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MAXIMUM NORM STABILITY OF DIFFERENCE SCHEMES
FOR PARABOLIC EQUATIONS
ON OVERSET NONMATCHING SPACE-TIME GRIDS

T. P. MATHEW AND G. RUSSO

ABSTRACT. In this paper, theoretical results are described on the maximum
norm stability and accuracy of finite difference discretizations of parabolic
equations on overset nonmatching space-time grids. We consider parabolic
equations containing a linear reaction term on a space-time domain 2 x [0, 7]
which is decomposed into an overlapping collection of cylindrical subregions of
the form Q; x[0,T7], forl =1, ..., p. Each of the space-time domains 2} x [0, T']
are assumed to be independently grided (in parallel) according to the local
geometry and space-time regularity of the solution, yielding space-time grids
with mesh parameters h; and 7;. In particular, the different space-time grids
need not match on the regions of overlap, and the time steps 7; can differ from
one grid to the next. We discretize the parabolic equation on each local grid by
employing an explicit or implicit #-scheme in time and a finite difference scheme
in space satisfying a discrete maximum principle. The local discretizations are
coupled together, without the use of Lagrange multipliers, by requiring the
boundary values on each space-time grid to match a suitable interpolation of
the solution on adjacent grids. The resulting global discretization yields a large
system of coupled equations which can be solved by a parallel Schwarz iterative
procedure requiring some communication between adjacent subregions. Our
analysis employs a contraction mapping argument.

Applications of the results are briefly indicated for reaction-diffusion equa-
tions with contractive terms and heterogeneous hyperbolic-parabolic approxi-
mations of parabolic equations.

1. INTRODUCTION

In this paper, theoretical bounds are described (extending results in [32] [10])
for the maximum norm stability and convergence of discretizations of parabolic
equations on nonmatching, overset space-time grids. Nonmatching overset spa-
tial grids are popular in several fluid dynamics computations involving complex
geometries [33, 13]. They permit independent (parallel) generation of local grids
adapted to the local geometry (without the restriction of matching the grids on the
regions of overlap) at the cost of increased computations in coupling the various
local discretizations. For evolution problems, additional flexibility can be obtained
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by permitting different time steps and choice of explicit or implicit schemes on each
of the different space-time subregions [33, [13, [17, 18] [7 23] [5] [7] 20} 22].

In the computational literature, several approaches have been proposed for cou-
pling discretizations on nonmatching grids. These include Lagrange multipliers
(including mortar methods) and least squares based techniques (see [33, [13], 32|
5l (4,19, 23] 201 [1, 2, 10} 19]). The method considered in this paper does not use
either Lagrange multipliers or least squares to couple the various local problems.
It is simpler to implement (see [32, [L0]); however, it applies only to a certain class
of parabolic equations exhibiting a contraction property, and it requires overlap
amongst adjacent grids.

Our study will be restricted to a small class of parabolic equations of the form

up — alAu+b(z) - Vu+clz)u = flz,t), inQx][0,T]
(1.1) u(z,t) = 0, on 09 x [0,T7,
u(z,0) = wp(xz), onQ,

—

where f(z,1), b(z), c¢(x) and ug(z) are sufficiently smooth functions and @ > 0. Here
Q C R? for d =1,2,.... In order to have a contraction property for homogeneous
solutions, we will require that

c(x) > ¢o > 0,

for some positive constant cg.

Given the cylindrical space-time domain © x [0,7], we decompose it into an
overlapping collection of cylinders of the form {Q; x [0, T]}}_; that form a covering
of @ x [0,T]. Each cylinder Q; x [0,7] will be assumed to be triangulated by
a space-time grid with mesh and time parameters h; and 7; (see Figure [[I)). We
employ finite difference methods in space and implicit or explicit #-schemes in time,
independently on each space-time grid. On each subdomain boundary 9Q; x [0, T,
we require the local solution to match some suitably chosen interpolant of the
solution from adjacent grids (see [33], B2 13, [10]).

Our main result in the paper, stated in Theorem 4l concerns the accuracy of
the global discretization. Let uj . denote the restriction of the exact solution u
of the parabolic equation to all the space-time gridpoints, and let Uj, » denote the
computed solution of the global discretization. Suppose the truncation and intergrid
interpolation errors for the discretization and boundary conditions, respectively, on
the [th space-time grid € x [0, T'] satisfy

Local truncation error on Q] x [0,7T] = Hu|‘ql;1+2,qz;2+2,oo,ﬂf><[0,T] (h?l"1 + qu“z) ,

Local interpolation error on 99 x [0,T] = [lull,. . ... o pi=y(o7] (" + 77,

where || [|g—1;1,4—1:2,00,0: x [0, and || - ||r_l;17r_l;27oo73£,*X[Oﬂ denote Sobolev norms.
Here Bé’* is a small spatial region covering the the boundary segment B =
(09 N Q) of the Ith spatial subdomain. Theorem [4] states that, under suitable
assumptions, the maximum norm of the global error uy, » — Uy, - satisfies the bound

[un,» = Un,rll| < Cmlax{HU|\q—z;1+2,q—z;2+2,oo,9;x[o,T] (h"t +7"2)

(" 7)),

where C' > 0 is independent of the mesh sizes. From this we deduce that, ideally,
the local grid sizes h; and 7; should be chosen so that all the local error terms are
“balanced”. This would mean smaller h; and 7; on regions where the solution is

+ [l

L,*
7’1,:177’1,:2700732' X[OvT]
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Overlapping space-time subregions. Nonmatching overset grids.
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FI1GURE 1.1. Sample nonmatching overset space-time grid.

less regular. Additionally, the intergrid interpolation maps for determining local
boundary data should be chosen so that the interpolation errors are balanced with
the local truncation errors. Then, the resulting accuracy of the global discretization
will be of optimal order.

The rest of the paper is outlined as follows. In Section 2, we introduce nota-
tion for the overlapping space-time subregions, discuss explicit and implicit local
discretizations on each space-time grid, intergrid interpolation maps, the global
discretization, and a parallel Schwarz iterative procedure for solving the resulting
system of equations. In Section 3, we discuss theoretical properties of the local
schemes, such as a priori estimates, maximum principles, comparison theorems,
barrier functions, and contraction properties of homogeneous solutions. In Sec-
tion 4, we analyze the stability and accuracy of our global space-time discretization
by employing Picard’s contraction mapping theorem.

2. GLOBAL DISCRETIZATION
ON NONMATCHING OVERLAPPING SPACE-TIME GRIDS

In this section, we describe the construction of a global discretization of (I.T)
and a parallel Schwarz iterative method for solving the resulting large system of
equations.

2.1. Space-time subdomains. Let Q x [0, 7] denote the space-time region on

which the parabolic equation (1) is posed. We will describe here the construction

of an overlapping collection of space-time subregions that covers the above region.
Let {;})_, denote a partition or a covering of the spatial domain Q:

p
Q C Uﬁl
=1
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In practice, the subregions {; may be chosen according to the geometry of €2 or the
regularity of the solution (if known, or else by estimating the regularity from prior
numerical approximations). For each subregion €;, choose a parameter §; > 0 and
enlarge Q; to Q] as

O ={zeQ:dist(z, Q) < G}

The collection of subregions {Q;}}_; will form an overlapping covering of Q (with
overlap parameters /3;). An overlapping covering of the space-time region Q x [0, T']
can be immediately constructed:

Qx10,T] = LPJ (€ = [0,T]),
=1

where each space-time subregion 2} x [0,T] is cylindrical.

We will denote the boundary of each spatial subregion Q; by B! = 9Q;. It
will be convenient to further partition each boundary B! = 99 into two segments
B! and B} (we will omit the superscript [ when the subregion is clear from the
context):

Bi=00;n0Q and BL=09;NQ.

Corresponding to this, the space-time boundary B! x [0, T] of each local subregion
can be decomposed into B} x [0,T] and B, x [0, T].

2.2. Local space-time grids. On each of the local space-time cylinders Q2 x [0, T'],
we assume that a space-time grid QX {0,7,27,...,T — 7, T} is constructed,
taking into account the geometry of Q) and the regularity of the solution on this
space-time region (see Figure [LT)). Here h; denotes the mesh size on €} and 7
denotes the time step with

=5
for some integer N; > 1. Throughout the paper, xf" will denote the ith gridpoint
in ﬁ;‘” .

We will use I™ to denote the interior nodes in the grid €, and BM to denote
its boundary nodes. Since B! is decomposed into B} and B}, we denote by B{” and
B;”, the gridpoints on B! and B}, respectively. We will denote a grid function on
ﬁ:u by wp,. Corresponding to the partition of gridpoints in ﬁ;l into I™ and B™,
we obtain the block vector

T
Why = (whu[a whz,B)

When it is necessary to distinguish the block components of wp, corresponding to
the boundary subgrids B and Bj', we will use the notation wp, 5, and wp, B,,
respectively:
T
Why,B = (Why, By, Why,B,)
We will denote a grid function on ﬁ;‘” at time k7 by le. A space-time grid
function on ﬁ,*” x{0,7,...,T} will be denoted by wp, -, with

_ LM
Why,m = {whl k=0 "
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A grid function on the entire family of space-time grids will be denoted by wy, -,
where

(whz \Tl )f:l

_ M \P
- {whl k=0 :
=0/1—1

Given a continuous spatial function w(z), we will use 7, w to denote its spatial

Wh,

interpolation onto the gridpoints in ﬁzl

(Thw),; = w(z), e -
Similarly, 7, rw will denote interpolation of w(z) onto the interior gridpoints in
Q. If w(z,t) is a continuous space-time function, we will use mp, -, to denote the
interpolation of w(.,.) onto the Ith space-time grid

Thy,nW = {thw('a le)}lk\lo .

