00
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Table 1. Masses of 32-dimensional even unimodular lattices (continued)

dim root system R mII
32 (R) · w(R) (as decimal) comments

6 D6
1

18720000
0.00 unique

6 E6
1

1268047872
0.00 unique

7 A7
1

23307759701
576

40464860.00

7 A5
1A2

290429642677
15360

18908180.00

7 A3
1A

2
2

32712111919
16128

2028280.70

7 A4
1A3

491983248817
1290240

381311.40

7 A1A
3
2

641243179
15360

41747.60

7 A2
1A2A3

528426689
11520

45870.37

7 A3
1A4

828763
384

2158.24

7 A2
2A3

238819303
552960

431.89

7 A3
1D4

2242333
77760

28.84

7 A1A
2
3

2750969
17920

153.51

7 A1A2A4
57178267
483840

118.18

7 A2
1A5

24071
5760

4.18

7 A1A2D4
959
640

1.50

7 A3A4
297043
860160

0.35

7 A2A5
51383
774144

0.07

7 A3D4
133

30720
0.00

7 A2
1D5

11
1152

0.01

7 A1A6
521

188160
0.00

7 A2D5
1

6912
0.00

7 A7
1

1376256
0.00

8 A8
1

2005621383142854931
73987522560

27107562.00

8 A6
1A2

2015000372681
103680

19434804.00

8 A4
1A

2
2

1327413084613
368640

3600838.50

8 A5
1A3

980176289
1728

567231.70

8 A2
1A

3
2

13761649541
80640

170655.37

8 A3
1A2A3

42164571593
322560

130718.54

8 A4
2

176324027322323
180592312320

976.37

8 A4
1A4

9542951321
1935360

4930.84

8 A1A
2
2A3

691208023
161280

4285.76

8 A4
1D4

371231029
5160960

71.93

8 A2
1A

2
3

6071138573
7741440

784.24

8 A2
1A2A4

1655917
2688

616.04

8 A2A
2
3

1794539
120960

14.84

8 A3
1A5

2245489
143360

15.66
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Table 1. Masses of 32-dimensional even unimodular lattices (continued)

dim root system R mII
32 (R) · w(R) (as decimal) comments

8 A2
1A2D4

6113
720

8.49

8 A2
2A4

237
40

5.93

8 A1A3A4
200995
48384

4.15

8 A2
2D4

18917
266112

0.07

8 A1A2A5
7739
8960

0.86

8 A3
1D5

829
20160

0.04

8 A1A3D4
353
6720

0.05

8 A2
1A6

2287
120960

0.02

8 A2
4

432673039
170311680000

0.00

8 A3A5
1049

483840
0.00

8 A1A2D5
43

20160
0.00

8 A2A6
1

3780
0.00

8 A4D4
1

15360
0.00

8 D2
4

1867
1937768448

0.00

8 A3D5
19

1935360
0.00

8 A2
1D6

607
85155840

0.00

8 A1A7
5

1064448
0.00

8 A8
1

185794560
0.00

8 A2E6
1

277136640
0.00 unique

8 D8
1

1002795171840
0.00 odd Leech

8 E8
1

8315553613086720000
0.00 Leech

9 A9
1

4668288705497
290304

16080690.00

9 A7
1A2

5526347655971
322560

17132774.00

9 A5
1A

2
2

740728763
144

5143950.00

9 A6
1A3

1568559349553
2211840

709164.94

9 A3
1A

3
2

1368567316381
2903040

471425.60

9 A4
1A2A3

1271443287
4480

283804.30

9 A1A
4
2

23738023
2560

9272.67

9 A5
1A4

2142275851
233280

9183.28

9 A2
1A

2
2A3

927969995
43008

21576.68

9 A5
1D4

158461
1080

146.72

9 A3
1A

2
3

36859871
13440

2742.55

9 A3
1A2A4

237492443
107520

2208.82

9 A3
2A3

3078967
17280

178.18

9 A4
1A5

457601
10080

45.40

9 A3
1A2D4

21454849
645120

33.26
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Table 1. Masses of 32-dimensional even unimodular lattices (continued)

dim root system R mII
32 (R) · w(R) (as decimal) comments

9 A1A2A
2
3

6031423
32256

186.99

9 A1A
2
2A4

989231
13440

73.60

9 A2
1A3A4

1223851
46080

26.56

9 A2
1A2A5

6696269
1182720

5.66

9 A1A
2
2D4

2927
2880

1.02

9 A3
3

31211779
163296000

0.19

9 A4
1D5

1029287
7464960

0.14

9 A2
1A3D4

66941
184320

0.36

9 A2A3A4
3827
8064

0.47

9 A3
1A6

34339
384000

0.09

9 A2
2A5

783383
13063680

0.06

9 A1A
2
4

1021
32256

0.03

9 A2A3D4
1

252
0.00

9 A2
1A2D5

37
2520

0.01

9 A1A3A5
4813

129024
0.04

9 A1A2A6
547

126720
0.00

9 A1A4D4
1

1260
0.00

9 A2
2D5

1
8000

0.00

9 A2
1A7

43
430080

0.00

9 A1A3D5
1

15840
0.00

9 A4A5
13

295680
0.00

9 A3A6
1

466560
0.00

9 A5D4
1

1512000
0.00

9 A2A7
1

504000
0.00

9 A3
1E6

1
1512000

0.00 unique

9 A1A2D6
1

645120
0.00

9 A4D5
1

1774080
0.00

9 A1A8
1

20401920
0.00

9 D4D5
1

41287680
0.00

9 A3D6
1

52254720
0.00

9 A2
1D7

1
177408000

0.00 unique

9 A3E6
1

489646080
0.00 unique

9 A9
1

3592512000
0.00

9 A2E7
1

991533312000
0.00 unique

9 D9
1

84610842624000
0.00 shorter Leech
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Proof. There are 143 root systems R for which rank(R) = 32 and mII
32 (R) > 0. Of

these, the root system D2
16 and the 23 root systems containing E8 correspond to

decomposable lattices. The remaining 119 root systems correspond to indecompos-
able lattices.

Kervaire [17], extending the work of Koch and Venkov [24], has proven a stronger
result: there are exactly 132 indecomposable even unimodular 32-dimensional lat-
tices with complete root systems, with 119 different root systems occurring.

Corollary 5. There are at least ten million 32-dimensional even unimodular lat-
tices without roots.

Proof. Each such lattice has at least two automorphisms, so the number of such
lattices is at least 2×mII

32(∅) = 1.096×107. We will have more to say about lattices
without roots is Section 5.

