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THE hp-LOCAL DISCONTINUOUS GALERKIN METHOD
FOR LOW-FREQUENCY TIME-HARMONIC

MAXWELL EQUATIONS

ILARIA PERUGIA AND DOMINIK SCHÖTZAU

Abstract. The local discontinuous Galerkin method for the numerical ap-
proximation of the time-harmonic Maxwell equations in a low-frequency regime
is introduced and analyzed. Topologically nontrivial domains and heteroge-
neous media are considered, containing both conducting and insulating mate-
rials. The presented method involves discontinuous Galerkin discretizations of
the curl-curl and grad-div operators, derived by introducing suitable auxiliary
variables and so-called numerical fluxes. An hp-analysis is carried out and
error estimates that are optimal in the meshsize h and slightly suboptimal in
the approximation degree p are obtained.

1. Introduction

In this paper, we propose and analyze an hp-local discontinuous Galerkin (LDG)
method for the low-frequency time-harmonic Maxwell equations in heterogeneous
media, containing both conducting and insulating materials: Find the complex field
E that satisfies

∇× (µ−1∇×E) + iωσE = −iωJs =: J in Ω ⊂ R3,(1.1)

∇ · (εE) = 0 in Ω0 ⊂ Ω,(1.2)

together with suitable boundary conditions (see Alonso and Valli [2] and Alonso
[1]). Here, the field E is related to the electric field E by the identity E(x, t) =
Re(E(x)eiωt), where ω 6= 0 is a given frequency. The parameter µ = µ(x) is the
magnetic permeability, ε = ε(x) the electric permittivity, Js is the phasor associated
with a given current density, and σ = σ(x) is the electric conductivity, which is zero
in the subdomain Ω0 occupied by insulating materials. We remark that the electric
field-based formulation in (1.1)–(1.2) is only one of several field- and potential-based
formulations proposed in the literature for the solution of eddy current problems
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(see, e.g., Bryan, Emson, Fernandes and Trowbridge [13], Bossavit [12], Hiptmair
[33] and the references therein).

The main motivation for using discontinuous Galerkin (DG) methods for the nu-
merical approximation of the above problem is that these methods, being based on
discontinuous finite element spaces, can easily handle meshes with hanging nodes,
elements of general shape, and local spaces of different types. Thus, they are ide-
ally suited for hp-adaptivity and multiphysics or multimaterial problems. This
flexibility in the mesh design is not shared in a straightforward way by standard
edge or face elements commonly used in computational electromagnetics. Indeed,
these elements are designed to enforce the continuity of either the tangential or the
normal components of the fields across interelement boundaries (see, e.g., Nédéléc
[37, 38], Bossavit [10, 11], and Monk [36]). This makes the handling of nonmatching
grids and high-order approximations rather inconvenient from an implementational
point of view. Nevertheless, efficient hp-adaptive edge element methods have been
developed recently by Demkowicz and Vardapetyan [29, 45].

There are several possibilities for dealing with the divergence-free constraint
(1.2) in the subregion Ω0. One way of imposing this constraint is to use mixed
formulations, where new unknowns are introduced as Lagrange multipliers (see, e.g.,
Chen, Du and Zou [21], Demkowicz and Vardapetyan [29, 45] and the references
therein). Other approaches consist in regularizing the formulation in Ω0 by adding
suitable terms containing the divergence of E, giving rise to formulations in the
variable E only (see, e.g., Alonso and Valli [2] where an iteration-by-subdomain
procedure is studied, using edge elements in the conducting region Ω \ Ω0 and
continuous elements in Ω0). It is well known that, if the solution exhibits corner
singularities, the discretization of regularized formulations by means of continuous
elements can result in discrete solutions that converge to a vector function that
is not a solution of Maxwell equations. Remedies to overcome this problem have
been presented in Bonnet-BenDhia, Hazard and Lohrengel [9], where a singular
field method is introduced, and in Dauge, Costabel and Martin [28], where the
bilinear forms are suitably weighted near solution singularities. Here we impose
the divergence-free constraint by a regularization approach, but propose methods
that are based on completely discontinuous spaces. This might give an alternative
way to overcome some of the problems related to continuous elements. In this
paper, however, we prove basic hp-error estimates for the proposed LDG scheme
under the assumption of piece-wise smooth exact solutions.

The LDG method has been introduced by Cockburn and Shu [25] for convection-
diffusion systems, and has been further developed and analyzed in Cockburn and
Dawson [23], Castillo, Cockburn, Schötzau and Schwab [20], Castillo, Cockburn,
Perugia and Schötzau [19], Cockburn, Kanschat, Perugia and Schötzau [24]; see also
the review by Cockburn and Shu [26]. It is one of several DG methods that have
been proposed in the literature for diffusion problems. We only mention here the DG
methods of Baumann and Oden [8] and Oden, Babuška and Baumann [39], and the
interior penalty (IP) methods and their variants which have been recently studied;
e.g., in Rivière, Wheeler and Girault [43], Rivière and Wheeler [42] and Houston,
Schwab and Süli [34]. A comparison of DG methods from a computational point
of view can be found in Castillo [18]. Recent works have unified the presentation
and the analysis of all these methods for elliptic problems. In Prudhomme, Pascal,
Oden and Romkes [41], an hp-analysis of different DG methods has been given,
including the Baumann–Oden method and interior penalty methods. Furthermore,



hp-LDG METHOD FOR LOW-FREQUENCY MAXWELL EQUATIONS 1181

in Arnold, Brezzi, Cockburn and Marini [6], a framework has been presented within
which virtually all the DG methods found in the literature can be analyzed; it is
based on a mixed formulation of the second-order problem and on the so-called
numerical fluxes.

The LDG method for the discretization of (1.1)–(1.2) is designed by adapting to
the curl-curl and grad-div operators the definition of the numerical fluxes consid-
ered in [25, 19] for the Laplacian. This is done in a consistent way and such that
the auxiliary variables needed to define the LDG formulation can be eliminated
from the equations in an element-by-element manner. For discontinuity stabiliza-
tion parameters of the order p2/h, we prove error estimates that are optimal in the
meshsize h and slightly suboptimal in the polynomial degree p (half a power of p
is lost). This analysis is the first hp-error analysis for the LDG method in several
space dimensions, and in this sense it extends previous work in [20, 19]. For mul-
tidimensional elliptic problems on general unstructured meshes no better p-bounds
can be found in the DG literature (see, e.g., Rivière, Wheeler and Girault [43],
Prudhomme, Pascal, Oden and Romkes [41] and Houston, Schwab and Süli [34],
where the same rates of convergence as in our case are obtained with different anal-
ysis techniques). We mention, however, that improved p-bounds have been proved
by Castillo, Cockburn, Schötzau and Schwab [20] for one-dimensional convection-
diffusion problems, and recently by Georgoulis and Süli [32] for two-dimensional
reaction-diffusion problems on affine quadrilateral grids containing hanging nodes.

The outline of the paper is as follows. In Section 2, we present the low-frequency
time-harmonic Maxwell equations in heterogeneous media, under quite general and
realistic assumptions on the domain and the data. We need to extend to our case the
existence and uniqueness results established in [2] for a more particular situation.
The proof of these extensions is developed in detail in the appendix, and relies on
the existence of a continuous lifting of tangential traces, which is divergence-free in
Ω0 and satisfies certain homogeneous flux conditions through the cavities of Ω0. In
Section 3, we derive the LDG method and show that it defines a unique approximate
solution. An hp-error analysis is carried out in Section 4. Possible extensions of
our work and concluding remarks are presented in Section 5.

2. The model problem in heterogeneous media

In this section, we specify our assumptions on the domain and the data, and
present the complete model problem in heterogeneous media. The proof of the
well-posedness of the continuous problem is postponed until the appendix.

2.1. Preliminaries. We start by making precise the assumptions on the domain
and the data, and by introducing the functional spaces used throughout the paper.

Assumptions on the domain. Let Ω be a connected, bounded, open Lipschitz
polyhedron in R3, whose boundary may contain several connected, not necessarily
simply connected components. Throughout the paper, whenever referring to a
non–simply connected domain, we assume that there exists an “admissible set of
cuts” in the sense of [4], whose removal reduces the domain to a simply connected
one (see also [31] for further comments). Let Ω0 be the subdomain of Ω occupied
by insulating materials. We define Ωσ = Ω \ Ω0, and denote by Γ the interface
∂Ω0 ∩ ∂Ωσ. We assume Ω0 and Ωσ to be open Lipschitz polyhedra such that
the closure of Γ is a collection of closed faces of ∂Ω0 and ∂Ωσ. For the sake of
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Figure 1. Example of an admissible domain: Ω is the big par-
allelepiped with rectangular hole (∂Ω has one non–simply con-
nected component), Ωσ is the union of the shadowed parallelepiped
and prisma with triangular hole, and Ω0 = Ω \ Ωσ. Therefore,
∂Ω0 = Γ0,0 ∪ Γ0,1 ∪ Γ0,2, where the external component Γ0,0 coin-
cides with ∂Ω, and Γ0,1 and Γ0,2 are boundaries of the shadowed
parallelepiped and prisma, respectively (Γ0,1 is simply connected,
whereas Γ0,0 and Γ0,2 are not).

simplicity, we assume Ω0 to be connected. The extension to the general case where
Ω0 is not connected can be done easily by dealing with each of the connected
components of Ω0 as done with Ω0 in this paper. Let Γ0,j, j = 0, . . . , J , be the
connected, not necessarily simply connected components of ∂Ω0. We denote by Γ0,0

the “external” connected component of ∂Ω0, defined as the boundary of the only
unbounded component of R3 \Ω0, and by Γ0,j , j = 1, . . . , J , the possible “cavities”
of Ω0, which are boundaries of connected, bounded Lipschitz polyhedra in R3 \Ω0.
An example of an admissible domain is given in Figure 1.

Assumptions on the data. The magnetic permeability and reluctivity µ and
µ−1 and the electric permittivity ε are symmetric, uniformly positive definite ten-
sors with bounded coefficients. The electric conductivity σ is a symmetric tensor
with bounded coefficients, uniformly positive definite in the conducting region Ωσ
and zero in Ω0. These tensors are smooth within any subdomain occupied by a
single material, and might be discontinuous across the interfaces between different
materials. Finally, the current density J satisfies J = 0 in Ωσ, ∇ · J = 0 in Ω0 and
J · n0 = 0 on ∂Ω0, where n0 is the outward normal unit vector to ∂Ω0. Moreover,
if Ω0 is not simply connected, denoting by {Σ`}`=1,... ,L an admissible set of cuts
for Ω0, we also assume that J has zero flux through each Σ`.

Functional spaces. Given a domain D in R2 or R3, we denote, as usual, by
Hs(D)d, d = 1, 2, 3, the Sobolev space of real or complex functions with integer or
fractional regularity exponent s ≥ 0, endowed with the norm ‖·‖s,D (see, e.g., [35]).
For D ⊂ R3, H(curl;D) and H(divε;D) are the spaces of real or complex vector
functions u ∈ L2(D)3 with ∇ × u ∈ L2(D)3 and ∇ · (εu) ∈ L2(D), respectively,
endowed with the graph norms. Whenever ε is the identity, we omit the subscript
and simply write H(div;D). We denote by H1

0 (D), H0(curl;D) and H0(divε;D)
the subspaces of H1(D), H(curl;D) and H(divε;D) of functions with zero trace,
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tangential trace, and normal trace, respectively, and by H(curl0;D) and H(div0
ε;D)

the subspaces of H(curl;D) and H(divε;D) of curl-free and divergence-free func-
tions, respectively. We also define H0(curl, divε;D) = H0(curl;D)∩H(divε;D) and
H0(curl0, div0

ε;D) = H0(curl0;D) ∩H(div0
ε;D). Finally, we denote by H(∂D) the

space of tangential traces of H(curl;D) functions endowed with the norm ‖·‖H(∂D),
and refer to [14] for its complete characterization in non–simply connected domains.

2.2. The low-frequency time-harmonic Maxwell equations in heteroge-
neous media. The physical problem we are interested in is the low-frequency time-
harmonic Maxwell system (1.1)–(1.2), completed with Dirichlet boundary condi-
tions on ∂Ω and flux conditions through the cavities of Ω0. Renaming the unknown
field, the complete problem reads as follows. Find u ∈ H(curl; Ω) ∩ H(divε; Ω0)
such that

∇× (µ−1∇× u) + iωσu = J in Ω,(2.1)

∇ · (εu) = 0 in Ω0,(2.2)

n× u = g on ∂Ω,(2.3)

〈εu|Ω0 · n0,j, 1〉Γ0,j = 0 ∀ j = 1, . . . , J,(2.4)

where n is the outward normal unit vector to ∂Ω, g is the tangential trace in H(∂Ω)
of a function in H(curl; Ω), n0,j is the normal unit vector to Γ0,j pointing outside
Ω0, and 〈·, ·〉Γ0,j denotes the duality product between H−

1
2 (Γ0,j) and H

1
2 (Γ0,j)

with L2(Γ0,j) as pivot space. We refer to [1] for a mathematical justification of this
low-frequency model of time-harmonic Maxwell equations.

We consider the following regularized variational formulation of (2.1)–(2.4). Find
u ∈ H(curl; Ω) ∩H(divε; Ω0) such that n × u = g on ∂Ω, 〈εu|Ω0 · n0,j , 1〉Γ0,j = 0
for j = 1, . . . , J , and∫

Ω

µ−1∇× u · ∇ × v dx + iω

∫
Ω

σ u · v dx +
∫

Ω0

ν∇ · (εu)∇ · (εv) dx

=
∫

Ω

J · v dx,
(2.5)

for all v ∈ H0(curl; Ω) ∩ H(divε; Ω0) with 〈εv|Ω0 · n0,j , 1〉Γ0,j = 0, j = 1, . . . , J .
Here, ν = ν(x) is any positive bounded dimensional scalar function bounded away
from zero that should be chosen in such a way that the magnitudes of the different
terms at the left-hand side are balanced.

