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MAXIMUM NORM STABILITY OF DIFFERENCE SCHEMES
FOR PARABOLIC EQUATIONS

ON OVERSET NONMATCHING SPACE-TIME GRIDS

T. P. MATHEW AND G. RUSSO

Abstract. In this paper, theoretical results are described on the maximum
norm stability and accuracy of finite difference discretizations of parabolic
equations on overset nonmatching space-time grids. We consider parabolic
equations containing a linear reaction term on a space-time domain Ω× [0, T ]
which is decomposed into an overlapping collection of cylindrical subregions of
the form Ω∗l ×[0, T ], for l = 1, . . . , p. Each of the space-time domains Ω∗l ×[0, T ]
are assumed to be independently grided (in parallel) according to the local
geometry and space-time regularity of the solution, yielding space-time grids
with mesh parameters hl and τl. In particular, the different space-time grids
need not match on the regions of overlap, and the time steps τl can differ from
one grid to the next. We discretize the parabolic equation on each local grid by
employing an explicit or implicit θ-scheme in time and a finite difference scheme
in space satisfying a discrete maximum principle. The local discretizations are
coupled together, without the use of Lagrange multipliers, by requiring the
boundary values on each space-time grid to match a suitable interpolation of
the solution on adjacent grids. The resulting global discretization yields a large
system of coupled equations which can be solved by a parallel Schwarz iterative
procedure requiring some communication between adjacent subregions. Our
analysis employs a contraction mapping argument.

Applications of the results are briefly indicated for reaction-diffusion equa-
tions with contractive terms and heterogeneous hyperbolic-parabolic approxi-
mations of parabolic equations.

1. Introduction

In this paper, theoretical bounds are described (extending results in [32, 10])
for the maximum norm stability and convergence of discretizations of parabolic
equations on nonmatching, overset space-time grids. Nonmatching overset spa-
tial grids are popular in several fluid dynamics computations involving complex
geometries [33, 13]. They permit independent (parallel) generation of local grids
adapted to the local geometry (without the restriction of matching the grids on the
regions of overlap) at the cost of increased computations in coupling the various
local discretizations. For evolution problems, additional flexibility can be obtained
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by permitting different time steps and choice of explicit or implicit schemes on each
of the different space-time subregions [33, 13, 17, 18, 7, 23, 5, 7, 20, 22].

In the computational literature, several approaches have been proposed for cou-
pling discretizations on nonmatching grids. These include Lagrange multipliers
(including mortar methods) and least squares based techniques (see [33, 13, 32,
5, 4, 9, 23, 20, 1, 2, 10, 19]). The method considered in this paper does not use
either Lagrange multipliers or least squares to couple the various local problems.
It is simpler to implement (see [32, 10]); however, it applies only to a certain class
of parabolic equations exhibiting a contraction property, and it requires overlap
amongst adjacent grids.

Our study will be restricted to a small class of parabolic equations of the form

(1.1)

 ut − a∆u+~b(x) · ∇u + c(x)u = f(x, t), in Ω× [0, T ]
u(x, t) = 0, on ∂Ω× [0, T ],
u(x, 0) = u0(x), on Ω,

where f(x, t),~b(x), c(x) and u0(x) are sufficiently smooth functions and a > 0. Here
Ω ⊂ Rd for d = 1, 2, . . .. In order to have a contraction property for homogeneous
solutions, we will require that

c(x) ≥ c0 > 0,

for some positive constant c0.
Given the cylindrical space-time domain Ω × [0, T ], we decompose it into an

overlapping collection of cylinders of the form {Ω∗l × [0, T ]}pl=1 that form a covering
of Ω × [0, T ]. Each cylinder Ω∗l × [0, T ] will be assumed to be triangulated by
a space-time grid with mesh and time parameters hl and τl (see Figure 1.1). We
employ finite difference methods in space and implicit or explicit θ-schemes in time,
independently on each space-time grid. On each subdomain boundary ∂Ω∗l × [0, T ],
we require the local solution to match some suitably chosen interpolant of the
solution from adjacent grids (see [33, 32, 13, 10]).

Our main result in the paper, stated in Theorem 4.4, concerns the accuracy of
the global discretization. Let uh,τ denote the restriction of the exact solution u
of the parabolic equation to all the space-time gridpoints, and let Uh,τ denote the
computed solution of the global discretization. Suppose the truncation and intergrid
interpolation errors for the discretization and boundary conditions, respectively, on
the lth space-time grid Ω∗l × [0, T ] satisfy

Local truncation error on Ω∗l × [0, T ] = ‖u‖ql;1+2,ql;2+2,∞,Ω∗l×[0,T ]

(
h
ql;1
l + τ

ql;2
l

)
,

Local interpolation error on ∂Ω∗l × [0, T ] = ‖u‖rl;1,rl;2,∞,Bl,∗2 ×[0,T ]

(
h
rl;1
l + τ

rl;2
l

)
,

where ‖ ·‖q−l;1,q−l;2,∞,Ω∗l×[0,T ] and ‖ ·‖r−l;1,r−l;2,∞,Bl,∗2 ×[0,T ] denote Sobolev norms.

Here Bl,∗2 is a small spatial region covering the the boundary segment Bl2 =
(∂Ω∗l ∩ Ω) of the lth spatial subdomain. Theorem 4.4 states that, under suitable
assumptions, the maximum norm of the global error uh,τ −Uh,τ satisfies the bound

‖|uh,τ − Uh,τ |‖ ≤ C max
l
{‖u‖q−l;1+2,q−l;2+2,∞,Ω∗l×[0,T ](h

ql;1
l + τ

ql;2
l )

+ ‖u‖rl;1,rl;2,∞,Bl,∗2 ×[0,T ](h
rl;1
l + τ

rl;2
l )},

where C > 0 is independent of the mesh sizes. From this we deduce that, ideally,
the local grid sizes hl and τl should be chosen so that all the local error terms are
“balanced”. This would mean smaller hl and τl on regions where the solution is
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Figure 1.1. Sample nonmatching overset space-time grid.

less regular. Additionally, the intergrid interpolation maps for determining local
boundary data should be chosen so that the interpolation errors are balanced with
the local truncation errors. Then, the resulting accuracy of the global discretization
will be of optimal order.

The rest of the paper is outlined as follows. In Section 2, we introduce nota-
tion for the overlapping space-time subregions, discuss explicit and implicit local
discretizations on each space-time grid, intergrid interpolation maps, the global
discretization, and a parallel Schwarz iterative procedure for solving the resulting
system of equations. In Section 3, we discuss theoretical properties of the local
schemes, such as a priori estimates, maximum principles, comparison theorems,
barrier functions, and contraction properties of homogeneous solutions. In Sec-
tion 4, we analyze the stability and accuracy of our global space-time discretization
by employing Picard’s contraction mapping theorem.

2. Global discretization

on nonmatching overlapping space-time grids

In this section, we describe the construction of a global discretization of (1.1)
and a parallel Schwarz iterative method for solving the resulting large system of
equations.

2.1. Space-time subdomains. Let Ω × [0, T ] denote the space-time region on
which the parabolic equation (1.1) is posed. We will describe here the construction
of an overlapping collection of space-time subregions that covers the above region.

Let {Ωl}pl=1 denote a partition or a covering of the spatial domain Ω:

Ω ⊂
p⋃
l=1

Ωl.
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In practice, the subregions Ωl may be chosen according to the geometry of Ω or the
regularity of the solution (if known, or else by estimating the regularity from prior
numerical approximations). For each subregion Ωl, choose a parameter βl > 0 and
enlarge Ωl to Ω∗l as

Ω∗l ≡ {x ∈ Ω : dist (x,Ωl) < βl} .
The collection of subregions {Ω∗l }

p
l=1 will form an overlapping covering of Ω (with

overlap parameters βl). An overlapping covering of the space-time region Ω× [0, T ]
can be immediately constructed:

Ω× [0, T ] =
p⋃
l=1

(Ω∗l × [0, T ]) ,

where each space-time subregion Ω∗l × [0, T ] is cylindrical.
We will denote the boundary of each spatial subregion Ω∗l by Bl ≡ ∂Ω∗l . It

will be convenient to further partition each boundary Bl = ∂Ω∗l into two segments
Bl1 and Bl2 (we will omit the superscript l when the subregion is clear from the
context):

Bl1 ≡ ∂Ω∗l ∩ ∂Ω and Bl2 ≡ ∂Ω∗l ∩ Ω.

Corresponding to this, the space-time boundary Bl × [0, T ] of each local subregion
can be decomposed into Bl1 × [0, T ] and Bl2 × [0, T ].

2.2. Local space-time grids. On each of the local space-time cylinders Ω∗l×[0, T ],
we assume that a space-time grid Ω∗hl × {0, τl, 2τl, . . . , T − τl, T } is constructed,
taking into account the geometry of Ω∗l and the regularity of the solution on this
space-time region (see Figure 1.1). Here hl denotes the mesh size on Ω∗l and τl
denotes the time step with

τl =
T

Nl
,

for some integer Nl ≥ 1. Throughout the paper, xhli will denote the ith gridpoint
in Ω

∗
hl

.
We will use Ihl to denote the interior nodes in the grid Ω∗hl and Bhl to denote

its boundary nodes. Since Bl is decomposed into Bl1 and Bl2, we denote by Bhl1 and
Bhl2 , the gridpoints on Bl1 and Bl2, respectively. We will denote a grid function on
Ω
∗
hl

by whl . Corresponding to the partition of gridpoints in Ω
∗
hl

into Ihl and Bhl ,
we obtain the block vector

whl = (whl,I , whl,B)T .

When it is necessary to distinguish the block components of whl corresponding to
the boundary subgrids Bhl1 and Bhl2 , we will use the notation whl,B1 and whl,B2 ,
respectively:

whl,B = (whl,B1 , whl,B2)T .

We will denote a grid function on Ω
∗
hl

at time kτl by wkhl . A space-time grid
function on Ω

∗
hl
× {0, τl, . . . , T} will be denoted by whl,τl with

whl,τl =
{
wkhl
}Nl
k=0

.
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A grid function on the entire family of space-time grids will be denoted by wh,τ ,
where

wh,τ ≡ (whl,τl)
p
l=1

=
({
wkhl
}Nl
k=0

)p
l=1

.

Given a continuous spatial function w(x), we will use πhlw to denote its spatial
interpolation onto the gridpoints in Ω

∗
hl

(πhlw)i ≡ w(xhli ), xhli ∈ Ω
∗
hl .

Similarly, πhl,Iw will denote interpolation of w(x) onto the interior gridpoints in
Ω∗hl . If w(x, t) is a continuous space-time function, we will use πhl,τl to denote the
interpolation of w(., .) onto the lth space-time grid

πhl,τlw ≡ {πhlw(., kτl)}Nlk=0 .

If w(x, t) is a continuous space-time function, we will use πh,τ to denote the inter-
polation of w(., .) onto all the space-time grids

πh,τw ≡ (πhl,τlw)pl=1 .

2.3. Local subproblems and local discretizations. On each of the space-time
subdomains Ω∗l × [0, T ], the original parabolic equation (1.1) will be replaced by
the following local parabolic initial boundary value problem with suitably chosen
boundary conditions gl(x, t) that couple the adjacent problems:

ut + Lu = f(x, t), (x, t) ∈ Ω∗l × [0, T ],
u = 0, (x, t) ∈ Bl1 × [0, T ],
u = gl(x, t), (x, t) ∈ Bl2 × [0, T ],

u(x, 0) = u0(x), t = 0,

where L denotes the elliptic operator

Lu ≡ −a∆u+~b · ∇u+ c(x)u.

Here, the choice of local initial data is u0(x) restricted to Ω∗l since the exact solution
restricted to Ω∗l×[0, T ] would satisfy this initial condition and since u0(x) is assumed
to be known. The boundary data on Bl1 × [0, T ] is zero, since the exact solution
satisfies this boundary condition. The boundary data gl(x, t) will play a crucial
role, as it is not known. We will require (see subsection 2.5) that gl(x, t) equals a
suitable interpolation of the solutions from adjacent regions. This will couple the
various local problems and require an iterative process to compute gl(x, t).