Remark 6. If there is a single even unimodular 32-dimensional lattice with root
system R, then the corresponding value mII

32 (R) ·w(R) is of the form 1/q for some
q ∈ N; the converse often holds (but not always: for R = A7

1A
3
2A3D7, mII

32 (R)·w(R)
splits as 1/4 = 1/12 + 1/6; see [4]). We give one example below, and shall see more
examples in Section 4 (Niemeier lattices) and Section 5 (unimodular lattices with no
roots). The last column of Table 1 labels as “unique” those lattices whose unique-
ness follows from [4], and in some cases gives the name of the lower dimensional
lattice that when glued to R produces the unique even unimodular 32-dimensional
lattice with root system R.

Example 7. In [12], Elkies and Gross construct a 26-dimensional even lattice L0

of determinant 3 with no roots, for which |Aut(L0)| = 213357213 = 1268047872,
and sketch a proof of its uniqueness that uses Euclidean lattices. (Borcherds [4,
Chapter 5.7] had previously proved its existence and uniqueness using Lorentzian
lattices.) By [4], even 26-dimensional lattices of determinant 3 with no roots are
in one-to-one correspondence with even unimodular 32-dimensional lattices having
root system E6, where the order of the automorphism group of the 32-dimensional
lattice is w(E6) times the order the automorphism group of the corresponding 26-
dimensional lattice. Since mII

32 (E6) · w(E6) = |Aut(L0)|−1, L0 must be the unique
even 26-dimensional lattice of determinant 3 with no roots, and there must also
be a unique 32-dimensional even unimodular lattice with root system E6. (This
also follows from the classification of 27-dimensional unimodular lattices with no
roots in [2], as the one-to-one correspondence mentioned above also extends to 27-
dimensional unimodular lattices with no roots and with a parity vector of norm 3
[4].)

Remark 8. In an earlier draft we pointed out the large mass of lattices with root
systems Ak1 for small k, and remarked that roots seem to have a propensity for being
orthogonal to one another. Peters has since sent us a preprint [31] explaining this:
he observes that the sum of the masses mII

32 (∅)+
∑32

k=1 m
II
32 (Ak1) in [18] is 97.25% of

the total mass of the genus of even unimodular 32-dimensional lattices, and shows
that a lower bound of 97.11% of the total mass can be derived from the small size of
the Fourier coefficient corresponding to A2 in the Siegel Eisenstein series of degree
2 and weight 16. The idea is that an even unimodular lattice represents A2 if and
only if it has non-orthogonal roots u and v (with u 6= ±v).
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4. Masses of unimodular lattices of dimension n ≤ 30
with any given root system

In [9, Chapter 16], Conway and Sloane describe a correspondence between uni-
modular lattices of dimension n ≤ 23 and orbits of norm 4 vectors in even unimod-
ular 24-dimensional lattices. They use this correspondence to produce, from the list
of Niemeier lattices, a list of the root systems and automorphism group orders of all
unimodular lattices of dimension n ≤ 23. Unimodular lattices of dimension n ≤ 31
likewise correspond to orbits of norm 4 vectors in even unimodular 32-dimensional
lattices, and we can use this correspondence to compute mn(R) for all root systems
R and all n ≤ 30.

Let v = 2e be a vector of norm 4 in an even unimodular lattice Λ of dimension
n = 32. Then L31 = {x ∈ Λ⊥ : x + ne ∈ Λ for some n ∈ Z} is an odd 31-
dimensional unimodular lattice, and |Aut(L31)| = 2|Aut(Λ)|/c(v), where c(v) is
the number of images of v under Aut(Λ). If the lattice L31 has exactly 2k vectors
of norm 1, we can write L31 = L31−k ⊕ Zk, where L31−k has minimal norm 2
and |Aut(L31−k)| = |Aut(L31)|/(2kk!). (We shall call L31−k the reduced lattice
corresponding to Λ and v.) This construction gives a one-to-one correspondence
between orbits of norm 4 vectors in 32-dimensional even unimodular lattices and
unimodular lattices with no vectors of norm 1 in dimensions less than 32. (See [9]
or [4]).

We shall mainly be concerned with norm 4 vectors v that are the sum of two
orthogonal roots r and s. For such vectors, knowing just the root system of Λ
allows us to compute the dimension and the root system of the reduced lattice
L31−k. Some useful information, distilled from [9, Table 16.8], is provided in the
table below.

R #r R̂ shape of v #v R̃ dim(L31−k)

An 4
(
n+1

2

)
An−2 any 6

(
n+1

4

)
An−4 29

D4 24 A3
1 any 24 ∅ 28

Dn (n ≥ 5) 4
(
n
2

)
Dn−2

(±14, 0n−4) 16
(
n
4

)
Dn−4 28

(±2, 0n−1) 2n ∅ 32− n
E6 72 A5 any 270 ∅ 27
E7 126 D6 any 756 A1 26
E8 240 E7 any 2160 ∅ 24

The interpretation of this table is as follows:
Case 1: r and s are from different components R and S of the root system of Λ.

Then the reduced lattice L31−k has dimension 30, and has the same root system
as Λ, except for the components R and S from which r and s are taken, which are
transformed to R̂ and Ŝ as given in the third column. The second column gives the
number of roots #r in each component R, from which we can compute the number
of vectors v = r + s with r ∈ R and s ∈ S.

Case 2: r and s are from the same componentR of the root system of Λ. Then the
dimension of the reduced lattice is given in the last column, and the root system of
L32−k is the same as that of Λ except the component R is replaced by R̃. Note that
for R = Dn with n ≥ 5, R̃ and dim(L32−k) depend on the shape of v. The column
headed #v gives the number of norm 4 vectors of that shape in the component R.

Remark 9. Norm 4 vectors that are not the sum of two orthogonal roots correspond
to reduced lattices of dimension 31. For this reason we have not computed the
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mass of unimodular 31-dimensional lattices with root system R. (That mass could
be computed from the mass of even unimodular 40-dimensional lattices with root
system R⊕D9.)

Computing the number c(v) (and hence the order of Aut(L31−k) in terms of
the order of Aut(Λ)) sometimes requires additional information about Λ, such as
whether there are automorphisms of Λ that permute the components of its root
system with multiplicity greater than one. But for our purposes this is not an
impediment, as we demonstrate in the following example.

Example 10. Let Λ be an even unimodular 32-dimensional lattice with root sys-
tem A4

1D5 and let v = s+ t, where s is a root from one of the four components A1

and t is a root from the component D5. Then the corresponding reduced lattice
L31−k is 30-dimensional, has root system A4

1A3 (since D3 = A3), and has auto-
morphism group order |Aut(L30)| = (2|Aut(Λ)|/c(v))/(21 · 1!) = |Aut(Λ)|/c(v).
Since each component A1 has 2 roots and the component D5 has 40 roots, there
are 4 · 2 · 40 = 320 such vectors v, which form anywhere from one to four orbits
under Aut(Λ), depending on whether there are any automorphisms permuting the
components A1. Because of this ambiguity, we do not know exactly what c(v) is.
But suppose the 320 vectors break into m orbits, V1, . . . , Vm, with representatives
v1, . . . , vm. Then

m∑
i=1

c(vi) =
m∑
i=1

|Vi| = 320,

so the total mass of the lattices that correspond to the lattice Λ and any of these
vectors v is

m∑
i=1

c(vi)
|Aut(Λ)| =

320
|Aut(Λ)| .