Although J is divergence free in Ω0, possible errors in the experimental recovering
and/or numerical representation of J may give rise to source terms components that
are not divergence free. In order to address this issue, we consider in the next section
the strong problem corresponding to (2.5) with J replaced by a generic F ∈ L2(Ω)3.

2.3. The model problem. Let F ∈ L2(Ω)3. Then the function ε−1F ∈ L2(Ω)3

admits the decomposition

ε−1F = F′ + F′′,(2.6)

where F′ ∈ L2(Ω)3 is such that ∇ · (εF′)|Ω0 = 0 and 〈εF′|Ω0 · n0,j , 1〉Γ0,j = 0 for
j = 1, . . . , J , while F′′ satisfies F′′|Ωσ = 0 and F′′|Ω0 = ∇f , with f ∈ H1(Ω0),
f = 0 on Γ0,0 and f constant, say f = fj, on each Γ0,j for j = 1, . . . , J . This
is a consequence of the decomposition (4.14) in [30], with Ω = Ω0, Γτ = ∂Ω0,
Γν = ∅ and ω = ε, and of Proposition 3.18 in [4], which can be easily generalized
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to the space H0(curl0, div0
ε; Ω0). The decomposition in (2.6) is ε-orthogonal, i.e.,

orthogonal with respect to the weighted inner product (v,w)ε =
∫

Ω εv ·w dx.
We consider the following problem. Find u ∈ H(curl; Ω)∩H(divε; Ω0) such that

∇× (µ−1∇× u) + iωσu = εF′ in Ω,(2.7)

ν∇ · (εu) = −f in Ω0,(2.8)

n× u = g on ∂Ω,(2.9)

λ〈εu|Ω0 · n0,j , 1〉Γ0,j = fj ∀ j = 1, . . . , J,(2.10)

where λ is any positive constant. Notice that for F = J, we have εF′ = J and
f = 0 in the decomposition (2.6), and problem (2.7)–(2.10) reduces to (2.1)–(2.4).

We point out that in the LDG discretization of problem (2.7)–(2.10) we need to
compute neither the elements F′ and f in the decomposition of F nor the constants
fj. The only data that enter explicitly the formulation of the method are F and g.
This is due to the variational character of the method and the particular choice of
the inhomogeneous flux conditions in (2.10) (see Remark 3.4 below).

We define the space V = H(curl; Ω) ∩H(divε; Ω0), endowed with the norm

‖v‖2V = |ω|‖σ
1
2
ϑv‖20,Ω + ‖µ− 1

2∇× v‖20,Ω + ‖ν 1
2∇ · (εv)‖20,Ω0

+λ
J∑
j=1

|〈εv|Ω0 · n0,j , 1〉Γ0,j |2,

with σϑ = σ in Ωσ and σϑ = ϑI in Ω0, where I is the identity and ϑ is a fixed
positive dimensional constant.

The variational formulation corresponding to (2.7)–(2.10) is find u ∈ V such
that n× u = g on ∂Ω, λ〈εu|Ω0 · n0,j, 1〉Γ0,j = fj for j = 1, . . . , J , and∫

Ω

µ−1∇× u · ∇ × v dx + iω

∫
Ω

σ u · v dx +
∫

Ω0

ν∇ · (εu)∇ · (εv) dx

=
∫

Ω

F · v dx,
(2.11)

for all v ∈ V, with n× v = 0 on ∂Ω and 〈εv|Ω0 · n0,j, 1〉Γ0,j = 0, j = 1, . . . , J .
Well-posedness of the above formulation is established in the following theorem.

Theorem 2.1. For any F ∈ L2(Ω)3 and g ∈ H(∂Ω), the variational formulation
(2.11) admits a unique solution and there exists a positive constant C such that

‖u‖V ≤ C
(
‖F‖0,Ω + ‖g‖H(∂Ω)

)
.

Moreover, u is solution to problem (2.7)–(2.10) if and only if u is solution to (2.11).

In the case where the domain is such that H(curl; Ω0)∩H0(div; Ω0) ↪→ H1(Ω0)3

and the problem is driven by boundary conditions only, this result has been proved
in [2] and [1]. The extension to our more general case is rather technical and will
be given in detail in the appendix. One of the key ingredients necessary to prove
Theorem 2.1 is to construct, under our assumptions on the domain, a continuous
lifting of tangential traces with zero ε-divergence in Ω0 and zero flux conditions
through Γ0,j , j = 1 . . . , J . We do this in Proposition A.1, by using trace theorems
recently proved in [15] and [16], and extended in [14] to domains with non–simply
connected boundaries.
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3. The local discontinuous Galerkin method

In this section, we formulate the LDG method for the discretization of problem
(2.7)–(2.10). We assume from now on that

g ∈ L2(∂Ω)3.(3.1)

3.1. Traces and discontinuous finite element spaces. We start by introduc-
ing certain trace operators and finite element spaces used in the definition of the
method. Let Th be a shape regular triangulation of the domain Ω into tetrahedra
and/or parallelepipeds, with possible hanging nodes and aligned with the interfaces
between different materials, so that µ, µ−1, ε and σ are smooth within each element
of Th. We set T 0

h := Th|Ω0 and have Ω =
⋃
K∈Th K and Ω0 =

⋃
K∈T 0

h
K. We will

denote by hK the diameter of the element K ∈ Th.

Faces. We define and characterize the faces of the triangulation Th. An interior
face of Th is defined as the (nonempty) two-dimensional interior of ∂K+ ∩ ∂K−,
where K+ and K− are two adjacent elements of Th, not necessarily matching.
A boundary face of Th is defined as the (nonempty) two-dimensional interior of
∂K ∩ ∂Ω, where K is a boundary element of Th. We denote by EI the union of
all interior faces of Th, by ED the union of all the boundary faces of Th, and by
E = EI ∪ ED the union of all faces of Th. Similarly, we denote by E0 the union of
all faces of T 0

h , and we write E0
I and E0

∂ for the interior and boundary faces of T 0
h .

Traces. Let Hs(Th) := {v : v|K ∈ Hs(K), K ∈ Th} for s > 1
2 , endowed with

the norm ‖v‖2s,Th =
∑

K∈Th ‖v‖
2
s,K . Then, the element-wise traces of functions

in Hs(Th) belong to TR(E) := ΠK∈ThL
2(∂K); they are double-valued on EI and

single-valued on ED. The space L2(E) can be identified with the functions in TR(E)
for which the two trace values coincide. We define similarly Hs(T 0

h ), TR(E0), and
L2(E0).

Trace operators. Let us introduce the following trace operators for piece-wise
smooth functions. First, let v ∈ TR(E)3 and e ∈ E . If e is an interior face in
EI , we denote by K1 and K2 the elements sharing e, by ni the normal unit vector
pointing exterior to Ki, and we set vi = v|∂Ki , i = 1, 2. We define the average and
tangential jump of v at x ∈ e as

{{v}} =


1
2

(v1 + v2) if e ⊂ EI ,
v if e ⊂ ED,

[[v]]T =

{
n1 × v1 + n2 × v2 if e ⊂ EI ,
n× v if e ⊂ ED,

and, if e ⊂ E0
I , the normal jump of v at x ∈ e as

[[v]]N = v1 · n1 + v2 · n2 if e ⊂ E0
I .

The normal jump of v will not be used on faces outside T 0
h , and thus is left unde-

fined. Similarly, we define for ψ ∈ TR(E0) the average and jump at x ∈ e as

{{ψ}} =


1
2

(ψ1 + ψ2) if e ⊂ E0
I ,

ψ if e ⊂ E0
∂ ,

[[ψ]] =

{
ψ1n1 + ψ2n2 if e ⊂ E0

I ,

ψn0 if e ⊂ E0
∂ ,

where we recall that n0 denotes the outward normal unit to ∂Ω0. Note that the
averages and jumps defined above are single-valued functions.
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If v ∈ H(curl; Ω), then, for all e ⊂ EI , the jump condition n1×v1 + n2×v2 = 0

holds true in H
− 1

2
00 (e)3, and thus also in L2(e)3. For the definition of H−

1
2

00 (e),
see, e.g., [35]. Therefore [[v]]T is well defined and equal to zero on EI . Similarly,
for v ∈ H(div; Ω0), we have that [[v]]N is well defined and equal to zero on E0

I .
Furthermore, for the exact solution u ∈ V, owing to assumption (3.1), we have for
a boundary face e ⊂ ED that [[u]]T = g in L2(e)3, in addition to [[u]]T = 0 on EI
and [[εu]]N = 0 on E0

I .

Finite element spaces. Let p = {pK}K∈Th be a degree vector that assigns to
each element K ∈ Th a polynomial approximation order pK ≥ 1. The generic
hp-finite element space of piece-wise polynomials is then given by

Sp,0(Th) := {u ∈ L2(Ω) : u|K ∈ SpK (K), ∀K ∈ Th},

where SpK (K) is the space PpK (K) of complex polynomials of degree at most pK in
K if K is a tetrahedron, and the space QpK (K) of complex polynomials of degree at
most pK in each variable in K if K is a parallelepiped. The superscript 0 indicates
that Sp,0(Th) ⊂ L2(Ω) = H0(Ω). We define Sp,0(T 0

h ) similarly.

3.2. Derivation of the LDG method. We introduce the auxiliary variables

s = µ−1w w = ∇× u in Ω,(3.2)

ϕ = νρ ρ = ∇ · (εu) in Ω0.(3.3)

Notice that s ∈ H(curl; Ω), w ∈ L2(Ω)3, ϕ ∈ H1(Ω0), and ρ ∈ L2(Ω0). By
subtracting ε times the gradient of equation (2.8) from equation (2.7), taking into
account the above identities and that F = εF′ in Ωσ and F = εF′+ ε∇f in Ω0, we
obtain

∇× s + iωσu− ε∇ϕ = F in Ω0,

∇× s + iωσu = F in Ωσ.
(3.4)

The LDG method is obtained by discretizing the first-order equations in (3.2)–
(3.4) in a discontinuous way. Notice that s is related to the magnetic field phasor
given by iω−1µ−1∇ × u. In this context, however, s, w, ϕ, and ρ are auxiliary
variables introduced in order to derive the method and will be eliminated from
the equations locally in an element-by-element manner. This local solvability gives
the name to the LDG method. We refer to [17] and [18] for a discussion of this
elimination process from a computational point of view.

Since the LDG method is defined element-wise, we fix K ∈ Th and set K0 =
K0(K) = K, if K ⊂ Ω0, and K0 = K0(K) = ∅, if K ⊂ Ωσ. We proceed formally
by multiplying in K the first identities in (3.2) and (3.3) by test functions z and
τ , the second identities in (3.2) and (3.3) by test functions t and ψ, and equation
(3.4) by a test function v. By integration by parts and varying K ∈ Th, we obtain
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the following weak formulation:∫
K

µ−1w · z̄ dx =
∫
K

s · z̄ dx,∫
K0

νρ τ̄ dx =
∫
K0

ϕ τ̄ dx,∫
K

w · t̄ dx =
∫
K

u · ∇ × t̄ dx−
∫
∂K

t̄ · u× nK ds,∫
K0

ρ ψ̄ dx = −
∫
K0

εu · ∇ψ̄ dx +
∫
∂K0

εu · (ψ̄ nK0) ds,∫
K

s · ∇ × v̄ dx−
∫
∂K

v̄ · s× nK ds+ iω

∫
K

σu · v̄ dx

+
∫
K0

ϕ∇ · (εv̄) dx −
∫
∂K0

ϕ (εv̄) · nK0 ds =
∫
K

F · v̄ dx,

(3.5)

for any K ∈ Th, where nK is the outward normal unit vector to ∂K. The boundary
integrals in (3.5) have to be understood as duality pairings.

We approximate (w, ρ, s, ϕ,u) in (3.5) by functions (wh, ρh, sh, ϕh,uh) in the
finite element space Wh ×Mh ×Σh ×Qh ×Vh chosen as

Wh = Σh = Vh = Sp,0(Th)3, Mh = Qh = {∇h · (εvh)|Ω0 : vh ∈ Vh},(3.6)

for a given degree distribution p and with ∇h· denoting the element-wise divergence
operator. This choice implies that ∇h ×Vh ⊂ Σh = Wh, where ∇h× denotes the
element-wise curl operator. Notice that the finite-dimensional spaces Mh and Qh
are not, in general, polynomial spaces. On the other hand, the unknowns belonging
to these spaces are auxiliary and will be eliminated from the formulation.

The discrete version of (3.5) then reads as follows. Find (wh, ρh, sh, ϕh,uh) ∈
Wh ×Mh × Σh × Qh ×Vh such that, for any K ∈ Th and for any choice of test
functions (z, τ, t, ψ,v) ∈Wh ×Mh ×Σh ×Qh ×Vh, we have∫

K

µ−1wh · z̄ dx =
∫
K

sh · z̄ dx,∫
K0

νρh τ̄ dx =
∫
K0

ϕh τ̄ dx,∫
K

wh · t̄ dx =
∫
K

uh · ∇ × t̄ dx−
∫
∂K

t̄ · ûh × nK ds,∫
K0

ρh ψ̄ dx = −
∫
K0

εuh · ∇ψ̄ dx +
∫
∂K0

̂̂εuh · (ψ̄ nK0) ds,∫
K

sh · ∇ × v̄ dx−
∫
∂K

v̄ · ŝh × nK ds+ iω

∫
K

σuh · v̄ dx

+
∫
K0

ϕh∇ · (εv̄) dx −
∫
∂K0

̂̂ϕh (εv̄) · nK0 ds =
∫
K

F · v̄ dx.

(3.7)

Here, ûh, ŝh, ̂̂εuh and ̂̂ϕh denote the so-called numerical fluxes which are approx-
imations to the traces of u, s, εu and ϕ on ∂K. They are crucial for the stability
as well as for the accuracy of the method and will be defined in the next section.
The fluxes ûh and ŝh are related to the curl-curl operator, whereas the fluxes ̂̂εuh
and ̂̂ϕh are associated with the grad-div operator in Ω0.
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Remark 3.1. If µ and ν are piece-wise constant, the auxiliary variables w and ρ are
not needed, and the method can be defined by introducing directly s = µ−1∇× u
and ϕ = ν∇ · u.