If w(z,t) is a continuous space-time function, we will use 7, » to denote the inter-
polation of w(.,.) onto all the space-time grids

ThrW = (Thy,7W)]_y -

2.3. Local subproblems and local discretizations. On each of the space-time
subdomains Q7 x [0, 7], the original parabolic equation (L)) will be replaced by
the following local parabolic initial boundary value problem with suitably chosen
boundary conditions g;(z,t) that couple the adjacent problems:

w+Lu = f(z,t), (z,t)€Qfx][0,T],

u = 0, (z,t) € Bl x [0,T),

u = gx,t), (z,t)€ Bx]0,T],
u(z,0) = wup(z), t=0,

where L denotes the elliptic operator
Lu= —alAu+b-Vu+ c(z)u.

Here, the choice of local initial data is ug(x) restricted to €2} since the exact solution
restricted to Q) x[0, T') would satisfy this initial condition and since ug(x) is assumed
to be known. The boundary data on B! x [0,T] is zero, since the exact solution
satisfies this boundary condition. The boundary data g;(x,t) will play a crucial
role, as it is not known. We will require (see subsection 2.5) that ¢;(z,t) equals a
suitable interpolation of the solutions from adjacent regions. This will couple the
various local problems and require an iterative process to compute g;(z,t).

Each local parabolic equation will be discretized on the space-time grid €2 X
{0,7,...,T} by a finite difference scheme in space and an implicit or explicit 6-
scheme in time. The elliptic operator L will be discretized on each spatial grid €2

by a finite difference scheme with coefficient matrix A™. If xf" is the ith interior
gridpoint in j, , then the discretization of L at this gridpoint will be denoted by

Lw(a') =Y Afjw(af') + Cp, (w, a7"),
i

where C(w, xi”) is the local truncation error at J:Z” for an arbitrary smooth func-
tion w(z). The matrix A™ will be rectangular; the first index (i in the preceding
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equation) corresponds to interior gridpoints, while the second index (j above) cor-
responds to interior and/or boundary gridpoints. Corresponding to the partition
wp, = (Wh,,1, whl,B)T, the rectangular matrix A" can be block partitioned

h h h . h h hy
At =T A AV ], with  AMwy, = Afjwn, 1+ A7pwn, B.

Assumption Al. We will assume the following about the entries of A",

1. A" >0 forallie I'.
2. AlY <0 when i # jwithie€I™ and j € I" UB",
3. ZjAZ?:c?lzco>0.

Remark 1. Finite difference discretizations satisfying Assumption A1 can be con-
structed in many ways. If the grid 2} is uniform, then the standard second-order

five-point stencil may be applied to approximate ), % (a%). If a is not small

in relation to ||I_)’||OQQl7 then centered finite differences may be applied to obtain a
second order approximation to g(m) -Vw, provided a local cell Peclet restriction (of
the form [|b]|oc 0y h < 2a) is satisfied. If a is small in relation to ||b]|cc,0; (or zero),

then a first order upwind discretization can be applied to approximate g(x) - Vw.
The term ¢(x)w(zx) can be approximated by a one-point stencil at each gridpoint.
If the grid is nonuniform, finite volume based finite differences may be applied to
construct the desired approximations. For instance, if Q@ C R2?, then a Delaunay
triangulation need first to be constructed for the grid and finite volume based finite
differences can be applied (see [6]).

Remark 2. If matrix A™ satisfies Assumption A1, then A" will be strictly diag-
onally dominant and ((A?})’l)ij > 0 for all 4,j. In particular, A?} will be an
M-matrix (see, for instance [31]).

Semi-discretization of the local parabolic initial boundary value problem on the
spatial grid 2 = yields

dU,
% + AN Unr + AfpUnp = fra(t),
th,,B1 t)y = 0,
(2.1) )
th,Bz (t) = Gh;,Bs (t)a
Uhl (O) = ThUo (l‘),

where fp,.1(t) = mp,.1f(.,t). The boundary conditions gy, s, (t) will be specified in
subsections 2.4 and 2.5.



DIFFERENCE SCHEMES FOR PARABOLIC EQUATIONS 625

To discretize (210) in time, we choose 0 < 8; <1, for [ =1, ..., p independently,
and apply a #-scheme to obtain

Uyt - Uf:
hy, 1 hy, I hy k+1 hy prk+1
777 +91AIIU +91AIBUh,,,B
0 Al h; 17k _ k+1 n. £k
+91A11Uh,,1 + elAIBUhl,B = O0ufy,t +0 1
k1 _
(22) Uhl,Bl - O’

N N |
hi,Ba  —  Yhi,Bs
Uh,, Th, U0,

for k=0,..., N, — 1, where 6, = 1 — §,. The discrete boundary conditions {gﬁhBQ}
fork=1,...,Njand [ = 1,...,p are crucial for coupling the various local parabolic
discretizations and will be described in the next section.

2.4. Intergrid interpolation. The local space-time discretizations (22)) will be
coupled together by requiring that the local boundary data gﬁh B, match a suitable

interpolation I}fl U, of the discrete solution Uy, , from adjacent grids. The linear
map I}’fl is described below.

Let 2 (from ﬁ:u) be a gridpoint on B. At time k7, the boundary data
(g,’thz)i = (U}]fl)i ~ u(z, kr) will be approximated by linear combinations of
nodal values of (U, f%f)j ~ u(x?f, l~m'l~) from adjacent space-time grids [J; Q; x 0,7
with

(Uf]fl) = (I}Ifl Uh,‘r) i

where the interpolation map I}’f is defined in terms of a tensor aéz%:
p Np
I,k,i
(2.3) (Zh,Un.r), ZZZ mz(Uh>
I=1k=0 i

Below we list assumptions about the weights ozljf% used to define (Ih, Uy, T)

1. Assumption A2. The intergrid interpolation map I}fl must use only values

from adjacent grids [ # . In terms of the coefficients, this places the

following requirement on the weights Oc; Zf

) 17’

"%:0, when [ = 1.

2. Assumption A3. Given [, the intergrid interpolation map I}’f should
involve only nodal values from gridpoints in the unezrtended subreglons
Q7 x 0,7 for [ # 1, i.e., it should not involve nodal values from gridpoints

in the extended regions (J, (€27 \ Q) x [0,T]. In terms of the coefficients

Lk,
af ];% this requirement is

FL2)

gggzo, whenx fe A\ orl=1.
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Given Bb, let B5* C € denote the smallest region such that By* x [0, T con-
tains all the cells and gridpoints from adjacent subregions used in defining
the interpolation map I}’fl for k=0,..., V.

3. Assumption A4. Let w(x,t) be a smooth space-time function which is zero
on 99 x [0,T]. For each space-time gridpoint (:c?‘,k‘n) on the boundary
segment Bl x [0, T] we assume that the interpolation is chosen so that the
error satisfies

w(:c;”,kn) - (I;flwh,T)j = Dﬁl (w,x?"),

where the local interpolation error can be estimated by Taylor series ex-
pansion

D, (w, 21| < Cflw] (A 472,

71,1,71,2,00,B5 * x[0,T]

for some integers 1,1 > 1 and ;2 > 1, where C is independent of h;, 7; and

”w”rl,l,rl,moo,B;*><[0,T] denotes a Sobolev norm of the space-time function

w(.,.) on the region BY* x [0, 7.

Definition. Throughout the paper, we will use o, » to denote the maximum norm
of the intergrid interpolation map

p N;
_ Lk
Onr = 1AX o7kl
T =1k=0 7

Example. We include a simple example to illustrate the intergrid interpolation
map for a one-dimensional region 2 = (0,4) with 7' = 1 and a two-subdomain
decomposition with Q7 = (0,2) and Qs = (2,4). Let the overlap parameters be
By =1forl =1,2. Then Qf = (0,3) and Q5 = (1,4). Let the space-time grids
be chosen with hy = 3/10, 7y = 1/10, he = 3/4 and 75 = 1/3. Let the gridpoints
be 2" = ihy for i = 0,...,10 in @} and 2> = 1+ ihy for i = 0,...,4. We will
consider a second-order accurate interpolation scheme. In this example, B{” =0,
Bgl = 3, sz = 4 and Bgz = 1. The space-time gridpoints on B3 x [0, 1] are
{(3,k/10) : k =0,...,10}. We will describe how the entries of the map Zf can
be constructed for defining the interpolated values at (xfl,k‘n) fork=1,1=1
and ¢ = 10. The other grid values can be constructed similarly. The boundary
gridpoint (3,1/10) on boundary Bi x [0,1] is enclosed in the cell with vertices
(2.5,0), (3.25,0) (2.5,1/3) and (3.25,1/3) (whose vertices are all gridpoints in the
space-time subdomain Q3 x [0,1]). Note that these four nodes are contained in
Q x [0,1]. We will define our approximation to (Ugl) 10 by using (second-order)
bilinear interpolation:

2 4 14
(Un) 1 = %Uh2(2.5, 0) + %UM (3.25,0) + 9—70Uh2 (2.5,1/3) + a5 Une (3.25,1/3).
The interpolation map can be defined similarly for the other gridpoints on Bgl X
[0, 1] so that Assumptions A2 and A3 are satisfied. If all the stencils involve convex
combinations (as in the above stencil), then the interpolation map will have maxi-
mum norm oy r = 1. In this example, the interpolation error is second order in the
mesh parameters he and 7o of the space-time grid on €% x [0, 7] with coeflicients
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that depend on second derivatives of the function being interpolated (in the convex
hull of the four nodes involved in the stencil):

23 46
‘w(ﬂc%,ﬁ) - <%Wh2 (2.5,0) + 50 Ve (3.25,0)

7 14
— 2.5,1 — 25,1
g Whe(25,1/3) + Wi (325.1/3) )

< Ollwll2,2,00,[2.5.3.25) x[0,1/3] (h3+73).

