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ON THE CONVERGENCE OF HIGH RESOLUTION METHODS
WITH MULTIPLE TIME SCALES

FOR HYPERBOLIC CONSERVATION LAWS

ROBERT KIRBY

Abstract. A class of finite volume methods based on standard high resolu-
tion schemes, but which allows spatially varying time steps, is described and
analyzed. A maximum principle and the TVD property are verified for general
advective flux, extending the previous theoretical work on local time stepping
methods. Moreover, an entropy condition is verified which, with sufficient
limiting, guarantees convergence to the entropy solution for convex flux.

1. Introduction

Hyperbolic conservation laws model a wide range of physically important phe-
nomena in gas dynamics, shallow water hydrodynamics, and porous media applica-
tions. Throughout these problems, nonlinearities and irregular physical properties
give rise to spatially varying advective velocities and discontinuous solution profiles.
Upwind finite volume and finite difference methods accurately resolve the local fea-
tures, but their explicit time stepping schemes have a stable time step which varies
inversely with the global maximum of the advective velocity. Thus, strong local
variation in the velocity can render the time discretizations inefficient. Addition-
ally, the maximum time step also varies linearly with the characteristic mesh size,
so local mesh refinement further complicates the issue.

The literature contains several approaches which seek to address this problem.
Multiple grid methods, such as in [1], are widely implemented to handle the varying
time scales introduced by local mesh refinement. They have the advantage of only
requiring the implementation of uniform mesh calculations on each mesh plus some
mechanism for communicating information between the meshes. However, a wide
variety of time scales can appear outside the context of adaptive mesh codes. It is
conceivable that a more general way of distributing the local time steps would have
some advantage, especially in the context of unstructured meshes.

Another approach, developed more recently, introduces a space-time discretiza-
tion. Examples of such an approach appear in [6, 8]. These methods allow the size
of the elements in the temporal direction to vary throughout space. However, they
require mesh generation in one extra dimension, and enforcing stability on irregular
space-time discretizations is not yet clear.
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Single grid methods avoid some of the complications associated with the space-
time methods, while still allowing time steps to vary independently from the mesh.
In addition, they inherit some of the standard methodology of finite volume and
finite element methods. The work of Osher and Sanders [11] introduces a mono-
tone finite volume method which has a main time step which could be larger than
the global CFL time step, with each element still satisfying a local CFL condition.
Dawson [3] formulates a two-dimensional, high resolution version of this method
through slope limiters. He applies it to some simple porous media problems, ob-
serving numerical stability and accuracy comparable to that of global time stepping
methods. In addition, a second order in time method is introduced in [4], and maxi-
mum principles are proven for the high resolution first and second order methods in
a single space dimension. These results as well as numerical results for a recursive,
multilevel implementation of these methods appear in [7]. A similar scheme has
been implemented for adaptive, parallel discontinuous Galerkin methods in [5], but
it fails to maintain the conservation of the method.

While devising these local time stepping schemes, it is vital to preserve the
stability, accuracy, and convergence properties which motivate the use of the finite
volume methods. This paper pushes forward the theory of local time stepping
schemes. On one hand, it adds significant theoretical results to those established
in [7] and [4]. Namely, a bound on the total variation and an entropy condition
are verified for high resolution schemes under local CFL restrictions. On the other
hand, this paper extends the work of [11] by generalizing that monotone local time
stepping scheme to a wide class of high resolution schemes.

This paper is outlined as follows. First in Section 2 the general high resolution
local time stepping method is described. Then in Section 3 a maximum principle
is established under a local CFL condition. This result improves the result of [4] to
a more general set of methods. In Section 4 the total variation analysis in [11] is
generalized to high resolution methods. A final result in Section 5 is the proof of
an entropy condition of the form

(1.1)
∫
<×<+

V (w)φt + F (w)φxdxdt ≤ −
∫
<
V (w0)φ (x, 0) dx.

This derivation generalizes that in [9] to local time stepping methods. Additionally,
the conditions in [10] for a semidiscrete MUSCL scheme for equations with convex
flux to converge to the entropy solution can be naturally adapted to the local time
stepping context.