Each local parabolic equation will be discretized on the space-time grid Ω∗hl ×
{0, τl, . . . , T} by a finite difference scheme in space and an implicit or explicit θ-
scheme in time. The elliptic operator L will be discretized on each spatial grid Ω∗hl
by a finite difference scheme with coefficient matrix Ahl . If xhli is the ith interior
gridpoint in Ω∗hl , then the discretization of L at this gridpoint will be denoted by

Lw(xhli ) =
∑
j

Ahlijw(xhlj ) + Chl(w, xhli ),

where C(w, xhli ) is the local truncation error at xhli for an arbitrary smooth func-
tion w(x). The matrix Ahl will be rectangular; the first index (i in the preceding
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equation) corresponds to interior gridpoints, while the second index (j above) cor-
responds to interior and/or boundary gridpoints. Corresponding to the partition
whl = (whl,I , whl,B)T , the rectangular matrix Ahl can be block partitioned

Ahl =
[
AhlII AhlIB

]
, with Ahlwhl = AhlIIwhl,I +AhlIBwhl,B.

Assumption A1. We will assume the following about the entries of Ahl .

1. Ahlii > 0 for all i ∈ Ihl .
2. Ahlij ≤ 0 when i 6= j with i ∈ Ihl and j ∈ Ihl ∪Bhl .
3.
∑

j A
hl
ij = chli ≥ c0 > 0.

Remark 1. Finite difference discretizations satisfying Assumption A1 can be con-
structed in many ways. If the grid Ω∗hl is uniform, then the standard second-order

five-point stencil may be applied to approximate
∑
i
∂
∂xi

(
a ∂w∂xi

)
. If a is not small

in relation to ‖~b‖∞,Ω∗l , then centered finite differences may be applied to obtain a
second order approximation to ~b(x) ·∇w, provided a local cell Peclet restriction (of
the form ‖~b‖∞,Ω∗l h < 2a) is satisfied. If a is small in relation to ‖~b‖∞,Ω∗l (or zero),
then a first order upwind discretization can be applied to approximate ~b(x) · ∇w.
The term c(x)w(x) can be approximated by a one-point stencil at each gridpoint.
If the grid is nonuniform, finite volume based finite differences may be applied to
construct the desired approximations. For instance, if Ω ⊂ R2, then a Delaunay
triangulation need first to be constructed for the grid and finite volume based finite
differences can be applied (see [6]).

Remark 2. If matrix Ahl satisfies Assumption A1, then Ahl will be strictly diag-
onally dominant and ((AhlII)

−1)ij ≥ 0 for all i, j. In particular, AhlII will be an
M -matrix (see, for instance [31]).

Semi-discretization of the local parabolic initial boundary value problem on the
spatial grid Ω∗hl yields

(2.1)

dUhl,I
dt

+AhlIIUhl,I +AhlIBUhl,B = fhl,I(t),

Uhl,B1(t) = 0,

Uhl,B2(t) = ghl,B2(t),

Uhl(0) = πhlu0(x),

where fhl,I(t) ≡ πhl,If(., t). The boundary conditions ghl,B2(t) will be specified in
subsections 2.4 and 2.5.
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To discretize (2.1) in time, we choose 0 ≤ θl ≤ 1, for l = 1, . . . , p independently,
and apply a θ-scheme to obtain

(2.2)

Uk+1
hl,I
− Ukhl,I
τl

+ θlA
hl
IIU

k+1
hl,I

+ θlA
hl
IBU

k+1
hl,B

+θ̃lAhlIIU
k
hl,I

+ θ̃lA
hl
IBU

k
hl,B

= θlf
k+1
hl,I

+ θ̃lf
k
hl,I

,

Uk+1
hl,B1

= 0,

Uk+1
hl,B2

= gk+1
hl,B2

,

U0
hl,0

= πhl,Iu0,

for k = 0, . . . , Nl− 1, where θ̃l ≡ 1− θl. The discrete boundary conditions {gkhl,B2
}

for k = 1, . . . , Nl and l = 1, . . . , p are crucial for coupling the various local parabolic
discretizations and will be described in the next section.

2.4. Intergrid interpolation. The local space-time discretizations (2.2) will be
coupled together by requiring that the local boundary data gkhl,B2

match a suitable
interpolation IkhlUh,τ of the discrete solution Uh,τ from adjacent grids. The linear
map Ikhl is described below.

Let xhli (from Ω
∗
hl) be a gridpoint on Bl2. At time kτl the boundary data

(gkhl,B2
)i = (Ukhl)i ≈ u(xhli , kτl) will be approximated by linear combinations of

nodal values of (U k̃hl̃)j ≈ u(xhl̃j , k̃τl̃) from adjacent space-time grids
⋃
l̃ 6=l Ωl̃ × [0, T ]

with (
Ukhl
)
i

=
(
IkhlUh,τ

)
i
,

where the interpolation map Ikhl is defined in terms of a tensor αl,k,i
l̃,k̃,̃i

:

(2.3)
(
IkhlUh,τ

)
i
≡

p∑
l̃=1

Nl̃∑
k̃=0

∑
ĩ

αl,k,i
l̃,k̃,̃i

(
U k̃hl̃

)
ĩ
.

Below we list assumptions about the weights αl,k,i
l̃,k̃,̃i

used to define
(
IkhlUh,τ

)
i
.

1. Assumption A2. The intergrid interpolation map Ikhl must use only values
from adjacent grids l̃ 6= l. In terms of the coefficients, this places the
following requirement on the weights αl,k,i

l̃,k̃,̃i
:

αl,k,i
l̃,k̃,̃i

= 0, when l = l̃.

2. Assumption A3. Given l, the intergrid interpolation map Ikhl should
involve only nodal values from gridpoints in the unextended subregions
Ωl̃ × [0, T ] for l̃ 6= l, i.e., it should not involve nodal values from gridpoints
in the extended regions

⋃
l̃ 6=l(Ω

∗
l̃
\ Ωl̃) × [0, T ]. In terms of the coefficients

αl,k,i
l̃,k̃,̃i

this requirement is

αl,k,i
l̃,k̃,̃i

= 0, when x
hl̃
j ∈ Ω∗

l̃
\ Ωl̃ or l̃ = l.
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Given Bl2, let Bl,∗2 ⊂ Ω denote the smallest region such that Bl,∗2 ×[0, T ] con-
tains all the cells and gridpoints from adjacent subregions used in defining
the interpolation map Ikhl for k = 0, . . . , Nl.

3. Assumption A4. Let w(x, t) be a smooth space-time function which is zero
on ∂Ω × [0, T ]. For each space-time gridpoint (xhlj , kτl) on the boundary
segment Bl2 × [0, T ] we assume that the interpolation is chosen so that the
error satisfies

w(xhlj , kτl)−
(
Ikhlwh,τ

)
j

= Dkhl(w, x
hl
j ),

where the local interpolation error can be estimated by Taylor series ex-
pansion

|Dkhl(w, x
hl
j )| ≤ C‖w‖rl,1,rl,2,∞,Bl,∗2 ×[0,T ]

(
h
rl,1
l + τ

rl,2
l

)
,

for some integers rl,1 ≥ 1 and rl,2 ≥ 1, where C is independent of hl, τl and
‖w‖rl,1,rl,2,∞,Bl,∗2 ×[0,T ] denotes a Sobolev norm of the space-time function

w(., .) on the region Bl,∗2 × [0, T ].

Definition. Throughout the paper, we will use σh,τ to denote the maximum norm
of the intergrid interpolation map

σh,τ ≡ max
l,k,i

p∑
l̃=1

Nl̃∑
k̃=0

∑
ĩ

|αl,k,i
l̃,k̃,̃i
|.

Example. We include a simple example to illustrate the intergrid interpolation
map for a one-dimensional region Ω = (0, 4) with T = 1 and a two-subdomain
decomposition with Ω1 = (0, 2) and Ω2 = (2, 4). Let the overlap parameters be
βl = 1 for l = 1, 2. Then Ω∗1 = (0, 3) and Ω∗2 = (1, 4). Let the space-time grids
be chosen with h1 = 3/10, τ1 = 1/10, h2 = 3/4 and τ2 = 1/3. Let the gridpoints
be xh1

i = ih1 for i = 0, . . . , 10 in Ω∗h1
and xh2

i = 1 + ih2 for i = 0, . . . , 4. We will
consider a second-order accurate interpolation scheme. In this example, Bh1

1 = 0,
Bh1

2 = 3, Bh2
1 = 4 and Bh2

2 = 1. The space-time gridpoints on B1
2 × [0, 1] are

{(3, k/10) : k = 0, . . . , 10}. We will describe how the entries of the map Ikhl can
be constructed for defining the interpolated values at (xhli , kτl) for k = 1, l = 1
and i = 10. The other grid values can be constructed similarly. The boundary
gridpoint (3, 1/10) on boundary B1

2 × [0, 1] is enclosed in the cell with vertices
(2.5, 0), (3.25, 0) (2.5, 1/3) and (3.25, 1/3) (whose vertices are all gridpoints in the
space-time subdomain Ω∗2 × [0, 1]). Note that these four nodes are contained in
Ω2 × [0, 1]. We will define our approximation to

(
U1
h1

)
10

by using (second-order)
bilinear interpolation:(
U1
h1

)
10

=
23
90
Uh2(2.5, 0) +

46
90
Uh2(3.25, 0) +

7
90
Uh2(2.5, 1/3) +

14
90
Uh2(3.25, 1/3).

The interpolation map can be defined similarly for the other gridpoints on Bh1
2 ×

[0, 1] so that Assumptions A2 and A3 are satisfied. If all the stencils involve convex
combinations (as in the above stencil), then the interpolation map will have maxi-
mum norm σh,τ = 1. In this example, the interpolation error is second order in the
mesh parameters h2 and τ2 of the space-time grid on Ω∗2 × [0, T ] with coefficients



DIFFERENCE SCHEMES FOR PARABOLIC EQUATIONS 627

that depend on second derivatives of the function being interpolated (in the convex
hull of the four nodes involved in the stencil):∣∣∣∣w(xh1

10 , τ1)−
(

23
90
Wh2(2.5, 0) +

46
90
Wh2(3.25, 0)

+
7
90
Wh2(2.5, 1/3) +

14
90
Wh2(3.25, 1/3)

)∣∣∣∣
≤ C‖w‖2,2,∞,[2.5,3.25]×[0,1/3]

(
h2

2 + τ2
2

)
.

If the exact solution is less smooth near Bh1
2 × [0, T ], then higher accuracy stencils

should be applied. However, determining the region where the solution is less
smooth would require some estimates (see [24]), for the smoothness of the solution.

2.5. Global discretization. A global discretization of (1.1) can be obtained from
the local discretizations (2.2) once the boundary data gkhl,B2

are specified using the
intergrid interpolation map Ikhl .

For each l = 1, . . . , p, let 0 ≤ θl ≤ 1 be the choice of the θ-scheme on Ω∗l ×
[0, T ]. Multiplying each equation in (2.2) by τl and rearranging terms, the global
discretization of (1.1) becomes

(2.4)



(
I + τlθlA

hl
II

)
Uk+1
hl,I

=
(
I − τlθ̃lAhlII

)
Ukhl,I

+ τl

(
−θlAhlIBU

k+1
hl,I

+ θ̃lA
hl
IBU

k
hl,I

)
+ τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
,

Uk+1
hl,B1

= 0,
Uk+1
hl,B2

= Ik+1
hl

(
Uh1,τ1, . . . , Uhp,τp

)T
,

U0
hl,I

= πhl,Iu0,

for l = 1, . . . , p and k = 0, . . . , Nl − 1.
The above system couples the p local parabolic discretizations through the

Uk+1
hl,B2

= Ik+1
hl

Uh,τ terms. It yields a very large system of linear equations whose
parallel iterative solution will be described next. Techniques will also be described
for reducing the size of the system and the local memory requirements.