3.3. The numerical fluxes. As in [6], we understand the numerical fluxes as
follows. Given u and s in Hs(Th)3 for s > 1

2 , the fluxes û = û(u) and ŝ = ŝ(s,u)

belong to L2(E)3. Similarly, for u|Ω0 ∈ Hs(T 0
h )3 and ϕ ∈ Hs(T 0

h ), ̂̂εu = ̂̂εu(u|Ω0 , ε)
belongs to L2(E0)3 and ̂̂ϕ = ϕ̂(ϕ,u|Ω0 ) to L2(E0). The fluxes are thus single-
valued on the union of faces. Furthermore, the fluxes ũ and ̂̂εu are assumed to be
independent of the auxiliary variables in order to be able to eliminate them from
the system of equations.

We define the fluxes ŝ and û face by face by adapting to the curl-curl operator
the numerical fluxes considered in [19] and [24] for the Laplacian

ŝ =

{
{{s}} − a[[u]]T + b[[s]]T if e ⊂ EI ,
s− a(n× u− g) if e ⊂ ED,

û =

{
{{u}}+ b[[u]]T if e ⊂ EI ,
g × n if e ⊂ ED.

We use a similar recipe for the grad-div fluxes and set

̂̂ϕ =


{{ϕ}} − c[[εu]]N + d · [[ϕ]] if e ⊂ E0

I ,

−λ〈εu|Ω0 · n0,j1〉Γ0,j , if e ⊂ Γ0,j j = 1, . . . , J,
0 if e ⊂ Γ0,0,

̂̂εu =

{
{{εu}} − d[[εu]]N if e ⊂ E0

I ,
εu if e ⊂ E0

∂ .

Here, a ∈ L∞(E), b ∈ L∞(EI), c ∈ L∞(E0
I), and d ∈ L∞(E0

I)3 are real-valued
functions still at our disposal. This completes the definition of the LDG method.

Let us make some comments about these fluxes.
• The fluxes introduced above are conservative in the sense of [6], and give rise

to a consistent formulation (see Theorem 3.3 below).
• The parameters a and c are referred to as discontinuity stabilization parameters.

They have to be positive and will be chosen depending on the local meshsize,
polynomial degree, and on the coefficients µ and ν. The parameters b and d, on
the other hand, are independent of h and p; their purpose is to enhance the accuracy
in the approximation of the auxiliary variables s and ϕ that might be computed
in a postprocessing step. Indeed, in [24] it has been shown for the Laplacian that
a parameter like b and d can be selected in such a way that the auxiliary variable
superconverges on Cartesian grids.
• The numerical flux û enforces the boundary condition (2.3) in a weak sense.

Namely, for any u ∈ Hs(Th)3, we have that

n× û = g on ED,(3.8)

since g = n × (g × n). The flux ̂̂ϕ imposes the condition ϕ = 0 on Γ0,0 and
ϕ = −λ〈εuh|Ω0 · n0,j , 1〉Γ0,j on Γ0,j, j = 1, . . . , J . Since for the exact solution
λ〈εu|Ω0 · n0,j , 1〉Γ0,j = fj on Γ0,j , the flux ̂̂ϕ approximates the boundary condition



hp-LDG METHOD FOR LOW-FREQUENCY MAXWELL EQUATIONS 1189

ϕ = −fj on Γ0,j. This is the reason why the constants fj do not appear explicitly
in the formulation (see also Remark 3.4 below).
• Since the trace on Γ0,j of a function v ∈ Hs(T 0

h )3 with s > 1
2 actually belongs

to L2(Γ0,j)3, and ε is smooth in each element, we have that 〈εv|Ω0 · n0,j , 1〉Γ0,j =∫
Γ0,j

εv|Ω0 · n0,j ds, j = 1, . . . , J .

3.4. The mixed formulation of the LDG method. In this section, we cast the
LDG method in a mixed form, as in [19], and prove existence and uniqueness of
discrete solutions and consistency of the method. To do this, we sum the equations
in (3.7) over all elements, and integrate back by parts. Then, by using the identities

∑
K∈Th

∫
∂K

t̄ · v × nK ds = −
∑
K∈Th

∫
∂K

v · t̄× nK ds

= −
∫
E
[[v]]T · {{t̄}} ds+

∫
EI
{{v}} · [[t̄]]T ds,∑

K∈T 0
h

∫
∂K

w · (ψ̄ nK) ds =
∫
E0
I

(
{{w}} · [[ψ̄]] + [[w]]N{{ψ̄}}

)
ds+

∫
E0
∂

w · (ψ̄n0) ds,

(3.9)

that hold true for all v, t ∈ TR(E)3, w ∈ TR(E0)3, and ψ ∈ TR(E0), as well as the
form of the numerical fluxes, we obtain the following formulation.

Mixed formulation. Find (wh, ρh, sh, ϕh,uh) ∈Wh×Mh×Σh×Qh×Vh such
that

∫
Ω

µ−1wh · z̄ dx =
∫

Ω

sh · z̄ dx,∫
Ω0

ν ρh τ̄ dx =
∫

Ω0

ϕh τ̄ dx,∫
Ω

wh · t̄ dx =
∫

Ω

∇h × uh · t̄ dx−
∫
EI

b[[uh]]T · [[t̄]]T ds

−
∫
E
[[uh]]T · {{t̄}} ds+

∫
ED

g · t̄ ds,∫
Ω0

ρh ψ̄ dx =
∫

Ω0

∇h · (εuh) ψ̄ dx−
∫
E0
I

d[[εuh]]N · [[ψ̄]] ds−
∫
E0
I

[[εuh]]N{{ψ̄}} ds,∫
Ω

sh · ∇h × v̄ dx−
∫
E
{{sh}} · [[v̄]]T ds−

∫
EI

b[[sh]]T · [[v̄]]T ds+
∫
E
a[[uh]]T · [[v̄]]T ds

+ iω

∫
Ω

σuh · v̄ dx +
∫

Ω0

ϕh∇h · (εv̄) dx −
∫
E0
I

{{ϕh}}[[εv̄]]N ds

−
∫
E0
I

d · [[ϕh]][[εv̄]]N ds+
∫
E0
I

c[[εuh]]N [[εv̄]]N ds

+ λ

J∑
j=1

〈εuh|Ω0 · n0,j , 1〉Γ0,j 〈εv̄|Ω0 · n0,j, 1〉Γ0,j=
∫

Ω

F · v̄ dx +
∫
ED

a g · (n× v̄) ds,

(3.10)

for all (z, τ, t, ψ,v) ∈Wh ×Mh ×Σh ×Qh ×Vh.



1190 I. PERUGIA AND D. SCHÖTZAU

Remark 3.2. By using (3.9), the first two terms in the fifth equation of (3.10) can
be expressed by∫

Ω

sh · ∇h × v̄ dx−
∫
E
{{sh}} · [[v̄]]T ds

=
∫

Ω

sh · ∇h × v̄ dx−
∑
K∈Th

∫
∂K

v̄ · sh × nK ds−
∫
EI
{{v̄}} · [[sh]]T ds.

The right-hand side is well defined for the exact solution s if we interpret the
boundary integrals as duality pairings and take into account that [[s]]T = 0 on EI .
Thus, for the exact solution s we understand the fifth equation in the above sense.

We prove existence and uniqueness of solutions and consistency of (3.10) in the
following theorem. Notice that in order to have consistency we do not need any
smoothness assumption on the exact solution in addition to (3.1).

Theorem 3.3. For strictly positive discontinuity stabilization parameters a and c,
the LDG method defines a unique approximate solution (wh, ρh, sh, ϕh,uh) in the
space Wh ×Mh × Σh × Qh × Vh. Furthermore, the LDG formulation (3.10) is
consistent, i.e., the exact solution (w, ρ, s, ϕ,u) satisfies (3.10), for all test functions
(z, τ, t, ψ,v) ∈Wh ×Mh ×Σh ×Qh ×Vh.

Proof. Since problem (3.10) is linear and finite dimensional, in order to prove ex-
istence and uniqueness of solutions, it is sufficient to prove that if F = 0 and
g = 0, then wh = sh = uh = 0 and ρh = ϕh = 0. Taking (z, τ, t, ψ,v) =
(wh, ρh, sh, ϕh,uh) in (3.10), subtracting the first and the second equations from
the third and the fourth ones, respectively, and then subtracting the results from
the fifth equation, we obtain∫

Ω

µ−1w2
h dx +

∫
E
a [[uh]]2T ds+ iω

∫
Ω

σu2
h dx +

∫
Ω0

ν ρ2
h dx

+
∫
E0
I

c [[εuh]]2N ds+ λ

J∑
j=1

〈εuh|Ω0 · n0,j, 1〉2Γ0,j
= 0.

Taking into account that µ−1 is positive definite in Ω and ν is positive in Ω0, we
have wh = 0 in Ω and ρh = 0 in Ω0; since σ is positive definite in Ωσ, then uh = 0
in Ωσ, and since a > 0, c > 0 and λ > 0, then [[uh]]T = 0 on E , [[εuh]]N = 0
on E0

I and 〈εuh|Ω0 · n0,j, 1〉Γ0,j = 0, j = 1, . . . , J . Now, since Σh = Wh and
Qh = Mh, taking sh and ϕh as test functions in the first and second equations of
(3.10), respectively, from wh = 0 and ρh = 0, we have sh = 0 in Ω and ϕh = 0 in
Ω0. Then, the third equation reduces to

∫
Ω∇h×uh · t̄ dx = 0, for all t ∈ Σh. Since

∇h×Vh ⊆ Σh, we have ∇h×uh = 0 in Ω. Similarly, the fourth equation becomes∫
Ω0
∇h · (εuh) ψ̄ dx = 0, for all ψ ∈ Qh. From the definition of Qh, we can take

ψ = ∇h · (εuh) and obtain ∇h · (εuh) = 0 in Ω0. From uh = 0 in Ωσ and [[uh]]T = 0
on E , we get n0×uh = 0 on ∂Ω0. We can summarize the above conditions on uh in
Ω0 as uh|Ω0 ∈ H0(curl0, div0

ε; Ω0) and 〈εuh|Ω0 · n0,j , 1〉Γ0,j = 0, j = 1, . . . , J . This
implies that uh = 0 also in Ω0 (see [30], formula (4.14) with Γτ = ∂Ω0, Γν = ∅ and
weight ω = ε). This concludes the proof of the first part of the theorem.

Now let (w, ρ, s, ϕ,u) be the exact solution. From s = µ−1w and ϕ = νρ, it is
obvious that the first two equations are fulfilled, for any z ∈Wh and τ ∈Mh. Since
[[u]]T = 0 on EI and [[u]]T = g ∈ L2(ED)3 on ED, due to (3.1), taking into account
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that w = ∇ × u, we have that the third equation is satisfied by w and u, for all
t ∈ Σh. Similarly, since [[εu]]N = 0 on E0

I , taking into account that ϕ = ∇ · (εu),
we have that the fourth equation is satisfied by ϕ and u, for all ψ ∈ Qh. Finally,
consider the fifth equation. Understanding the first two terms as in Remark 3.2,
integrating by parts and observing that u ∈ V, s ∈ H(curl; Ω) and ϕ ∈ H1(Ω0),
together with the definition of {{ϕ}}, we get∫

Ω

∇× s · v̄ dx + iω

∫
Ω

σu · v̄ dx−
∫

Ω0

ε∇ϕ · v̄ dx +
∫
E0
∂

ϕ (εv̄) · n ds

+ λ

J∑
j=1

〈εu|Ω0 · n0,j , 1〉Γ0,j 〈εv̄|Ω0 · n0,j, 1〉Γ0,j =
∫

Ω

F · v̄ dx.

From (3.4) and the flux conditions (2.10), we obtain∫
E0
∂

ϕ (εv̄ · n) ds+
J∑
j=1

fj〈εv̄|Ω0 · n0,j , 1〉Γ0,j = 0,

which is satisfied because ϕ|∂Ω0 =
(
ν∇ · (εu)

)
|∂Ω0 = −f |∂Ω0 , and f is zero on Γ0,0

and constant fj on Γ0,j , j = 1, . . . , J . This completes the proof of the theorem.

Remark 3.4. The constants fj do not appear explicitly in the LDG formulation
(3.10). As can be inferred from the proof of Theorem 3.3, this is due to the particular
choice of the flux conditions in (2.10), whose purpose is, in fact, to cancel the terms
containing the constants fj , since they are not easily computable from the datum
F. If we consider problem (2.7)–(2.10) with more general flux conditions

λ〈εu|Ω0 · n0,j , 1〉Γ0,j = αj ,

for given constants αj , j = 1, . . . , J , the numerical flux ̂̂ϕ on the faces belonging to
Γ0,j, j = 1, . . . , J , must be adjusted accordingly by settinĝ̂ϕ = (αj − fj)− λ〈εuh|Ω0 · n0,j , 1〉Γ0,j .

Consequently, the right-hand side in the last equation of (3.10) becomes∫
Ω

F · v̄ dx +
∫
ED

a g · (n× v̄) ds+
J∑
j=1

(αj − fj)〈εv̄|Ω0 · n0,j , 1〉Γ0,j .

3.5. The primal formulation of the LDG method. In this subsection, we
eliminate the auxiliary variables w, s, ρ, and ϕ from the mixed system in (3.10)
and derive the primal formulation of the LDG method. This is possible since the
fluxes û and ̂̂εu are chosen independently of s and ϕ.