2. Problem and method description

Consider the scalar, one-dimensional conservation law

ut + f(u)x = 0,(2.1a)

u(x, 0) = u0(x),(2.1b)

where f is a Lipschitz advective flux.
Partition of the real line into intervals Ij = {x : xj− 1

2
≤ x < xj+ 1

2
}. For a

quantity c, let cj denote its average value on Ij . Let the operator ∆+ denote
a forward difference. That is, ∆+cj ≡ cj+1 − cj . Partition [0, T ) into intervals
[tn, tn+1), n = 0, . . . , N−1 with t0 = 0 and tN = T . Let ∆tn ≡ tn+1− tn and define
λnj ≡ ∆tn

∆xj
.
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A wide range of finite volume methods may be expressed in the forward Euler
form

(2.2) Un+1
j = Unj + Cnj ∆+U

n
j−1 +Dn

j ∆+U
n
j .

Here, Cj and Dj are the coefficients of either a slope limited or flux limited fi-
nite volume scheme such as the MUSCL scheme [13] or any of those appearing in
[12]. The time step ∆tn is included in the definition of the coefficients. For these
methods, sufficient conditions for a maximum principle are Cnj ≤ 0 ≤ Dn

j and
1 +Cnj −Dn

j ≥ 0 for all j and n. Similar conditions ensure the method is TVD [6].
For slope limiter and DG methods, Cj and Dj depend on a two-point numerical

flux h which satisfies
• h (c, c) = f (c) (consistency),
• h (·, ·) is nondecreasing in the first argument and nonincreasing in the sec-

ond argument (monotonicity),
• h is Lipschitz continuous in both arguments.

Examples of such fluxes include the Godunov flux and the Lax-Friedrichs flux.
For local time stepping, it is necessary to further partition the time steps on

certain elements as in [11]. Let Cn denote the set of all indices j such that a single
time step is taken from tn to tn+1 on Ij . On the rest of the elements, partition
the time step [tn, tn+1) into the union of substeps [tn+ηl , tn+ηl+1), l = 0, . . . ,M −1.
Define numbers ηl =

∑l
k=1 σk, where {σk}Mk=1 is a sequence of positive numbers

summing to unity. Let η0 = 0. The sublevels in the time interval are tn+ηl+1 =
tn+ηl + σl+1∆tn. Notice that the elements on which the local steps are taken may
change over time, which is essential in solving nonlinear problems. Finally, let

(2.3) Λn+ηl
j ≡

{
λnj , j, j ± 1 ∈ Cn,
σl+1λ

n
j , otherwise.

2.1. Localized finite volume method. The class of methods expressed by (2.2)
may be generalized to a class of two-level methods in the spirit of [11].

Un+ηk
j =


Unj if j ∈ Cn,

Unj +
k−1∑
l=0

σl+1

[
Cn+ηl
j ∆+U

n+ηl
j−1 +Dn+ηl

j ∆+U
n+ηl
j

]
if j /∈ Cn.

(2.4)

Un+1
j = Unj +

M−1∑
l=0

σl+1

[
Cn+ηl
j ∆+U

n+ηl
j−1 +Dn+ηl

j ∆+U
n+ηl
j

]
.(2.5)

Here, Cj and Dj are some coefficients from one of the methods discussed above, and
they will satisfy local CFL restrictions rather than global ones. As in the uniform
time stepping case, the condition Cj ≤ 0 ≤ Dj must hold.

The high resolution method in [4] may be expressed in this abstract setting with
Cj and Dj defined as

(2.6) Cn+ηl
j = −λnj α

n+ηl
j,1

(
1 +

∆+Ũ
n+ηl
j−1

∆+U
n+ηl
j−1

)
,

(2.7) Dn+ηl
j = −λnj α

n+ηl
j,2

1−
∆+

˜̃Un+ηl
j

∆+U
n+ηl
j

 ,
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where

(2.8) αn+ηl
j,1 ≡

h
(
Un+ηl
j+ 1

2 ,L
, Un+ηl

j+ 1
2 ,R

)
− h

(
Un+ηl
j− 1

2 ,L
, Un+ηl

j+ 1
2 ,R

)
Un+ηl
j+ 1

2 ,L
− Un+ηl

j− 1
2 ,L

and

(2.9) αn+ηl
j,2 ≡

h
(
Un+ηl
j− 1

2 ,L
, Un+ηl

j+ 1
2 ,R

)
− h

(
Un+ηl
j− 1

2 ,L
, Un+ηl

j− 1
2 ,R

)
Un+ηl
j+ 1

2 ,R
− Un+ηl

j− 1
2 ,R

are the local Lipschitz coefficients of the numerical flux h and where Uj± 1
2 ,L

etc.
are computed through some slope limited reconstruction procedure.