Since from Table 1 the mass of all 32-dimensional lattices Λj with root system A4
1D5

is
∑
j |Aut(Λj)|−1 = 1029287/7464960, these lattices contribute

∑
j 320|Aut(Λj)|−1

= 320 · 1029287/7464960 towards the total mass of 30-dimensional unimodular
lattices with root system A4

1A3. By similarly accounting for contributions from
orbits of norm 4 vectors in even unimodular 32-dimensional lattices with other root
systems, we can compute the exact mass of the 30-dimensional unimodular lattices
with root system A4

1A3.

We have, in this manner, computed the mass of n-dimensional unimodular lat-
tices having any given root system for all n ≤ 30. We have not provided a table
of these masses (as they can easily be derived from the table of masses of 32-
dimensional even unimodular lattices with any given root system in [18]), but we
will use these masses in Section 6 to find lower bounds on the class numbers of
unimodular lattices in dimensions up to 30.

Example 11. Even unimodular 24-dimensional lattices with root system R corre-
spond to even unimodular 32-dimensional lattices with root system R ⊕ E8, and
mII

24 (R) = mII
32 (R⊕E8) ·w(E8) · c, where c is the multiplicity of E8 in R⊕E8. We

see from the table in [18] that there are 24 root systems of the form R ⊕ E8 for
which mII

32 (R⊕E8) > 0. Since even unimodular 24-dimensional lattices happen to
be uniquely determined by their root systems, the corresponding values of mII

24 (R)
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are precisely of the form |Aut(Λ)|−1, where Λ is the Niemeier lattice having root
system R.

5. Mass formula for unimodular lattices with no roots

Recall that mn(∅) denotes the mass of the n-dimensional unimodular lattices
with no roots. By considering all the orbits of norm 4 vectors v = r + s in even
unimodular 32-dimensional lattices that correspond to reduced lattices with no
roots, we have

mn(∅) = mII
32 (D32−n)w(D32−n) for n ≤ 26, n 6= 24,

m24(∅) = mII
32 (D8)w(D8) +mII

32 (E8)w(E8),

m27(∅) = mII
32 (D5)w(D5) +mII

32 (E6)w(E6),

m28(∅) = mII
32 (D4) 3w(D4) +mII

32 (D5)w(D5),

m29(∅) = mII
32 (A3)w(A3) + mII

32 (A4)w(A4),

m30(∅) = mII
32 (A2

1)w(A2
1) + mII

32 (A1A2)w(A1A2) +mII
32 (A2

2)w(A2
2).

These masses mn(∅) may be computed by looking up the values of mII
32 (R) in

Table 1 and [18]; the results are listed in Table 2, split into mI
n(∅) and mII

n (∅) for
n divisible by 8. Table 2 also includes lower bounds on mI

n (∅) for n = 31 and 32,
which we explain below.

Suppose Λ is an even unimodular 32-dimensional lattice with no roots. It follows
from a theta function argument as in [9, Theorem 7.17] that Λ has 146880 vectors
v of norm 4. For each orbit of these vectors, the corresponding reduced lattice is
31-dimensional and has no roots. Thus these lattices Λ contribute

146880
2

mII
32 (∅) =

22270634631794396553201589
55292461056000

≈ 4.03× 1011

towards the mass of 31-dimensional lattices with no roots. There are almost cer-
tainly additional contributions from norm 4 glue vectors v in even unimodular
32-dimensional lattices with root systems Ak1 for some k, but we will not attempt
to account for these. We can restate this in terms of parity vectors:

Proposition 12. The mass of 31-dimensional unimodular lattices with no roots
and with no parity vectors of norm 7 is (146880/2)mII

32 (∅).

Proof. Let L be a 31-dimensional unimodular lattice with no roots, and Λ the
corresponding 32-dimensional even unimodular lattice. As in [9, p. 414], Λ is equal
to {x + y |x ∈ Li, y ∈ i

2 + 2Z, for i = 0, 1, 2, 3} ⊂ (L0)′ ⊕ 1
2Z, where L0 is the

sublattice of L consisting of vectors of even norm; L0, L1, L2 and L3 are the cosets
of L0 in its dual (L0)′; and L0 ∪ L2 = L. The only ways the vector x + y in Λ
can have norm 2 is if y = 0 and (x, x) = 2 with x ∈ L0, if y = 1 and (x, x) = 1
with x ∈ L2, or if y = ±1/2 and (x, x) = 7/4 with x ∈ L1 or x ∈ L3. In the
first two cases x would be in L, which would contradict L having no roots. Thus
Λ has a root if and only if there is a vector x of norm 7/4 in L1 ∪ L3. But in this
case x is in (L0)′ \ L — the so-called shadow of L — and 2x has norm 7. Since
the parity vectors of L are precisely twice the shadow vectors [9, Preface to 3rd
edition, p. xxxiv], L has a parity vector of norm 7 if and only if Λ has a root. (The
31-dimensional unimodular lattices with no roots and no parity vectors of norm 7
must have parity vectors of norm 15 by [11].)
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Table 2. Masses of n-dimensional unimodular lattices without
roots. Odd lattices appear above, even lattices below.

n mI
n(∅) (as decimal) number of lattices

0-22 0 0 0

23 1
84610842624000 1.18× 10−14 1 (shorter Leech lattice)

24 1
1002795171840 9.97× 10−13 1 (odd Leech lattice)

25 0 0 0

26 1
18720000 5.34× 10−8 1 (classified in [4])

27 206867
1585059840 1.31× 10−4 3 (classified in [2])

28 17924389897
26202009600 6.84× 10−1 38 (classified in [2])

29 49612728929
11136000 4.46× 103 more than 8900

30 7180069576834562839
175111372800 4.10× 107 more than 82000000

31 ? > 4× 1011 more than 8× 1011

32 ? > 5× 1015 more than 1× 1016

33 ? > 4× 1020 more than 8× 1020 [8]

n mII
n (∅) (as decimal) number of lattices

0 1 1 1 (empty lattice)

8 0 0 0

16 0 0 0

24 1
8315553613086720000 1.20× 10−19 1 (Leech lattice)