2.6. A parallel Schwarz iterative method. The linear system (2.4) can be
solved by a parallel version of the Schwarz iterative method [26, 15, 16, 35, 28, 12]
which will (under assumptions stated in Section 4) converge geometrically. On a
parallel architecture, each processor can in principle be assigned to a different space-
time grid. Some communication between processors will, however, be necessary (to
compute the boundary conditions gkhl,B2

involving the intergrid interpolation maps
Ikhl). The loads may be well balanced if the subproblems are of comparable size.

System (2.4) will be very large in general, involving all the unknowns on all
the space-time grids. However, with some care, the number of unknowns and the
memory requirements can be reduced.

1. First, suppose m is a common factor of the number of time steps Nl on each
grid for l = 1, . . . , p (i.e., m = gcd(N1, . . . , Np)). Then, T can be reduced
by a factor m by defining T̃ ≡ T/m and repeatedly applying the global
scheme on the time intervals [0, T̃ ], [T̃ , 2T̃ ], . . . , [(m− 1)T̃ ,mT̃ ].
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For example, suppose there are two subregions (i.e., p = 2) and the time
steps are τ1 = T/100 and τ2 = T/200. Then choose T̃ = τ1 = 2τ2 and
repeatedly apply the global discretization scheme m = 100 times on [0, τ1],
[τ1, 2τ1], . . . , [99τ1, 100τ1] to obtain a solution on the time interval [0, T ].
This procedure will reduce the size of the linear system by a factor 100.

2. Within each space-time grid Ω∗hl × {0, τ1, . . . , Nlτl} the discrete solution
Ukhl need not be stored for k = 0, . . . , Nl. Store the initial data U0

hl,I

and the boundary data gkhl,B2
for k = 0, . . . , Nl. Using these, the local

discrete solution can be generated by solving the local equations. For the
parallel Schwarz algorithm, described next, it would also be necessary to
store the nodal values of

(
Ukhl
)
i

that will be used to compute the intergrid
interpolation maps.

Once the size of the global system has been reduced by reducing Nl so that
gcd(N1, . . . , Np) = 1, then system (2.4) can be solved by a parallel Schwarz it-
erative algorithm. To distinguish the different iterates in the Schwarz procedure,
we introduce the following notation: Uk;(n)

hl
will denote the nth Schwarz iterate at

time kτl on the grid Ω∗hl .

Parallel Schwarz iteration. Let {{Uk;(0)
hl
}Nlk=0}

p
l=1 be a given starting guess.

1. For n = 0, 1, . . . until convergence do
2. For l = 1, . . . , p in parallel do
3. Compute the local boundary conditions for k = 1, . . . , Nl:

g
k;(n+1)
hl,B2

= Ikhl
(
U

(n)
h1,τ1

, . . . , U
(n)
hp,τp

)T
.

4. EndFor
5. For l = 1, . . . , p in parallel do
6. Let

U
0;(n+1)
hl,I

= πhl,Iu0.

7. For k = 0, . . . , Nl − 1 solve

(2.5)

(
I + τlθlA

hl
II

)
U
k+1;(n+1)
hl,I

=
(
I − τlθ̃lAhlII

)
U
k;(n+1)
hl,I

+ τl

(
−θlAhlIBU

k+1;(n)
hl,I

+ θ̃lA
hl
IBU

k;(n+1)
hl,I

)
+ τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
,

U
k+1;(n+1)
hl,B1

= 0,

U
k+1;(n+1)
hl,B2

= g
k+1;(n+1)
hl,B2

.

8. EndFor
9. Endfor

10. Endfor

Under suitable assumptions, the iterates {Uk;(n)
hl
} above can be shown to converge

geometrically to the exact solution of (2.4) as n→∞ (see Section 4).
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3. Maximum norm properties of the local discretizations

In this section we describe several background results. For local discretizations
of parabolic equations, we describe maximum norm stability, maximum principles,
comparison theorems, barrier functions, and contraction properties. These results
will be used in Section 4 to study the maximum norm stability of the global dis-
cretization (2.4). The proofs are presented here for the convenience of the reader,
though most of the results are scattered in the literature [34, 14, 25, 21, 28, 10].

3.1. Maximum norm stability and a priori estimates for local discretiza-
tions. The following preliminary result provides the basis for maximum norm es-
timates of solutions to θ-schemes.

Lemma 3.1. Suppose the following hold.
1. Let Ahl =

[
AhlII AhlIB

]
satisfy Assumption A1.

2. Let 0 ≤ θl ≤ 1 and let 0 < τl.
3. Let whl = [whl,I , whl,B]T satisfy(

I + τlθlA
hl
II

)
whl,I + τlθlA

hl
IBwhl,B = f̃hl,I ,

whl,B = g̃hl,B.

Then the following holds:

|whl |∞ ≤ max
{

1
1 + τlθlc0

|f̃hl,I |∞, |g̃hl,B|∞
}
.

Proof. Without loss of generality (if needed multiply whl by −1), let (whl)i =
|whl |∞ (i.e., (whl)i ≥ | (whl)j | for all j). If i ∈ Bhl , then since whl,B = g̃hl,B

the desired result holds. Therefore, in the following, suppose i ∈ Ihl . Then the
following holds:(

f̃hl,I

)
i

= (1 + τlθlA
hl
ii ) (whl)i + τlθl

∑
j 6=i

Ahlij (whl)j

= (1 + τlθlA
hl
ii )|whl |∞ + τlθl

∑
j 6=i

Ahlij (whl)j

≥ (1 + τlθlA
hl
ii )|whl |∞ + τlθl

∑
j 6=i

Ahlij |whl |∞, since Ahlij ≤0 for i 6=j

=

1 + τlθlA
hl
ii +

∑
j 6=i

τlθlA
hl
ij

 |whl |∞
=

(
1 + τlθlc

hl
i

)
|whl |∞

≥ (1 + τlθlc0) |whl |∞.

Thus, |whl |∞ ≤ |
(
f̃hl,I

)
i
|/(1 + τlθlc0) ≤ |f̃hl,I |∞/(1 + τlθlc0). �

The preceding result can be applied to the linear system occurring at each time
step in the θ-scheme, provided a stability constraint is satisfied by τl.

Lemma 3.2. Suppose the following hold.
1. Let matrix Ahl satisfy Assumption A1.
2. Let 0 ≤ θl ≤ 1 and define θ̃l ≡ 1− θl.



630 T. P. MATHEW AND G. RUSSO

3. Let 0 < τl satisfy the stability constraint

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0.

4. Let Uk+1
hl

satisfy(
I + τlθlA

hl
II

)
Uk+1
hl,I

+ τlθlA
hl
IBU

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ukhl,I − τlθ̃lA

hl
IBU

k
hl,B

+ τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
,

Uk+1
hl,B

= gk+1
hl,B

,

where Ukhl,I , Ukhl,B, gk+1
hl,B

, fk+1
hl,I

and fkhl,I are given.
Then the following holds:

|Uk+1
hl
|∞ ≤ max

{
|gk+1
hl,B
|∞,

τlθl
1 + τlθlc0

|fk+1
hl,I
|∞

+
τlθ̃l

1 + τlθlc0
|fkhl,I |∞ +

1− τlθ̃lc0
1 + τlθlc0

|Ukhl |∞
}
.

Proof. We apply the preceding lemma with

f̃hl,I ≡
(
I − τlθ̃lAhlII

)
Ukhl,I − τlθ̃lA

hl
IBU

k
hl,B + τl

(
θfk+1
hl,I

+ θ̃lf
k
hl,I

)
,

g̃hl,B ≡ gk+1
hl,B

.

We need to estimate |f̃hl,I |∞. Since 1−τlθlAii ≥ 0 for all i (by the stability criterion
for τl) and −τlθlAhlij ≥ 0 for i 6= j, we obtain

|
(
f̃hl,I

)
i
| ≤ (1 − τlθlAhlii )|

(
Ukhl
)
i
| − τlθl

∑
j 6=i

Ahlij |
(
Ukhl
)
j
|

+ τl

(
θl|
(
fk+1
hl,I

)
i
|+ θ̃l|

(
fkhl
)
i
|
)

≤ (1 − τlθl
∑
j

Ahlij )|Ukhl |∞

+ τl

(
θl|fk+1

hl,I
|∞ + θ̃l|fkhl,I |∞

)
≤ (1 − τlθlc0)|Ukhl |∞

+ τl

(
θl|fk+1

hl,I
|∞ + θ̃l|fkhl,I |∞

)
,

where we used that −τlθl
∑
j A

hl
ij ≤ −τlθlc0. The desired result now follows by an

application of the preceding lemma. �

By recursively applying the preceding result for k = 0, 1, . . . , Nl − 1, one can
obtain an a priori estimate for the solution to the discretized local parabolic equa-
tions.

Lemma 3.3. Suppose the following hold.
1. Let matrix Ahl satisfy Assumption A1.
2. Let 0 ≤ θl ≤ 1 and define θ̃l ≡ 1− θl.
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3. Let 0 < τl satisfy the stability constraint

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0.

4. Let Uk+1
hl,I

satisfy(
I + τlθlA

hl
II

)
Uk+1
hl,I

+ τlθlA
hl
IBU

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ukhl,I − τlθ̃lA

hl
IBU

k
hl,B

+ τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
,

Uk+1
hl,B

= gk+1
hl,B

,

for k = 0, 1, . . . , Nl − 1, where {gkhl,B}
Nl
k=0, {fkhl,I}

Nl
k=0 and U0

hl,I
are given.

Then the following holds:

|UNlhl |∞ ≤ max

|gNlhl,B|∞, 1− τlθ̃lc0
1 + τlθlc0

|gNl−1
hl,B

|∞, . . . ,
(

1− τlθ̃lc0
1 + τlθlc0

)Nl
|g0
hl,B
|∞


+ τl

Nl−1∑
k=0

θl(1− τlθ̃lc0
1 + τlθlc0

)Nl−k
|fk+1
hl,I
|∞

+ θ̃l

(
1− τlθ̃lc0
1 + τlθlc0

)Nl−k
|fkhl,I |∞


+

(
1− τlθ̃lc0
1 + τlθlc0

)Nl
|U0
hl,I |∞.

Proof. The proof follows by a recursive application of the preceding lemma. �

Remark 3. By setting c0 = 0 in the preceding result, we may obtain a less sharp
result:

|UNlhl |∞ ≤ max
{
|gNlhl,B|∞, |g

Nl−1
hl,B

|∞, . . . , |g0
hl,B|∞

}
+ τθ|fNlhl,I |∞ + τ

(
Nl−1∑
k=1

|fkhl,I |∞

)
+ τ θ̃|f0

hl,I
|∞

+ |U0
hl,I
|∞.

Remark 4. If fkhl,I ≡ 0 for k = 0, . . . , Nl and U0
hl,I

= 0, then the above result yields

|UNlhl |∞ ≤ max
{
|gNlhl,B|∞, |g

Nl−1
hl,B

|∞, . . . , |g0
hl,B
|∞
}
,

which is a form of the discrete maximum principle for homogeneous solutions of
the local discretized parabolic equation.

3.2. Maximum principles and comparison theorems. The following is a max-
imum principle for the locally discretized parabolic equations.

Lemma 3.4. Suppose the following hold.
1. Let matrix Ahl satisfy Assumption A1.
2. Let 0 ≤ θl ≤ 1 and define θ̃l ≡ 1− θl.
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3. Let 0 < τl satisfy the stability constraint

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0.

4. Let Uk+1
hl,I

satisfy(
I + τlθlA

hl
II

)
Uk+1
hl,I

+ τlθlA
hl
IBU

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ukhl,I − τlθ̃lA

hl
IBU

k
hl,B

+ τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
,

Uk+1
hl,B

= gk+1
hl,B

,

for k = 0, 1, . . . , Nl − 1, where {gkhl,B}
Nl
k=0, {fkhl,I}

Nl
k=0 and U0

I are given.
5. Let the initial and boundary data satisfy(

U0
hl

)
i
≥ 0, i ∈ Ihl(

fkhl,I

)
i
≥ 0, i ∈ Ihl , k = 0, . . . , Nl(

gkhl,B

)
j
≥ 0, j ∈ Bhl , k = 0, . . . , Nl.