Under one interpretation, the discontinuous Galerkin method of Cockburn and
Shu [2] is simply a way of constructing slopes. To compute these slopes however,
additional terms appear in the variational formuation for advancing the whole func-
tion forward in time. A local time stepping scheme must specify how these higher
order moments advance in time as well as just the cell centers. For such a formu-
lation, see [7].

2.2. Some remarks. In this section, several comments are made regarding the
implementation and interpretation of this time stepping scheme. These are meant
to show that the method is neither difficult to conceive nor a strange approach to
handling multiple time scales in advection problems.

First, the implementation of this method centers around handling the fluxes
at the interfaces between different time steps properly. All that is required is to
advance the solution in the small time step M times, using the solution at time tn in
the elements with large time steps for the Riemann solution at interfaces. In slope
limited methods, the slopes in the interface element with the large time step must
be updated at each substep to ensure the CFL condition holds. The flux computed
at the interface over a given time step must be accumulated and averaged. This
average flux is used as the flux at that edge on the element with the large time
step. In this way, the time integral average over a main time step ∆tn is preserved
at interfaces between elements with different time steps.

An existing code can be modified to incorporate this approach by flagging each
element as to whether it takes large or small time steps. Routines which compute
slopes, fluxes, etc. can then be rewritten to only operate on elements with a flag
set to a certain value. Then, a routine which advances the solution for all elements
with a given flag simply loops over the small stepping elements, advancing the
solution and storing the flux at interfaces in a buffer. Before advancing the solution
in the rest of the region, the flux is overwritten with the flux from this buffer. It is
worth noting that this approach to implementing the method applies also to multi-
dimensional codes. All that is required is a buffer to store fluxes at interfaces and
a flag for each element. It has been successfully coded on unstructured triangular
meshes for scalar problems.

It should also be noted that this approach to time stepping, in addition to the
mathematical framework presented in the rest of this paper, also corresponds well
to physical and numerical intuition. In explicit time stepping methods, the fastest
features must be fully resolved. However, in regions with larger allowable time
steps, the flow evolves relatively slowly, so approximating it in the short term with
a constant seems reasonable. Further, hyperbolic equations have finite propogation
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speeds, so for small amounts of time, only a small region of the domain affects
the solution at a given place. This gives freedom to resolve the flow locally at
appropriate time scales.

3. Maximum principle

The maximum principle argument in [11] is valid only for monotone methods,
and the analysis of [4] takes a path which generlizes the argument for slope limited
schemes to local time stepping. In this section, a more general maximum principle
is presented that works for the general family of methods (2.4)–(2.5) rather than
the specific choice of Cj and Dj analyzed in [4]. The conditions derived on Cj
and Dj are natural localizations of the conditions on global time stepping methods
discussed above.

Proposition 3.1. The general localized finite volume method (2.4)–(2.5) satisfies
the maximum principle

(3.1) |Unj | ≤ sup
j
|U0
j |

for each j, n under the CFL condition

(3.2) 1 + αCn+ηl
j − βDn+ηl

j ≥ 0,

for all 0 ≤ α, β ≤ Λ
n+ηl
j

λnj
.

Proof. The proof begins by establishing the maximum principle for a given substep
for j /∈ Cn. Using (2.4),

Un+1
j = U

n+ηM−1
j + σMC

n+ηM−1
j ∆+U

n+ηM−1
j−1 + σMD

n+ηM−1
j ∆+U

n+ηM−1
j

=
(

1 + σMC
n+ηM−1
j − σMDn+ηM−1

j

)
U
n+ηM−1
j

− σMCn+ηM−1
j U

n+ηM−1
j−1 + σMD

n+ηM−1
j U

n+ηM−1
j+1 .