32 1310037331282023326658917
238863431761920000 5.48× 106 more than 10000000

We can construct 32-dimensional odd unimodular lattices with no roots from
32-dimensional even unimodular lattices with no roots as follows. Let Λ be a 32-
dimensional even unimodular lattice with no roots, and let b ∈ Λ/2Λ be a nonzero
element with norm divisible by 4. Then there is a unique 32-dimensional odd
lattice L containing Λb := {v ∈ Λ | (v, b) ∈ 2Z} (see [4, Chapter 0.2]). (Λ and L are
neighbors, meaning their intersection has index two in each of them.) If b is not
represented by a vector of norm 0 or 4, then L has no roots. Of the 232 elements
in Λ/2Λ, 231 + 215 have norm congruent to 0 mod 4, by Milgram’s formula [27,
Appendix 4] applied to the lattice

√
2 Λ. (Milgram’s formula says that if M is an

even lattice and M ′ its dual, then∑
u∈M ′/M

exp(2πi(u, u)/2) = (detM)1/2 exp(2πiσ/8),

where σ is the signature of M , which is equal to its dimension when M is posi-
tive definite.) Note that (b, b) mod 4 depends only on b mod 2Λ. Vectors v and
w of norm 4 in Λ are equivalent mod 2Λ if and only if v = ±w, so 146880/2
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elements of Λ/2Λ are represented by vectors of norm 4. Thus there are 231 +
215 − 146880/2 − 1 = 2147442975 elements of Λ/2Λ represented by vectors of
norm divisible by 4 but not represented by vectors of norm 0 or 4. Since each
odd 32-dimensional unimodular lattice has two even neighbors, this implies that
mI

32(∅) ≥ (2147442975/2) · mII
32 (∅) = 5.89 × 1015. (This is almost certainly an

underestimate, since an even neighbor of an odd lattice with no roots can have
roots.)

As an immediate consequence of the values we computed for mn(∅) in Table 2,
we have:

Corollary 13 ([9, 4, 2]). There exist odd unimodular n-dimensional lattices with-
out roots for n = 23, 24, and 26, . . . , 32, but not for n = 1, . . . , 22 or n = 25.

Unimodular lattices with no roots are known to exist in all dimensions n ≥ 26
(see [8], [28]). In dimensions n ≤ 28 they have already been completely enumerated,
and so the masses mn(∅) may also be computed by summing the reciprocals of
the automorphism group orders of these lattices. (Happily, this agrees with our
mass formula in each case.) For the even lattices, there is the empty lattice in
dimension 0, and the Leech lattice Λ24 in dimension 24. The Leech lattice Λ24 was
discovered by Leech in 1965 [25] and was shown to be the unique even unimodular
24-dimensional lattice without roots by Niemeier [29] and by Conway [9, Chapter
12] around 1969. For the odd lattices, there is the shorter Leech lattice in dimension
23, the odd Leech lattice O24 in dimension 24 [30], the lattice S26 in dimension 26,
3 lattices in dimension 27, and 38 lattices in dimension 28. The lattice S26 was
constructed by Conway in the 1970’s and was shown to be the unique unimodular
26-dimensional lattice without roots by Borcherds in 1984 [4]. Borcherds also found
one of the 27-dimensional lattices. The full enumerations in dimensions 27 and 28
are due to Bacher and Venkov [2].

Remark 14. In the cases of the Leech lattice and S26, with our mass formula the
uniqueness follows immediately from the constructions, simply by verifying that
|Aut(Λ24)|−1 = mII

24 (∅) and |Aut(S26)|−1 = mI
26(∅).

Examples of unimodular lattices with no roots have been constructed for di-
mensions 29 to 32 (including the 15 exceptional even unimodular 32-dimensional
lattices classified in [24]), and a nonconstructive analytic argument shows that they
exist in all dimensions n ≥ 33 (see the Conway-Thompson Theorem [27, p. 46] for
n ≥ 37, and [7] for 33 ≤ n ≤ 36.) In fact for n ≥ 33 this argument gives a lower
bound for the mass of lattices without roots that is close to the total mass of the
genus, so there are a great many lattices without roots (see Remark 16). The idea
is that the coefficients a1 and a2 of the average theta series

1
m

∑
Λ∈Ω

ΘΛ(q)
|Aut(Λ)| = 1 + a1q

1 + a2q
2 + a3q

3 + · · ·

give the average number of vectors of norm 1 and norm 2, taken over all the lattices
in the genus Ω. If a1 + a2 is less than 2, then there must be some Λ ∈ Ω with no
vectors of norm 1 or 2 — this is the case when Ω is the genus of n-dimensional
unimodular lattices for n ≥ 33. For n = 33, a1 + a2 is approximately 1.42, and this
implies that mI

33(∅) ≥ 4.04× 1020, so there are more than 8× 1020 33-dimensional
unimodular lattices without roots [8]. For n ≤ 32, the average number of roots is
greater than 2, so this argument does not apply. Notice that the coefficient ai is
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the same as the average number of representations a(N) we defined in Section 2,
in the special case where N is the 1× 1 matrix (i).

Remark 15. In dimensions n ≤ 33, odd unimodular lattices with no roots have
minimal norm 3, except in dimension 32, in which they can have minimal norm 3
or 4. In dimensions 24 and 32, even unimodular lattices with no roots have minimal
norm 4. See [8].

Remark 16. Let m′n be the mass of odd n-dimensional unimodular lattices with
only trivial automorphisms. There are no such lattices for n ≤ 28 [2], but Bacher
has found one for n = 29 [1]. Bannai [3] showed that m′n/mn → 1 as n→ ∞. For
n > 1 any lattice with roots has nontrivial automorphisms, som′n/mn ≤ mn(∅)/mn.
Below we list mn(∅)/mn for 26 ≤ n ≤ 30, and lower bounds on mn(∅)/mn for
31 ≤ n ≤ 33.

n mn(∅)/mn ref.
26 0.000116 [4]
27 0.000856 [2]
28 0.00658 [2]
29 0.0300

n mn(∅)/mn ref.
30 0.0908
31 > 0.135
32 > 0.136
33 > 0.287 [8]

6. Lower bounds on class numbers

Let Ω be the set of inequivalent lattices in a genus of dimension n > 0, m the
mass of that genus, and m(R) the mass of those lattices having root system R.
Each lattice Λ ∈ Ω has at least two automorphisms, 1 : x 7→ x and −1 : x 7→ −x;
from this we get the well-known lower bound |Ω| ≥ d2me. For each root r of Λ, the
reflection

x 7→ x− 2
(x, r)
(r, r)

r

is also in Aut(Λ). Define w′(R) to be the order of the subgroup of Aut(Λ) generated
by reflections and by −1. Then w′(R) = w(R) if the map −1 is already in the Weyl
group of R, and w′(R) = 2w(R) otherwise. (The Weyl group of R contains −1 if
and only if rank(R) = dim(Λ) and each component of R is A1, E7, E8 or Dk for
even k.) Then there are at least dm(R)w′(R)e lattices with root system R, so we
get an improved lower bound,

|Ω| ≥
∑
R

dm(R)w′(R)e.