Let us start by introducing the lifting operators L1 : L2(EI)3 → Σh, L2 :
L2(E)3 → Σh, M1 : L2(E0

I)3 → Qh, and M2 : L2(E0
I)→ Qh defined by∫

Ω

L1(v) · t̄ dx =
∫
EI

v · [[t̄]]T ds,
∫

Ω

L2(v) · t̄ dx =
∫
E

v · {{t̄}} ds ∀t ∈ Σh,∫
Ω0

M1(v) ψ̄ dx =
∫
E0
I

v · [[ψ̄]] ds,
∫

Ω0

M2(v) ψ̄ dx =
∫
E0
I

v {{ψ̄}} ds ∀ψ ∈ Qh,

as well as the lifting GD ∈ Σh of the boundary datum given by∫
Ω

GD · t̄dx =
∫
ED

g · t̄ dx ∀t ∈ Σh.
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Denoting by ΠΣh
and ΠQh the L2-projections onto Wh = Σh and Mh = Qh,

the first and second equation in (3.10) can be written as sh = ΠΣh
(µ−1wh) and

ϕh = ΠQh(νρh). Then, from the third and fourth equations in (3.10), we obtain

sh = ΠΣh

[
µ−1

(
∇h × uh − L([[uh]]T ) + GD

)]
,(3.11)

ϕh = ΠQh

[
ν
(
∇h · (εuh)−M([[εuh]]N )

)]
,(3.12)

with the compact notation L([[uh]]T ) := L1(b[[uh]]T ) + L2([[uh]]T ), with b[[uh]]T un-
derstood as being restricted to EI , andM([[εuh]]N ) :=M1(d[[εuh]]N )+M2([[εuh]]N ).
Since ∇h ×Vh ⊆ Σh and ∇h · (εVh)|Ω0 = Qh, identities (3.11) and (3.12) can be
used in the fifth equation of (3.10), giving rise to the so-called primal formulation
of the LDG discretization of (2.7)–(2.10), in the variable u only.

Primal formulation. Find uh ∈ Vh such that, for all v ∈ Vh,

Bh(uh,v) := Ah(uh,v) + Ih(uh,v) + iω

∫
Ω

σuh · v̄ dx + J (uh,v) = Fh(v),

(3.13)

where the forms Ah, Ih (interior penalty form) and J are defined by

Ah(u,v) =
∫

Ω

µ−1
(
∇h × u− L([[u]]T )

)
·
(
∇h × v̄ − L([[v̄]]T )

)
dx

+
∫

Ω0

ν
(
∇h · (εu)−M([[εu]]N )

) (
∇h · (εv̄)−M([[εv̄]]N )

)
dx,

Ih(u,v) =
∫
E
a[[u]]T · [[v̄]]T ds+

∫
E0
I

c[[εu]]N [[εv̄]]N ds,

J (u,v) = λ
J∑
j=1

〈εu|Ω0 · n0,j , 1〉Γ0,j 〈εv̄|Ω0 · n0,j , 1〉Γ0,j ,

and the linear form Fh by

Fh(v) =
∫

Ω

F · v̄ dx−
∫

Ω

µ−1GD ·
(
∇h × v̄ − L([[v̄]]T )

)
dx +

∫
ED

a g · (n× v̄) ds.

For discrete test and trial functions, the primal form (3.13) of the LDG method,
together with (3.11) and (3.12), is equivalent to the mixed system (3.10). However,
unlike (3.10), the formulation (3.13) is no longer consistent, due to the discrete
nature of the lifting operators. Nevertheless, the form Bh(·, ·) has the continuity and
coercivity properties that allow us to carry out an error analysis in a straightforward
way by using Strang’s lemma. Regarding this point, our approach differs from the
analysis in [6].

Remark 3.5. Other DG methods can be defined by modifying the definitions of
Ah(u,v), Ih(u,v), and Fh(v) in (3.13). The interior penalty (IP) method and its
nonsymmetric variant (NIP), for instance, can be obtained by taking in (3.13) the
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same Ih(u,v) as in the LDG method, and instead of Ah(u,v) and Fh(v),

AIP
h (u,v) =

∫
Ω

µ−1∇h × u · ∇h × v̄ dx−
∫
E
[[u]]T · {{µ−1∇h × v̄}} ds

−
∫
E
[[v̄]]T · {{µ−1∇h × u}} ds+

∫
Ω0

ν∇h · (εu)∇h · (εv̄) dx

−
∫
E0
I

[[εu]]N {{ν∇h · (εv̄)}} ds−
∫
E0
I

[[εv̄]]N {{ν∇h · (εu)}} ds,

F IP
h (v) =

∫
Ω

F · v̄ dx−
∫
ED

g · µ−1∇h × v̄ ds+
∫
ED

a g · (n× v̄) ds,

and

ANIP
h (u,v) =

∫
Ω

µ−1∇h × u · ∇h × v̄ dx +
∫
E
[[u]]T · {{µ−1∇h × v̄}} ds

−
∫
E
[[v̄]]T · {{µ−1∇h × u}} ds+

∫
Ω0

ν∇h · (εu)∇h · (εv̄) dx

+
∫
E0
I

[[εu]]N {{ν∇h · (εv̄)}} ds−
∫
E0
I

[[ε̄v]]N {{ν∇h · (εu)}} ds,

FNIP
h (v) =

∫
Ω

F · v̄ dx +
∫
ED

g · µ−1∇h × v̄ ds+
∫
ED

a g · (n× v̄) ds.

These formulations can also be derived by using the same mixed formulation as
for the LDG method, and defining appropriately the numerical fluxes (see [6]).
The analysis of the IP and NIP methods can be carried out in an almost identical
manner to the one of the LDG method presented in the next section. A slight
difference consists in a restriction on the choice of the stabilization parameters a
and c in the IP method which in fact have to be large enough. We refer to [6]
and [18] for an extensive discussion and comparison of different DG methods for
diffusion problems, from a theoretical and a computational point of view.

4. Error analysis

The aim of this section is to present an hp-error analysis of the LDG method
introduced in Section 3, based on its primal formulation (3.13). Although we use
the same setting of [6], our analysis differs from the one presented there since we
directly work on the discrete form (3.13), taking into account nonconsistency terms
by Strang’s lemma. This approach in the analysis of DG methods seems to be new
and more suited for hp-version approaches.

Our analysis is carried out under the assumption that the coefficients of the
electric permittivity tensor are piece-wise constant; i.e.,

εij ∈ S0,0(Th), i, j = 1, 2, 3,(4.1)

so that the spaces Qh and Mh consist of piece-wise polynomials.
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The main result (see Theorem 4.11 below) consists in error estimates, in a suit-
able energy-norm, of the form

|||u− uh|||2h ≤ C
∑
K∈Th

h
2 min(pK ,sK)
K

p2sK−1
K

(
‖u‖2sK+1,K + ‖µ−1∇× u‖2sK ,K

)
+ C

∑
K∈T 0

h

h
2 min(pK ,sK)
K

p2sK−1
K

‖ν∇ · (εu)‖2sK ,K ,

for exact solutions u that satisfy u ∈ HsK+1(K)3, µ−1∇×u ∈ HsK (K)3, for allK ∈
Th, and ν∇·(εu) ∈ HsK (K), for allK ∈ T 0

h , with local regularity exponents sK ≥ 1.
These estimates are optimal in the local meshsizes hK and slightly suboptimal in
the local approximation degree pK . Furthermore, in Theorem 4.11, we also make
explicit the dependence on the local material properties.

The outline of this section is as follows. In subsection 4.1, we define the disconti-
nuity stabilization parameters a and c in terms of the local meshsize, approximation
degree and magnetic permeability. Subection 4.2 is devoted to establish hp-stability
estimates for the lifting operators L and M in the definition of the primal formu-
lation. These estimates will be crucial in subsection 4.3 where we prove continuity
and coercivity properties of the bilinear form Bh(·, ·). Based on Strang’s lemma, we
derive our main hp-error estimates in subsection 4.4. In subsection 4.5 we recover
error estimates for the auxiliary variables s and ϕ used in the derivation of the LDG
method. Recall that the variable s is related to the magnetic field, and therefore its
computation might be of interest. We conclude in subsection 4.6 by investigating
the stability of the discrete problem with respect to the data.

4.1. The discontinuity stabilization parameters. In this subsection, we define
the discontinuity stabilization parameters a and c in terms of the “local meshsize”,
“local polynomial degree” and “local magnetic permeability”. This allows us to
obtain continuity and coercivity constants independent of global bounds for these
quantities.

Let us start by introducing the functions h and p in L∞(E), related to the local
meshsize and polynomial degree, defined as

h = h(x) :=

{
min{hK , hK′} if x is in the interior of ∂K ∩ ∂K ′,
hK if x is in the interior of ∂K ∩ ∂Ω,

p = p(x) :=

{
max{pK , pK′} if x is in the interior of ∂K ∩ ∂K ′,
pK if x is in the interior of ∂K ∩ ∂Ω.

Regarding the magnetic permeability, we assume µ to be Lipschitz continuous
in K, for any K ∈ Th. This implies that µ|K can be extended up to ∂K, and
we denote this extension by µK . Therefore, for any K ∈ Th, there are positive
constants mK and MK such that

mK ≤ λi(µK(x)) ≤MK ∀x ∈ K̄,(4.2)

where λi(µK(x)), i = 1, 2, 3, are the eigenvalues of µK(x). Note that, for any
K ∈ Th, the constants mK and MK satisfy 0 < m ≤ mK and MK ≤ M < +∞,
where m is the uniform ellipticity constant of µ and M is the reciprocal of the
uniform ellipticity constant of µ−1.
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We choose the scalar function ν in the formulation of the problem as ν(x) =
1/|µ(x)|, for all x ∈ Ω0, where |µ(x)| is the spectral norm of the tensor µ(x) (|µ(x)|
simply reduces to µ(x) whenever µ is a scalar function). Then we also have that ν
satisfies

1
MK

≤ νK(x) ≤ 1
mK

∀x ∈ K̄,

for any K ∈ T 0
h , where we have defined νK in the same way as µK .

We make the additional assumption that there exists κ > 0 such that

MK

mK
≤ κ ∀K ∈ Th, ∀Th.(4.3)

Whenever µ is a piece-wise constant scalar function, (4.3) holds true with κ = 1.
For µ piece-wise constant tensor, κ in (4.3) expresses the maximum anisotropy
among the different materials. We set

m = m(x) :=

{
min{|µK(x)|, |µK′ (x)|} if x is in the interior of ∂K ∩ ∂K ′,
|µK(x)| if x is in the interior of ∂K ∩ ∂Ω.

We are now ready to define the discontinuity stabilization parameters a and c in
terms of h, p and m. They are chosen as

a = αh−1p2m−1 in L∞(E), c = αh−1p2m−1 in L∞(E0
I),(4.4)

with α > 0 independent of the meshsize, approximation order, and the magnetic
permeability. The parameters b and d are taken to be of order one; i.e.,

‖b‖L∞(EI) ≤ δ, ‖d‖L∞(E0
I)3 ≤ δ,(4.5)

with δ ≥ 0 independent of h and p.

Remark 4.1. The choice of the stabilization parameters of order p2/h is the hp-
extension of the choice in [6] for h-version DG methods for the Laplacian. This
choice balances the interior penalty terms in Ih(·, ·) with the stability estimates in
Proposition 4.2 below for the lifting operators L andM, or, equivalently, with the
inverse estimate (4.6) below.

Stabilization parameters of order p2/h can also be found in the hp-literature on
DG methods for diffusion problems (see, e.g., [34], [41] and [43], where different error
analyses are developed). The choice p/h is investigated in [34] for the NIP method,
still leading to a suboptimal error bound in p. Furthermore, an improved p-bound
has been recently obtained in [32] for two-dimensional reaction-diffusion problems
on affine quadrilateral grids with hanging nodes, for solutions belonging to certain
“augmented” Sobolev spaces. The same result can be established in our case,
leading to hp-optimal bounds on structured grids, provided that the corresponding
approximation properties can be extended to three space-dimensions.

4.2. The lifting operators. In this section, we derive hp-stability estimates for
the lifting operators introduced in subsection 3.5. To do this, we define the space

V(h) := {v = wh + w |wh ∈ Vh, w ∈ V with n×w ∈ L2(∂Ω)3}.

Owing to (3.1), the exact solution u belongs to V(h).
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Proposition 4.2. Let L and M be the lifting operators defined in subsection 3.5.
Under the above assumptions on µ, ν and ε, and assumption (4.5) on the parameters
b and d, we have that, for all v ∈ V(h),

‖µ− 1
2L([[v]]T )‖0,Ω ≤ Clift κ (δ + 1)‖h− 1

2 pm−
1
2 [[v]]T ‖0,E ,

‖ν 1
2M([[εv]]N )‖0,Ω0 ≤ Clift κ (δ + 1)‖h− 1

2 pm−
1
2 [[εv]]N‖0,E0

I
,

with a constant Clift > 0 only depending on the shape regularity of the mesh. More-
over, for GD defined in subsection 3.5, we have

‖µ− 1
2 GD‖0,Ω ≤ Clift κ ‖h−

1
2 pm−

1
2 g‖0,ED .

Proof. Let us first recall the inverse inequality

‖q‖20,∂K ≤ Cinv
p2
K

hK
‖q‖20,K ∀q ∈ SpK (K),(4.6)

with a constant Cinv > 0 only depending on the shape regularity of the mesh. For
two-dimensional elements, the proof of (4.6) can be found in [44, formula (4.6.4) of
Theorem 4.76]; for three-space dimensions, the proof is analogous (see also [34]).

From the definition of L and M in terms of Li and Mi, i = 1, 2 (see subsec-
tion 3.5), the bounds for L and M can be proved by combining estimates for Li
and Mi, i = 1, 2. We develop in detail the proof of the following estimate for L1:

‖µ− 1
2L1(b[[v]]T )‖0,Ω ≤ Clift κ δ‖h−

1
2 pm−

1
2 [[v]]T ‖0,EI .(4.7)

Recall that, for v = wh + w ∈ V(h), we have [[v]]T = [[wh]]T on EI . Denoting
by ΠΣh

the L2-projection onto Σh, by the definition of the operator L1 and the
Cauchy–Schwarz inequality, we have

‖µ− 1
2L1(b[[v]]T )‖0,Ω = sup

z∈L2(Ω)3

∫
Ω
L1(b[[v]]T ) · µ− 1

2 z̄ dx
‖z‖0,Ω

= sup
z∈L2(Ω)3

∫
Ω L1(b[[v]]T ) ·ΠΣh

(µ−
1
2 z̄) dx

‖z‖0,Ω

= sup
z∈L2(Ω)3

∫
EI b[[v]]T · [[ΠΣh

(µ−
1
2 z̄)]]T ds

‖z‖0,Ω

≤ δ sup
z∈L2(Ω)3

‖h− 1
2 pm−

1
2 [[v]]T ‖0,EI‖h

1
2 p−1m

1
2 [[ΠΣh

(µ−
1
2 z)]]T ‖0,EI

‖z‖0,Ω
.