Then, the following holds:(
Ukhl,I

)
i
≥ 0, i ∈ Ihl and k = 1, . . . , Nl.

Proof. Let k0 ≥ 1 denote the smallest integer such that there is an i0 with (Uk0
hl,I

)i0 <
0 (for, if there does not exist such a k0 and i0, then (Ukhl,I)i ≥ 0 for all k and i, and
the desired conclusion holds). Without loss of generality, suppose that(

Uk0
hl,I

)
i0

= min
i∈Ihl

(
Uk0
hl,I

)
i
< 0.

Consider the local discretized equation at time k0τl(
I + τlθlA

hl
II

)
Uk0
hl,I

+ τlθlA
hl
IBU

k0
hl,B

=
(
I − τlθ̃lAhlII

)
Uk0−1
hl,I

− τlθ̃lAhlIBU
k0−1
hl,B

+ τl

(
θlf

k0
hl,I

+ θ̃lf
k0−1
hl,I

)
,

Uk0
hl,B

= gk0
hl,B

.

At the i0-th gridpoint this becomes(
1 + τlθlA

hl
i0i0

)(
Uk0
hl

)
i0

+ τlθl
∑
j 6=i0

Ahli0j

(
Uk0
hl

)
j

=
(
I − τlθ̃lAhli0i0

)(
Uk0−1
hl

)
i0
− τlθ̃l

∑
j 6=i0

Ahli0j

(
Uk0−1
hl

)
j

+ τl

(
θl

(
fk0
hl,I

)
i0

+ θ̃l

(
fk0−1
hl,I

)
i0

)
,

where (Uk0
hl,I

)j = (gkhl,B)j for j ∈ Bhl . Using the nonnegativity of (fk0
hl,I

)i, we obtain(
1 + τlθlA

hl
i0i0

)(
Uk0
hl

)
i0

+ τlθl
∑
j 6=i0

Ahli0j

(
Uk0
hl

)
j
≥

(
I − τlθ̃lAhli0i0

)(
Uk0−1
hl

)
i0

−τlθ̃l
∑
j 6=i0

Ahli0j

(
Uk0−1
hl

)
j
.
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Since (Uk0−1
hl

)j ≥ 0 for all j, (1−τlθ̃lAhli0i0) ≥ 0 and −τlθ̃l
∑

j 6=i0 A
hl
i0j
≥ 0, we obtain(

1 + τlθlA
hl
i0i0

)(
Uk0
hl

)
i0

+ τlθl
∑
j 6=i0

Ahli0j

(
Uk0
hl

)
j
≥

(
1− τlθ̃lAhli0i0

)(
Uk0−1
hl

)
i0

−τlθ̃l
∑
j 6=i0

Ahli0j

(
Uk0−1
hl

)
j

≥ 0.

By assumption −(Uk0
hl

)i0 ≥ −(Uk0
hl

)j and Ahli0j ≤ 0 for j 6= i0. Rearranging terms in
the left hand side above, we obtain

0 ≤
(

1 + τlθlA
hl
i0i0

)(
Uk0
hl

)
i0

+ τlθl
∑
j 6=i0

Ahli0j

(
Uk0
hl

)
j

≤
(

1 + τlθlA
hl
i0i0

)(
Uk0
hl

)
i0

+ τlθl
∑
j 6=i0

Ahli0j

(
Uk0
hl

)
i0

=

1 + τlθl
∑
j

Ahli0j

(Uk0
hl

)
i0

= (1 + τlθlc
hl
i0

)
(
Uk0
hl

)
i0

< 0,

since 1 + τlθlc
hl
i0
≥ 1 and (Uk0

hl
)i0 < 0 (by assumption). We have thus arrived at a

contradiction. Therefore, our assumption was incorrect and we must have(
Ukhl
)
i
≥ 0, for k = 0, . . . , Nl and i ∈ Ihl ,

which is the desired conclusion. �

Remark 5. A similar result can be shown to hold when c0 = 0, provided Ahl is an
M -matrix.

As an immediate application of the preceding lemma, we obtain the following
comparison principle.

Lemma 3.5. Suppose the following hold.

1. Let matrix Ahl satisfy Assumption A1.
2. Let 0 ≤ θl ≤ 1 and define θ̃l ≡ 1− θl.
3. Let 0 < τl satisfy the stability constraint

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0.

4. Let Uk+1
hl,I

satisfy(
I + τlθlA

hl
II

)
Uk+1
hl,I

+ τlθlA
hl
IBU

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ukhl,I − τlθ̃lA

hl
IBU

k
hl,B

,

+ τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
,

Uk+1
hl,B

= gk+1
hl,B

,

for k = 0, 1, . . . , Nl − 1, where {fkhl,I}
Nl
k=0, {gkhl,B}

Nl
k=0 and U0

hl,I
are given.
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5. Let Ũk+1
I satisfy(

I + τlθlA
hl
II

)
Ũk+1
hl,I

+ τθAhlIBŨ
k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ũkhl,I − τlθ̃lA

hl
IBŨ

k
hl,B

+τl
(
θlf̃

k+1
hl,I

+ θ̃lf̃
k
hl,I

)
,

Ũk+1
hl,B

= g̃k+1
hl,B

,

for k = 0, 1, . . . , Nl − 1, where {f̃khl,I}
Nl
k=0, {g̃khl,B}

Nl
k=0 and Ũ0

hl,I
are given.

6. Let the forcing terms, the initial and boundary data satisfy:(
U0
hl,I

)
i
≥

(
Ũ0
hl,I

)
i
, i ∈ Ihl ,(

fkhl,I

)
i
≥

(
f̃khl,I

)
i
, i ∈ Ihl , k = 0, . . . , Nl,(

gkhl,B

)
j
≥

(
g̃khl,B

)
j
, j ∈ Bhl , k = 0, . . . , Nl.

Then, the following will hold:(
Ukhl,I

)
i
≥
(
Ũkhl,I

)
i

∀i ∈ Ihl and k = 1, . . . , Nl.

Proof. Subtract the two sets of discretized parabolic equations to obtain(
I + τlθlA

hl
II

)(
Uk+1
hl,I
− Ũk+1

hl,I

)
+ τlθA

hl
IB

(
Uk+1
hl,B
− Ũk+1

hl,B

)
=
(
I − τlθ̃lAhlII

)(
Ukhl,I − Ũ

k
hl,I

)
− τlθ̃lAhlIB

(
Ukhl,B − Ũ

k
hl,B

)
+ τlθl

(
fk+1
hl,I
− f̃k+1

hl,I

)
+ τlθ̃l

(
fkhl,I − f̃

k
hl,I

)
,

Uk+1
hl,B
− Ũk+1

hl,B
= gk+1

hl,B
− g̃k+1

hl,B
,

for k = 0, 1, . . . , Nl − 1 for the differences {Ukhl,I − Ũkhl,I}. Since U0
hl,I
− Ũ0

hl,I
,

gkhl,B − g̃
k
hl,B

, and fkhl,I − f̃
k
hl,I

all have nonnegative entries by assumption, we can
apply the preceding maximum principle to obtain(

Ukhl,I − Ũ
k
hl,I

)
i
≥ 0, ∀i ∈ Ihl for k = 1, . . . , Nl,

which is the desired result. �

Our primary application of the comparison principle for discretized parabolic
equations will be to estimate, on each local grid, the modulus of discrete homo-
geneous solutions Ũhl,τl with trivial initial data, using a suitable comparison or
barrier grid function whl,τl . Accordingly, given a discrete homogeneous solution
Ũhl,τl satisfying trivial initial conditions Ũ0

hl
= 0 and nontrivial boundary condi-

tions Ũkhl,B2
= g̃khl,B2

for k = 0, . . . , Nl, we would need to construct (or guarantee
the existence of) a suitable grid function whl,τl satisfying the requirements of the
preceding lemma. For convenience, we will seek a comparison (or barrier) grid
function wkhl,τl to be a stationary grid function whl , i.e.,

wkhl = whl , k = 0, . . . , Nl.
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To ensure applicability of the preceding comparison principle, the requirements on
whl of the preceding lemma will be reduced to(

AhlIIwhl,I +AhlIBwhl,B

)
i
≥ 0, i ∈ Ihl ,

(whl,B)i ≥ maxk=0,...,Nl

∣∣∣(g̃khl,B)i∣∣∣ , i ∈ Bhl ,
(whl)i ≥ 0, i ∈ Ihl ,

since f̃khl = 0 and Ũ0
hl

= 0. We have the following result.

Lemma 3.6. Suppose the following hold.

1. Let matrix Ahl satisfy Assumption A1.
2. Let 0 ≤ θl ≤ 1 and define θ̃l ≡ 1− θl.
3. Let 0 < τl satisfy the stability constraint

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0.

4. Let Ũk+1
hl,I

solve(
I + τlθlA

hl
II

)
Ũk+1
hl,I

+ τlθlA
hl
IBŨ

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ũkhl,I − τlθ̃lA

hl
IBŨ

k
hl,B,

Ũk+1
hl,B

= g̃k+1
hl,B

,

for k = 0, 1, . . . , Nl − 1 with Ũ0
hl,I

= 0, where {g̃khl,B}
Nl
k=0 are given.

5. Let whl = (whl,I , whl,B)T satisfy(
AhlIIwhl,I +AhlIBwhl,B

)
i
≥ 0, i ∈ Ihl ,

(whl,B)j ≥ maxk=0,...,Nl

∣∣∣(g̃hl,B)j
∣∣∣ , j ∈ Bhl .

Then, the following holds:

(whl,I)i ≥ |
(
Ũkhl,I

)
i
|, ∀i ∈ Ihl , for k = 0, . . . , Nl.

Proof. We will apply the comparison principle (Lemma 3.5) using Ũhl,τl as defined
above and

Ukhl ≡ whl , for k = 0, . . . , Nl.

Due to the stationarity of Ukhl , the finite difference approximation of its time deriv-
ative is zero and(

I + τlθlA
hl
II

)
Uk+1
hl,I

+ τlθlA
hl
IBU

k+1
hl,B

≥
(
I − τlθ̃lAhlII

)
Ukhl,I − τlθ̃lA

hl
IBU

k
hl,B

+ τlf̃hl,I ,(
Uk+1
hl,B

)
j
≥
∣∣∣∣(g̃k+1

hl,B

)
j

∣∣∣∣ , j ∈ Bhl ,

holds for k = 0, . . . , Nl − 1.
In order to apply Lemma 3.5, we also need to verify that(

U0
hl,I

)
i
≥ (Ũ0

hl)i = 0, ∀i ∈ Ihl ,
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which in our application corresponds to (whl,I)i ≥ 0 for all i. From the definition
of whl , we obtain

whl,I =
(
AhlII

)−1 (
f̃hl,I −AhlIBwhl,B

)
.

Since Ahl satisfies Assumption A1, it is a strictly diagonally dominant (rectangular)
M -matrix and satisfies ((

AhlII

)−1
)
ij

≥ 0, ∀i, j ∈ Ihl .

Since
(
Ahl
)
ij
≤ 0 for i 6= j, f̃khl = 0 and (whl,B)i ≥ 0 in the above, we conclude

that (whl,I)i ≥ 0 for i ∈ Ihl . By the comparison principle(
Ukhl
)
i

= (whl)i ≥
(
Ũkhl

)
i
, ∀i, k.

To complete the proof, we observe that all of the above inequalities remain valid if
Ũkhl,I is replaced by −Ũkhl,I . Applying identical arguments yields

(whl)i ≥ −
(
Ũkhl

)
i
, ∀i, k.

Combining these two results yields

(whl)i ≥
∣∣∣Ũkhl∣∣∣i , ∀i, k,

which is the desired result. �
In the next section, we describe a technique for constructing grid functions whl ,

for sufficiently small mesh size hl (with hl ≤ h∗l ) when c0 > 0. Such grid functions
(actually, standardized versions of them where the boundary values are suitably
scaled) will be referred to as discrete barrier or comparison functions. Once barrier
functions are constructed (or their properties are known), they can be applied to
derive a contraction property for homogeneous solutions.