(3.3)

Taking the absolute value of each side and applying the CFL condition (3.2)
leads to

(3.4) |Un+1
j | ≤ max

k∈[j−1,j+1]
|Un+ηM−1
k |.

This argument may be applied M times to establish that for j /∈ Cn, |Un+1
j | is

bounded by maxk∈[j−M,j+M ] |Unk |.
Consider now the case of j ∈ Cn. Using (2.4) in (2.5),

Un+1
j = Unj +

M−1∑
l=0

σl+1

[
Cn+ηl
j ∆+U

n+ηl
j−1 +Dn+ηl

j ∆+U
n+ηl
j

]
=

M−1∑
l=1

σl+1

[(
1 + Cn+ηl

j −Dn+ηl
j

)
Un+ηl
j − Cn+ηl

j Un+ηl
j−1 +Dn+ηl

j Un+ηl
j+1

]
,

(3.5)

so that, using (3.2), (3.4) and (2.4),

(3.6) |Un+1
j | ≤ max

k∈[j−M,j+M ]
|Unj |,

thus completing the proof. �
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4. TVD analysis

It is well known that total variation boundedness serves as a compactness cri-
terion giving weak convergence of the numerical solution to a weak solution of the
conservation law. In this section, the analysis in [11] is extended to include high
resolution methods. This appears to be the first total variation analysis of any high
resolution local time stepping method.

Proposition 4.1. The method (2.4)–(2.5) is TVD under the CFL condition

(4.1) 1 + αCn+ηl
j+1 − βD

n+ηl
j ≥ 0,

where 0 ≤ α ≤ Λ
n+ηl
j+1

λ
n+ηl
j+1

and 0 ≤ β ≤ Λ
n+ηl
j

λnj
.

Proof. First, the inequality

|Un+1
j+1 − Un+1

j | ≤ |Unj+1 − Unj |

+
M−1∑
l=0

σl+1∆+

(
Cn+ηl
j |∆+U

n+ηl
j−1 |

)
+
M−1∑
l=0

σl+1∆+

(
Dn+ηl
j |∆+U

n+ηl
j |

)(4.2)

will be established for each of the cases j, j+1 ∈ Cn; j, j+1 /∈ Cn; j ∈ Cn, j+1 /∈ Cn;
and j /∈ Cn, j + 1 ∈ Cn.

To begin, suppose that j, j + 1 ∈ Cn. Using (2.4) and grouping terms,

|Un+1
j+1 − Un+1

j | =
∣∣∣∣∣
M−1∑
l=0

σl+1

[(
1 + Cn+ηl

j+1 −D
n+ηl
j

)
∆+U

n+ηl
j

−Cn+ηl
j ∆+U

n+ηl
j−1 +Dn+ηl

j+1 ∆+U
n+ηl
j+1

] ∣∣∣∣∣.
(4.3)

Now, using the CFL condition (4.1) and (2.4)

|Un+1
j+1 − Un+1

j | ≤
M−1∑
l=0

σl+1|∆+U
n+1
j |

+
M−1∑
l=0

σl+1∆+

(
Cn+ηl
j |∆+U

n+ηl
j−1 |

)
+
M−1∑
l=0

σl+1∆+

(
Dn+ηl
j |∆+U

n+ηl
j |

)
= |Unj+1 − Unj |

+
M−1∑
l=0

σl+1∆+

(
Cn+ηl
j |∆+U

n+ηl
j−1 |

)
+
M−1∑
l=0

σl+1∆+

(
Dn+ηl
j |∆+U

n+ηl
j |

)
.

(4.4)
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Now, consider the case where j, j + 1 /∈ Cn. Using (2.4),

|Un+1
j+1 − Un+1

j | = |∆+U
n+ηM−1
j

+ σM∆+

(
C
n+ηM−1
j ∆+U

n+ηM−1
j−1 +D

n+ηM−1
j ∆+U

n+ηM−1
j

)
|

= |
(

1 + σM

(
C
n+ηM−1
j+1 −Dn+ηM−1

j

))
∆+U

n+ηM−1
j

− σMCn+ηM−1
j ∆+U

n+ηM−1
j−1

+ σMD
n+ηM−1
j+1 ∆+U

n+ηM−1
j+1 |

≤
(

1 + σM

(
C
n+ηM−1
j+1 −Dn+ηM−1

j

))
|∆+U

n+ηM−1
j |

− σMCn+ηM−1
j |∆+U

n+ηM−1
j−1 |

+ σMD
n+ηM−1
j+1 |∆+U

n+ηM−1
j+1 |

= |∆+U
n+ηM−1
j |+ σM∆+

(
C
n+ηM−1
j |∆+U

n+ηM−1
j−1 |

)
+ σM∆+

(
D
n+ηM−1
j |∆+U

n+ηM−1
j |

)
.