Then, by using conditions (4.2) on µ, the definitions of [[·]]T , m, h and p, the inverse
inequality (4.6), and properties of the L2-projection, we obtain

‖h 1
2 p−1m

1
2 [[ΠΣh

(µ−
1
2 z)]]T ‖20,EI ≤ 2

∑
K∈Th

hKMK

p2
K

‖nK ×ΠΣh
(µ−

1
2 z)‖20,∂K

≤ 2Cinv

∑
K∈Th

MK‖ΠΣh
(µ−

1
2 z)‖20,K ≤ 2Cinv

∑
K∈Th

MK‖µ−
1
2 z‖20,K

≤ 2Cinv

∑
K∈Th

MK

mK
‖z‖20,K ≤ 2Cinv κ ‖z‖20,Ω,

where in the last step we used (4.3). This proves the desired estimate for L1 in
(4.7). Analogous estimates can be obtained for M1 and M2, since assumption
(4.1) on ε guarantees that Qh is a polynomial space, as well as for L2, recalling
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that [[v]]T ∈ L2(ED)3 on ED. Then the bounds for L and M immediately follow.
Since GD = L([[u]]T ), the same arguments give the bound for GD.

4.3. Continuity, coercivity, and error bound. In this section, we establish
continuity and coercivity properties of the form Bh. To do this, we introduce the
seminorm | · |h given by

|v|2h = ‖µ− 1
2∇h × v‖20,Ω + ‖h− 1

2 pm−
1
2 [[v]]T ‖20,E

+ ‖ν 1
2∇h · (εv)‖20,Ω0

+ ‖h−1
2 pm−

1
2 [[εv]]N‖20,E0

I
,

(4.8)

as well as the norm ||| · |||h

|||v|||2h = |v|2h + |ω|‖σ 1
2 v‖20,Ω + λ

J∑
j=1

|〈εv|Ω0 · n0,j , 1〉Γ0,j |2.(4.9)

That (4.9) is actually a norm in V(h) is proved in the following proposition.

Proposition 4.3. The quantity defined in (4.9) is a norm in V(h).

Proof. From |||v|||h = 0, we immediately have v = 0 in Ωσ, [[v]]T = 0 on E and
[[εv]]N = 0 on E0

I ; i.e., v ∈ H0(curl; Ω) ∩H(divε; Ω0). Now, from v = 0 in Ωσ and
v ∈ H0(curl; Ω), it follows that n0 × v|Ωσ = 0 on the interface Γ = ∂Ωσ ∩ ∂Ω0,
and therefore n0 × v|Ω0 = 0 on ∂Ω0. From ∇× v = 0 in Ω, n0 × v = 0 on ∂Ω0,
∇ · (εv) = 0 in Ω0 and 〈εv|Ω0 · n0,j , 1〉Γ0,j = 0, j = 1 . . . , J , we get v = 0 also in
Ω0 (see, e.g., formula (4.14) in [30] with Ω = Ω0, Γτ = ∂Ω0, Γν = ∅, and ω = ε),
which concludes the proof.

Let us first prove continuity and coercivity properties for the LDG forms in
(3.13).

Lemma 4.4. Assume the above hypotheses on µ, ν, ε and on the coefficients in
the definition of the numerical fluxes. Then the following continuity property holds
true:

|Ah(w,v) + Ih(w,v)|≤ C|w|h|v|h ∀w,v ∈ V(h),

with a constant C only depending on α, δ, κ, and Clift.

Proof. For w,v ∈ V(h), we have

|Ah(w,v)+Ih(w,v)|
≤ ‖µ− 1

2 [∇h ×w − L([[w]]T )]‖0,Ω ‖µ−
1
2 [∇h × v − L([[v]]T )]‖0,Ω

+ ‖ν 1
2 [∇h · (εw)−M([[εw]]N )]‖0,Ω0 ‖ν

1
2 [∇h · (εv) −M([[εv]]N )]‖0,Ω0

+ α‖h− 1
2 pm−

1
2 [[w]]T ‖0,E ‖h−

1
2 pm−

1
2 [[v]]T ‖0,E

+ α‖h− 1
2 pm−

1
2 [[εw]]N‖0,E0

I
‖h− 1

2 pm−
1
2 [[εv]]N‖0,E0

I
.

From Proposition 4.2, we have ‖L([[z]]T )‖0,Ω ≤ C|z|h and ‖M([[εz]]N )‖0,Ω0 ≤ C|z|h,
for z = w and z = v, and the result immediately follows.

Lemma 4.5. Assume the above hypotheses on µ, ν, ε and on the coefficients in
the definition of the numerical fluxes. The coercivity property

Ah(v,v) + Ih(v,v) ≥ C|v|2h ∀v ∈ Vh,

holds true for any choice of α > 0. The constant C depends on α, δ, κ and Clift.
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Proof. We have

Ah(v,v) + Ih(v,v) =
∫

Ω

{µ−1[∇h × v − L([[v]]T )]}2 dx

+
∫

Ω0

{ν[∇h · (εv)−M([[εv]]N )]}2 dx

+ α‖h− 1
2 pm−

1
2 [[v]]T ‖20,E + α‖h− 1

2 pm−
1
2 [[εv]]N‖20,E0

I
.

The first term at the right-hand side can be bounded by

‖µ− 1
2∇h × v‖20,Ω − 2

∫
Ω

µ−1∇h × v · [L([[v]]T )] dx + ‖µ− 1
2 [L([[v]]T )]‖20,Ω

≥ (1− χ)‖µ− 1
2∇h × v‖20,Ω +

(
1− 1

χ

)
‖µ− 1

2 [L([[v]]T )]‖20,Ω,

with χ > 0 still at our disposal. Similarly, the second term at the right-hand side
can be bounded by

(1− χ)‖ν 1
2∇h · (εv)‖20,Ω0

+
(

1− 1
χ

)
‖ν 1

2 [M([[εv]]N )]‖20,Ω0
.

Therefore, using the estimates of Proposition 4.2 and taking the χ that satisfies the
inequalities

C2
liftκ

2(δ + 1)2

C2
liftκ

2(δ + 1)2 + α
< χ < 1,

we obtain the result.

Proposition 4.6. Assume the above hypotheses on µ, ν, ε and on the coefficients
in the definition of the numerical fluxes. The following continuity and coercivity
properties hold true:

|Bh(w,v)| ≤ Ccont|||w|||h|||v|||h ∀w,v ∈ V(h),

|Bh(v,v)| ≥ Ccoer|||v|||2h ∀v ∈ Vh,

with Ccont and Ccoer only depending on α, δ, κ and Clift.

Proof. Since |Bh(v,v)| =
[(
Ah(v,v) + Ih(v,v) + J (v,v)

)2 + ω2‖σ 1
2 v‖40,Ω

] 1
2 , the

continuity and coercivity properties follow from Lemmas 4.4 and 4.5 and the defi-
nition of the norm ||| · |||h.

As already pointed out, the primal formulation (3.13) that our analysis is based
on is not consistent due to the discrete nature of the lifting operators. However, from
Proposition 4.6 and Strang’s lemma (see, e.g., [22, Theorem 4.2.2]), we immediately
have the following error bound.

Theorem 4.7. Assume the above hypotheses on µ, ν, ε and on the coefficients in
the definition of the numerical fluxes. Then we have

|||u− uh|||h ≤
(

1 +
Ccont

Ccoer

)
inf

v∈Vh

|||u− v|||h +
1

Ccoer
sup

w∈Vh

|Bh(u,w)−Fh(w)|
|||w|||h

.

Remark 4.8. In order to analyze stability properties of discrete solutions with re-
spect to the data, the continuity of the functional Fh(·) with respect to the norm
||| · |||h has to be investigated. This is not straightforward since ||| · |||h does not contain
the L2-norm over Ω0. In subsection 4.6, we prove a discrete Poincaré inequality
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that allows us to address this issue in the particular case where µ is the identity.
In the general case of discontinuous permeabilities, we obtain the same stability
estimates provided that the datum F satisfies certain restrictions. Also this point
is addressed in subsection 4.6.

4.4. hp-error estimates. In this section, we estimate the terms at the right-hand
side in the error bound established in Theorem 4.7 and derive a priori error estimates
for piece-wise smooth solutions. In order to do that, we need the following hp-
approximation result.

Proposition 4.9. Let K ∈ Th and suppose that u ∈ HtK (K), tK ≥ 0. Then there
exists a sequence of polynomials πhKpK u in SpK (K), pK = 1, 2, . . . , satisfying

‖u− πhKpK u‖q,K ≤ C
h

min(pK+1,tK)−q
K

ptK−qK

‖u‖tK,K ∀ 0 ≤ q ≤ tK .(4.10)

Furthermore, if tK ≥ 1,

‖u− πhKpK u‖0,∂K ≤ C
h

min(pK+1,tK)− 1
2

K

ptK−
1
2

‖u‖tK,K .(4.11)

The constant C is independent of u, hK and pK , but depends on the shape regularity
of the mesh and on t = maxK∈Th tK .

Proof. The assertion (4.10) has been proved in [7, Lemma 4.5] for two-dimensional
domains. For three-dimensional domains, the proof is analogous, see also [34].
In order to prove (4.11), we use the multiplicative trace inequality (see, e.g, [41,
Lemma A.3])

‖η‖20,∂K ≤ C
(
‖η‖0,K‖∇η‖0,K + h−1

K ‖η‖20,K
)

(4.12)

that holds true for any η ∈ H1(K) with a constant C > 0 only depending on the
shape regularity of the mesh. The second assertion now follows by applying in
(4.12) the approximation result (4.10) for q = 0, 1.

We will denote by Πh
p the operator defined by Πh

p (u)|K = πhKpK (u|K), for any
K ∈ Th, with πhKpK (u|K) as in Proposition 4.9, and by Πh

p the operator that maps
u = (u1, u2, u3) into

(
Πh
p(u1),Πh

p (u2),Πh
p(u3)

)
.

Next, we give an estimate of the residual Rh(u,w) := Bh(u,w)−Fh(w).

Lemma 4.10. Let u be the exact solution. Assume (µ−1∇ × u)|K ∈ HsK (K)3,
for all K ∈ Th, and (ν∇ · (εu))|K ∈ HsK (K), for all K ∈ T 0

h , with local regularity
exponents sK ≥ 1. Then, for any w ∈ Vh, the estimate

|Rh(u,w)| ≤ C
( ∑
K∈Th

h
2 min(pK+1,sK)
K MK

p2sK
K

‖µ−1∇× u‖2sK ,K
) 1

2 |||w|||h

+ C
( ∑
K∈T 0

h

h
2 min(pK+1,sK)
K MK

p2sK
K

‖ν∇ · (εu)‖2sK ,K
) 1

2 |||w|||h

hold true, where MK are the constants in (4.2).
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Proof. By straightforward calculations involving integration by parts, taking into
account that u ∈ V, L([[u]]T ) = GD, along with boundary and flux conditions, and
the characterization of the data, we have that, for any w ∈ Vh,

Rh(u,w) =
∫
E
{{µ−1∇× u}} · [[w̄]]T ds−

∫
Ω

µ−1∇× u · L([[w̄]]T ) dx

+
∫
E0
I

{{ν∇ · (εu)}} [[εw̄]]N ds−
∫

Ω0

ν∇ · (εu)M([[εw̄]]N ) dx.

Since ∫
Ω

µ−1∇× u · L([[w̄]]T ) dx =
∫

Ω

ΠΣh
(µ−1∇× u) · L([[w̄]]T ) dx,∫

Ω0

ν∇ · (εu)M([[εw̄]]N ) dx =
∫

Ω0

ΠQh(ν∇ · (εu))M([[εw̄]]N ) dx,
(4.13)

for the L2-projections ΠΣh
and ΠQh onto Σh and Qh, respectively, we can write

Rh(u,w) =: T1 + T2 + T3 + T4,

where

T1 =
∫
E
{{µ−1∇× u−ΠΣh

(µ−1∇× u)}} · [[w̄]]T ds,

T2 =
∫
EI

[[µ−1∇× u−ΠΣh
(µ−1∇× u)]]T · b[[w̄]]T ds,

T3 =
∫
E0
I

{{ν∇ · (εu)−ΠQh(ν∇ · (εu))}} [[εw̄]]N ds,

T4 =
∫
E0
I

[[ν∇ · (εu)− ΠQh(ν∇ · (εu))]] · d[[εw̄]]N ds.

Let us bound the term T1; the other terms are bounded similarly, observing our
assumptions on b and d. By the Cauchy–Schwarz and triangle inequalities, and the
definition of ||| · |||h, we obtain the bound

T1 ≤ |||w|||h
(
‖h 1

2 p−1m
1
2 {{µ−1∇× u−Πh

p(µ−1∇× u)}}‖0,E
+ ‖h 1

2 p−1m
1
2 {{Πh

p(µ−1∇× u)−ΠΣh
(µ−1∇× u)}}‖0,E

)
.

From the definitions of h, p and m, and (4.11) with tK = sK , we conclude that

‖h 1
2 p−1m

1
2 {{µ−1∇× u−Πh

p(µ−1∇× u)}}‖20,E

≤ C
∑
K∈Th

hKMK

p2
K

‖µ−1∇× u−Πh
p(µ−1∇× u)‖20,∂K

≤ C
∑
K∈Th

h
2 min(pK+1,sK)
K MK

p2sK+1
K

‖µ−1∇× u‖2sK ,K ,
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and, similarly,

‖h 1
2 p−1m

1
2 {{Πh

p(µ−1∇× u)−ΠΣh
(µ−1∇× u)}}‖20,E

≤ C
∑
K∈Th

hKMK

p2
K

‖Πh
p(µ−1∇× u)−ΠΣh

(µ−1∇× u)‖20,∂K

≤ C
∑
K∈Th

MK‖Πh
p(µ−1∇× u)−ΠΣh

(µ−1∇× u)‖20,K

≤ C
∑
K∈Th

MK‖Πh
p(µ−1∇× u)− µ−1∇× u‖20,K

≤ C
∑
K∈Th

h
2 min(pK+1,sK)
K MK

psKK
‖µ−1∇× u‖2sK ,K ,

where we have used the inverse estimate (4.6), the fact that Πh
p(µ−1∇ × u) =

ΠΣh
Πh
p(µ−1∇×u), the stability of the L2-projection ΠΣh

, and (4.10) with tK = sK
and q = 0. Therefore, we obtain

T 2
1 ≤ C|||w|||2h

∑
K∈Th

h
2 min(pK+1,sK)
K MK

p2sK
K

‖µ−1∇× u‖2sK ,K .