3.3. Existence of continuous and discrete barrier functions. In this section
we prove the existence of a discrete barrier grid function whl when c0 > 0 on each
local grid and describe some of its properties. We state below the precise require-
ments that a grid function must satisfy in order to be called a barrier function.

Definition. A grid function whl = (whl,I , whl,B)T that satisfies

(3.1)

(
AhlIIwhl,I +AhlIBwhl,B

)
i
≥ 0, i ∈ Ihl ,

(whl,B1)i ≥ 0, i ∈ Bhl1 ,

(whl,B1)i ≥ 1, i ∈ Bhl2 ,

will be referred to as a discrete barrier (or comparison) grid function.
The existence of discrete barrier grid functions will be proved in two stages.

First, results on the existence of a continuous barrier function wl(x) associated
with the continuous analog of (3.1) on Ω∗l will be described. Second, a grid function
whl = πhlwl will be defined by nodal interpolation of wl(x) onto the grid Ω∗hl . For
sufficiently small hl (i.e., for hl ≤ h∗l for some h∗l > 0), it will be shown that
the resulting grid function whl will satisfy the requirements (3.1). We have the
following result for continuous barrier functions.
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Lemma 3.7. Suppose the following hold.
1. Let 0 ≤ dl(x) denote the distance from x to the boundary segment Bl2 =
∂Ω∗l ∩Ω:

dl(x) ≡ dist
(
x,Bl2

)
.

2. Let wl(x) be defined as

wl(x) ≡ e−αdl(x), x ∈ Ω
∗
l ,

for α > 0.
Then there exists a choice α = αl > 0 so that wl(x) defined above satisfies

Lwl ≥
c0
2
, x ∈ Ω∗l ,

wl(x) ≥ 0, x ∈ Bl1,

wl(x) = 1, x ∈ Bl2.

Proof. We follow the construction in Lions [27] (see also [28]). Direct computation
of Le−αdl(x) yields

Le−αdl(x) = e−αdl(x)
(
aα∆dl(x)− aα2|∇dl(x)|2 − α~b(x) · ∇dl(x) + c(x)

)
≥ e−αdl(x)

(
aα∆dl(x)− aα2|∇dl(x)|2 − α~b(x) · ∇dl(x) + c0

)
.

If we choose α = αl > 0

αl ≡ min

1,
c0

2
(
‖~b‖∞,Ω∗l ‖∇dl‖∞,Ω∗l + a‖∇dl‖2∞,Ω∗l + a‖∆dl‖∞,Ω∗l

)
 ,

then
c0
2

+ aα∆dl(x) − aα2|∇dl(x)|2 − α~b(x) · ∇dl(x) ≥ 0,

and we obtain Le−αldl(x) ≥ c0/2 > 0. Since dl(x) = 0 on Bl2, it follows that
e−αdl(x) = 1 on Bl2 . Since the exponential e−αdl(x) is always nonnegative, it
follows that 0 ≤ e−αdl(x) on Bl1. Additionally, since 0 ≤ dl(x) for all x, it follows
that 0 ≤ e−αldl(x) ≤ 1. �
Remark 6. In the above construction, we tacitly assumed smoothness of the dis-
tance function dl(x). Unfortunately, this may not be the case in general, even if
Bl2 = (∂Ω∗l ∩ Ω) is smooth. However, given any 0 < εl � βl, for our applications
we may replace dl(x) by any smooth function 0 ≤ d̃l;εl(x) satisfying

d̃l;εl(x) ≥ 0, ∀x,

d̃l;εl(x) = 0, x ∈ Bl2,

d̃l;εl(x) ≤ dl(x) + εl, ∀x,

d̃l;εl(x) ≥ dl(x)− εl, ∀x.

Such a “pseudo-distance” function d̃l;εl(x) can be constructed as follows. For any
γ > 0, let Ωγl denote

Ωγl ≡ {x : dist (x,Ωl) < γ} .
Then Ω∗l = Ωβll .
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1. Let Sl;εl denote a region with smooth boundaries satisfying(
Ωβl+

εl
2

l \ Ωβl−
εl
2

l

)
⊂ Sl,εl ⊂

(
Ωβl+εll \Ωβl−εll

)
.

Then Bl2 ⊂ Sl,εl .
2. Given Sl,εl , let dl;εl(x) denote

dl;εl(x) ≡ dist (x, Sl,εl) .

Then dl;εl(x) will have the following properties:

dl;εl(x) ≥ 0, ∀x,
dl;εl(x) = 0, x ∈ Sl;ε,
dl;εl(x) ≤ dl(x) + εl

2 , ∀x,
dl;εl(x) ≥ dl(x) − εl

2 , ∀x.
Unfortunately, dl;εl(x) will not be smooth in the regions where the level
sets of Sl,εl intersect.

3. Let 0 ≤ ψεl(x) denote a smooth probability density function having com-
pact support of diameter εl/4 centered at the origin. Define d̃l(x) as the
convolution (mollification) of dl;εl(x) with ψεl(x) as

d̃l(x) ≡
∫
y

ψεl(y)dl;εl(x− y)dy.

By construction d̃l(x) will be smooth. Due to the nonnegativity and com-
pact support of ψεl(x) of diameter εl/4, it will further satisfy

d̃l(x) ≥ 0, ∀x,

d̃l(x) = 0, x ∈ Bl2,

d̃l(x) ≤ dl(x) + εl, ∀x,

d̃l(x) ≥ dl(x)− εl, ∀x.

Thus, given a suitable small but fixed choice of εl, e−αd̃l(x) ≤ e−α(dl(x)+εl) will sat-
isfy the requirements of a barrier function for the value of αl given in the preceding
lemma (with d̃l(x) replacing dl(x)). For convenience, however, we will henceforth
assume that dl(x) is smooth.

Given the continuous barrier function wl(x), we will interpolate it onto the grid
Ω∗hl to construct a discrete barrier function. To ensure that the resulting grid
function satisfies (3.1), we will require that the discretization Ahl be at least first
order accurate and that hl be sufficiently small.

Assumption A5. Let xhli denote an interior gridpoint in Ω∗hl . Then for any
sufficiently smooth test function v(x) we assume that

(Lv) (xhli ) =
(
Ahlπhlv

)
i
+ Chl(v, xhli )hsll

holds, where the coefficient Chl(v, xhli ) involves higher order derivatives of v(x) in
the convex hull of the gridpoints of the local stencil

(3.2) |Chl(v, xhli )| ≤ C‖v‖sl+2,∞,Ω∗l ,

where C is a positive constant independent of hl and v(.) and 1 ≤ sl is an integer.
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Lemma 3.8. Suppose the following hold.

1. Let matrix Ahl satisfy Assumptions A1 and A5.
2. Let wl(x) = e−αldl(x) be a smooth continuous barrier function satisfying

Lwl ≥ c0
2
, x ∈ Ω∗l ,

wl(x) ≥ 0, x ∈ Bl1,

wl(x) = 1, x ∈ Bl2.

3. Define whl ≡ πhlwl where

(whl)i = wl(xhli ), ∀xhli ∈ Ω
∗
hl .

4. Let hl satisfy

hl ≤ h∗l ≡
(

c0
2C‖wl‖sl+2,∞,Ω∗l

)1/rl

,

where C is defined in (3.2).

Then, the following will hold:

AhlIIwhl,I +Ahlwhl,B ≥ 0, componentwise,
whl,B2 ≥ 1, componentwise,
whl,B1 ≥ 0, componentwise,

i.e., whl is a discrete barrier function.

Proof. By Assumption A5 on the local consistency of the finite difference discretiza-
tion matrix Ahl , we obtain(

Ahlwhl
)
i

= (Lwl) (xhli ) + Chl(wl, xhli )hsll ,

≥ c0
2

+ Chl(wl, xhli )hsll , since Lwl ≥
c0
2

≥ c0
2
− C‖wl‖sl+2,∞,Ω∗l h

sl
l , using A5

≥ 0, if hl ≤ h∗l ,

where

h∗l =
(

c0
2C‖wl‖sl+2,∞,Ω∗l

)1/sl

.

The desired result now holds due to the properties of wl(x) and since whl = πhlwl.
�

In the next section, we use barrier grid functions to prove a contraction property
of homogeneous solutions to discretized parabolic equations.
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3.4. Contraction property of homogeneous solutions. Suppose {W k
hl
}Nlk=0 de-

notes a homogeneous solution of the discretized parabolic equation on the lth lo-
cal grid with trivial initial conditions W 0

hl,I
= 0 and nontrivial boundary data

W k
hl,B2

= gkhl,B2
on Bhl2 . By the discrete maximum principle for parabolic equa-

tions, we obtain the bound∣∣∣(W k
hl

)
j

∣∣∣ ≤ max
k=0,...,Nl

max
{i∈Bhl2 }

∣∣∣(gkhl,B2

)
i

∣∣∣ ,
at any interior gridpoint xhlj at time kτl for k = 0, . . . , Nl. However, when c0 > 0
(as we have assumed), a stronger property will hold in the interior region Ωl× [0, T ]

max
j∈Ωhl

∣∣∣(W k
hl

)
j

∣∣∣ ≤ ρhl max
k=0,...,Nl

max
i∈Bhl2

∣∣∣(gkhl,B2

)
i

∣∣∣ ,
for some ρhl < 1. This will be referred to as the local contraction property and will
be essential in establishing the stability of the global discretization.

We define now the normalized contraction factor 0 ≤ ρhl ≤ 1 from a domain Ω∗l
to a subregion Ωl for discrete homogeneous solutions of the discretized parabolic
equation on the lth grid.

Definition. Let {W k
hl
}Nlk=0 denote a homogeneous solution of the following dis-

cretized parabolic equation with trivial initial conditions:(
I + τlθlA

hl
II

)
W k+1
hl,I

+ τlθlA
hl
IBW

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
W k
hl,I
− τlθ̃lAhlIBW k

hl,B
,

W k+1
hl,B1

= 0,

W k+1
hl,B2

= gkhl,B2
,

W 0
hl,I

= 0,

where (gkhl,B2
)i = 1 for i ∈ Bhl2 . We define the normalized contraction factor ρhl

(with 0 ≤ ρhl ≤ 1) as

(3.3) ρhl ≡ max
k=0,...,Nl

max
i∈Ωhl

∣∣∣(W k
hl,I

)
i

∣∣∣ .
Our first result in this section provides an upper bound for ρhl , in terms of the

contraction factor for the continuous barrier function e−αld̃l(x) from the preceding
section.

Lemma 3.9. Suppose the following hold.

1. Let 0 < βl denote the overlap parameter from subdomain Ωl to Ω∗l .
2. Let matrix Ahl satisfy Assumptions A1 and A5, and let τl satisfy the sta-

bility criterion.
3. Let c0 > 0.
4. Let 0 < αl be chosen so that the grid function whl = πhle

−αld̃l(x) is a
discrete barrier grid function for hl ≤ h∗l .

5. Let ρhl denote the normalized contraction factor on the lth grid with Whl

as employed in (3.3).
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Then the following holds:

ρhl ≤ maxi∈Ωhl
(whl)i

≤ maxi∈Ωhl
e−αld̃l(x

hl
i ).

Consequently

ρhl ≤ e−αlβl , if d̃l(x) = dl(x)

≤ e−αl(βl−εl), if dl(x)− ε ≤ d̃l(x) ≤ dl(x),

for some εl > 0. In either case, ρhl < 1 if βl ≥ εl.

Proof. By assumption on the mesh size hl, the preceding lemma yields that whl ≡
πhle

−αld̃l(x) is a discrete barrier grid function. By applying comparison principle 3.5
from subsection 3.2, with Ukhl = whl and Ũkhl = W k

hl
above, we obtain∣∣∣(W k

hl

)
i

∣∣∣ ≤ (whl)i ∀k

≤ e−αld̃l(x
hl
i ) ∀k

≤ e−αl(βl−εl) ∀k,

which is the desired result. �

The above estimates for the contraction factor ρhl are qualitative, and involve an
unknown constant αl. We indicate below how more quantitative theoretical bounds
can be obtained for ρhl on uniform grids (see [21]).