If the exact solution is less smooth near B* x [0, T], then higher accuracy stencils
should be applied. However, determining the region where the solution is less
smooth would require some estimates (see [24]), for the smoothness of the solution.

2.5. Global discretization. A global discretization of (II)) can be obtained from
the local discretizations (2:2) once the boundary data g,’fh B, are specified using the
intergrid interpolation map I}fl.

For each I = 1,...,p, let 0 < 6; < 1 be the choice of the #-scheme on Qf x
[0, T]. Multiplying each equation in (2:2) by 7, and rearranging terms, the global
discretization of becomes

(1+noaly) Uit = (1-nfialy) Uk,
+ 7 (0 ATRUL + BATRU, 1)
k+1 0
(2.4) + 7 (glfh:[ + glff]fh[) )

k+1 _
hi,Bi 0, -
k+1 _ k+1

Uhl,Bz - Ihl (Uh1,7'17 SRR Uhpﬂ'p) )
U}(L)l,l = Th;,1U0,

forl=1,...,pand k=0,...,N; — 1.

The above system couples the p local parabolic discretizations through the
U ;f:é2 = I];f;rth,r terms. It yields a very large system of linear equations whose
parallel iterative solution will be described next. Techniques will also be described

for reducing the size of the system and the local memory requirements.

2.6. A parallel Schwarz iterative method. The linear system (Z4) can be
solved by a parallel version of the Schwarz iterative method [26] [15] [16] B5] 28] [12]
which will (under assumptions stated in Section 4) converge geometrically. On a
parallel architecture, each processor can in principle be assigned to a different space-
time grid. Some communication between processors will, however, be necessary (to
compute the boundary conditions gﬁh B, involving the intergrid interpolation maps
I}’fl). The loads may be well balanced if the subproblems are of comparable size.

System (2:4]) will be very large in general, involving all the unknowns on all
the space-time grids. However, with some care, the number of unknowns and the
memory requirements can be reduced.

1. First, suppose m is a common factor of the number of time steps N; on each
grid for I = 1,...,p (ie., m = ged(Ny,...,Np)). Then, T can be reduced
by a factor m by defining T = T/m and repeatedly applying the global
scheme on the time intervals [0, 7], [T,2T], ..., [(m — 1)T,mT].
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For example, suppose there are two subregions (i.e., p = 2) and the time
steps are 77 = T/100 and 72 = T/200. Then choose T =7 = 27 and
repeatedly apply the global discretization scheme m = 100 times on [0, 71],
[11,271],...,[9971,10071] to obtain a solution on the time interval [0,T].
This procedure will reduce the size of the linear system by a factor 100.

2. Within each space-time grid € x {0,71,...,N;7i} the discrete solution
U}’fl need not be stored for £ = 0,...,N;. Store the initial data U}?M
and the boundary data 921,32 for K = 0,...,N;. Using these, the local
discrete solution can be generated by solving the local equations. For the
parallel Schwarz algorithm, described next, it would also be necessary to
store the nodal values of (U }fl)z that will be used to compute the intergrid
interpolation maps.

Once the size of the global system has been reduced by reducing N; so that
ged(Ny, ..., Np) = 1, then system (24) can be solved by a parallel Schwarz it-
erative algorithm. To distinguish the different iterates in the Schwarz procedure,
we introduce the following notation: U ;f;(n) will denote the nth Schwarz iterate at
time k7; on the grid € .

Parallel Schwarz iteration. Let {{UE;(O)}Q’;O P_, be a given starting guess.

1. For n=0,1,... until convergence do
2. For [ =1,...,p in parallel do
3. Compute the local boundary conditions for k =1,..., N;:
k(1) _ 7k (g0 g™ )"
ghlaB2 — Ty ( hi,717° ") hpﬂ—p)
4. EndFor
5. For [ =1,...,p in parallel do
6. Let
Ui?;,(?Jrl) = Th,,IUO-
7. For k=0,...,N; —1 solve
(I + TszA?}) Ut = (I - TzélA?}) Uy

+ o (—o Al URT )+ AU )

(2'5) + 7 (91](';?:_[1 + élf}]fh[) s
kE+1;(n+1)
hi,B1 = 0,
Uk-l—l;(n-i—l) o k+1;(n+1)

hi,B2 - hi,B2 :

8. EndFor

9. Endfor

10. Endfor

Under suitable assumptions, the iterates {U ;f;(n)}

geometrically to the exact solution of (Z4]) as n — oo (see Section 4).

above can be shown to converge
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3. MAXIMUM NORM PROPERTIES OF THE LOCAL DISCRETIZATIONS

In this section we describe several background results. For local discretizations
of parabolic equations, we describe maximum norm stability, maximum principles,
comparison theorems, barrier functions, and contraction properties. These results
will be used in Section 4 to study the maximum norm stability of the global dis-
cretization (2.4). The proofs are presented here for the convenience of the reader,
though most of the results are scattered in the literature [34] [14] 25 211 28] [10].

3.1. Maximum norm stability and a priori estimates for local discretiza-
tions. The following preliminary result provides the basis for maximum norm es-
timates of solutions to #-schemes.

Lemma 3.1. Suppose the following hold.
1. Let A = [ A?} A%, ] satisfy Assumption Al.
2. Let 0<60; <1 and let 0 < 7.
3. Let wp, = [wn,.1,wn, 5] satisfy

(I + 7'19114?}> why 1 + TOAY w5 = fu,
Why,B = Yhy,B-
Then the following holds:

| | < ! | f | |~ |
w max .
hiloo > 1 lelco ihl,I 00y |9h;,Bloo

Proof. Without loss of generality (if needed multiply wy, by —1), let (wy,), =
lwh, oo (iey (wr,); = | (wp,); | for all j). If i € B then since wn, 5 = Jn,.B
the desired result holds. Therefore, in the following, suppose i € I". Then the
following holds:

(fh,,,])i = (1 +m0AY) (wn,); + 76, ZAZZ (wn, )
J#i
= (1+T191AZ")|U}}”|OO—I—TlelZA?j" (whl)j
J#i
> (1+ TZHZAZIHWM loo + 7101 ZAZﬂwhl |oo,  since A?j‘ <0 for i#j
J#i
= 1+7761AZ" —l—ZTlelAZ»l |whl|oo
J#i
= (l—l—Tl@lC?l) |wh, oo

v

(1 +’7'19100) |whl|oo.
Thus, |wp, [eo < | (fh,,,f), /(14 7101c0) < | frutloo/ (1 + Tibico). O

The preceding result can be applied to the linear system occurring at each time
step in the -scheme, provided a stability constraint is satisfied by 7;.
Lemma 3.2. Suppose the following hold.

1. Let matriz AM satisfy Assumption Al.
2. Let 0 < 6; <1 and define 0, =1 — 6.
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3. Let 0 < 7 satisfy the stability constraint

1 ~
71 < min = if 0; # 0.
l—ielhl HIAZ}’ f l;é

4. Let U}’fl“ satisfy

h k+1 h k+1 >~ h k = b
(1+ oAl U + moAlpUSs = (T-nbiAly) UL — nbAGpUE, 5
k+l | 7 ck
+7 (elfhl,l + elfhl,l) )
k+1 k+1
h,B — Y9n,B>
h Uk Uk k+1 fk+1 d f'k ;
where Uy 1, Uy, gy 9p, gs Jn,x and fp, p are given.

Then the following holds:

E+1 E+1 70, E+1
Up," oo < max{wth 003 1+né)lc0|fhz,,1 oo

Tlél ].—TlélCo
e+ Tl | |-

1+ 76;co 1+ 70;co
Proof. We apply the preceding lemma with
fhlJ = (I - TlélA?lI) Uf]fl,l — TlélA}[L}gU}]th —+ 77 <9f}lflt,1 + élff]fl,f) s
gh,B = gﬁﬂy

We need to estimate |fhh[|oo. Since 1—7,0,A;; > 0 for all ¢ (by the stability criterion
for 7;) and —TlHIA?]? > 0 for i # j, we obtain

[(Fur) | < @ =nbuAD)] (UF), | =m0 Y AL (UF), |
(o0 (£E) 1+ 6 ), )
< (U-nt > AU |
+ 7 (91|f}%:[1|oo + §l|fflfl,1|00)
< (1 —700)|Uf |0

7 (O oo + B, 110

where we used that —76; > j A?j‘ < —76;cg. The desired result now follows by an
application of the preceding lemma. O

By recursively applying the preceding result for £k = 0,1,...,N; — 1, one can
obtain an a priori estimate for the solution to the discretized local parabolic equa-
tions.

Lemma 3.3. Suppose the following hold.

1. Let matriz AM satisfy Assumption Al.
2. Let 0 < 6; <1 and define 0, =1 — 6.
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3. Let 0 < 7 satisfy the stability constraint

1 ~
7 < min =——, if 0, #0.
ierh QIAZL

4. Let Uh 7 satisfy

(1+noAly) UEH + noAlpURTL = (1= nbiAly) UF - nBATLUS,
+ 7 (@f}fﬁ} + élff]fl,f) ;
k+1 k+1
hi,B = In,B

for k=0,1,...,N; — 1, where {ghl B}k 0 {f,’fhl}ﬁlo and U}?M are given.
Then the following holds:

~ N[
N, ’7'19160 N, —1 1-— ’7'19100 0
|U oo < max |ghll,B|°°’1+7-600 9n' B |°°""’<m |9h, Bl

i Ni—k
Tiv1Co k41
0
+ 7 Z l <1+Tl9100> |fh,,,I 00
~ N;—k
~ ].—7'19100 k
0| ——— 00
+ l<1+719l60 |fhl,I|

1—7’5 l

101Co 0

+ | — U .
<1+ 719100) | hhlloo

Proof. The proof follows by a recursive application of the preceding lemma. O

Remark 3. By setting cg = 0 in the preceding result, we may obtain a less sharp
result:

U < max { 9N ploos 97 5 oo -+ 9h, 5o |
Nl—l
+ 79|ffi\lh,1|oo +7 < Z |ff]fl,l|00> + 701 f 1o
k=1
+ |Uf(L)l,I|OO'

Remark 4. If f{fhl =0fork=0,...,N;and U}?hl = 0, then the above result yields

|UNz|OQ < max{|gh Bloos |g}]x£§1|oo""’|ggl’B|°°}’

which is a form of the discrete maximum principle for homogeneous solutions of
the local discretized parabolic equation.