This, together with similar estimates for the terms T2, T3 and T4 in the above
expression for Rh(u,w), proves the result.

In order to estimate the infimum at the right-hand side of the bound in The-
orem 4.7, we make the assumption that the local meshsizes and approximation
degrees have bounded variation; i.e., that there exist a constant ` > 0 such that

`−1hK ≤ hK′ ≤ `hK , `−1pK ≤ pK′ ≤ `pK(4.14)

for all K and K ′ sharing a two-dimensional face. In particular, this assumption for-
bids the situation where the mesh is indefinitely refined in only one of two adjacent
subdomains. Nevertheless, the above hypothesis is not restrictive in practice, and
allows, for instance, for geometric refinement and linearly increasing approximation
orders. For any element K, we define the quantities

mδK = min{mK′ : K and K ′ share at least one face},
eδK = max{eK′ : K and K ′ share at least one face},

where eK denotes the maximum absolute value of the coefficients of ε|K , if K ⊂ Ω0,
and is set for convenience to zero, if K ⊂ Ωσ.

We are now ready to prove the main approximation result.

Theorem 4.11. Assume the above hypotheses on µ, ν, ε and on the coefficients
in the definition of the numerical fluxes. Consider shape regular meshes and poly-
nomial degree distributions obeying (4.14). Furthermore, denote by uh the dis-
crete solution of the LDG method defined in Section 3 and let the exact solution
u satisfy u|K ∈ HsK+1(K)3, (µ−1∇ × u)|K ∈ HsK (K)3, for all K ∈ Th, and
(ν∇ · (εu))|K ∈ HsK (K), for all K ∈ T 0

h , with local regularity exponents sK ≥ 1.
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Then we have the a priori error estimate

|||u− uh|||2h ≤ C
∑
K∈Th

h
2 min(pK ,sK)
K

p2sK−1
K

(
NK‖u‖2sK+1,K +MK‖µ−1∇× u‖2sK ,K

)
+ C

∑
K∈T 0

h

h
2 min(pK ,sK)
K

p2sK−1
K

MK‖ν∇ · (εu)‖2sK ,K ,

where MK are the constants in (4.2), NK = 1+eδK
mδK

+ |ω|supx∈K |σ(x)|+λ eδK , with
|σ(x)| denoting the spectral norm of the tensor σ(x). The constant C depends on
Ω, Ω0, {sK}, κ, `, α, δ, and on the shape regularity of the mesh, but is independent
of the local meshsizes hK and the polynomial degrees pK .

Proof. We start by estimating |||u − Πh
p(u)|||h, where Πh

p is the operator defined
after Proposition 4.9. From the definition of ||| · |||h, the assumptions on µ, ν, ε and
on the coefficients in the definition of the numerical fluxes, and hypothesis (4.14),
we have

|||u−Πh
pu|||2h ≤ C

( ∑
K∈Th

1 + eδK
mδK

‖u−Πh
pu‖21,K +

∑
K∈Th

p2
K(1 + eδK)
hK mδK

‖u−Πh
pu‖20,∂K

+ |ω|
∑
K∈Th

sup
x∈K
|σ(x)| ‖u−Πh

pu‖20,K + λ eδK
∑

K∈T 0
h :∂K∩∂Ω0 6=∅

‖u−Πh
pu‖20,∂K

)
(C depends on Ω, Ω0, κ, `, α, δ and on the shape regularity of the mesh). The
hp-approximation results with tK = sK + 1 in Proposition 4.9 yield

|||u−Πh
pu|||2h ≤ C

∑
K∈Th

h
2 min(pK ,sK)
K

p2sK−1
K

NK‖u‖2sK+1,K .

By inserting this and the estimate of Lemma 4.10 in the inequality of Theorem 4.7,
we obtain the result.

Notice that for solutions u ∈ Hs+1(Th)3, with µ−1∇ × u ∈ Hs(Th)3 and
ν∇ · (εu) ∈ Hs(T 0

h ), s ≥ 1, assuming constant approximation orders pK = p
for all K ∈ Th, setting h = maxK∈Th hK , and incorporating bounds related to µ,
ν, σ, ε and λ in the constant C, the estimate in Theorem 4.11 simply reads as

|||u− uh|||h ≤ C
hmin(s,p)

ps−
1
2

(
‖u‖s+1,Th + ‖µ−1∇× u‖s,Th + ‖ν∇ · (εu)‖s,T 0

h

)
.

This estimate is optimal in the meshsize h, and slightly suboptimal in p (half a
power of p is lost). In the case of elliptic diffusion problems in two- or three-
dimensional domains, no better p-bound can be found in the literature for general
unstructured grids (see, e.g., the hp-version analyses in [34, 41, 43]). Improved
p-bounds have been obtained in [20] for one-dimensional convection-diffusion prob-
lems, and recently in [32] for two-dimensional reaction-diffusion problems on affine
quadrilateral grids containing hanging nodes.

Remark 4.12. For solutions that are element-wise analytic, we have in fact exponen-
tial convergence as p→∞. This can be seen from the error bound in Theorem 4.7
and standard approximation properties for analytic functions (see, e.g., [44]).
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Note also that the restriction sK ≥ 1 has been made for convenience only, and
it is possible to prove error estimates for sK > 1

2 as well. This minimal regularity
assumption is still unrealistic when strong edge and corner singularities are present
in the solutions (see [27]). On the other hand, the use of appropriate hp-mesh
design principles might resolve these singularities at exponential convergence (see,
e.g., [44]). The extension of our analysis to such low-regularity cases remains to be
done.

4.5. Error estimates for the auxiliary variables. By invoking the expressions
in (3.11) and (3.12), we are able to derive error estimates for the auxiliary variables
s and ϕ. This is important, in particular, because the variable s is related to the
magnetic field that might be of interest. These estimates are a straightforward
consequence of the following result.

Proposition 4.13. Under the same assumptions as in Theorem 4.11, we have

‖µ−1∇× u− sh‖0,Ω ≤ C
(
‖µ−1∇× u−Πh

p(µ−1∇× u)‖0,Ω + |||u− uh|||h
)
,

‖ν∇ · (εu)− ϕh‖0,Ω0 ≤ C
(
‖ν∇ · (εu)−Πh

p(ν∇ · (εu))‖0,Ω0 + |||u− uh|||h
)
,

with C depending on α, δ, κ and the shape regularity of the mesh.

Proof. Let us denote again by ΠΣh
the L2-projection onto Σh. Taking into ac-

count the identity (3.11), the triangle inequality, and that, for the exact solution
u, L([[u]]T ) = GD, we obtain

‖µ−1∇× u− sh‖0,Ω ≤ T1 + T2,

where
T1 = ‖µ−1∇× u−ΠΣh

(µ−1∇h × uh)‖0,Ω,
T2 = ‖ΠΣh

(
µ−1L([[u− uh]]T )

)
‖0,Ω.

Using the stability of ΠΣh
and the estimates in Proposition 4.2, we obtain T2 ≤

C|||u − uh|||h. By using the the triangle inequality, the fact that Πh
p(µ−1∇× u) =

ΠΣhΠh
p(µ−1∇× u), the stability of ΠΣh , and the definition of ||| · |||h, we estimate

T1 as

T1 ≤ ‖µ−1∇× u−ΠΣh
(µ−1∇× u)‖0,Ω + ‖ΠΣh

(µ−1∇× u− µ−1∇h × uh)‖0,Ω
≤ C‖µ−1∇× u−Πh

p(µ−1∇× u)‖0,Ω + |||u− uh|||h.
This completes the proof of the first estimate. The second one can be obtained in

a similar way.

Proposition 4.13 together with Theorem 4.11 and Proposition 4.9 yields immedi-
ately hp-bounds for the error in s and ϕ. For instance, for solutions u ∈ Hs+1(Th)3,
with µ−1∇ × u ∈ Hs(Th)3 and ν∇ · (εu) ∈ Hs(T 0

h ), s ≥ 1, and for constant ap-
proximation orders pK = p, for all K ∈ Th, we get

‖µ−1∇× u− sh‖0,Ω ≤C
hmin(s,p)

ps−
1
2

(
‖u‖s+1,Th+ ‖µ−1∇× u‖s,Th+ ‖ν∇ · (εu)‖s,T 0

h

)
,

‖ν∇ · (εu)− ϕh‖0,Ω0 ≤C
hmin(s,p)

ps−
1
2

(
‖u‖s+1,T 0

h
+ ‖µ−1∇× u‖s,Th+ ‖ν∇ · (εu)‖s,T 0

h

)
.
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4.6. Stability of discrete solutions. In this section, we investigate the stability
of discrete solutions with respect to the data. First, we do this by proving a
discrete Poincaré inequality, based on a duality argument similar to the one in [5].
We restrict ourselves to the case of µ = I, with I being the identity, since the
elliptic regularity result needed for this argument does not hold true if µ is piece-
wise smooth (see [27]). Then, in the general case of discontinuous coefficients, the
analogous stability result can be obtained, provided that the source term F satisfies
certain restrictions.

Proposition 4.14. Assume that µ = I, and take ν = 1, λ = 1. Moreover, assume
the above hypotheses (4.4) and (4.5) on the coefficients in the definition of the
numerical fluxes. Then we have that

‖v‖0,Ω ≤ C|||v|||h

for any v ∈ Hs(Th)3, s > 1
2 . The constant C is independent of the meshsizes and

the approximation degrees.

Proof. For simplicity, we also assume that ε = I (the case of piece-wise constant
ε being completely analogous). Fix v ∈ Hs(Th)3. Since v ∈ L2(Ω)3, we can
decompose v according to (2.6) into v = F′ + F′′, with F′′ = ∇f in Ω0 and
f = fj on Γ0,j , j = 1, . . . , J . We consider the following dual problem. Find
z ∈ H(curl; Ω) ∩H(div; Ω0) such that

∇×∇× z + iωσz = F′ in Ω,(4.15)

∇ · z = −f in Ω0,(4.16)

n× z = 0 on ∂Ω,(4.17)

〈z|Ω0 · n0,j , 1〉Γ0,j = fj ∀ j = 1, . . . , J.(4.18)

First, we claim that

∇× z ∈ Hs0(Ω)3, ‖∇× z‖s0,Ω ≤ C‖v‖0,Ω, for s0 >
1
2 .(4.19)

To prove this, set w = ∇×z. From equation (4.15), we have ∇×w = −iωσz+F′ ∈
L2(Ω)3. Furthermore, ∇ ·w = 0 and w · n = ∇× z · n = 0 on ∂Ω. Hence, from [4,
Proposition 3.7], it follows that w ∈ Hs0(Ω)3 for a regularity exponent s0 >

1
2 , as

well as ‖w‖s0,Ω ≤ C‖w‖H(curl;Ω). However, ‖w‖H(curl;Ω) ≤ C‖z‖H(curl;Ω) +‖F′‖0,Ω.
Then, from the stability estimate in Theorem 2.1 and the L2-orthogonality of the
decomposition of v, we also have ‖w‖s0,Ω ≤ C‖v‖0,Ω, which completes the proof
of (4.19).

Subtracting the gradient of equation (4.16) from (4.15), multiplying the result
by v̄, and integrating over Ω and Ω0, owing to the decomposition of v, we obtain
that

‖v‖20,Ω =
∫

Ω

(∇×∇z + iωσz) · v̄ dx−
∫

Ω0

(∇∇ · z) · v̄ dx.

Let us first consider the integral containing the curl-curl term. Integration by parts,
together with the first rule in (3.9), as well as the Cauchy–Schwarz inequality and
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the definition of ||| · |||h, gives

|
∫

Ω

∇×∇z · v̄ dx| ≤ |
∫

Ω

∇× z · ∇h × v̄ dx|+ |
∫
E
{{∇× z}} · [[v̄]]T ds|

≤ ‖z‖H(curl;Ω)|||v|||h + C
( ∑
K∈Th

hK
p2
K

‖∇× z‖20,∂K
) 1

2 |||v|||h.

Using similar scaling arguments as the ones in [3, Lemma 5.2], together with the
result of [3, Lemma 5.5], we can see that

‖∇× z‖20,∂K ≤ Ch−1
K ‖∇× z‖2s0,K ,

with a constant C only depending on the shape regularity of the meshes. This,
together with p−1

K ≤ 1, yields
∑

K∈Th
hK
p2
K
‖∇× z‖20,∂K ≤ C‖∇× z‖s0,Ω ≤ C‖v‖0,Ω.

Therefore, since also ‖z‖H(curl;Ω) ≤ C‖v‖0,Ω (see Theorem 2.1), we get

|
∫

Ω

∇×∇z · v̄ dx| ≤ C‖v‖0,Ω|||v|||h.

Similarly, by integration by parts, using the second identity in (3.9), we obtain

|
∫

Ω0

(∇∇ · z) · v̄ dx| ≤ ‖z‖H(div;Ω0)|||v|||h

+ |
∫
E0
I

{{∇ · z}}[[v̄]]N ds|+
J∑
j=1

|fj |
∫

Γ0,j

|v̄ · n0,j |ds,

where we also used the fact that ∇ · z is zero on Γ0,0 and equal to −fj on Γ0,j , for

j = 1, . . . , J . Since ‖∇ · z‖0,∂K ≤ Ch
− 1

2
K ‖∇ · z‖1,K , for all K ∈ T 0

h , we get

|
∫
E0
I

{{∇ · z}}[[v̄]]N ds| ≤ C‖∇ · z‖1,Ω0 |||v|||h.