We can do slightly better still, as follows: Write m(R)w′(R) = q + a/b with
q, a, b ∈ Z, a < b, and gcd(a, b) = 1, and define a modified ceiling function by
〈q + a/b〉 = q if a = 0, q + 1 if a = 1, and q + 2 if a > 1. It can easily be shown
that there are at least 〈m(R)w′(R)〉 lattices with root system R, so that

|Ω| ≥
∑
R

〈m(R)w′(R)〉.(1)

Evaluating this sum with the value of mII
32 (R) we computed for each R gives

|Ω| ≥ 1162109024.

Corollary 17. There are at least one billion even unimodular 32-dimensional lat-
tices.
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Table 3. Comparison of the actual number αn of unimodular
lattices of dimension n, the lower bound βn computed from (1),
the number rn of distinct root systems occuring (including those
with components Z), and the Minkowski-Siegel mass constant mn.
Odd lattices are listed above, even lattices below. The last column
is included only when 2mn provides a nontrivial lower bound for
αn.

dimn actual αI
n ≥ bound βI

n rI
n mass mI

n βI
n /2m

I
n

0 0 ≥ 0 0 0
1 1 ≥ 1 1 0.5
2 1 ≥ 1 1 0.125
3 1 ≥ 1 1 2.083× 10−2

4 1 ≥ 1 1 2.604× 10−3

5 1 ≥ 1 1 2.604× 10−4

6 1 ≥ 1 1 2.170× 10−5

7 1 ≥ 1 1 1.551× 10−6

8 1 ≥ 1 1 9.688× 10−8

9 2 ≥ 2 2 6.100× 10−9

10 2 ≥ 2 2 4.485× 10−10

11 2 ≥ 2 2 4.213× 10−11

12 3 ≥ 3 3 5.267× 10−12

13 3 ≥ 3 3 9.031× 10−13

14 4 ≥ 4 4 2.186× 10−13

15 5 ≥ 5 5 7.705× 10−14

16 6 ≥ 6 6 4.093× 10−14

17 9 ≥ 9 9 3.402× 10−14

18 13 ≥ 13 13 4.583× 10−14

19 16 ≥ 16 16 1.033× 10−13

20 28 ≥ 28 28 4.002× 10−13

21 40 ≥ 40 40 2.735× 10−12

22 68 ≥ 68 68 3.377× 10−11

23 117 ≥ 117 117 7.710× 10−10

24 273 ≥ 273 266 3.330× 10−8

25 665 ≥ 657 609 2.781× 10−6

26 ? ≥ 2307 1695 4.586× 10−4

27 ? ≥ 14179 4492 1.524× 10−1

28 ? ≥ 327972 9213 1.040× 102 1569.2
29 ? ≥ 37938009 20298 1.486× 105 127.7
30 ? ≥ 20169641025 67848 4.520× 108 22.3
31 ? ≥ ? ? 2.980× 1012

32 ? ≥ ? ? 4.328× 1016

dimn actual αII
n ≥ bound βII

n rII
n mass mII

n βII
n /2mII

n

0 1 ≥ 1 1 1
8 1 ≥ 1 1 1.435× 10−9

16 2 ≥ 2 2 2.489× 10−18

24 24 ≥ 24 24 7.937× 10−15

32 ? ≥ 1162109024 13218 4.031× 107 14.4
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For comparison, d2mII
32e = 80618466, so our lower bound is 14.4 times larger

than the lower bound obtained by doubling the Minkowski-Siegel mass constant.
We also computed mn(R) for each n ≤ 30 and each root system R, and used

(1) to find lower bounds on the number of odd unimodular lattices. (In the cases
where a single mn(R) is expressed as a sum of masses corresponding to differ-
ent root systems of 32-dimensional even unimodular lattices, such as m28(∅) =
mII

32 (D4) 3w(D4) + mII
32 (D5)w(D5), we bounded the number for each summand

individually, which gives a better overall bound.)
Unimodular lattices in dimensions n ≤ 25 have been completely enumerated:

even unimodular lattices of dimension 8 by Mordell, of dimension 16 by Witt, and
of dimension 24 by Niemeier [29] (see also Venkov [33]); odd unimodular lattices of
dimension n ≤ 16 by Kneser [23], of dimension n ≤ 23 by Conway and Sloane [9,
Chapter 16], and of dimension 24 and 25 by Borcherds [4].

Table 3 gives our lower bound βn on the number of unimodular lattices in di-
mension n ≤ 30, and our computation of the number of distinct root systems rn
that occur in these lattices (including root systems with components Z, which do
not occur for even lattices). The table includes for comparison the actual number
αn of unimodular lattices in dimension n ≤ 25, taken from [9, Table 2.2], and the
Minkowski-Siegel mass constants mn, taken from [9, Tables 16.3 and 16.5]. (The
counts of odd unimodular lattices include those with vectors of norm 1 to facilitate
comparison with mn; since any integral lattice with a vector of norm 1 is of the
form Zk ⊕Λ where Λ has minimal (nonzero) norm 2, the counts of lattices with no
vectors of norm 1 can be recovered from βn; similarly, the number of distinct root
systems with no components Z can be recovered from rn, with the caution that
8 of the 24 root systems of even unimodular 24-dimensional lattices also occur as
root systems of odd unimodular 24-dimensional lattices.) Our lower bounds agree
exactly with the actual numbers for n ≤ 24. This is to be expected for n ≤ 23 since
in those dimensions an odd or even n-dimensional unimodular lattice is uniquely
determined by its root system R, and 〈m(R)w′(R)〉 is exactly equal to the number
of lattices with root system R when there are 0 or 1 such lattices. This is also true
for 24-dimensional even unimodular lattices. Our lower bound in dimension 25 is
within two percent of the actual number, and our lower bounds in dimensions 26
to 30 (for which the actual numbers are not known) are the best we are aware of.

7. Computing the numbers a(R)

For a half-integral n× n matrix B, define

cn,k(B) = (−1)nk/22n(k−(n−1)/2)(detB)(2k−n−1)/2 b(B, k)
2k∏

i=2k−n+1

πi/2

Γ(i/2)
,

where

b(B, k) =
∑

R∈Sn(Q)/Sn(Z)

exp(2πi tr(BR))µ(R)−k

is the Siegel series (with µ(R) equal to the product of denominators of elementary
divisors of R). Put εn,k = 1/2 if n = k − 1 or n = k > 1, and 1 otherwise.
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Theorem 18 (Siegel). Let N be a lattice with dim(N) = n ≤ 8k, and let

a(N) =
1

mII
8k

∑
Λ∈Ω

r(Λ, N)
|Aut(Λ)|

with the sum taken over even unimodular lattices of dimension 8k. Then a(N) =
εn,8kcn,4k(B), where B is 1/2 times the Gram matrix of N .