Example. Consider a parabolic equation ut+Lu = f in one space dimension (i.e.,
Ω ⊂ R) where Lu = −u′′ + bu′ + cu and where 0 < b and 0 < c are constants. For
convenience, consider a subdomain Ω∗l = (0, 1) with Ωl = (ã, b̃) where 0 < ã < b̃ <
1. Suppose that a uniform grid is constructed on Ω∗l with mesh size hl = 1/Ml and
gridpoints xhli = ihl for 0, . . . ,Ml. Discretize −u′′ by three point finite differences,
bu′ by upwind finite differences and cu by a one point approximation on the above
uniform grid and suppose 0 and 1 are interior points in Ω. To estimate the discrete
contraction factor ρhl , we solve the difference equations
− (bh+ 1)ui−1 +

(
2 + bh+ ch2

)
ui − 1ui+1 = 0, for i = 1, . . . ,Ml − 1,

u0 = 1,

uMl
= 1,

whose general solution has the form

ui = c1σ
i
1 + c2σ

i
2,

where σ1 and σ2 are roots of the quadratic

σ2 −
(
2 + bh+ ch2

)
σ + (bh+ 1) = 0.
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In terms of b, c and hl the roots are

σ1 = 1 +
bh

2
+
ch2

2
+ h

(
4c+ b2 + 2bhc+ c2h2

4

)1/2

,

σ2 = 1 +
bh

2
+
ch2

2
− h

(
4c+ b2 + 2bhc+ c2h2

4

)1/2

.

The constants c1 and c2 can be computed by enforcing the boundary conditions

c1 + c2 = 1,

σMl
1 c1 + σMl

2 c2 = 1,

which yields

c1 =
σMl

2 − 1
σMl

2 − σMl
1

,

c2 =
1− σMl

1

σMl
2 − σMl

1

.

The contraction factor ρhl can be estimated as

ρhl ≡ max
{i:xhli ∈(ã,b̃)}

∣∣∣∣∣(σMl
2 − 1)σi1 + (1− σMl

1 )σi2
σMl

2 − σMl
1

∣∣∣∣∣ .
Given b, c, hl, ã and b̃, these can be determined quantitatively.

Our main result in this section relates the discrete contraction factor ρhl , which
was defined for the normalized Dirichlet boundary conditions, to the case of general
Dirichlet boundary conditions.

Lemma 3.10. Suppose the following hold.

1. Let matrix Ahl satisfy Assumptions A1 and A5.
2. Let 0 ≤ θl ≤ 1 and define θ̃l ≡ 1− θl.
3. Let 0 < τl satisfy the stability condition

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0.

4. Let Ṽ khl satisfy(
I + τlθlA

hl
II

)
Ṽ k+1
hl,I

+ τlθlA
hl
IBṼ

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ṽ khl,I − τlθ̃lA

hl
IBṼ

k
hl,B

,

Ṽ k+1
hl,B1

= 0,

Ṽ k+1
hl,B2

= g̃k+1
hl,B2

,

Ṽ 0
hl,I

= 0,

for k = 0, . . . , Nl − 1.
5. Let ρhl denote the normalized contraction factor defined by (3.3) in subsec-

tion 3.4 with associated grid function {W k
hl
}Nlk=0.
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Then the following holds:

max
{i:xhli ∈Ωhl ,k=0,...,Nl}

∣∣∣(Ṽ khl)i∣∣∣ ≤ ρhl max
i∈Ω

∗
hl

max
k=0,...,Nl

∣∣∣(Ṽ khl)i∣∣∣ .
Proof. Let |‖Ṽ

B
hl
2
‖| denote the number

|‖Ṽ
B
hl
2
‖| ≡ max

i∈Bhl2

max
k=0,...,Nl

∣∣∣(Ṽ khl)i∣∣∣ .
Define a grid function W̃ k

hl
by scaling Ṽ khl so that its boundary values have maximum

modulus one: (
W̃ k
hl

)
i
≡

(
Ṽ khl

)
i

|‖Ṽ
B
hl
2
‖|
, ∀i, k.

Apply comparison principle 3.5 from subection 3.2, employing Ukhl = W k
hl

, where
W k
hl

is the grid function associated with the normalized contraction factor ρhl de-
fined in (3.3) of subsection 3.4, and employing Ũkhl = ±W̃ k

hl
, where W̃ k

hl
is defined

above. The desired result follows immediately from the normalized contraction
property. �

Remark 7. Due to the stationarity of the discrete barrier function whl , the upper
bound for the contraction factor ρhl will be independent of τl.

4. Maximum norm stability and accuracy

of the global discretization

In this section, we prove that the global discretization (2.4) is stable in the
maximum norm and analyze its accuracy. We also show that the parallel Schwarz
algorithm is geometrically convergent. The proofs are motivated by [32, 10] and
employ Picard’s contraction mapping theorem. In the first section, we describe
the contraction mapping theorem and existence and uniqueness results for (2.4).
We also discuss the geometric convergence of the parallel Schwarz iterates. In the
second section we describe the stability of the global discretization. In the third
section, we apply the stability theorem to estimate the accuracy of the global non-
matching grid discretization in terms of the local discretization and interpolation
errors.

4.1. Contraction mapping theorem. The existence and uniqueness of solutions
to the global discretized system (2.4) will be proved by applying Picard’s contraction
mapping theorem [3], which we summarize below for convenience. In addition, the
geometric convergence of the parallel Schwarz iterates will follow from properties
of the contraction mapping.

Theorem 4.1. Suppose the following hold.
1. Let H be a complete metric space with metric d(., .).
2. Let T : H → H be a contractive mapping, i.e., for any X, Y ∈ H we have

d (T X, T Y ) ≤ δ d (X,Y ) ,

where δ < 1.
Then the following hold.
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1. There exists a unique fixed point U ∈ H of T satisfying

U = T U.
2. Let U (0) be any element of H. Then U (n) ≡ T nU (0) → U geometrically

with
d
(
U (n+1), U

)
≤ δ d

(
U (n), U

)
≤ δnd

(
U (0), U

)
.

3. For any U (0) ∈ H we have

d
(
U (0), U

)
≤ 1

1− δ d
(
T U (0), U (0)

)
.

Proof. See [3]. �
In our applications, we will choose the metric space H and mapping T so

that global discretization (2.4) is a fixed point equation for T . Furthermore, the
parallel Schwarz iterates {U (n)}, given a starting guess U (0), will correspond to
U (n+1) = T U (n). For convenience, we will consider a system of equations more
general than (2.4). Let f̃khl,I and g̃khl,B2

be given forcing terms for k = 0, . . . , Nl
and l = 1, . . . , p. Let ũ0

hl,I
be given initial data for l = 1, . . . , p. We consider the

following general system of equations for unknowns Uh,τ = {{Ukhl}
Nl
k=0}

p
l=1:

(4.1)(
I + τlθlA

hl
II

)
Uk+1
hl,I

+ τlθlA
hl
IBU

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Ukhl,I − τlθ̃lA

hl
IBU

k
hl,B

+ τl

(
θlf̃

k+1
hl,I

+ θ̃lf̃
k
hl,I

)
,

Uk+1
hl,B1

= 0,

Uk+1
hl,B2

= Ik+1
hl

Uh,τ + g̃k+1
hl,B2

,

U0
hl,I

= ũ0
hl,I

,

for k = 0, . . . , Nl − 1 and l = 1, . . . , p.
Our choice for H will be based on the linear system (4.1). Given f̃khl,I , g̃

k
hl,B2

for
k = 0, . . . , Nl and l = 1, . . . , p and ũ0

hl,I
, we define

H ≡
{
Xh,τ : Xk

hl
satisfy following constraints

}(
I + τlθlA

hl
II

)
Xk+1
hl,I

+ τlθlA
hl
IBX

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Xk
hl,I − τlθ̃lA

hl
IBX

k
hl,B

+ τl

(
θlf̃

k+1
hl,I

+ θ̃lf̃
k
hl,I

)
,

Xk+1
hl,B1

= 0,

X0
hl,I = ũ0

hl,I ,

for k = 0, . . . , Nl − 1 and l = 1, . . . , p. H is not a vector space due to the linear
inhomogeneous constraints. However, H is closed in the vector space of all grid
functions endowed with the maximum norm, and consequently, H will be a com-
plete metric space if the metric d(., .) defined on H is inherited from the standard
maximum norm. Given Xh,τ , Yh,τ ∈ H, we define

d (Xh,τ , Yh,τ ) ≡ |‖Xh,τ − Yh,τ‖|,
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where |‖ · ‖| denotes the maximum norm on the vector space of all space-time grid
functions

|‖Xh,τ − Yh,τ‖| ≡ max
l=1,...,p

max
k=0,...,Nl

max
i∈Ω

∗
hl

∣∣(Xk
hl − Y

k
hl

)
i

∣∣ .
For the above H, we define a mapping T : H → H so that linear system (4.1) is

a fixed point equation of T on H. Given Xh,τ ∈ H define X̃h,τ = T Xh,τ as
(4.2)(

I + τlθlA
hl
II

)
X̃k+1
hl,I

+ τlθlA
hl
IBX̃

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
X̃k
hl,I − τlθ̃lA

hl
IBX̃

k
hl,B

+ τl

(
θlf̃

k+1
hl,I

+ θ̃lf̃
k
hl,I

)
,

X̃k+1
hl,B1

= 0,

X̃k+1
hl,B2

= Ik+1
hl

Xh,τ + g̃k+1
hl,B2

,

X̃0
hl,I

= ũ0
hl,I

,

for k = 0, . . . , Nl− 1 and l = 1, . . . , p. It immediately follows that system (4.1) is a
fixed point equation of T . Additionally, the parallel Schwarz iterates from Section 2
can be described in terms of the mapping T : Given a starting guess U (0)

h,τ to (4.1),

the subsequent parallel Schwarz iterates {U (n)
h,τ } are

U
(n)
h,τ ≡ T U

(n−1)
h,τ , n = 1, 2, . . . .

The existence and uniqueness of solutions to system (4.1) and (2.4) will be guaran-
teed by Picard’s contraction mapping theorem, provided T is a contraction mapping
in the metric space H. This contraction property of T is pivotal to the stability
analysis in this paper and is proved next.

Theorem 4.2. Suppose the following hold.
1. Let matrix Ahl satisfy Assumptions A1 and A5 for l = 1, . . . , p.
2. Let 0 < τl satisfy the local stability criterion

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0,

for l = 1, . . . , p.
3. Let the intergrid interpolation maps {Ikhl}k,l satisfy Assumptions A2 and
A3.

4. Let the local overlap parameters βl be chosen large enough, and the local
mesh size hl ≤ h∗l small enough so that the contraction factor ρhl satisfies

δh ≡ σh,τ max
l
ρhl ≤ δ < 1,

where σh,τ denotes the maximum norm of the map {Ikhl}k,l.
Then the following hold.

1. The mapping T will be a contraction mapping on H satisfying

d (T Xh,τ , T Yh,τ ) ≤ δ d (Xh,τ , Yh,τ ) , ∀Xh,τ , Yh,τ ∈ H.
2. System (4.1) will be uniquely solvable with a solution Uh,τ .
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3. Given any starting guess U (0)
h,τ ∈ H, the iterates U

(n)
h,τ = T nU (0)

h,τ (which
correspond to the parallel Schwarz iterates) converge geometrically to the
unique fixed point Uh,τ :

|‖T nU (0)
h,τ − Uh,τ‖| ≤ δ

n|‖U (0)
h,τ − Uh,τ‖|.