3.2. Maximum principles and comparison theorems. The following is a max-
imum principle for the locally discretized parabolic equations.
Lemma 3.4. Suppose the following hold.

1. Let matriz AM satisfy Assumption Al.
2. Let 0 < 6; <1 and define 0, =1 — 6.
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3. Let 0 < 7 satisfy the stability constraint

) < g}}r}l éljl’“ if 0, #0.
4. Let U;fl"’} satisfy
(1+n0Aly) UE + moAlpUES = (1= nBiAl) UR ; — nbi AU, 5
+7 (01](}1::]1 + élf}]fl,z) ;
e = G

for k=0,1,..., N, — 1, where {gh B}k 0 {f,’fhl}ﬁlo and U? are given.
5. Let the initial and boundary data satzsfy

op), = 0, iel™
(fff,,,f)i > 0, iel™, k=0,...,N
0, jeBM, k=0,...,N;.

\Y

vV

(9;%,3
Then, the following holds:
Uk 1), 20, iel™andk=1,...,N.
Proof. Let kg > 1 denote the smallest integer such that there is an ig with (Uh I)’Lo <

0 (for, if there does not exist such a ko and g, then (U}’f )i > 0 for all k and 4, and
the desired conclusion holds). Without loss of generahty, suppose that

(U;fl‘)J) . = min (Uh‘)[) < 0.

eI

Consider the local discretized equation at time kg7;
(1+n0Aly) Uk + oAU, = (1= nbAl) URT = i AlpUR
+ 7 (elfhl]‘f'@lfko 1) )

k k
U = 9n.B-
At the ip-th gridpoint this becomes

h ki k
(14 oAl (Uhf)i +70 > Al (Uh;)j
J#io

- ( - TlelAchzo> (Uf]floil)io —mb Y AL (Uﬁ?il)j

J#io

e (o (), +0(in?),).

where (U;fl‘)l)j = (gﬁhB)j for j € BM. Using the nonnegativity of (f;fol)i, we obtain

(1 noaly,) (Uie), +modoaly (vf) = (1=ndial,) (Vi)
Gio

-7, Z Am] (U;flo_l)j .

J#io
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Since (U,]f;)fl)j > 0 for all j, (1—Tl§lAhl ,) = 0and —76, Z#io Al >0, we obtain

ioi 0]

(1404l (U{fl‘))io + b, ; Al (U}ff)j > (1-nbAl,) (U;flo—l)io
T —Tlél Z AZ)lj (Uilf;rl) .
i#io !
> 0.

By assumption —(U}’fl")io > —(U,]ff ); and AZ)lj < 0 for j # ig. Rearranging terms in
the left hand side above, we obtain

0 < (1+moall,) (Uk) +no0d Al (UR)
" J#io !
< (1+moial,) (Ui) +mo Y Al (Uk),
’ j#io °
— hy ko
= 1+Tl€lZAioj (Uhl>i
N 0
J
= (+nbie) (UR),
0
< 0,

since 1 + 77910?01 > 1 and (U, }lflo)io < 0 (by assumption). We have thus arrived at a
contradiction. Therefore, our assumption was incorrect and we must have

(U,’;l)izo, for k=0,...,N;and i € I"™,

which is the desired conclusion. O

Remark 5. A similar result can be shown to hold when ¢y = 0, provided A™ is an
M-matrix.

As an immediate application of the preceding lemma, we obtain the following
comparison principle.
Lemma 3.5. Suppose the following hold.

1. Let matriz AM satisfy Assumption Al.
2. Let 0 < 6; <1 and define 0, =1 — 6.
3. Let 0 < 7 satisfy the stability constraint

n<mh g TA0
4. Let U;fl"’} satisfy
(140} ) U +m0ATRUSTS = (1=nbiAY ) UL = nBi YU, b,
+ 7 (f)lf}]f:[l + élf}]fh[) ;
Un's = b

for k=0,1,...,N; — 1, where {fi]f,,,l}k]\lo; {gﬁl’B}kNLO and Uy, | are given.
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5. Let Uf“ satisfy

(I + 7'19114;”]> UICJrl + T@Ahl UICJrl = (I — TlélA;LlI> Uflfl,l — TlélA%gﬁ;th
+7 (ﬂf;’ff} + él.f}]fl,j) ;
R+l ket
Upls = Ohip
for k=0,1,...,N; — 1, where {fi]f,,,l}kNio; {g}’fl’B}kNio and ﬁi?,,,] are given.

6. Let the forcing terms, the initial and boundary data satisfy:

([ hy,1 ) Z (th [) 5 RS Ihl,
’ ’ 7
(Jhll) >— (f}lfll> Y ielhl, ](;—()7...,]\717
i )

(gﬁhB)j > (gghB)j , jeBM, k=0,...,N.
Then, the following will hold:

Uk 1), > (Ok,) — ¥iel™andk=1,.. N.
Proof. Subtract the two sets of discretized parabolic equations to obtain
(1+noaly) Uk = TR ) + noaly (Ul - 05

= (I - TlélA%) (U}]f,,l - ﬁflfl,l) - TlélA?lB (U}]f,,B - U}’fl,B)
+ 76, (ka fk+1> + 16 (f}lfl,l - fi]f,,,l) ;
U}Ij]—t—l Ok = gﬁfl B é’iﬂev

for k = 0,1,...,N; — 1 for the differences {U}’fl,l — U}fhl}. Since U}?l,l — U}?hl,

g,’th — gﬁl’B, and f}’fl}I — inlf,,,l all have nonnegative entries by assumption, we can
apply the preceding maximum principle to obtain

(Ukr=Oky) 20, Wielfork=1... N,
3
which is the desired result. U

Our primary application of the comparison principle for discretized parabolic
equations will be to estimate, on each local grid, the modulus of discrete homo-
geneous solutions Uhm’z with trivial initial data, using a suitable comparison or
barrier grid function wy, . Accordingly, given a discrete homogeneous solution
Un, =, satistying trivial initial conditions U }(L)l = 0 and nontrivial boundary condi-

tions Uflfl,Bz = g,’thQ for k =0,...,N;, we would need to construct (or guarantee
the existence of) a suitable grid function wp, ,, satisfying the requirements of the
preceding lemma. For convenience, we will seek a comparison (or barrier) grid
function wﬁm to be a stationary grid function wy,, i.e.,

koo —
wp, = wp, k=0,...,N.
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To ensure applicability of the preceding comparison principle, the requirements on
wp, of the preceding lemma will be reduced to

h h .
(Atywn 1+ Afpwn,p) = 0, e,
K]
(wn,,B); > man:o,...,N,,‘(ﬁ,’th)A‘, i€ B,
3
(wn,); > 0, ier,

since f;fl =0 and f]}?l = 0. We have the following result.

Lemma 3.6. Suppose the following hold.

1. Let matriz AM satisfy Assumption Al.
2. Let 0 < 6; <1 and define 0, =1 — 6.
3. Let 0 < 7 satisfy the stability constraint

1 .
7 < min =——, if 0 #0.
ierh QIAZL

4. Let U;fl"’]l solve

hy \ rrk+1 h; 77k+1 0 Ah Tk 0 Ah 77k
(1+n0Al) OF + moAlpOES = (1= nfiAly) OF ;- nb AT UR, 5,
rrk+1 _ ~k+1
Uns = b

fork=0,1,..., Ny — 1 with ﬁ}?l,l =0, where {QZhB}QZO are given.

T .
5. Let wp, = (wn,,1,wn,,B) Satisfy

h h .
(AI}wh,,,I—f—AIijhl,B)A > 0, ie M,
(2

, j€ B,

(wn;,B); = maxk=o,..N; |(n.B);

Then, the following holds:

(wnn); = | (OF) | VieI™, fork=0,...,N.

Proof. We will apply the comparison principle (Lemma BA) using U, by, as defined
above and

U;flzwhl, for k=0,...,N.

Due to the stationarity of U }’fl, the finite difference approximation of its time deriv-
ative is zero and

(I + Tz@lA?})U;f:} + TlelA?lBU;f:é
> (I - nélA?}) UE =m0 AR UF 5+ 1ifnr,
(U,’;fé)j > ‘(a,’if}g)j‘, j € BM,

holds for k =0,...,N; — 1.
In order to apply Lemma [B:5] we also need to verify that

U8 1), > (O0)i=0, Viel",
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which in our application corresponds to (wp, 1), > 0 for all i. From the definition
of wy,, we obtain

—1
h r h
Wy, 1 = (AIlI) (fm,f - Azﬁswm,B) :

Since AM satisfies Assumption A1, it is a strictly diagonally dominant (rectangular)

M-matrix and satisfies
—1
((A’;;) > >0, Vi,jelm.
y

J
Since (Ahl)ij < 0 for ¢ # j, ‘f}]fl = 0 and (wp,,B); > 0 in the above, we conclude
that (wp,,r); > 0 fori e I™. By the comparison principle
(Uk), = (wn), = (OF) . ik
To complete the proof, we observe that all of the above inequalities remain valid if
U ;fl, 1 is replaced by —U ;fl, ;- Applying identical arguments yields

(whl)i > — (ﬁ;’fl> , Vi k.

i

Combining these two results yields

(wny); = |OF,

Vi, k,

i
(2

which is the desired result. U

In the next section, we describe a technique for constructing grid functions wy,,
for sufficiently small mesh size h; (with h; < h}') when ¢g > 0. Such grid functions
(actually, standardized versions of them where the boundary values are suitably
scaled) will be referred to as discrete barrier or comparison functions. Once barrier
functions are constructed (or their properties are known), they can be applied to
derive a contraction property for homogeneous solutions.