Proof. See [21, Theorem 6.8.1], and note that the product of local densities∏
p

αp(Mp, Np)

is equal to b(M,k) when N is an even unimodular lattice of dimension 2k [20].

Remark 19. The Siegel Eisenstein series of degree n and weight k is defined to be

En,k(Z) =
∑
{C,D}

|CZ +D|−k,

where {C,D} runs over all representatives of the equivalence classes of coprime pairs
of n× n matrices. For k > n, cn,k(C) is the coefficient in the Fourier expansion

En,k(Z) =
∑
C

cn,k(C) exp(2πi tr(CZ)),

where C runs over all positive semi-definite half-integral n× n matrices.

The first explicit formula for b(B, k) for arbitrary n is due to Katsurada [15],
and was published in 1999. Prior to this, an explicit formula for the coefficients of
En,k(Z) was known only for n ≤ 3: The case n = 1 is well-known (see for example
[32, Chapter VII]), Maaß [26] gives an explicit formula for n = 2 (see also Kaufhold
[16]), and Katsurada [14] gives an explicit formula for n = 3 (extending partial
results by Kitaoka [19]).

Let B be a nondegenerate symmetric half-integral n × n matrix over Zp. It
follows from [22] that

b(B, s)=

ζ(s) br/2c∏
i=1

ζ(2s− 2i)

−1 ∏
p|D(B)

Fp(B; p−s)×
{
L(s− r/2;χB) if r is even,
1 if r is odd,

for certain polynomials Fp(B;X). Here ζ is the Riemann zeta function, and
L(s, χB) is a Dirichlet L-series whose values may be computed using the method
in [7].

The explicit formula for Fp(B;X) in [15, Theorem 4.3] is not itself well-suited
for calculation, since the outer index of summation takes 2n values, but we can use
Katsurada’s recursion relations [15, Theorems 4.1 and 4.2] as part of a practical
algorithm for computing Fp(B;X). We will state these recursion relations below
(without proof); first we will need to introduce some of the notation from [15].

For a = prc with r ∈ Z and c ∈ Z∗p, define χp(a) = ( cp ) for r even and 0 for r odd
(where (p ) is the Legendre symbol mod p), and define

χ2(a) =

 +1 if r ≡ 0 mod 2, c ≡ 1 mod 8,
−1 if r ≡ 0 mod 2, c ≡ 5 mod 8,
0 otherwise.

Define ordp(a) to be the exact power of p dividing a, and define ip(B) to be the
least integer t for which ptB−1 is half-integral. Let ( , )p denote the Hilbert symbol



A MASS FORMULA FOR UNIMODULAR LATTICES WITH NO ROOTS 857

over Qp (see [32]), and let hp denote the Hasse invariant (see [21]). For odd n,
define

ηp(B) = hp(B)(detB, (−1)(n−1)/2 detB)p(−1,−1)(n2−1)/8
p .

For even n, define

ξp(B) = χp((−1)n/2 detB)

and ξ′p(B) = 1 + ξp(B) − ξp(B)2. By convention, ξp(B) = ξ′p(B) = 1 for B the
empty matrix. Define D(B) = 22bn/2c detB, dp(B) = ordp(D(B)), and

δp(B) =
{

2b(dp(B) + 1− δ2p)/2c if n is even,
dp(B) if n is odd,

where δ2p is the Kronecker delta.
We shall suppress most of the subscripts p in what follows. Let p be any prime

and suppose B and B2 are nondegenerate half-integral matrices of rank n and n−1
respectively over Zp. Put δ = δ(B) and δ̃ = δ(B2). If n is even, put ξ = ξ(B),
ξ′ = ξ′(B), and η̃ = η(B2); if n is odd, put ξ̃ = ξ(B2), ξ̃′ = ξ′(B2), and η = η(B).
(By convention η̃ = η̃′ = 1 if B2 = ∅, and δ̃ = 0 if n = 1.) Then define rational
functions C(B,B2;X)(1) and C(B,B2;X)(0) in X by

C(B,B2;X)(1) =

{
1−pn/2ξX
1−pn+1X2 if n is even,

1
1−p(n+1)/2 ξ̃X

if n is odd,

and

C(B,B2;X)(0) =


(−1)ξ+1ξ′η̃(1−pn/2+1Xξ)(pn/2X)δ−δ̃+ξ

2
pδ/2)

1−pn+1X2 if n is even,
(−1)ξ̃ ξ̃′η(p(n−1)/2X)δ−δ̃+2−ξ̃2p(2δ−δ̃+2)/2

1−p(n+1)/2ξ̃X
if n is odd.

Theorem 20 (Katsurada [15]). Let B1 = (b1) and B2 be nondegenerate half-inte-
gral matrices of degree 1 and n − 1, respectively, over Zp, and put B = B1⊥B2.
Assume that ord(b1) ≥ i(B2)− 1 + 2δ2p. Then we have

Fp(B;X) = C(B,B2;X)(1)F (B2; pX) + C(B,B2;X)(0)Fp(B2;X).

Let B2 be a nondegenerate half-integral matrix of degree n − 2 over Z2, let
H =

(0 1/2
1/2 0

)
and let Y =

(1 1/2
1/2 1

)
. Let B1 = 2mK with K = H or Y , or B1 =

2mu1⊥2mu2 with u1, u2 ∈ Z∗2, and put B = B1⊥B2, δ = δ(B), δ̃ = δ(2m⊥B2),
δ̂ = δ(B2), and

σ =


(2δ̃ − δ − δ̂ + 2)/2 if n is even, B1 = 2mu1⊥2mu2 and d(B) is odd

or if n is even, B1 = 2mK, and ξ(B2) = 0,
2 if n is odd, B1 = 2mK, and d(2m⊥B2) is even,
0 otherwise.