(4.5)

Applying this argument repeatedly leads to (4.2).
Analysis of the other two cases presents somewhat more difficulty, but still ba-

sically follows [11]. Suppose that j ∈ Cn and j + 1 /∈ Cn. Beginning with (2.5),

Un+1
j+1 − Un+1

j = Unj+1 − Unj

+
M−1∑
l=0

σl+1

[
∆+

(
Cn+ηl
j ∆+U

n+ηl
j−1 +Dn+ηl

j ∆+U
n+ηl
j

)]
=

M−1∑
l=0

σl+1

[(
Unj+1 − Unj

)
−
(
Un+ηl
j+1 − U

n+ηl
j

)]
+
M−1∑
l=0

σl+1

[(
Un+ηl
j+1 − U

n+ηl
j

)
+∆+

(
Cn+ηl
j ∆+U

n+ηl
j−1 +Dn+ηl

j ∆+U
n+ηl
j

)]
.

(4.6)

Now applying (2.4), the first sum becomes

M−1∑
l=0

σl+1

[
Unj+1 − U

n+ηl
j+1

]
(4.7)

= −
M−1∑
l=0

σl+1

l−1∑
k=0

σk+1

(
Cn+ηk
j+1 ∆+U

n+ηk
j +Dn+ηk

j+1 ∆+U
n+ηk
j+1

)
=

M−1∑
l=0

σl+1 (ηl − 1)
(
Cn+ηl
j+1 ∆+U

n+ηl
j +Dn+ηl

j+1 ∆+U
n+ηl
j+1

)
,
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where the order of summation has been interchanged as in [11]. This may be
substitued into (4.6) to give

Un+1
j+1 − Un+1

j =
M−1∑
l=0

σl+1

[(
Un+ηl
j+1 − U

n+ηl
j

)
+∆+

(
Cn+ηl
j ∆+U

n+ηl
j−1 +Dn+ηl

j ∆+U
n+ηl
j

)]
+
M−1∑
l=0

σl+1 (ηl − 1)
(
Cn+ηl
j+1 ∆+U

n+ηl
j +Dn+ηl

j+1 ∆+U
n+ηl
j+1

)
=

M−1∑
l=0

σl+1

[(
Un+ηl
j+1 − U

n+ηl
j

)
+ ηl+1C

n+ηl
j+1 ∆+U

n+ηl
j + ηl+1D

n+ηl
j+1 ∆+U

n+ηl
j+1

−Cn+ηl
j ∆+U

n+ηl
j−1 −D

n+ηl
j ∆+U

n+ηl
j

]
=

M−1∑
l=0

σl+1

[
∆+U

n+ηl
j

(
1 + ηl+1C

n+ηl
j+1 −D

n+ηl
j

)
+ηl+1D

n+ηl
j+1 ∆+U

n+ηl
j+1 − C

n+ηl
j ∆+U

n+ηl
j−1

]
.

(4.8)

Now, using the CFL condition, the following bound can be made:

|Un+1
j+1 − Un+1

j | ≤
M−1∑
l=0

σl+1

[(
1 + ηl+1C

n+ηl
j+1 −D

n+ηl
j

)
|∆+U

n+ηl
j |

+ηl+1D
n+ηl
j+1 |∆+U

n+ηl
j+1 − C

n+ηl
j |∆+U

n+ηl
j−1 |

]
=
M−1∑
l=0

σl+1

[
|∆+U

n+ηl
j |

+
(
ηl+1C

n+ηl
j+1 |∆+U

n+ηl
j | − Cn+ηl

j |∆+U
n+ηl
j−1 |

)
+
(
ηl+1D

n+ηl
j+1 |∆+U

n+ηl
j+1 | −D

n+ηl
j |∆+U

n+ηl
j |

)]
.