3.3. Existence of continuous and discrete barrier functions. In this section
we prove the existence of a discrete barrier grid function wy, when ¢y > 0 on each
local grid and describe some of its properties. We state below the precise require-
ments that a grid function must satisfy in order to be called a barrier function.

Definition. A grid function wy, = (whl,[,whl,B)T that satisfies

(A?llwhz,I'FA?lehl,B)A > 0, ielh,
(3.1) (Whe.By), > 0, i€ BN,

(whlaBl)i > 1, ’L'EBSL,

will be referred to as a discrete barrier (or comparison) grid function.

The existence of discrete barrier grid functions will be proved in two stages.
First, results on the existence of a continuous barrier function w;(z) associated
with the continuous analog of on €2} will be described. Second, a grid function
wp, = mp, w; will be defined by nodal interpolation of w;(z) onto the grid Q;"”. For
sufficiently small hy (ie., for by < hy for some h; > 0), it will be shown that
the resulting grid function wp, will satisfy the requirements (B.I). We have the
following result for continuous barrier functions.
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Lemma 3.7. Suppose the following hold.
1. Let 0 < di(x) denote the distance from x to the boundary segment Bb =
o0y N
di(z) = dist (z, BY) .
2. Let wi(x) be defined as

wy(x) = e @ g ﬁ;,

for a>0.
Then there exists a choice o = oy > 0 so that wi(x) defined above satisfies
¢
Lw;, > 50, x € Qf,

w(xr) > 0, z€B,

w(z) = 1, x€ B

Proof. We follow the construction in Lions [27] (see also [28]). Direct computation
of Le=4(*) yields

Le—odi(@) = g-adi(2) (aaAdl (z) — ac?|Vdy(z)|? — ab(z) - Vd(z) + c(x))

> emod(@) (aaAdl (z) — ac?|Vdy(z)|2 — ab(z) - Vd(z) + co) .

If we choose aa = a; >0

Co

Vil + all VP, g + allAdi] ;)

a =min< 1

2 (18]
then c .
50 + aaldy(z) — ac®|Vdy(z)|*> — ab(z) - Vdy(z) > 0,

and we obtain Le~®%(®) > ¢,/2 > 0. Since dj(z) = 0 on B), it follows that

e~d(®) = 1 on B". Since the exponential e~ “%(*) is always nonnegative, it
follows that 0 < e~®%(®) on B!, Additionally, since 0 < d;(x) for all z, it follows
that 0 < e~ (@) <1, O

Remark 6. In the above construction, we tacitly assumed smoothness of the dis-
tance function d;(x). Unfortunately, this may not be the case in general, even if
B, = (0927 N Q) is smooth. However, given any 0 < ¢ < [, for our applications
we may replace d;(x) by any smooth function 0 < ci,l;q (z) satistying

Jl;el (x) > 0, Ve,
Jl§€l () = 0, x € Bé,
Jl;el (CL‘) < CL‘) + €y, an

di(
Jl;el (J?) 2 dl(.l?) — €, V.

Such a “pseudo-distance” function cil;q () can be constructed as follows. For any
v >0, let ] denote

Q) = {x: dist (z, Q) <~}
Then Qf = Q).
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1. Let Sy, denote a region with smooth boundaries satisfying
(Qlﬁﬂr% \er@l*%> c Sl,el c (sz-‘rﬁl \Qlﬁl—ﬁl) )
Then Bl C Ste-
2. Given S, let dj., (z) denote
di.e, () = dist (z, S1e,) -
Then dj;, () will have the following properties:

die,(x) > 0, Ve,
die,(x) = 0, T € Spie,
die(z) < di(x)+ %, Vz,
die, () > di(x) =%, V.

Unfortunately, dj., () will not be smooth in the regions where the level
sets of S}, intersect.

3. Let 0 < 1), (z) denote a smooth probability density function having com-
pact support of diameter €;/4 centered at the origin. Define azl(x) as the
convolution (mollification) of d., (x) with v, (z) as

di(z) = / e W) dise (z — ) dy.

By construction &l(m) will be smooth. Due to the nonnegativity and com-
pact support of ¥, (z) of diameter €;/4, it will further satisfy

di(z) > 0, Vaz,
di(x) = 0, =€ B,
Jl(m) < di(x) + €, Ve,

di(z) > di(z)—e, V.

Thus, given a suitable small but fixed choice of ¢;, e % (*) < e=aldi(@)te) wi]] sat-
isfy the requirements of a barrier function for the value of a; given in the preceding
lemma (with d;(z) replacing d;(z)). For convenience, however, we will henceforth
assume that d;(x) is smooth.

Given the continuous barrier function w;(z), we will interpolate it onto the grid
(1, to construct a discrete barrier function. To ensure that the resulting grid
function satisfies (B.I), we will require that the discretization A" be at least first
order accurate and that h; be sufficiently small.

Assumption A5. Let xf” denote an interior gridpoint in €} . Then for any
sufficiently smooth test function v(z) we assume that

(Lv) (a:i”) = (Ahlﬂ'hl’l})i + Cp, (v, xg”)hlsl

holds, where the coefficient C, (v, 2]") involves higher order derivatives of v(z) in
the convex hull of the gridpoints of the local stencil
(3.2) Chi (0,27)] < Cllolls 42,0095

where C' is a positive constant independent of h; and v(.) and 1 < s; is an integer.
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Lemma 3.8. Suppose the following hold.

1. Let matriz AM satisfy Assumptions Al and A5.
2. Let wi(z) = e=*%(®) be q smooth continuous barrier function satisfying

¢
Lw, > 50, x € 8,

IS

S
Y
o

z € B,
wi(r) = 1, x€ Bk
3. Define wy, = mp,w; where
(wn,); = wi(z), vzl e ﬁ;l.

4. Let h; satisfy

CO 1/7’],
hl < hi = < >
: 2C|wils;+2,00,05 ’

where C is defined in (32).
Then, the following will hold:

A}I”I'whl g+ Ahlwth > 0, componentwise,
Wh,,B, = 1, componentwise,
wh,,B, = 0, componentwise,

i.e., wp, is a discrete barrier function.

Proof. By Assumption A5 on the local consistency of the finite difference discretiza-
tion matrix A™, we obtain

(AMwy,), = (Lwy) (@) + Cp, (wi, 2T,
> %O + Cp, (wl,x?l)hf", since Lw; > %O
co . .
> 5 Cllwils,+2,00,0: " using A5
> 0, if hl < h?a

where

h: = ( Co )1/8"
: 20 |wi|s,+2,00,0; '

The desired result now holds due to the properties of w;(z) and since wp, = 7, w;.
O

In the next section, we use barrier grid functions to prove a contraction property
of homogeneous solutions to discretized parabolic equations.
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3.4. Contraction property of homogeneous solutions. Suppose {W[ft }kNLO de-
notes a homogeneous solution of the discretized parabolic equation on the [th lo-
cal grid with trivial initial conditions W}?l} ; = 0 and nontrivial boundary data

W}’fl’ By, = gﬁl, B, On Bg”. By the discrete maximum principle for parabolic equa-

tions, we obtain the bound

Ve, | = e, (),

)

at any interior gridpoint x;” at time k7 for £ = 0,..., N;. However, when ¢y > 0
(as we have assumed), a stronger property will hold in the interior region Q; x [0, T]

Y

max ‘(W,’;) j‘ < pn, , max, max ‘(gﬁl,Bz)i

JEDN, ~Niie;

for some pp, < 1. This will be referred to as the local contraction property and will
be essential in establishing the stability of the global discretization.

We define now the normalized contraction factor 0 < pp, <1 from a domain
to a subregion €2; for discrete homogeneous solutions of the discretized parabolic
equation on the lth grid.

Definition. Let {W}’fl kN ', denote a homogeneous solution of the following dis-
cretized parabolic equation with trivial initial conditions:

hy k+1 hy k+1 0. Al k 0 Al k
(I+TIHZAII) Whl,l —l—Tl@lAIBWth = (I—TZHZAH) Wh“I—TlelAIBWth,
k+1 _
hi,B1 0,
k+1 _ k
hi,Bo =  Yn,By»
0 _
Whl,I = 0,

where (g,’fh B,)i = Lforie Bl We define the normalized contraction factor pp,
(with 0 < pp, < 1) as

3.3 = (Wi ),
(3.3) o = e, max | (Wi, o),

Our first result in this section provides an upper bound for py,, in terms of the

contraction factor for the continuous barrier function e~*%(*) from the preceding
section.

Lemma 3.9. Suppose the following hold.

1. Let 0 < fB; denote the overlap parameter from subdomain € to Q.

2. Let matriz A™ satisfy Assumptions Al and A5, and let 7, satisfy the sta-
bility criterion.

3. Let ¢g > 0. i

4. Let 0 < «; be chosen so that the grid function wp, = ﬂhle’ald"(m) is a
discrete barrier grid function for hy < hj.

5. Let py, denote the normalized contraction factor on the lth grid with Wy,

as employed in (B3).
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Then the following holds:
Ph < maXieﬁhl (whl)i

5 h
_ —Otldl(l'-l)
< maXithle i),

Consequently
Phy < 670‘16”7 Zf Jl(x) = dl(x)

< emulBma) i di(z) — e < di(z) < di(2),

for some ¢, > 0. In either case, pn, <1 if Bi > €.