If n is even, put ξ = ξ(B), ξ′ = ξ′(B), ξ̂ = ξ(B2), ξ̂′ = ξ′(B2), and

η̃ =


η(2mu2⊥B2) if B1 = 2mu1⊥2mu2,

and d(B2) is even,
(−1)((n−1)2−1)/8h(B2)(2m, (−1)(n−1)/2 detB2)2 if B1 = 2mK,

and ξ(B2) 6= 0,
1 otherwise.
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If n is odd, put η = η(B), η̂ = η(B2), ξ̃′ = 1, and ξ̃ = 1 if B1 = 2mK and d(2m⊥B2)
is even, and 0 otherwise. Define four rational functions in X by

C(B,B2;X)(11) =

{
1−2n/2ξX
1−2n+1X2 if n is even,

1
1−2(n+1)/2ξ̃X

if n is odd,

C(B,B2;X)(10) =


(−1)ξ+1ξ′η̃(1−2n/2+1Xξ)(2n/2X)δ−δ̃+ξ

2+σ2δ/2)
1−2n+1X2 if n is even,

(−1)ξ̃η(2(n−1)/2X)δ−δ̃+2−ξ̃2+σ2(2δ−δ̃+2+σ)/2

1−2(n+1)/2ξ̃X
if n is odd,

C(B,B2;X)(21) =

{
1

1−2n/2ξ̂X
if n is even,

1−2(n−1)/2 ξ̃X
1−2nX2 if n is odd,

C(B,B2;X)(20) =


(−1)ξ̂ ξ̂′η̃(2(n−2)/2X)δ̃−δ̂+2−ξ̂2−σ2(2δ̃−δ̂+2−2σ)/2

1−2n/2ξ̂X
if n is even,

(−1)ξ̃+1η̂(1−2(n+1)/2Xξ̃)(2(n−1)/2X)δ̃−δ̂+ξ̃
2−σ2(δ̃−σ)/2)

1−2nX2 if n is odd.

Theorem 21 (Katsurada [15]). Let B1 = 2mu1⊥2mu2 with u1, u2 ∈ Z∗2 or B =
2mK with K = H or Y . Let B2 be a half-integral matrix of degree n − 2 over Z2

which is also in GLn−2(Q2), and put B = B1⊥B2. Assume that m ≥ i(B2) + 1.
Then we have

F2(B;X) = C(B,B2;X)(11)C(B,B2; 2X)(21)F2(B2; 4X)

+ C(B,B2;X)(11)C(B,B2; 2X)(20)F2(B2; 2X)

+ C(B,B2;X)(10)C(B,B2;X)(21)F2(B2; 2X)

+ C(B,B2;X)(10)C(B,B2;X)(20)F2(B2;X).

For p 6= 2, any nondegenerate symmetric half-integral n × n matrix B can be
diagonalized over the p-adic integers Zp, B ∼= pe1u1⊥ . . .⊥penun with e1 ≥ · · · ≥
en ≥ 0 and with ui ∈ {1, ε} for all i, where ε is any quadratic nonresidue (see [34]).
Then Fp(B;X) can be computed by repeated applications of Theorem 20 above.

Note that in the course of recursively computing Fp(B;X) for X = p−k in this
manner, one occasionally encounters zeros of the denominators of the functions
C(1) and C(0). (This is only a problem when X is a negative power of p.) Rather
than attempting to simplify the expressions symbolically, we instead computed
Fp(B; 1), Fp(B; p), . . . , Fp(B; pn), and then used Lagrangian interpolation to com-
pute Fp(B; p−k). The reason for choosing X = 1, p, . . . , pn rather than n+ 1 other
numbers is that for these numbers the recursive subproblems overlap: we need only
evaluate Fp(peiui⊥ . . .⊥penun;X) for X = 1, p, . . . , p2n−i, starting with i = n, and
working down to i = 1, which gives Fp(B; 1), . . . , Fp(B; pn).

For p = 2, any nondegenerate symmetric half-integral matrix B is equivalent
over Z2 to a matrix of the form 2e1(U1⊥V1)⊥ . . .⊥2em(Um⊥Vm) with e1 > · · · >
em ≥ 0, Ui = ∅ or u1 or u1⊥u2 for u1, u2 ∈ {±1,±3}, and Vi = ∅ or H⊥ · · ·⊥H or
H⊥ · · ·⊥H⊥Y (see [34]). Then F2(B;X) can be computed by repeated applications
of Theorems 20 and 21 above. (We again used an interpolation scheme, similar to
the one described for p 6= 2.)



A MASS FORMULA FOR UNIMODULAR LATTICES WITH NO ROOTS 859

8. Computing the numbers r(Ri, Rj)

The method described in this section is essentially the one used for some of the
computations in [6] (although the algorithm itself is not described in that paper).
In this section we write r(R,R′) as emb(R′, R), since a representation of R′ by R
is the same as a linear map from R′ into R that preserves inner products. For any
irreducible root systems S and T it is routine to compute the number of embed-
dings emb(S, T ) of S into T , and to determine the root system of the orthogonal
complement of S in T for each of these embeddings. There are at most two orbits of
embeddings of S into T , so we write emb(S, T ) = emb1(S, T ) + emb2(S, T ), where
there are emb1(S, T ) embeddings of S into T for which the orthogonal complement
is comp1(S, T ) and there are emb2(S, T ) embeddings of S into T for which the
orthogonal complement is comp2(S, T ).

Example 22. We demonstrate how to compute the two orbits of embeddings of A3

into Dn. Recall from [9] that An = {(x1, . . . , xn+1) ∈ Zn+1 : x1 + · · ·+ xn+1 = 0}
and Dn = {(x1, . . . , xn) ∈ Zn : x1 + · · ·+ xn ∈ 2Z}. A3 is generated by three roots
v1 = (1,−1, 0, 0), v2 = (0, 1,−1, 0), and v3 = (0, 0, 1,−1) with (v1, v1) = (v2, v2) =
(v3, v3) = 2, (v1, v2) = (v2, v3) = −1 and (v1, v3) = 0. We can map v1 to any of
the 4C(n, 2) roots r1 in Dn (all permutations of (±1,±1, 0, . . . , 0)), where C(n, k)
denotes the binomial coefficient.

We can then map v2 to any of the 4(n−2) roots r2 of Dn that have inner product
−1 with r1. Let us say r1 is supported in coordinates i and j and r2 is supported
in coordinates j and k. (Clearly k 6= i.) Then there are two cases:

(a) We can map v3 to the root r3 supported in coordinates i and j that has
inner product 0 with r1 and inner product −1 with r2. In this case the roots of Dn

orthogonal to r1, r2, and r3 form the system Dn−3.
(b) We can map v3 to 2(n−3) roots r3 supported in coordinates k and l (l 6= i, j)

that have inner product 0 with r1 and inner product −1 with r2. In this case the
roots of Dn orthogonal to r1, r2, and r3 form the system Dn−4.

Hence there are 4C(n, 2) · 4(n − 2) · 1 = C(n, 3) · |Aut(A3)| ways to embed A3

into Dn with complement Dn−3, and there are 4C(n, 2) · 4(n − 2) · 2(n − 3) =
23C(n, 4) · |Aut(A3)| ways to embed A3 into Dn with complement Dn−4.