(4.9)

Next consider the term |∆+U
n+ηl
j |. Using the predictor and the CFL condition,

|∆+U
n+ηl
j | = |∆+U

n+ηl−1
j + σl+1C

n+ηl−1
j+1 ∆+U

n+ηl−1
j

+ σl+1D
n+ηl−1
j+1 ∆+U

n+ηl−1
j+1 |

≤
(

1 + σl+1C
n+ηl−1
j+1

)
|∆+U

n+ηl−1
j |

+ σl+1D
n+ηl−1
j+1 |∆+U

n+ηl−1
j+1 |

= |∆+U
n+ηl−1
j |+ σl+1C

n+ηl−1
j+1 |∆+U

n+ηl−1
j |

+ σl+1D
n+ηl−1
j+1 |∆+U

n+ηl−1
j+1 |.

(4.10)

This argument can be applied repeatedly to arrive at

(4.11) |∆+U
n+ηl
j | ≤ |∆+U

n
j |+

l−1∑
k=0

σk+1

[
Cn+ηk
j+1 |∆+U

n+ηk
j |+Dn+ηk

j+1 |∆+U
n+ηk
j+1 |

]
.
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So then,

(4.12)
M−1∑
l=0

σl+1|∆+U
n+ηl
j |

≤
M−1∑
l=0

σl+1

[
|∆+U

n
j |+

l−1∑
k=0

σk+1

[
Cn+ηk
j+1 |∆+U

n+ηk
j |+Dn+ηk

j+1 |∆+U
n+ηk
j+1 |

]]

= |∆+U
n
j |+

M−1∑
l=0

σl+1

l−1∑
k=0

σk+1

[
Cn+ηk
j+1 |∆+U

n+ηk
j |+Dn+ηk

j+1 |∆+U
n+ηk
j+1 |

]
= |∆+U

n
j |+

M−1∑
l=0

σl+1 (1− ηl+1)
[
Cn+ηl
j+1 |∆+U

n+ηl
j |+Dn+ηl

j+1 |∆+U
n+ηl
j+1 |

]
.

This now may be used in (4.9) to yield (4.2).
The other case, in which j /∈ Cn, j + 1 ∈ Cn, follows by an analagous argument.

With this inequality established in the four possible cases, the TVD result follows
immediately by summing on j. �

Remark. This result holds for the cell averages in the discontinuous Galerkin
method, so TVD should be replaced by TVDM in the statement of the proposition
as in [2].

5. An entropy condition

Finally, (2.4)–(2.5) satisfy an entropy condition for a smooth convex entropy
function. When the advective flux is convex, constructing a scheme which satisfies
this condition for a single such entropy function is sufficient to give convergence of
the solution to the unique entropy solution. The entropy condition presented here
is based on Osher’s argument found in [9, 10].

To begin, write the corrector (2.5) as

(5.1) Dt
+U

n
j +

M−1∑
l=0

σl+1D
x
+h

n+ηl
j− 1

2
= 0,

where Dt
+a

n
j =

an+1
j −anj

∆tn and Dx
+a

n
j =

anj+1−a
n
j

∆xj
.

Now let V be a convex, twice-differentiable entropy function and F its associated
entropy flux. As in [9, 10], an approximate entropy flux is introduced, but this time
at each discrete time level:

(5.2) ∆+F̃
(
Un+ηl
j

)
≡ ∆+

(
Vw
(
Un+ηl
j

) [
hn+ηl
j − f

(
Un+ηl
j

)])
+ ∆+F

(
Un+ηl
j

)
.