641

Proof. By assumption on the mesh size h;, the preceding lemma yields that wp, =

Th, e~ (%) is 5 discrete barrier grid function. By applying comparison principle B3

from subsection 3.2, with U, }’fl = wp, and U, }’fl = W}’fl above, we obtain

S (whl)i Vk

k),

emoundi(al!)

IN

< emlBima) vy,

which is the desired result.

O

The above estimates for the contraction factor pj, are qualitative, and involve an
unknown constant ;. We indicate below how more quantitative theoretical bounds

can be obtained for pj, on uniform grids (see [21]).

Example. Consider a parabolic equation u;+ Lu = f in one space dimension (i.e.,
Q C R) where Lu = —u” + bu' 4 cu and where 0 < b and 0 < ¢ are constants. For
convenience, consider a subdomain Q = (0,1) with ©; = (@,b) where 0 < @ < b <
1. Suppose that a uniform grid is constructed on f with mesh size h; = 1/M; and
gridpoints x?’ =4h; for 0,..., M;. Discretize —u” by three point finite differences,
bu’ by upwind finite differences and cu by a one point approximation on the above
uniform grid and suppose 0 and 1 are interior points in 2. To estimate the discrete

contraction factor pp,, we solve the difference equations

—(bh—l—l)ui_l—l—(2+bh—|—ch2)ui—1ui+1 = 0, fori=1,...,M;—1,
uyg = 1,
uy, = 1,

whose general solution has the form
_ i i
U; = €107 + C205,
where o1 and oo are roots of the quadratic

0% = (2+bh + ch®) o + (bh + 1) = 0.
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In terms of b, ¢ and h; the roots are

2 4 29 272\ 1/2
o1 = 1+%h+%+h<c+b+4bhc+6h> :

bh  ch? A+ b2 + 2bhe + 2h2\ V2
g9 = 1+7+7—h 4 .

The constants ¢; and ¢o can be computed by enforcing the boundary conditions

c1+co = 1,
M M
oy lter+o05 e = 1,
which yields
M
oyt —1
C1 - M, M,
Oy — 0
1—0{\/1’
2 = M, M,
P 0y

The contraction factor pp, can be estimated as

(03" = Doi + (1 =010}
Ph, = max - M, 7, .
(il e(ab)} oyl — o

Given b, ¢, h;, a and B, these can be determined quantitatively.

Our main result in this section relates the discrete contraction factor pp,, which
was defined for the normalized Dirichlet boundary conditions, to the case of general
Dirichlet boundary conditions.

Lemma 3.10. Suppose the following hold.
1. Let matriz A™ satisfy Assumptions Al and A5.
2. Let 0 < 6; <1 and define 0, =1 — 6.
3. Let 0 < 7 satisfy the stability condition

1 -
77 < min = . if 0 #0.
L= e QIAZZ 7o #

4. Let thl satisfy

(1 +moualy) Vi + moi ALy Vs (1=nbialy) Vit ;= nB ALVt g,

(7k+1

hi,B1 O’
rk+1 _ ~k+1
hi,B:  —  9h;,By

(70 _

Vhl’l = 0,

fork=0,...,N;, — 1.

5. Let pp, denote the normalized contraction factor defined by (33)) in subsec-

tion 3.4 with associated grid function {W} Jk\l o
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Then the following holds:
max ‘ vk
{i:x?l Eﬁ;Ll,k=O,...,N[} ( hl)z

Proof. Let |||‘~/Bh,l |I| denote the number
2

< pp, MaxX max
i€q;, k=0,...N|

(7).

(/ — 7k
Vg lll = b (%)i

Define a grid function W}’fl by scaling thl so that its boundary values have maximum

modulus one: )
(Wk)A _ (thl)i

h = ~ ) 9
i Vgl

Apply comparison principle 3.5] from subection 3.2, employing U, ,’fl = Wi’fm where
W}’fl is the grid function associated with the normalized contraction factor p;, de-
fined in (B3) of subsection 3.4, and employing U}’fl = iW,’fﬂ where W,’f} is defined
above. The desired result follows immediately from the normalized contraction
property. (I

Remark 7. Due to the stationarity of the discrete barrier function wy,, the upper
bound for the contraction factor pp, will be independent of 7.

4. MAXIMUM NORM STABILITY AND ACCURACY
OF THE GLOBAL DISCRETIZATION

In this section, we prove that the global discretization (Z4)) is stable in the
maximum norm and analyze its accuracy. We also show that the parallel Schwarz
algorithm is geometrically convergent. The proofs are motivated by [32] 10] and
employ Picard’s contraction mapping theorem. In the first section, we describe
the contraction mapping theorem and existence and uniqueness results for (24]).
We also discuss the geometric convergence of the parallel Schwarz iterates. In the
second section we describe the stability of the global discretization. In the third
section, we apply the stability theorem to estimate the accuracy of the global non-
matching grid discretization in terms of the local discretization and interpolation
erTors.

4.1. Contraction mapping theorem. The existence and uniqueness of solutions
to the global discretized system (24]) will be proved by applying Picard’s contraction
mapping theorem [3], which we summarize below for convenience. In addition, the
geometric convergence of the parallel Schwarz iterates will follow from properties
of the contraction mapping.

Theorem 4.1. Suppose the following hold.

1. Let H be a complete metric space with metric d(.,.).
2. Let T : ' H — H be a contractive mapping, i.e., for any X, Y € H we have

d(TX,7Y)<46d(X,Y),
where § < 1.
Then the following hold.
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1. There exists a unique fized point U € H of T satisfying

U=TU.
2. Let U be any element of H. Then U™ = T"U©) — U geometrically
with
dUrtu) < 6d(U™,U)
< md(UO,U).
3. For any U € H we have
1
(0) < = )
d(U©®.0) < =d (TUO,0").
Proof. See [3]. O

In our applications, we will choose the metric space H and mapping 7 so
that global discretization (Z4) is a fixed point equation for 7. Furthermore, the
parallel Schwarz iterates {U(™}, given a starting guess U(?)| will correspond to
Ut = 7u™ . For convenience, we will consider a system of equations more
general than (24). Let f;fhl and gﬁhBQ be given forcing terms for k = 0,..., N,
and [ =1,...,p. Let ﬁ(,)”J be given initial data for [ = 1,...,p. We consider the
following general system of equations for unknowns Uy, » = {{U, f]fl}]k\l ohy:

(4.1)
(1+n0Aly) UE + moAlpUES = (1= nBiAl) Uf ; — nbi AT U, 5

+ 7 (@f;’ff} +§lﬂfhz) )

k+1

hi,B1 = O’
k+1 _ k+1 ~k+1
Un'g, = Zn, Unr+ Gy B,
0 _ ~0
Uhl,I = Up,.1>

fork=0,....,Nj—landl=1,...,p. R
Our choice for H will be based on the linear system ([I)). Given f}fl, I g’gh B, for
k=0,...,Nyand I =1,...,p and ﬁ%l’l, we define
H= {X bt X ;’fl satisfy following constraints}
(1+n0Al) X+ no At Xk = (T - nb Al ) XE ;= nfiA} XF, 5
+7 (@f;’fﬁ + élf;]f,,z) ;
k+1
Xthl =0,
0 -0
Xm,f = Up,. 1>
for k=0,...,Ny—1and !l =1,...,p. H is not a vector space due to the linear
inhomogeneous constraints. However, H is closed in the vector space of all grid
functions endowed with the maximum norm, and consequently, H will be a com-

plete metric space if the metric d(.,.) defined on H is inherited from the standard
maximum norm. Given X, -, Y} » € H, we define

d (X Yr) = [ Xnr = Yarlll,
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where ||| - ||| denotes the maximum norm on the vector space of all space-time grid
functions

N Xn+—Yn-||= max  max max (X,]fl - thl)

I=1,.p k=0,...Ny icQ;, i|'

For the above H, we define a mapping 7 : H — H so that linear system {1 is
a fixed point equation of 7 on ‘H. Given Xy, . € H define X, , = T X} ;- as
(4.2)

(I + Tz&A?’j) X;f:[l + nglA?}gX}lf:é

(I — TlélA?lI> X}]fh[ - TlélA}[LEBXi];,B
+ 7 (ﬂﬁfﬁl + élff]fl,l) ;

v k+1

hi,Bi 0,
vk+1 _ k+1 ~k+1
Xnig, = Tn Xnr+ 04, By
v 0 _ ~0
Xhl,I = Up, 1>

fork=0,...,Ny—1andl=1,...,p. It immediately follows that system (EI) is a

fixed point equation of 7. Additionally, the parallel Schwarz iterates from Section 2

can be described in terms of the mapping 7: Given a starting guess U, }(Lol to (1)),
n

the subsequent parallel Schwarz iterates {U}(l T)} are
uW=TU" Y, n=1,2,....

The existence and uniqueness of solutions to system (41l) and (Z4) will be guaran-
teed by Picard’s contraction mapping theorem, provided 7 is a contraction mapping
in the metric space H. This contraction property of 7 is pivotal to the stability
analysis in this paper and is proved next.

Theorem 4.2. Suppose the following hold.

1. Let matriz AM satisfy Assumptions Al and A5 forl=1,...,p.
2. Let 0 < 7 satisfy the local stability criterion

71 < min =—— if 0, %0
l—ielhl QIAZL’ f l;é 9
forl=1,... p.
3. Let the intergrid interpolation maps {I}’fl}k,l satisfy Assumptions A2 and
A3.