Proof. The proof is similar to [10] and relies on the maximum principle and the
contraction property. Given Xh,τ , Yh,τ ∈ H, we need to estimate d (T Xh,τ , T Yh,τ )
in terms of d (Xh,τ , Yh,τ ). For convenience, denote X̃h,τ = T Xh,τ and Ỹh,τ =
T Yh,τ . By applying the definition of T , we note that X̃h,τ − Ỹh,τ will satisfy the
homogeneous system

(
I + τlθlA

hl
II

)(
X̃k+1
hl,I
−Ỹhl,I

)
+ τlθlA

hl
IB

(
X̃k+1
hl,B
− Ỹ k+1

hl,B

)
=
(
I − τlθ̃lAhlII

)(
X̃k
hl,I − Ỹ

k
hl,I

)
+ τlθ̃lA

hl
IB

(
X̃k
hl,B − Ỹ

k
hl,B

)
,(

X̃k+1
hl,B1

− Ỹ k+1
hl,B1

)
= 0,(

X̃k+1
hl,B2

− Ỹ k+1
hl,B2

)
= Ik+1

hl
(Xh,τ − Yh,τ ) ,(

X̃0
hl,I
− Ỹ 0

hl,I

)
= 0,

(4.3)

for k = 0, . . . , Nl − 1 and l = 1, . . . , p. By the maximum principle from Section 3
we obtain

|‖X̃h,τ − Ỹh,τ‖| ≤ max
k=0,...,Nl

max
l=1,...,p

∣∣Ikhl(Xh,τ − Yh,τ )
∣∣

≤ σh,τ max
k=0,...,Nl

max
l=1,...,p

max
i∈Ωl

|
(
Xk
hl − Y

k
hl

)
i
|.

Here σh,τ is the maximum norm of the intergrid interpolation map Ikhl .
Since Xh,τ , Yh,τ ∈ H, their difference Xh,τ − Yh,τ satisfies a discretized homoge-

neous parabolic equation, and by the contraction property, we obtain

maxi∈Ωl

∣∣∣(Xk
hl
− Y khl

)
i

∣∣∣ ≤ ρhl |‖Xh,τ − Yh,τ‖|,

and consequently

max
k=0,...,Nl

max
l=1,...,p

max
i∈Ωl

∣∣(Xk
hl
− Y khl

)
i

∣∣ ≤ max
l=1,...,p

ρhl |‖Xh,τ − Yh,τ‖|.

Combining the two bounds, we obtain

|‖X̃h,τ − Ỹh,τ‖| ≤ max
k=0,...,Nl

max
l=1,...,p

∣∣Ikhl(Xh,τ − Yh,τ )
∣∣

≤ σh,τ max
k=0,...,Nl;l=1,...,p

max
i∈Ωl

|
(
Xk
hl
− Y khl

)
i
|

≤ σh,τ max
l=1,...,p

ρhl |‖Xh,τ − Yh,τ‖|

= δ|‖Xh,τ − Yh,τ‖|.

Since d(X̃h,τ , Ỹh,τ ) = |‖X̃h,τ− Ỹh,τ‖| and d (Xh,τ , Yh,τ ) = |‖Xh,τ−Yh,τ‖|, and since
by assumption δ < 1, we obtain that T is a contraction

d
(
Ṽh,τ , W̃h,τ

)
≤ δ d (Vh,τ ,Wh,τ ) .
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The unique solvability of the linear system follows from the uniqueness of the fixed
point of a contraction mapping. The geometric convergence of the parallel Schwarz
iterates follows by the geometric convergence of the Picard iterates. �

We note that the preceding result does not directly provide an a priori bound
for the maximum norm of the solution. This will be done in the next section.

4.2. Stability of the global discretization. In this section, we will derive an
a priori bound for the maximum norm of the solution to (4.1).

Theorem 4.3. Suppose the following hold.

1. Let matrices Ahl satisfy Assumptions A1 and A5 for l = 1, . . . , p.
2. Let 0 < τl satisfy the local stability constraint

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0,

for l = 1, . . . , p.
3. Let Ikhl satisfy Assumptions A2 and A3.
4. Let the overlap parameters βl be chosen large enough, and the mesh sizes

small enough with hl ≤ h∗l so that δ ≡ σh,τ maxl ρhl ≤ δ < 1.
5. Let Uh,τ = {Ukhl}k,l denote the unique solution of system (4.1).

Then, the maximum norm of the solution Uh,τ satisfies

|‖Uh,τ‖| ≤
(

1 +
σh,τ
1− δ

)
max
l=1,...,p

(
‖ũ0

hl,I‖∞,Ω∗hl + τlθl‖f̃Nlhl,I‖∞,Ω∗hl

+ τl

Nl−1∑
k=1

‖f̃khl,I‖∞,Ω∗hl + τlθ̃l‖f̃0
hl,I
‖∞,Ω∗hl +

Nl∑
k=0

‖g̃khl,B2
‖∞,Bhl2

)
.

Proof. Choose any suitable grid function Xh,τ ∈ H and use it as an initial guess in
the Picard fixed point iteration. By Theorem 4.1 (the contraction mapping)

d (Xh,τ , Uh,τ) ≤ 1
1− δ d (Xh,τ , T Xh,τ) .

Using that the metric in H was inherited from the maximum norm, we obtain

|‖Uh,τ‖| ≤ |‖Xh,τ‖|+ |‖Uh,τ −Xh,τ‖|, triangle inequality

= |‖Xh,τ‖|+ d (Uh,τ , Xh,τ )

= |‖Xh,τ‖|+
1

1− δ d (Xh,τ , T Xh,τ ) , from above.

Therefore, to obtain a bound for |‖Uh,τ‖| we only need to choose Xh,τ ∈ H and
estimate |‖Xh,τ‖| and d (Xh,τ , T Xh,τ ).
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Accordingly, choose Xh,τ = {Xk
hl
}k,l as the solutions to the local discretized

parabolic equations with trivial boundary conditions
(4.4)(

I + τlθlA
hl
II

)
Xk+1
hl,I

+ τlθlA
hl
IBX

k+1
hl,B

=
(
I − τlθ̃lAhlII

)
Xk
hl,I − τlθ̃lA

hl
IBX

k
hl,B

+ τl

(
θlf̃

k+1
hl,I

+ θ̃lf̃
k
hl,I

)
,

Xk+1
hl,B1

= 0,

Xk+1
hl,B2

= 0,

X0
hl,I

= ũ0
hl,I

,

for k = 0, . . . , Nl − 1 and l = 1, . . . , p. Since the local problems for {Xk
hl
}k are

decoupled, we can estimate the maximum norm of each local component Xhl,τl

independently by using the local a priori estimates from Section 3. This yields

|‖Xh,τ‖| ≤ max
l=1,...,p

(
‖ũ0

hl,I‖∞ + τlθl‖f̃Nlhl,I‖∞,Ω∗hl + τl

Nl−1∑
k=1

‖f̃khl,I‖∞,Ω∗hl

+τlθ̃l‖f̃0
hl,I
‖∞,Ω∗hl +

Nl∑
k=0

‖g̃khl,B2
‖∞,Bhl2

)
.

We next estimate |‖Xh,τ − T Xh,τ‖|. For convenience, let X̃h,τ = T Xh,τ . We
note that Xh,τ − X̃h,τ will satisfy the discretized homogeneous parabolic equation

(
I + τlθlA

hl
II

)(
Xk+1
hl,I
− X̃k+1

hl,I

)
+ τlθlA

hl
IB

(
Xk+1
hl,B
− X̃k+1

hl,B

)
=
(
I−τlθ̃lAhlII

)(
Xk
hl,I
−X̃k

hl,I

)
−τlθ̃lAhlIB

(
Xk
hl,B
−X̃k

hl,B

)
,(

Xk+1
hl,B1

− X̃k+1
hl,B1

)
= 0,(

Xk+1
hl,B2

− X̃k+1
hl,B2

)
= −Ik+1

hl
Xh,τ ,(

X0
hl,I
− X̃0

hl,I

)
= 0,

(4.5)

for k = 0, . . . , Nl− 1 and l = 1, . . . , p. By applying the discrete maximum principle
and using σh,τ = |‖Ikhl‖|, we obtain

|‖Xh,τ − X̃h,τ‖| ≤ σh,τ |‖Xh,τ‖|.

Substituting these in our expression for |‖Uh,τ‖|, we obtain

|‖Xh,τ‖| ≤
(

1 + σh,τ
1−δ

)
maxl=1,...,p

(
‖ũ0

hl,I
‖∞,Ω∗hl + τlθl‖f̃Nlhl,I‖∞,Ω∗hl

+ τl

Nl−1∑
k=1

‖f̃khl,I‖∞,Ω∗hl + τlθ̃l‖f̃0
hl,I
‖∞,Ω∗hl +

Nl∑
k=0

‖g̃khl,B2
‖∞,Bhl2

)
,

which is the desired result. �
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The above result depends critically on the contraction factor δ < 1. If the
overlap βl of the local subregions are sufficiently large so that σh,τ maxl ρhl ≤ δ < 1
(uniformly in hl) then the global discretization will be stable. In the next section,
we apply the above stability result to estimate the accuracy of the nonmatching
grid discretization (2.4).

4.3. Accuracy of the global discretization. From the general theory for dis-
cretization of linear evolution equations [30], we expect a stable and consistent
scheme to be convergent. The same holds for the nonmatching overlapping grid
discretization scheme (2.4) considered here. We will now consider the consistency
of the global scheme (2.4), which is measured by the magnitude of the residual
when πh,τu (i.e., the exact solution u(x, t) restricted to the collection of space-time
grids) is substituted into the scheme.

Definition. Given the restriction uh,τ = πh,τu of the exact solution u(x, t) to the
space-time grids, we define the grid function Ekhl(u) to represent the local discretiza-
tion error on the grid Ω∗hl at time kτl

Ek+1
hl

(u) ≡
(
I + τlθlA

hl
II

)
uk+1
hl,I
−
(
I − τlθ̃AhlII

)
ukhl,I

+ τl

(
θlA

hl
IBu

k+1
hl,B

+ θ̃lA
hl
IBu

k
hl,B

)
− τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
.

We use Dkhl(u) to denote the boundary grid function representing the local intergrid
interpolation error

Dkhl(u) ≡ uk+1
hl,B2

− Ik+1
hl

uh,τ .

At each gridpoint (xhli , kτl), the local discretization error Ekhl(u) and the interpo-
lation error Dkhl(u) can be estimated by expanding the stencils using Taylor series
expansions centered at the gridpoint. The resulting estimate will involve the local
mesh parameters hl and τl, and higher order derivatives of u(., .) at one or more
points in the convex hull of the gridpoints involved in that stencil. For convenience
suppose that the discretization and interpolation errors satisfy

(4.6)

∣∣∣(Ekhl(u)
)
i

∣∣∣ ≤ C‖u‖ql;1+2,ql;2+1,∞,Ω∗l×[0,T ]

(
h
ql;1
l + τ

ql;2
l

)
,∣∣∣(Dkhl(u)

)
i

∣∣∣ ≤ C‖u‖
rl;1,rl;2,∞,B

hl,∗
2 ×[0,T ]

(
h
rl;1
l + τ

rl;2
l

)
,

where Bhl,∗2 is a neighborhood of the boundary Bl2 containing the union of all cells
involved in the local intergrid interpolation.

We will now estimate the accuracy |‖uh,τ−Uh,τ‖| of the global discretization (2.4)
in terms of the local discretization and interpolation errors, Ekhl(u) and Dkhl(u),
respectively.

Theorem 4.4. Suppose the following hold.

1. Let matrices Ahl satisfy Assumptions A1 and A5 for k = 1, . . . , p.
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2. Let 0 < τl satisfy the following local stability constraint

τl ≤ min
i∈Ihl

1
θ̃lA

hl
ii

, if θ̃l 6= 0,

for l = 1, . . . , p.
3. Let Ikhl satisfy Assumptions A2 and A3.
4. Let the overlap parameter βl be chosen sufficiently large, and the mesh size

sufficiently small with hl ≤ h∗l so that

δ ≡ σh,τ max
l
ρhl < 1.