Consider the case j ∈ Cn. Multiply (5.1) by ∆xjVw
(
Unj
)
. Then

∆xjVw
(
Unj
)
Dt

+U
n
j = −

(
M−1∑
l=0

σl+1D
x
+h

n+ηl
j− 1

2

)
Vw
(
Unj
)

∆xj

= −
(
M−1∑
l=0

σl+1Vw
(
Un+ηl
j

)
∆+h

n+ηl
j

)
,

(5.3)
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where the predictor has been used to write Vw
(
Un+ηl
j

)
= Vw

(
Uhj
)
. Next, add∑M−1

l=0 σl+1∆+F̃
(
Un+ηl
j

)
to both sides of (5.3)

(5.4) ∆xj

(
Vw
(
Unj
)
Dt

+U
n
j +

M−1∑
l=0

Dx
+F̃

(
Un+ηl
j

))

=
M−1∑
l=0

σl+1Vw
(
Un+ηl
j

)
∆+h

n+ηl
j

+
M−1∑
l=0

σl+1∆+

(
Vw
(
Un+ηl
j

) [
hn+ηl
j − f

(
Un+ηl
j

)])
+
M−1∑
l=0

σl+1∆+F
(
Un+ηl
j

)
.

The predictor can be used to write the left hand side of (5.4)

(5.5) ∆xj
M−1∑
l=0

[
U
n+ηl+1
j − Un+ηl

j

∆tn
Vw
(
Un+ηl
j

)
+Dx

+F̃
(
Un+ηl
j

)]
.

Now, using the fundamental theorem of calculus and integration by parts on the
right hand side as in [9] leads to

(5.6) ∆xj
M−1∑
l=0

[
U
n+ηl+1
j − Un+ηl

j

∆tn
Vw
(
Un+ηl
j

)
+Dx

+F̃
(
Un+ηl
j

)]

=
M−1∑
l=0

σl+1

∫ U
n+ηl
j+1

U
n+ηl
j

dwVww
[
hn+ηl
j+ 1

2
− f

(
Un+ηl
j

)]
.

Note that the first term on the left hand side is actually σl+1 times the divided
time difference at Un+ηl

j times Vw
(
Un+ηl
j

)
. It is not hard to see that this sum of

this term over l converges weakly to d
dtV (u).

Now, consider the case j /∈ Cn. Using the predictor,

(5.7) Un+1
j = U

n+ηM−1
j − σM−1λ

n
j ∆+h

n+ηM−1

j− 1
2

,

and multiplying each side by ∆xjVw
(
U
n+ηM−1
j

)
gives

(5.8) ∆xj
Un+1
j − Un+ηM−1

j

∆tn
Vw

(
U
n+ηM−1
j

)
= −σM−1

(
∆+h

n+ηM−1
j

)
.
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Add σM−1∆+F̃
(
U
n+ηM−1
j

)
to both sides of the equation, rearrange terms, and

(5.9) ∆xj

[
Un+1
j − Un+ηM−1

j

∆tn
Vw

(
U
n+ηM−1
j

)
+Dx

+F̃
(
U
n+ηM−1
j

)]
= σM−1

[(
∆+Vw

(
U
n+ηM−1
j

))
h
n+ηM−1

j+ 1
2

−∆+

(
Vw

(
U
n+ηM−1
j

)
f
(
U
n+ηM−1
j

)
− F

(
U
n+ηM−1
j

))]
= σM−1

∫ U
n+ηl
j+1

U
n+ηl
j

dwVww
[
hn+ηl
j+ 1

2
− f

(
Un+ηl
j

)]
.

Finally, summing over l finishes the bound. This inequality has now been estab-
lished for both j ∈ Cn and j /∈ Cn. By multiplying both sides by a nonnegative test
function φ ∈ C1

0 and by ∆tn and summing on j and n, it is seen that the entropy
condition is satisfied.

Moreover, for convex advective flux it is only necessary to satisfy this condition
for a single entropy function V in order to prove convergence of the method to the
entropy solution. Several authors, such as [10], have shown how to make appropriate
modifications to slope and flux limiters in order to satisfy this condition for the
entropy function V (w) = w2

2 .

6. Conclusions and future work

Allowing spatially varying time steps in upwind methods helps to resolve the mul-
tiscale issues while maintaining essential theoretical properties. Under appropriate
local limiting and CFL conditions, these methods satisfy a maximum principle and
the TVD property. In addition, additional limiting guarantees convergence to the
proper entropy condition for convex flux functions.

Several avenues for continued research on local time stepping remain open. First,
the present analysis should be extended to multilevel (more than two) time stepping
schemes and to second order in time methods. Research is currently underway to
implement this local time stepping methodology to systems of nonlinear conserva-
tion laws in two space dimensions.
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