4. Let the local overlap parameters [; be chosen large enough, and the local
mesh size hy < h] small enough so that the contraction factor pp, satisfies

Oon =0nr mzaxphl <d<1,
where oy, denotes the mazimum norm of the map {I;]f,}k,l-

Then the following hold.
1. The mapping T will be a contraction mapping on H satisfying

d (TX}M—, Tyh}-r) <éd (Xh’-,—, Yh;r) R VX}M—, Yh,‘r e H.
2. System ([EI) will be uniquely solvable with a solution Uy, ;.
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3. Given any starting guess U,(L?l € H, the iterates U,(LnT) = T"U,(L?z (which
correspond to the parallel Schwarz iterates) converge geometrically to the
unique fized point U, ;:

nyr(0 n 0
NT"UL) — Un oIl < 8 (U — Un s Il

Proof. The proof is similar to [10] and relies on the maximum principle and the
contraction property. Given Xj, »,Y} » € H, we need to estimate d (7 Xy, -, 7Ys )
in terms of d (X r,Yn,r). For convenience, denote Xy, = TXp, and Yy, =
TY}, . By applying the definition of 7, we note that Xj . — Y}, , will satisfy the
homogeneous system
(4.3)
(I—l— Tﬁﬁ?}) (Xflfl—t_[l _th,l) + TlelA‘},”B (X;f:—é — ?}ﬁ—’i_é)
= (1= nbualy) (Xh, = Vit 1) + nbAly (X5 = Vi ).
k41 k1)
(Xhl,Bl - Ym,Bl) =0,
k41 S k41 k+1
(Xh,,-",_Bz - Yh:32> = Ih,,+ (Xh,T - Yh,T) )
(X}?MI - Yi?tJ) =0,
fork=0,...,Ny—1and ! =1,...,p. By the maximum principle from Section 3
we obtain

v ¥, k
1 Xnr = Yirll < max = max |Zhs, (X — Yir)|

< 0Opr max ~ max max| (X,]fl - Yh]j)

k=0,...N; I=1,...,p i€0, il

Here o0}, ~ is the maximum norm of the intergrid interpolation map I}’fl.
Since X, -, Yy » € H, their difference X}, , — Y}, satisfies a discretized homoge-
neous parabolic equation, and by the contraction property, we obtain

max,cq, [(XE = YE)| < pullXns = Yirll,

and consequently

Xk _vE) | < Xn:—Y )
B 2, Sl YRS e, ol = Yol

Combining the two bounds, we obtain

I Xnr = Vil < max_ max |Zf(Xur - Vi)
k=0,...,N; I=1,....p

< opr max max | (X —Y)

k=0,...,N;sl=1,....p i€Q, i |

< ons lzrglaprmH\Xh: — Yo, ll

= Ol Xnr = Yarll.

Since d(Xp,7, Yar) = [[|Xn,r = Vi - [|| and d (X 7, Vi) = [[| Xn,r — Yo ||, and since
by assumption § < 1, we obtain that 7 is a contraction

d (Vh;ra Wh,‘r) <6 d Vi, Whr).
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The unique solvability of the linear system follows from the uniqueness of the fixed
point of a contraction mapping. The geometric convergence of the parallel Schwarz
iterates follows by the geometric convergence of the Picard iterates. O

We note that the preceding result does not directly provide an a priori bound
for the maximum norm of the solution. This will be done in the next section.

4.2. Stability of the global discretization. In this section, we will derive an
a priori bound for the maximum norm of the solution to ([@.I]).

Theorem 4.3. Suppose the following hold.

1. Let matrices AM satisfy Assumptions Al and A5 forl=1,...,p.
2. Let 0 < 7 satisfy the local stability constraint

. 1 7

7 < min GoAn if 01 # 0,
forl=1,... p.

3. Let I}’fl satisfy Assumptions A2 and A3.

4. Let the overlap parameters 3; be chosen large enough, and the mesh sizes
small enough with hy < hj so that § = o}, max; pp, < < 1.

5. Let Upr = {Uf }x, denote the unique solution of system (@.T).

Then, the mazimum norm of the solution Uy, » satisfies

1-9

IRERE}

Oh, ~ + N,
0wl < (1725 ) o (s, + 0172 o,

1

1= l
1 3 bl + 70l + 2 138, )
k=1 k=0

Proof. Choose any suitable grid function X} , € H and use it as an initial guess in
the Picard fixed point iteration. By Theorem ETl (the contraction mapping)

1

X < —
d( h,T;Uh,T) =71_3

d (Xh,7'7 TXh,T) .

Using that the metric in H was inherited from the maximum norm, we obtain

A

Ul < X nrll] + U, = Xl triangle inequality

|||Xh,TH| + d (Uhﬂ') Xh,T)

1
N1 Xn, 1| + md(Xh,ra TXy-), from above.

Therefore, to obtain a bound for ||Up, -||| we only need to choose X} , € H and
estimate ||| Xy -||| and d(Xp.», 7 X 7).
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Accordingly, choose X, = {X ;fl}m as the solutions to the local discretized
parabolic equations with trivial boundary conditions
(4.4)

(I + n&A?}) X 4 no Al XL = (1 - né}A?;) X — Al XE

+7 (@ffj}l + él.f}]fh]) ,

k41 _
h;,B1 0,
k41 _
XthQ = 0
0 _ 0
Xhl,I = Up, 15

for k =0,...,Ny—1and [ = 1,...,p. Since the local problems for {X}’fl}k are
decoupled, we can estimate the maximum norm of each local component Xj, -,
independently by using the local a priori estimates from Section 3. This yields

N;—1

~ N ry
[1Xn- | < max (uuzl,fuoo + il Fy rlloo.cz, + 71 Y I i alloe0s,
k=1

N,
+0ul| fi rlloo.s, + D |I§ﬁl,32||oo,ggz> :
k=0

We next estimate ||| Xy, — T X -|||. For convenience, let X;M =TXp,. We
note that X, , — X, » will satisfy the discretized homogeneous parabolic equation

(4.5)
(1 + nezA?}) (X,’f,f ;- 5(,’:;}) + o AR (X;f:‘é _ 5(;;:;3)
= (I—Tzéu‘ﬂ”]) (X;Ifl,[—f(;fl’I) —TlélA}IL}g (X,]th—f(;fl’B) ,
(xkis, = X1, ) =0,
(Xkth, - XE4,) =~ X,

(Xi?,,,f - X}?;,I) =0,

fork=0,...,Ny—1landl=1,...,p. By applying the discrete maximum principle
and using oy, > = [[|Zf; |||, we obtain

1Xh,r = Xnrll| < on,r 1 Xn,z -

Substituting these in our expression for |||Uy, |||, we obtain

LT ~ N,
Xl < (14525 ) maxicy,p (158, flloc.0z, + 701N Nz,

N;—1 N
oy Ik aless, + 0, s+ ||§ﬁl,32||007351> :
k=1 k=0

which is the desired result. (I
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The above result depends critically on the contraction factor § < 1. If the
overlap (3 of the local subregions are sufficiently large so that o, » max; pp, <6 <1
(uniformly in h;) then the global discretization will be stable. In the next section,
we apply the above stability result to estimate the accuracy of the nonmatching
grid discretization (2.4)).

4.3. Accuracy of the global discretization. From the general theory for dis-
cretization of linear evolution equations [30], we expect a stable and consistent
scheme to be convergent. The same holds for the nonmatching overlapping grid
discretization scheme (Z4)) considered here. We will now consider the consistency
of the global scheme ([Z4), which is measured by the magnitude of the residual
when 7, ru (i.e., the exact solution u(z,t) restricted to the collection of space-time
grids) is substituted into the scheme.

Definition. Given the restriction uy » = 7, ;u of the exact solution u(z,t) to the
space-time grids, we define the grid function S;fl (u) to represent the local discretiza-
tion error on the grid €} at time k7

e w) = (T+mouAfy ) ubit = (1= n0AY ) uf,
+ 71 (0 ATyl h + 0iAYu, )
— T (elf}]f:} + élfi]f,,,l) .

We use Dﬁl (u) to denote the boundary grid function representing the local intergrid
interpolation error

k — . k+1 k+1
Dy, (u) = uy' B, _Ihl Uh,7-

At each gridpoint (xi” , k7)), the local discretization error E}fl (u) and the interpo-
lation error DZZ (u) can be estimated by expanding the stencils using Taylor series
expansions centered at the gridpoint. The resulting estimate will involve the local
mesh parameters h; and 7, and higher order derivatives of u(.,.) at one or more
points in the convex hull of the gridpoints involved in that stencil. For convenience
suppose that the discretization and interpolation errors satisfy

(b (),
(D}, (),

IN

CHqul;l-l—Q,ql;z—i-l,oo,ﬁ?X[O,T] (h?l;l + quh2) )

(4.6)
(h;“l;l 4 7_17“1;2) ,

IN

Hu”n;lﬂ“l;mOO»B;l'* x[0,T7]

where Bg " is a neighborhood of the boundary B} containing the union of all cells
involved in the local intergrid interpolation.

We will now estimate the accuracy |||un,»— Uy, ||| of the global discretization (24)
in terms of the local discretization and interpolation errors, £f (u) and Dy (u),
respectively.

Theorem 4.4. Suppose the following hold.
1. Let matrices AM satisfy Assumptions Al and A5 for k=1,... p.
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2. Let 0 < 7 satisfy the following local stability constraint

1 ~
< min ——, if6; #0,
> zléljl’?z HlA?; if 01 #

forl=1,... p.
. Let I}’fl satisfy Assumptions A2 and A3.
4. Let the overlap parameter §; be chosen sufficiently large, and the mesh size
sufficiently small with hy < hj so that

w

d=opr mlaxphl < 1.