The Cauchy–Schwarz inequality, the trace theorem, and the standard Poincaré
inequality then yield

J∑
j=1

|fj |
∫

Γ0,j

|v̄ · n0,j | ds ≤ C‖∇f‖0,Ω0|||v|||h.

Combining the above estimates, together with ‖z‖H(div;Ω0) +‖∇·z‖1,Ω0 ≤ C‖v‖0,Ω
and a similar argument for the term iω

∫
Ω
σzv̄ dx, shows that

‖v‖20,Ω ≤ C‖v‖0,Ω|||v|||h.

This completes the proof.

From Proposition 4.14, we are able to establish the continuity of the functional
Fh(·) in (3.13) with respect to the norm ||| · |||h, at least in the case where µ = I.

Corollary 4.15. Under the same assumptions as in Proposition 4.14, we have for
all v ∈ Vh,

|Fh(v)| ≤ C
(
‖F‖20,Ω + ‖h− 1

2 p g‖20,∂Ω

) 1
2 |||v|||h,

with a constant C independent of the meshsizes and the approximation degrees.
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Proof. From the definition of Fh, Proposition 4.14 and the Cauchy–Schwarz in-
equality, we obtain

|Fh(v)| ≤ C
(
‖F‖20,Ω + ‖GD‖20,Ω + ‖h− 1

2 p g‖20,∂Ω

) 1
2 |||v|||h,

for any v ∈ Vh. The result follows from the estimate for GD in Proposition 4.2.

Consider now the case where µ satisfies our more general assumptions. The
part of the functional Fh involving the boundary term can be dealt with as in
Corollary 4.15; therefore, we will focus on the term

∫
Ω

F · v̄ dx. We can prove the
following result.

Proposition 4.16. Assume our general hypotheses on µ, ν, ε and the coefficients
in the definition of the numerical fluxes. Whenever Ω0 is not simply connected,
let {Σ`}`=1,... ,L be an admissible set of cuts for Ω0 in the sense of [4], and denote
by n` the normal unit vector to Σ`, pointing in one of the two possible directions.
Given F ∈ L2(Ω)3, let ε−1F = F′ + F′′ be its orthogonal decomposition, according
to (2.6). If

εF′ · n0 = 0 on ∂Ω0,

〈εF′ · n`, 1〉Σ` = 0 ∀` = 1, . . . , L,
(4.20)

then, for all v ∈ Vh, we have∫
Ω

F · v̄ dx ≤ C‖F‖0,Ω|||v|||h,

with a constant C independent of the meshsizes and the approximation degrees.

We remark that, if F = J, then (4.20) is satisfied (εF′ = J and F′′ = 0).
Moreover, whenever Ω0 is simply connected, the second condition in (4.20) is empty.

Proof of Proposition 4.16. Recall that in the orthogonal decomposition (2.6) of
ε−1F = F′ + F′′, the function F′′ is such that F′′|Ωσ = 0 and F′′|Ω0 = ∇f , with
f ∈ H1(Ω0), f = 0 on Γ0,0 and f constant, say f = fj, on each Γ0,j for j = 1, . . . , J .
The standard Poincaré inequality implies that ‖f‖0,Ω0 and ‖f‖1,Ω0 are equivalent
to ‖∇f‖0,Ω0 = ‖F′′‖0,Ω0 . From [4, Theorem 3.17], the assumptions (4.20) on F′,
together with ∇ · (εF′)|Ω0 = 0, imply that there exists w ∈ H0(curl, div; Ω0) with
∇ · w = 0 in Ω0 and 〈w · n0,j , 1〉Γ0,j = 0, j = 1, . . . , J , such that εF′ = ∇ × w.
Corollary 3.19 in [4] implies that ‖w‖0,Ω0 and ‖w‖H(curl;Ω0) are equivalent to
‖∇ × w‖0,Ω0 = ‖εF′‖0,Ω0 . Moreover, from the continuous imbedding of
H0(curl, div; Ω0) in Hs(Ω0)3, for some s > 1

2 , we also have that w ∈ Hs(Ω0)3

and ‖w‖s,Ω0 can be controlled by ‖w‖H(curl;Ω0).
After these preliminaries, we can proceed by estimating

∫
Ω F·v̄ dx. We can write∫

Ω

F · v̄ dx =
∫

Ωσ

F · v̄ dx +
∫

Ω0

∇×w · v̄ dx +
∫

Ω0

∇f · (εv̄) dx

=
∫

Ωσ

F · v̄ dx +
∫

Ω0

w · ∇h × v̄ dx−
∑
K∈T 0

h

∫
∂K

w · nK × v̄ ds

−
∫

Ω0

f ∇h · (εv̄) dx +
∑
K∈T 0

h

∫
∂K

f εv̄ · nK ds.
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Therefore,∫
Ω

F·v̄ dx ≤ |ω|−1‖σ− 1
2 F‖0,Ωσ |ω|‖σ

1
2 v‖0,Ωσ + ‖µ 1

2 w‖0,Ω0‖µ−
1
2∇h × v‖0,Ω0

+ ‖h 1
2 p−1m

1
2 w‖0,E0

I
‖h− 1

2 pm−
1
2 [[v]]T ‖0,E0

I
+ ‖ν− 1

2 f‖0,Ω0‖ν
1
2∇h · (εv)‖0,Ω0

+ ‖h 1
2 p−1m

1
2 f‖0,E0

I
‖h− 1

2 pm−
1
2 [[εv]]N‖0,E0

I

+
(
λ−1

J∑
j=1

f2
j

) 1
2
(
λ

J∑
j=1

|〈εv · n0,j , 1〉Γ0,j |2
) 1

2
,

where we have used the fact that n0 ×w = 0 on ∂Ω0. Consequently,

∫
Ω

F · v̄ dx ≤ C|||v|||h
(
|ω|−1‖σ− 1

2 F‖20,Ωσ + ‖µ 1
2 w‖20,Ω0

+ ‖h 1
2 p−1m

1
2 w‖20,E0

+ ‖ν− 1
2 f‖20,Ω0

+ ‖h 1
2 p−1m

1
2 f‖20,E0

I
+ λ−1

J∑
j=1

f2
j

)
.

For the volume terms at right-hand side, we have

|ω|−1‖σ− 1
2 F‖20,Ωσ ≤ C‖F‖

2
0,Ωσ ,

‖µ 1
2 w‖20,Ω0

≤ C‖w‖20,Ω0
≤ C‖F‖20,Ω0

,

‖ν− 1
2 f‖20,Ω0

≤ C‖f‖20,Ω0
≤ C‖F‖20,Ω0

,

with C independent of the meshsizes and the approximation degrees. Using stan-
dard scaling arguments, we obtain

‖h 1
2 p−1m

1
2 w‖20,E0 ≤

∑
K∈T 0

h

hKMK

pK
‖w‖20,∂K ≤

∑
K∈T 0

h

hKMK

pK
h−1
K ‖w‖2s,K

≤C‖w‖2s,Ω0
≤ C‖w‖2H(curl;Ω0) ≤ C‖F‖20,Ω0

,

again with C independent of the meshsizes and the approximation degrees. Simi-
larly,

‖h 1
2 p−1m

1
2 f‖20,E0

I
≤
∑
K∈T 0

h

hKMK

pK
‖f‖20,∂K ≤

∑
K∈T 0

h

hKMK

pK
h−1
K ‖f‖21,K

≤C‖f‖21,Ω0
≤ C‖F‖20,Ω0

,

and

λ−1
J∑
j=1

f2
j ≤ Cλ−1‖f‖1,Ω0 ≤ C‖F‖0,Ω0 .

This completes the proof of the proposition.

Remark 4.17. In the particular case where Ω = Ω0 (and Ωσ = ∅), the stability
result of Proposition 4.16 holds true without any restriction on F. In fact, the aim
of assumption (4.20) is to guarantee the condition n0×w = 0 on ∂Ω0 for w in the
expression εF′ = ∇ × w, which is needed in order to derive the estimates in the
proof of Proposition 4.16. As can be inferred from the proof, this condition is no
longer necessary if Ω = Ω0. niIn this case, we can use [4, Theorem 3.12] instead
of [4, Theorem 3.17] and express εF′ as ∇ × w, with w ∈ H(curl; Ω); the norm
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equivalence is established by [4, Corollary 3.16] instead of [4, Corollary 3.19]. Then
the proof goes through without the condition n×w = 0 on ∂Ω = ∂Ω0.

5. Conclusions and extensions

In this paper, a local discontinuous Galerkin method for the discretization of
the time-harmonic Maxwell equations in low-frequency regime has been proposed
and its hp-error analysis has been carried out. Heterogeneous materials and topo-
logically nontrivial domains have been considered; assumptions that are realistic in
practice. Although the setting of [6] to cast the LDG method in its primal form has
been used, a new technique to derive error estimates has been proposed, which is
based on Strang’s lemma and which might be of independent interest in the analysis
of DG methods. For triangulations containing hanging nodes, hp-error estimates
that are optimal in the meshsize and suboptimal in the approximation order have
been derived. This analysis is the first hp-error analysis for the LDG method in
several space dimensions and in this sense also extends our previous work in [19].

Let us also indicate some related issues that are still open:
• For the Laplacian, the parameters b and d can be chosen in such a way that the

LDG method superconverges on Cartesian grids and for tensor product polynomials
(see [24]). Whether or not a similar phenomenon takes place in the context of the
p-version of the method is an open question and has to be addressed in future work.
• The study of hp-refinement toward edge and corner singularities, in order to

resolve them at exponential convergence, remains an open problem.
• One of the drawbacks of discontinuous Galerkin methods is the relatively high

number of degrees of freedom due to the discontinuous nature of the finite element
spaces. This problem can be overcome by coupling discontinuous and conforming
elements, following [40]. The approach there combines the ease with which the LDG
method handles hanging nodes with the lower computational cost of standard finite
elements.
• The extension of the LDG method to mixed boundary conditions can be done

in a straightforward way (see, e.g, [19]). However, in order to avoid further com-
plications in the analysis of the corresponding continuous problems, this point is
omitted in this paper.

We conclude by pointing out that the analysis of discontinuous Galerkin methods
for time-harmonic Maxwell equations in the high-frequency case as well as the
numerical study and implementation of our methods are the subject of ongoing
work.
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Appendix A. The proof of Theorem 2.1

This appendix is devoted to the proof of Theorem 2.1. We start by establishing,
in subsection A.1, the existence of a continuous and ε-divergence-free lifting of
tangential traces. This result is a key tool in the proof of existence and uniqueness
of solutions to our model problem which is developed in subsection A.2.
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A.1. Divergence-free continuous lifting of tangential traces. Recall that we
denote by H(∂Ω) the space of tangential traces of H(curl; Ω)-functions. We refer
to [15] for its complete characterization and for the definition of its norm. The
existence of a continuous lifting of the tangential traces of H(curl; Ω)-functions is
guaranteed by Theorem 3.1 in [14] in the case where Ω is a bounded, open Lipschitz
polyhedron in R3, not necessarily simply connected. In this section, we show that we
can actually require this lifting to have zero ε-divergence in a Lipschitz polyhedral
subdomain Ω0 of Ω, and to satisfy homogeneous flux conditions through surfaces
of the possible cavities of Ω0. This result is stated in the following proposition. We
define the space

Hflux(divε; Ω0) = {v ∈ H(divε; Ω0) : 〈εv|Ω0 · n0,j , 1〉Γ0,j = 0, j = 1, . . . , J},
(A.1)

along with its subspace Hflux(div0
ε; Ω0) = Hflux(divε; Ω0) ∩H(div0

ε; Ω0).

Proposition A.1. Let Ω be a connected, bounded, open Lipschitz polyhedron in
R3, and Ω0 ⊆ Ω a Lipschitz polyhedral subdomain. Then, given g̃ ∈ H(curl; Ω),
there is ũ ∈ H(curl; Ω) ∩Hflux(div0

ε; Ω0) such that n × ũ = n × g̃ =: g on ∂Ω and
‖ũ‖H(curl;Ω) ≤ C‖g‖H(∂Ω).

In order to prove Proposition A.1, we need the following two lemmas.

Lemma A.2. Let Ω be a connected, bounded, open Lipschitz polyhedron in R3.
Then, given g̃ ∈ H(curl; Ω), there is ũbc ∈ H(curl; Ω) ∩H(div0

ε; Ω) such that n ×
ũbc = n× g̃ =: g on ∂Ω and ‖ũbc‖H(curl;Ω) ≤ C‖g‖H(∂Ω).

Proof. Let g̃ ∈ H(curl; Ω). Since ∇ × H(curl; Ω) = ∇ × H1(Ω)3 (see [30]), there
exists g1 ∈ H1(Ω)3 such that ∇ × g1 = ∇× g̃. Then, we can write g̃ = g1 + g2,
with g2 ∈ H(curl; Ω) and ∇ × g2 = 0. Consequently, g2 admits the ε-orthogonal
decomposition g2 = ∇ϕ+ w, with ϕ ∈ H1(Ω), w ∈ H0(div0

ε; Ω)∩H(curl0; Ω), (see
[30], formula (4.14) with Γν = ∂Ω, Γτ = ∅, and ω = ε).

Let ϕ̃ be the unique solution to the following problem: Find ϕ̃ ∈ H1(Ω)3 such
that ϕ̃ = ϕ|∂Ω on ∂Ω, where ϕ|∂Ω is the trace in H

1
2 (∂Ω) of ϕ ∈ H1(Ω), and∫

Ω ε∇ϕ̃ · ∇ϕ∗ dx = −
∫

Ω εg1 · ∇ϕ∗ dx, for any ϕ∗ ∈ H1
0 (Ω). Observe that ∇ϕ̃+ g1

is ε-orthogonal to ∇H1
0 (Ω), and therefore ∇ϕ̃ + g1 ∈ H(divε; Ω) (again see [30]).