The computations for other irreducible root systems are similar. All nonzero
values of emb1, emb2, comp1, and comp2 are given in Table 4.

If R and R′ are root lattices, then we can write R = S1 ⊕ · · · ⊕ Sk and R′ =
T1 ⊕ · · · ⊕ Tm, where each Si and Ti is an irreducible root lattice, and we can
compute r(R′, R) recursively via the formula

r(R′, R) = emb(R,R′)

= emb(
⊕
i≤k

Si,
⊕
i≤m

Ti)

=
m∑
j=1

emb1(Sk, Tj) emb(
⊕
i≤k−1

Si, comp1(Sk, Tj)⊕
⊕

i≤m,i6=j
Ti)

+
m∑
j=1

emb2(Sk, Tj) emb(
⊕
i≤k−1

Si, comp2(Sk, Tj)⊕
⊕

i≤m,i6=j
Ti).
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Table 4. Embeddings of irreducible root systems into one an-
other. (In the fourth and last columns, A0, D0, D1, D2 and D3

should be interpreted as ∅, ∅, ∅, A1A1 and A3, respectively.)

S T emb1(S,T )
|Aut(S)| comp1(S, T ) emb2(S,T )

|Aut(S)| comp2(S, T )

∅ T 1 T − −
Ai Aj (j ≥ i) C(j + 1, i+ 1) Aj−i−1 − −
A1 Dj C(j, 2) · 2 A1Dj−2 − −
A3 Dj C(j, 4) · 23 Dj−4 C(j, 3) Dj−3

Ai (i 6= 1, 3) Dj (j > i) C(j, i+ 1) · 2i Dj−i−1 − −
Di Dj (j ≥ i) C(j, i) Dj−i − −
A1 E6 2232 A5 − −
A2 E6 233 · 5 A2A2 − −
A3 E6 2 · 335 A1A1 − −
A4 E6 2333 A1 − −
A5 E6 2232 A1 − −
D4 E6 325 ∅ − −
D5 E6 33 ∅ − −
E6 E6 1 ∅ − −
A1 E7 327 D6 − −
A2 E7 243 · 7 A5 − −
A3 E7 22325 · 7 A3A1 − −
A4 E7 25327 A2 − −
A5 E7 243 · 7 A2 24327 A1

A6 E7 2532 ∅ − −
A7 E7 2232 ∅ − −
D4 E7 325 · 7 A1A1A1 − −
D5 E7 2 · 337 A1 − −
D6 E7 327 A1 − −
E6 E7 227 ∅ − −
E7 E7 1 ∅ − −
A1 E8 233 · 5 E7 − −
A2 E8 255 · 7 E6 − −
A3 E8 23335 · 7 D5 − −
A4 E8 27337 A4 − −
A5 E8 27325 · 7 A2A1 − −
A6 E8 28335 A1 − −
A7 E8 25335 A1 26335 ∅
A8 E8 263 · 5 ∅ − −
D4 E8 2 · 32527 D4 − −
D5 E8 23335 · 7 A3 − −
D6 E8 22335 · 7 A1A1 − −
D7 E8 23335 ∅ − −
D8 E8 335 ∅ − −
E6 E8 255 · 7 A2 − −
E7 E8 233 · 5 A1 − −
E8 E8 1 ∅ − −



A MASS FORMULA FOR UNIMODULAR LATTICES WITH NO ROOTS 861

A direct implementation of this algorithm does a lot of redundant computation
on certain inputs, some of which we can circumvent with dynamic programming or
memoization (see [10, Chapter 16]). Our implementation also does several things
to reduce the amount of computation when there are direct summands in R or R′

with multiplicity greater than one. But computing r(R′, R) is an NP-hard problem,
since it is an NP-complete problem to determine if r(R′, R) > 0, as we show below.

Proposition 23. The problem of determining whether a root system R embeds into
a root system R′ is NP-complete.

Proof. We shall reduce 3-Partition (see [13]) to this problem. Let S = {s1, . . . ,
s3k} be an instance of 3-Partition, with the si positive integers summing to kt.
Then S can be partitioned into k sets each consisting of 3 elements with sum t
if and only if the root system D4s1 ⊕ · · · ⊕ D4s3k embeds into the root system⊕k

i=1D4t.

Remark 24. Since 3-Partition is strongly NP-complete, the problem of whether
one root system embeds into another remains NP-complete if the Gram matrices
of root lattices are used as input (rather that the list of components Ai, Di, and
Ei as above).

Since we need to compute r(R,R′) for all pairs of root systems rather than
just one pair, the amortized computational cost would be reduced considerably
by using dynamic programming. But the dynamic programming table becomes
unmanageably large in dimension 32, so we instead use a hash table, which is
purged periodically, for memoization.

9. Eliminating root systems a priori

There are 405844 root systems of rank n ≤ 32 with no vectors of norm 1, cor-
responding to all direct sums of Ai, Di (i ≥ 4), E6, E7 and E8, where the order of
the summands does not matter and the sum of the subscripts is at most 32. Since
computing the number of embeddings r(Ri, Rj) can be time-consuming, we used
the following congruences, due to Borcherds [4], to eliminate some root systems
from consideration:

Let roots(R) denote the number of roots of R. If R is the root system of a
32-dimensional even unimodular lattice, then:

if R contains E8, then roots(R) ≡ 0 (mod 24),
if R contains E7, then roots(R) ≡ 0 (mod 12),
if R contains E6, then roots(R) ≡ 0 (mod 6),
if R contains D6, then roots(R) ≡ 0 (mod 4),
if R contains D7, then roots(R) ≡ 0 (mod 8),
if R contains D8, then roots(R) ≡ 0 (mod 8),
if R contains Dn, n > 8, then roots(R) ≡ 0 (mod 16).

Also note that if a(R) = 0, then m(R) = 0. If rank(R) = 32 and det(R) is
not a perfect square, then a(R) must be 0, so we eliminated those root systems as
well. This left 135443 root systems. We ordered them so that dim(Ri) ≤ dim(Rj)
if i < j, and so that det(Ri) ≥ det(Rj) if i < j and dim(Ri) = dim(Rj).
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As the matrix U with Ui,j = r(Ri, Rj) would still contain around 10 billion ele-
ments, we did not explicitly construct and invert it. Rather, we computed each ele-
ment in the matrix when it was required for solving 1

mUv = w by back-substitution,
with

m(Ri) =
1

r(Ri, Ri)

m · a(Ri)−
∑
j>i

r(Rj , Ri)m(Rj)

 .

If m(Rj) has already been computed to be 0, then the values r(Rj , Ri) need not
be computed, since they make no contribution to this sum.
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