5. Let Uy, » denote the solution to (Z4).
6. Let up,r = mh ru, the exact solution restricted to the grid, satisfy

(I + 7'191/1?}) uﬁt} = (I - TlélA;”I) u]f”,l
+ 7 (—91A?53U§;f} + 5114?’3%,1)

+ (O + Bk )

(4.7) + &, (w)
uij:]lgl = 0,
Unip, = Inuns + Dy (w),
U’(f)u,l = ThUo,

fork=0,...,Ny—1andl=1,...,p, where E;fl (u) and Dﬁl (u) denote the
local discretization and interpolation errors, respectively.
7. Let the local discretization and interpolation errors satisfy bounds ([H.G).

Then up, » — Uy, satisfies the bounds
(4.8)

Oh,r N, -
M = Ol < (14 725 ) max (Tz@:||f:h/<u>||oo,ﬂzl

N;—1
+m > |EF, (W, +7|ER, (W)lloo,;,
k=1 )

l

K
+, max D, (U)Hoo,Bf,z)

Uh,T ;1 ;
< (1 + 1_ 6) m?LX (C||u|\q1+2,q2+1,oo,§;‘x[o,T] (h?l +Tqu2)

1=1,....p
+ Cl (" +7"7)).

hyox
T131,71;2,00,B5 17 % (0,7
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Proof. Subtract equation ([.7) satisfied by up » from (2Z4) satisfied by U .. We
obtain

(1+nouaty) (uit) - Uk = (1= niAly) (v, ;- UF, 1)
h k+1 k+1
+7 (_elAIlB (uhtl - h:[)
5 ah
+ GZAILB (ulflul - Uflfhl))
+ & (u)
k+1 E+1 ) _
(uhz,B1 o Uthl) =0,
(uhth, = UK'3,) = Th" (unr = Uno) + D (1),
(U?Ll,f - U}?u[) =0,
fork=0,...,Ny—landl=1,...,p.

Since the hypothesis of the stability theorem from the preceding section is sat-
isfied, we may apply it with f}’fl}I = 5,’; (u) and g,’jl = D}’fl (u) to obtain

Oh,
wn,» — Un-l| < <1 7 ;T(s)l‘??‘,p

N,
(Tﬂz 1€, (Wl o35,
N;—1
+7 Yy llEr, (Wllooz;, +0l1ER (Wl oo 35,
k=1

k
s I 0, )

Substituting the bounds (@8] for the local discretization and interpolation errors,
we obtain

wn,r = Un~|l|
< (1 Oh,r C _ p a1 o
= + 1—-9§ l:IIIIaX ||u||q"‘1+2’ql:2+1»00,9;><[0,T] ( T )
* C||u||7"l;1ﬂ“z;z,oo73;”’*><[O,T] (" + sz;z))a
which is the desired result. -

Remark 8. The above global error bound provides some guidance on the selection
of the local mesh sizes. If a global error of O (e€) is desired, then h;, 7; and I}’fl
should be chosen so that

€ = (h;’l:l + 7_;’1:2)

Hu”rl,rz,oo,B;”'* % (0,7

Q

||u”qz.’1+2’q“2+11007§?><[07T] (h?ld + qul§2) ’

forl =1,...,p. Thus, the mesh sizes should be smaller (or the interpolation stencil,
of higher order) in regions where the solution is less smooth.

Remark 9. We assumed throughout this paper that ¢(x) > ¢o > 0, in order to
guarantee the stability of the global discretization (Z4)). In practice, however, the
discretization considered should be stable and convergent even if this condition is
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violated, though the authors do not have rigorous results on this. We illustrate this
by a simple example. Consider the parabolic equation

U —tge = flz,1), in(0,1)x [0,T],
u(w,t) = 0, on {0} x [0,
u(@,t) = 0, on {1} x [0, 7],
u(@,0) = wup(z), on (0,1).

Choose the following subdomains @7 = (0,1/3), Q2 = (1/3,2/3), Q3 = (2/3,1)
and the following extended subdomains Qf = (0,1/2), Q3 = (1/4,3/4) and Qf =
(1/2,1). Since the associated elliptic operator is Lu = —uy,, we can solve local
homogeneous problems explicitly to obtain the estimates for the local contraction

factors
1 B 1
pl*gv pQ*]-v pd*g
We note that p2 = 1 since on subdomain €5, u(z) = 1 is the solution to the ho-
mogeneous elliptic equation —uz, = 0 with boundary conditions u(1/4) = 1 and
u(3/4) = 1. Thus, the condition § = o}, max; p; < 1 will be violated, and the
mapping 7 will not be a contraction. However, it can easily be verified that the
mapping 7?2 is a contraction with contraction factor 1/6, and the global scheme
should be stable. More generally, when ¢(z) = 0, we expect the subdomains ad-
jacent to the boundary 9f) to have contraction factors less than 1 and interior
(floating) subdomains to have contraction factors of 1. Repeated applications of 7
should however “propagate” the contraction property to the interior subdomains,
and 7% may be contractive for some ko > 1. Unfortunately, rigorous results along
these lines are not known to the authors.

Remark 10. We indicate briefly how the results of this paper can be extended to
certain semilinear reaction diffusion equations. Consider the equation

w — Au+b(x) - Vu+c(z,u) = f(z,t), inQx][0,7],
u(z,t) = 0, on 99 x [0,T7,
w(z,0) = wup(z), on (0,1),

where c(z,u) is a smooth function and satisfies

%(m,u) >co >0, Vr,u.

On each local grid, we will discretize the semilinear elliptic operator
L(u) = —Au+ b(z) - Vu+ c(a, u)

using finite difference schemes, and discretize the parabolic equation in time using
a f-scheme. Due to the nonlinearity c(z,u), the following approximation will be
used to avoid solving a nonlinear equation at each time step

c(a, Uty = c(z, UE) + cu(z, UE) (UETY = UF) .



DIFFERENCE SCHEMES FOR PARABOLIC EQUATIONS 653

This will correspond to applying one-step of a Newton approximation and the
resulting 6-scheme approximation of the semilinear terms on [k, (k + 1)7;] will be:

Oic (%}”7 (U;]ffl)i)
+0,c (:CZ”, (U}fl)z)

Q

00 {e (2 f):) + eu (w0, WR):) (WE = Uk}
+ bic (mﬁ”, (U;fl)i)

= ¢ (xi“ (U;’fl)i)
+ e (a1 (UF):) (UK = UF)s).

Due to the above linearization and the sign properties of ¢,(.,.), the existence of
solutions of the local 8-discretizations are guaranteed. Provided the local time steps
7; are small enough to satisfy the local stability conditions (which would depend on
the ¢,(.,.) terms), the theory developed in this paper can be extended to analyze
the accuracy of the global discretization of the semilinear parabolic equation. The
local truncation error terms will be different from the linear case and the local
interpolation error will be identical to the linear case. We omit the details.

Remark 11. To simplify our discussions, we had assumed throughout the paper
that the diffusion term was aAu. More generally, the results of this paper are valid
even if the diffusion term is of the form V - (a(x)Vu), where a(x) is a diagonal
matrix with positive diagonal entries, provided the spatial discretization yields an
M-matrix. In particular, if a(x) is zero on a subregion (or on all of Q) the results
would still hold (provided the discretization yields an M-matrix, which, due to
the hyperbolic nature of the equation, would necessitate that a first order upwind
discretization be used to discretize g(x) - Vu). Consider now the original parabolic
equation with a < 1 (i.e., a singularly perturbed parabolic equation). Suppose Qf
and €25 are two overlapping subregions covering 2, such that

laAu| <n, on Q] x[0,T],  wheren < 1.

If aAu is dropped on QF x [0,T], the resulting hyperbolic equation may be dis-
cretized by an explicit scheme (with suitable restriction on the time step) without
requiring the solution of a linear system. A coupled hyperbolic-parabolic problem
may be constructed to approximate the original parabolic equation (see for instance
129, [I1]), as indicated next. Let Bi = 9Q; N 9N and By = 9QF NQ for i = 1,2,
and let le,m denote the inflow segment of le. Additionally, let v and w denote
the approximations of uw on f x [0,7] and 5 x [0,T], respectively. A coupled
hyperbolic-parabolic system for v and w can be posed as follows:

v 4 b(x) - Vo+el@)o = f(z), inQFx]0,T]
v = 0, on B ;, x [0,T],
vo= w, on By ;, x [0,T],
v = wup(x), fort=0
and
wi — alAw +b(z) - Vw +c(z)w = f(z), inQx][0,T],
w = 0, on B? x [0, 7],
w = v, on By x [0,T],

w = wug(x), fort=0.
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Provided the M-matrix assumption holds for the local discretizations, Theorem .4
would guarantee the maximum norm stability of the global nonmatching overset
grid discretization of the above system. If u denotes the solution of the original
parabolic equation (with up » denoting its restriction to the space-time grids) and
if (Vhy, 7y, Why,r) denotes the discrete hyperbolic-parabolic solution, then the error
Uhr — (Vhy ms Why, 7y ) Will satisfy (8) with an additional term of magnitude n on
05 x [0,T]:

|Huh,‘r - (Uhlﬂ'lvwhz,Tz)'H

Oh, ; ;
= (1 1 —Té) x| Ollullg,, 42,001,000 <07 (B +707)

+Clul (" + 7)1

hyox
T11,71:2,00, B, 17 X [0,T

Thus, if 7 is of the same magnitude as the local truncation and interpolation errors,
then

|||U'h,7' - (Uhlﬂ'l ’ wh2,7'2)||| ~ |Huh77' - (Uhlﬂ'l ) Uh2,7'2)|||a
where (Up, 7y, Un,,r,) is the nonmatching overset grid solution of the full parabolic

equation. The domain €27 may be adaptively determined as in the y-formulation
(see [8]). We omit further details.
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