Now, define ũbc = g1 + ∇ϕ̃ + w. By construction, n × ũbc = g on ∂Ω, since
n × ∇ϕ̃ = n × ∇ϕ on ∂Ω, and ∇ · (εũbc) = 0 in Ω immediately follows from
∇ · (ε∇ϕ̃ + εg1) = 0 and ∇ · (εw) = 0. Therefore, the tangential trace operator
is linear continuous and surjective from the subspace H(curl; Ω) ∩ H(div0

ε; Ω) of
H(curl; Ω) onto H(∂Ω), and then, up to its kernel, its inverse is continuous, due to
the open mapping theorem.

Lemma A.3. Let Ω and Ω0 be as in Proposition A.1, ũbc be as in Lemma A.2,
and let α ∈ Rp be the vector with components αj = 〈εũbc|Ω0 · n0,j , 1〉Γ0,j , j =
1, . . . , J . Then there is a function ũflux ∈ H0(curl0; Ω) ∩ H(div0

ε; Ω0) such that
〈εũflux|Ω0 · n0,j , 1〉Γ0,j = αj, j = 1, . . . , J , and ‖ũflux‖0,Ω ≤ C‖ũbc‖0,Ω.

Proof. The conditions 〈εuflux|Ω0 · n0,j , 1〉Γ0,j = αj , j = 1, . . . , J , define a unique
uflux ∈ H0(curl0; div0

ε; Ω0) satisfying ‖uflux‖0,Ω0 ≤ C|α| (see, e.g., [30, Theorem
8.4]; the proof of the inequality is immediate). Actually, ‖uflux‖0,Ω0 ≤ C‖ũbc‖0,Ω.
This can be seen in the following way. By definition of dual norms, by the fact that
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Γ0,j is a surface without boundary, and by continuity of the normal trace operator
from H(divε; Ω0) onto H−

1
2 (∂Ω0), we have

|〈εũbc|Ω0 · n0,j , 1〉Γ0,j |
‖1‖ 1

2 ,Γ0,j

≤ sup
ϕ∈H

1
2 (Γ0,j)

|〈εũbc|Ω0 · n0,j , ϕ〉Γ0,j |
‖ϕ‖ 1

2 ,Γ0,j

= ‖εũbc|Ω0 · n0,j‖
H−

1
2 (Γ0,j)

≤ ‖εũbc|Ω0 · n‖H− 1
2 (∂Ω0)

≤ C‖ũbc‖H(divε;Ω0) = C‖ũbc‖0,Ω.

Therefore, |α| ≤ C‖ũbc‖0,Ω, from where ‖uflux‖0,Ω0 ≤ C‖ũbc‖0,Ω follows. Taking
the trivial extension ũflux of uflux to Ω completes the proof.

Proof of Proposition A.1. It is enough to define ũ = ũbc − ũflux, where ũbc and
ũflux are as in Lemmas A.2 and A.3, respectively.

A.2. Proof of Theorem 2.1. Recalling that V = H(curl; Ω) ∩H(divε; Ω0), en-
dowed with the norm

‖v‖2V = |ω|‖σ
1
2
ϑv‖20,Ω + ‖µ− 1

2∇× v‖20,Ω

+ ‖ν 1
2∇ · (εv)‖20,Ω0

+ λ
J∑
j=1

|〈εv|Ω0 · n0,j , 1〉Γ0,j |2,

we set V0 = H0(curl; Ω) ∩Hflux(divε; Ω0), with Hflux(divε; Ω0) defined in (A.1).
Consider the bilinear form in (2.11)

a(u,v) =
∫

Ω

µ−1∇× u · ∇ × v dx + iω

∫
Ω

σ u · v dx +
∫

Ω0

ν∇ · (εu)∇ · (εv) dx.

In the following proposition, we prove V-ellipticity of a(·, ·) : V0 ×V0 → R. The
proof essentially follows the lines of [2, Theorem 3.1], but uses the result of Propo-
sition A.1.

Proposition A.4. There is C > 0 such that a(u,u) ≥ C‖u‖2V for all u ∈ V0.

Proof. Since, for u ∈ V0, a(u,u) differs from ‖u‖2V only in that it does not contain
|ω|‖ϑ 1

2 u‖20,Ω0
, it is enough to prove that, for all u ∈ V0,

‖u‖20,Ω0
≤ C a(u,u).(A.2)

In order to do this, we need to establish the existence of a continuous lifting of
tangential traces on Γ = ∂Ωσ ∩ ∂Ω0 with zero divergence and flux conditions. To
this end, we introduce the space H0,Γ−(curl; Ω0) = {v ∈ H(curl; Ω0) : n0 × v|Γ− =

0 in H
− 1

2
00 (Γ−)}, where Γ− = ∂Ω0 \ Γ, i.e., Γ− is the part of ∂Ω0 contained in ∂Ω.

For the definition of H−
1
2

00 (Γ−), see, e.g., [35]. Let γ− be the restriction of the
tangential trace operator to Γ and H(Γ) its image. A complete characterization
of this space, as well as the precise definition of its norm, can be found in [15].
Fix v ∈ H0,Γ−(curl; Ω0). According to Proposition A.1, with Ω = Ω0, let vbc ∈
H(curl; Ω0)∩Hflux(div0

ε; Ω0) be the lifting of n0×v on ∂Ω0, i.e., n0×v = n0×vbc

on ∂Ω0. Then, we also have vbc ∈ H0,Γ−(curl; Ω0) and γ−vbc = γ−v. This shows
that γ− is linear continuous (see [16] and [14]) and surjective from H0,Γ−(curl; Ω0)∩
Hflux(div0

ε; Ω0) ontoH(Γ), and then, up to its kernel, its inverse is continuous, owing
to the open mapping theorem.
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Now, let u ∈ V0, and denote by u0 the restriction of u to Ω0. Then, due to
the previous considerations, u0 can be decomposition as u0 = w + ubc, where
w ∈ H0(curl; Ω0) ∩ Hflux(divε; Ω0) and ubc is such that ubc ∈ H0,Γ−(curl; Ω0) ∩
Hflux(div0

ε; Ω0), n0×ubc = n0×u0 on Γ and ‖ubc‖H(curl;Ω0) ≤ C‖γ−u‖H(Γ). From
[4, Corollary 3.19], we have

‖w‖0,Ω0 ≤ C
(
‖∇ ×w‖0,Ω0 + ‖∇ · (εw)‖0,Ω0

)
≤ C a(u,u)

1
2 .(A.3)

As far as ubc is concerned, we can obtain a bound in terms of a(u,u) as follows.
Since u ∈ H(curl; Ω), we have that n0 × u0 = n0 × u|Ωσ on Γ. This implies that
‖γ−u0‖H(Γ) = ‖γ̃−u‖H(Γ), where γ̃− is the restriction to Γ of the tangential trace
operator taken from Ωσ = Ω \ Ω0. By the continuity of γ̃−, we conclude that

‖ubc‖H(curl;Ω0) ≤ C‖u‖H(curl;Ωσ) ≤ C a(u,u)
1
2 .

This, together with (A.3), implies (A.2) and finishes the proof.

Well-posedness of formulation (2.11) can now be proved in a standard way as fol-
lows. Let uf be the (unique) function in H0(curl0, div0

ε; Ω0) such that
〈εuf |Ω0 ·n0,j , 1〉Γ0,j = λ−1fj , j = 1, . . . , J (see [30, Theorem 8.4]), and define ũf as
the trivial extension of uf to Ω. By the decomposition ε−1F = F′+F′′, as in (2.6),
with F′′ = ∇f in Ω0, and the trace theorem in H1(Ω0), we have ‖ũf‖V ≤ C‖F‖0,Ω.

Furthermore, let ũ ∈ H(curl; Ω) ∩ Hflux(div0
ε; Ω0) be such that n × ũ = g on

∂Ω and ‖ũ‖H(curl;Ω) ≤ C‖g‖H(∂Ω), according to Proposition A.1. By defining
u0 = u − ũf − ũ ∈ V0, the variational problem (2.11) can be written: Find
u0 ∈ V0 such that, for any v ∈ V0,

a(u0,v) = L(v),

where

L(v) =
∫

Ω

F · v̄ dx−
∫

Ω

µ−1∇× ũ · ∇ × v dx− iω
∫

Ω

σũ · v̄ dx.

From Proposition A.4, the bilinear form a(·, ·) : V0 ×V0 → R is continuous and
V-elliptic. Moreover, the linear functional L(·) : V0 → R is continuous in the V-
norm. Existence and uniqueness of the solution in u0 ∈ V0, as well as continuous
dependence in the V-norm on the data F and ũ then follow from the Lax–Milgram
lemma. We conclude the existence and uniqueness of the solution u ∈ V and the
stability estimate

‖u‖V ≤ C‖F‖0,Ω + C‖ũ‖V + ‖ũf‖V ≤ C‖F‖0,Ω + C‖g‖H(∂Ω),

where we used Proposition A.1 and the properties of ũf .
To obtain the equivalence of strong and variational form of our model problem

we proceed as follows. Integrating by parts and taking into account the properties
of f , it is obvious that, if u solves (2.7)–(2.10), then it also solves (2.11), for any
v ∈ V0. In order to prove the converse, define

V1 = {v ∈ H0(curl; Ω) : v|Ω0 ∈ ∇H1
0 (Ω0), v|Ωσ = 0},

V2 = {v ∈ H0(curl; Ω) : v|Ω0 ∈ H0(curl0, div0
ε; Ω0), v|Ωσ = 0},

V3 = {v ∈ H0(curl; Ω) : v|Ω0 ∈ Hflux(div0
ε; Ω0)}.
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Then

H0(curl; Ω) = V1 ⊕V2 ⊕V3,(A.4)
V0 = (V1 ⊕V2) ∩Hflux(divε; Ω0)⊕V3,(A.5)

where the direct sums are understood with respect to the ε-inner product. For test
functions v ∈ V3, the variational problem (2.11) becomes∫

Ω

µ−1∇× u · ∇ × v dx + iω

∫
Ωσ

σ u · v dx =
∫

Ω

εF′ · v dx,(A.6)

recalling that ε−1F = F′ + ∇f . Since for any v ∈ V1 ⊕ V2, ∇ × v = 0 in Ω,
v = 0 in Ωσ and v is ε-orthogonal to F′, owing to decomposition (A.4) we can take
any v ∈ H0(curl; Ω) in (A.6) without altering the problem, and obtain that (2.7)
is satisfied in the sense of the distributions. Since εF′ ∈ L2(Ω)3 and σu ∈ L2(Ω)3,
we have that ∇× (µ−1∇× u) ∈ L2(Ω)3 and (2.7) holds true almost everywhere.

For test functions v ∈ (V1 ⊕V2) ∩Hflux(divε; Ω0), (2.11) becomes∫
Ω0

ν∇ · (εu)∇ · (εv) dx =
∫

Ω0

∇f · εv dx.(A.7)

Recall that f ∈ H1(Ω0), f = 0 on Γ0,0 and f constant on each Γ0,j , j = 1, . . . , J .
Integrating the right-hand side by parts and taking into account these properties
of f and the flux conditions for εv, we have∫

Ω0

ν∇ · (εu)∇ · (εv) dx = −
∫

Ω0

f ∇ · (εv) dx,(A.8)

for any v ∈ (V1 ⊕ V2) ∩ Hflux(divε; Ω0). We can take in (A.8) test functions
v ∈ (V1 ⊕ V2) ∩ H(divε; Ω0) without altering the problem. In fact, given v ∈
(V1 ⊕ V2) ∩ H(divε; Ω0), there is a (unique) vβ ∈ H0(curl0, div0

ε; Ω0) such that
〈εvβ |Ω0 · n0,j , 1〉Γ0,j = 〈εv|Ω0 · n0,j , 1〉Γ0,j , j = 1, . . . , J (again, see [30]). Naming
again vβ the trivial extension of vβ to Ωσ, we have that v0 = v − vβ belongs to
(V1 ⊕V2) ∩Hflux(divε; Ω0), and ∇ · εv = ∇ · εv0 in Ω0. Consequently, equation
(A.8) holds true also for v ∈ (V1 ⊕V2) ∩H(divε; Ω0).

Now, for any ϕ ∈ L2(Ω0), let ψ be the (unique) solution inH1
0 (Ω0) of the problem

∇· (ε∇ψ) = ϕ in Ω0, ψ = 0 on ∂Ω0. Denoting again by ψ the trivial extension of ψ
to Ωσ, we have that ∇ψ belong to H0(curl; Ω)∩ (∇H1

0 (Ω0)∩H(divε; Ω0)), which is
contained in (V1 ⊕V2) ∩H(divε; Ω0). Then, we can take v = ∇ψ as test function
in (A.8) and obtain that, for any ϕ ∈ L2(Ω0),

∫
Ω0
ν∇ · (εu)ϕdx = −

∫
Ω0
f ϕ dx,

from which (2.8) follows, along with the regularity property ν∇· (εu)|Ω0 ∈ H1(Ω0).
This completes the proof of Theorem 2.1.

References

1. A. Alonso, A mathematical justification of the low-frequency heterogeneous time-harmonic
Maxwell equations, Math. Mod. Meth. Appl. Sci. 9 (1999), 475-489. MR 2000c:78002

2. A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic
Maxwell equations, Comput. Meth. Appl. Mech. Engrg. 143 (1997), 97-112. MR 98b:78020

3. , An optimal domain decomposition preconditioner for low-frequency time-harmonic
Maxwell equations, Math. Comp. 68 (1999), 607-631. MR 99i:78002

4. C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional
nonsmooth domains, Math. Models Appl. Sci. 21 (1998), 823-864. MR 99e:35037

5. D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM
J. Numer. Anal. 19 (1982), 742-760. MR 83f:65173

http://www.ams.org/mathscinet-getitem?mr=2000c:78002
http://www.ams.org/mathscinet-getitem?mr=98b:78020
http://www.ams.org/mathscinet-getitem?mr=99i:78002
http://www.ams.org/mathscinet-getitem?mr=99e:35037
http://www.ams.org/mathscinet-getitem?mr=83f:65173


hp-LDG METHOD FOR LOW-FREQUENCY MAXWELL EQUATIONS 1213

6. D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), 1749–1779.
CMP 2002:09
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