5. Let Uh,τ denote the solution to (2.4).
6. Let uh,τ = πh,τu, the exact solution restricted to the grid, satisfy

(4.7)

(
I + τlθlA

hl
II

)
uk+1
hl,I

=
(
I − τlθ̃lAhlII

)
ukhl,I

+ τl

(
−θlAhlIBu

k+1
hl,I

+ θ̃lA
hl
IBu

k
hl,I

)
+ τl

(
θlf

k+1
hl,I

+ θ̃lf
k
hl,I

)
+ Ek+1

hl
(u)

uk+1
hl,B1

= 0,

uk+1
hl,B2

= Ik+1
hl

uh,τ +Dk+1
hl

(u),

u0
hl,I

= πhlu0,

for k = 0, . . . , Nl − 1 and l = 1, . . . , p, where Ekhl(u) and Dkhl(u) denote the
local discretization and interpolation errors, respectively.

7. Let the local discretization and interpolation errors satisfy bounds (4.6).

Then uh,τ − Uh,τ satisfies the bounds

|‖uh,τ − Uh,τ‖| ≤
(

1 +
σh,τ
1− δ

)
max
l=1,...,p

(
τlθl‖ENlhl (u)‖∞,Ω∗hl

+ τl

Nl−1∑
k=1

‖Ekhl(u)‖∞,Ω∗hl +τlθ̃l‖E
0
hl

(u)‖∞,Ω∗hl

+ max
k=0,...,Nl

‖Dkhl(u)‖∞,B∗l,2

)

≤
(

1 +
σh,τ
1− δ

)
max
l=1,...,p

(
C‖u‖q1+2,q2+1,∞,Ω∗l×[0,T ]

(
h
ql;1
l + τ

ql;2
l

)
+ C‖u‖

rl;1,rl;2,∞,B
hl,∗
2 ×[0,T ]

(
h
rl;1
l + τ

rl;2
l

))
.

(4.8)
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Proof. Subtract equation (4.7) satisfied by uh,τ from (2.4) satisfied by Uh,τ . We
obtain(

I + τlθlA
hl
II

)(
uk+1
hl,I
− Uk+1

hl,I

)
=
(
I − τlθ̃lAhlII

) (
ukhl,I − U

k
hl,I

)
+ τl

(
−θlAhlIB

(
uk+1
hl,I
− Uk+1

hl,I

)
+ θ̃lA

hl
IB

(
ukhl,I − U

k
hl,I

))
+ Ek+1

hl
(u)(

uk+1
hl,B1

− Uk+1
hl,B1

)
= 0,(

uk+1
hl,B2

− Uk+1
hl,B2

)
= Ik+1

hl
(uh,τ − Uh,τ ) +Dk+1

hl
(u),(

u0
hl,I
− U0

hl,I

)
= 0,

for k = 0, . . . , Nl − 1 and l = 1, . . . , p.
Since the hypothesis of the stability theorem from the preceding section is sat-

isfied, we may apply it with f̃khl,I = Ekhl(u) and g̃khl = Dkhl(u) to obtain

|‖uh,τ − Uh,τ‖| ≤
(

1 +
σh,τ
1− δ

)
max
l=1,...,p

(
τlθl‖ENlhl (u)‖∞,Ω∗hl

+ τl

Nl−1∑
k=1

‖Ekhl(u)‖∞,Ω∗hl +τlθ̃l‖E
0
hl

(u)‖∞,Ω∗hl

+ max
k=0,...,Nl

‖Dkhl(u)‖∞,B∗l,2

)
.

Substituting the bounds (4.6) for the local discretization and interpolation errors,
we obtain
|‖uh,τ − Uh,τ‖|

≤
(

1 +
σh,τ
1− δ

)
max
l=1,...,p

(
C‖u‖ql;1+2,ql;2+1,∞,Ω∗l×[0,T ]

(
h
ql;1
l + τ

ql;2
l

)
+ C‖u‖

rl;1,rl;2,∞,B
hl,∗
2 ×[0,T ]

(
h
rl;1
l + τ

rl;2
l

))
,

which is the desired result. �

Remark 8. The above global error bound provides some guidance on the selection
of the local mesh sizes. If a global error of O (ε) is desired, then hl, τl and Ikhl
should be chosen so that

ε ≈ ‖u‖
r1,r2,∞,B

hl,∗
2 ×[0,T ]

(
h
rl;1
l + τ

rl;2
l

)
≈ ‖u‖ql;1+2,ql;2+1,∞,Ω∗l×[0,T ]

(
h
ql;1
l + τ

ql;2
l

)
,

for l = 1, . . . , p. Thus, the mesh sizes should be smaller (or the interpolation stencil,
of higher order) in regions where the solution is less smooth.

Remark 9. We assumed throughout this paper that c(x) ≥ c0 > 0, in order to
guarantee the stability of the global discretization (2.4). In practice, however, the
discretization considered should be stable and convergent even if this condition is
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violated, though the authors do not have rigorous results on this. We illustrate this
by a simple example. Consider the parabolic equation

ut − uxx = f(x, t), in (0, 1)× [0, T ],

u(x, t) = 0, on {0} × [0, T ],

u(x, t) = 0, on {1} × [0, T ],

u(x, 0) = u0(x), on (0, 1).

Choose the following subdomains Ω1 = (0, 1/3), Ω2 = (1/3, 2/3), Ω3 = (2/3, 1)
and the following extended subdomains Ω∗1 = (0, 1/2), Ω∗2 = (1/4, 3/4) and Ω∗3 =
(1/2, 1). Since the associated elliptic operator is Lu = −uxx, we can solve local
homogeneous problems explicitly to obtain the estimates for the local contraction
factors

ρ1 =
1
6
, ρ2 = 1, ρ3 =

1
6
.

We note that ρ2 = 1 since on subdomain Ω∗2, u(x) ≡ 1 is the solution to the ho-
mogeneous elliptic equation −uxx = 0 with boundary conditions u(1/4) = 1 and
u(3/4) = 1. Thus, the condition δ = σh,τ maxl ρl < 1 will be violated, and the
mapping T will not be a contraction. However, it can easily be verified that the
mapping T 2 is a contraction with contraction factor 1/6, and the global scheme
should be stable. More generally, when c(x) = 0, we expect the subdomains ad-
jacent to the boundary ∂Ω to have contraction factors less than 1 and interior
(floating) subdomains to have contraction factors of 1. Repeated applications of T
should however “propagate” the contraction property to the interior subdomains,
and T k0 may be contractive for some k0 > 1. Unfortunately, rigorous results along
these lines are not known to the authors.

Remark 10. We indicate briefly how the results of this paper can be extended to
certain semilinear reaction diffusion equations. Consider the equation

ut −∆u+~b(x) · ∇u+ c(x, u) = f(x, t), in Ω× [0, T ],

u(x, t) = 0, on ∂Ω× [0, T ],

u(x, 0) = u0(x), on (0, 1),

where c(x, u) is a smooth function and satisfies

∂c

∂u
(x, u) ≥ c0 > 0, ∀x, u.

On each local grid, we will discretize the semilinear elliptic operator

L(u) ≡ −∆u+~b(x) · ∇u+ c(x, u)

using finite difference schemes, and discretize the parabolic equation in time using
a θ-scheme. Due to the nonlinearity c(x, u), the following approximation will be
used to avoid solving a nonlinear equation at each time step

c(x, Uk+1
hl

) ≈ c(x, Ukhl) + cu(x, Ukhl)
(
Uk+1
hl
− Ukhl

)
.
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This will correspond to applying one-step of a Newton approximation and the
resulting θ-scheme approximation of the semilinear terms on [kτl, (k+ 1)τl] will be:

θlc
(
xhli , (U

k+1
hl

)i
)

+θ̃lc
(
xhli , (U

k
hl

)i
)
≈ θl

{
c
(
xhli , (U

k
hl

)i
)

+ cu

(
xhli , (U

k
hl

)i
) (

(Uk+1
hl
− Ukhl)i

)}
+ θ̃lc

(
xhli , (U

k
hl

)i
)

= c
(
xhli , (U

k
hl)i
)

+ θ̃lcu

(
xhli , (U

k
hl

)i
) (

(Uk+1
hl
− Ukhl)i

)
.

Due to the above linearization and the sign properties of cu(., .), the existence of
solutions of the local θ-discretizations are guaranteed. Provided the local time steps
τl are small enough to satisfy the local stability conditions (which would depend on
the cu(., .) terms), the theory developed in this paper can be extended to analyze
the accuracy of the global discretization of the semilinear parabolic equation. The
local truncation error terms will be different from the linear case and the local
interpolation error will be identical to the linear case. We omit the details.

Remark 11. To simplify our discussions, we had assumed throughout the paper
that the diffusion term was a∆u. More generally, the results of this paper are valid
even if the diffusion term is of the form ∇ · (a(x)∇u), where a(x) is a diagonal
matrix with positive diagonal entries, provided the spatial discretization yields an
M -matrix. In particular, if a(x) is zero on a subregion (or on all of Ω) the results
would still hold (provided the discretization yields an M -matrix, which, due to
the hyperbolic nature of the equation, would necessitate that a first order upwind
discretization be used to discretize ~b(x) · ∇u). Consider now the original parabolic
equation with a� 1 (i.e., a singularly perturbed parabolic equation). Suppose Ω∗1
and Ω∗2 are two overlapping subregions covering Ω, such that

|a∆u| ≤ η, on Ω∗1 × [0, T ], where η � 1.

If a∆u is dropped on Ω∗1 × [0, T ], the resulting hyperbolic equation may be dis-
cretized by an explicit scheme (with suitable restriction on the time step) without
requiring the solution of a linear system. A coupled hyperbolic-parabolic problem
may be constructed to approximate the original parabolic equation (see for instance
[29, 11]), as indicated next. Let Bi1 = ∂Ω∗i ∩ ∂Ω and Bi2 = ∂Ω∗i ∩ Ω for i = 1, 2,
and let B1

j,in denote the inflow segment of B1
j . Additionally, let v and w denote

the approximations of u on Ω∗1 × [0, T ] and Ω∗2 × [0, T ], respectively. A coupled
hyperbolic-parabolic system for v and w can be posed as follows:

vt +~b(x) · ∇v + c(x)v = f(x), in Ω∗1 × [0, T ],
v = 0, on B1

1,in × [0, T ],
v = w, on B1

2,in × [0, T ],
v = u0(x), for t = 0

and 
wt − a∆w +~b(x) · ∇w + c(x)w = f(x), in Ω∗2 × [0, T ],

w = 0, on B2
1 × [0, T ],

w = v, on B2 × [0, T ],
w = u0(x), for t = 0.
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Provided the M -matrix assumption holds for the local discretizations, Theorem 4.4
would guarantee the maximum norm stability of the global nonmatching overset
grid discretization of the above system. If u denotes the solution of the original
parabolic equation (with uh,τ denoting its restriction to the space-time grids) and
if (vh1,τ1 , wh2,τ2) denotes the discrete hyperbolic-parabolic solution, then the error
uh,τ − (vh1,τ1 , wh2,τ2) will satisfy (4.8) with an additional term of magnitude η on
Ω∗1 × [0, T ]:

|‖uh,τ − (vh1,τ1 , wh2,τ2)‖|

≤
(

1 +
σh,τ
1− δ

)
max
l=1,...,p

(
C‖u‖ql;1+2,ql;2+1,∞,Ω∗l×[0,T ]

(
h
ql;1
l + τ

ql;2
l

)
+ C‖u‖

rl;1,rl;2,∞,B
hl,∗
2 ×[0,T ]

(
h
rl;1
l + τ

rl;2
l

)
+ η

)
.

Thus, if η is of the same magnitude as the local truncation and interpolation errors,
then

|‖uh,τ − (vh1,τ1 , wh2,τ2)‖| ≈ |‖uh,τ − (Uh1,τ1 , Uh2,τ2)‖|,
where (Uh1,τ1, Uh2,τ2) is the nonmatching overset grid solution of the full parabolic
equation. The domain Ω∗1 may be adaptively determined as in the χ-formulation
(see [8]). We omit further details.
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