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EFFICIENT SOLUTION OF RATIONAL CONICS

J. E. CREMONA AND D. RUSIN

Abstract. We present efficient algorithms for solving Legendre equations over
Q (equivalently, for finding rational points on rational conics) and parametriz-
ing all solutions. Unlike existing algorithms, no integer factorization is re-
quired, provided that the prime factors of the discriminant are known.

1. Introduction

1.1. Summary of results. In this paper we give efficient methods of finding all
rational points on a rational conic C given by a nonsingular homogeneous equation
of degree 2:

(1) C : f(X,Y, Z) = 0.

One method for finding one rational point on C, if one exists, is the original
descent method of Legendre. We show how one may easily make a significant
improvement to this (reducing the number of iterations from exponential in the
size of the input to linear); and also, but with more work, make an even greater
improvement. This last method involves no integer factorization other than that
of the discriminant of the original equation (which is in any case necessary for
deciding the solubility of (1)). It is the necessity of factoring “spurious” integers
arising during the course of the computation which is the bottleneck in simpler
reduction methods; our “factorization-free” method avoids this entirely.

We also describe a factorization-free method of solution based on lattice reduc-
tion; this is not original, though apparently not well known.

We present examples and timings of our implementation of both methods; these
indicate that the reduction method is faster in practice than the lattice-based
method. Both are linear time, given a so-called solubility certificate (defined below),
and probabilistic polynomial time given only the factorization of the discriminant.

As an example of the speed which is now attainable, the solution of an equation
of the form ax2 + by2 = cz2, where a, b and c are 200-digit primes, takes less than
2 seconds on a modest PC. Such a problem is not feasible to solve in reasonable
time with Legendre’s method (as in Maple, for example).

We also show how to parametrize all rational points on C, given one point, in the
most efficient way. This is necessary for several applications, such as to 2-descent
on elliptic curves, and is also used for finding a small single solution to (1).
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It would be useful and interesting to extend the algorithms presented here to
number fields. We say little more about this here, but refer to the paper [11] by
Pohst, and Simon’s thesis [14].

The factorization-free algorithm presented here has been implemented in release
2.8 (July 2001) of the package Magma.

1.2. Background. By the Hasse or local-global principle for curves of genus 0, the
curve C has rational points if and only if it has points everywhere locally. Thus,
testing (1) for solubility is easy, at least in theory, and in practice no harder than
factoring the discriminant of the given equation (see Section 2.2 below for details).

Our first main concern will be to find one solution efficiently when solutions exist.
Here and throughout we will pass freely between the geometric language of “points
on curves” and the Diophantine language of “solutions to equations”. We always
exclude the trivial solution (x, y, z) = (0, 0, 0), as we are really interested in projec-
tive solutions (x : y : z) ∈ P2(Q), each of which has a “primitive” representation
with x, y, z ∈ Z and gcd(x, y, z) = 1, unique up to sign.

Secondly, we will want to find a “small” solution. Holzer’s theorem (see below for
a precise statement) asserts that a soluble equation always has solutions which are
not too large in terms of the coefficients. Any given solution may be reduced, using
a method of Mordell, until it satisfies Holzer’s bounds. We present an alternative
reduction method, faster than Mordell’s, though the solution it gives may not be
quite Holzer-reduced.

Finally, given one solution P0 = (x0, y0, z0) to (1), one can write down a para-
metrization of all solutions of the form

(2) X = Q1(U, V ), Y = Q2(U, V ), Z = Q3(U, V ),

where eachQi(U, V ) ∈ Z[U, V ] is a quadratic form. Geometrically, the homogeneous
coordinates (U : V ) parametrize the pencil of lines through P0, each of which
intersects the conic C in a unique second point. Our final task will be to find
such a parametric solution which is as simple as possible. We will see that a
parametrization exists such that the discriminants of the polynomials Qi(U, V )
are prescribed in terms of the coefficients of the defining polynomial f(X,Y, Z),
independently of the particular basic solution P0 found earlier. This last point is
particularly significant in certain applications.

Our approach throughout will be algorithmic, and our results will be in the form
of efficient algorithms to carry out the tasks we have just outlined. We will give
examples to show that our method is more efficient, and leads to better (meaning
smaller) solutions than those which can be found elsewhere (for example, by using
the Maple computer algebra system). The mathematics here is entirely elementary,
and mostly also quite well-known, but we are not aware of a systematic treatment
of such equations in the literature which is both algorithmic and concerned with
the size of the parametric solutions obtained.

A slightly different problem is to parametrize all “primitive” integer solutions
(x, y, z) to (1) using integer quadratics Qi(U, V ). Mordell showed that this is pos-
sible using a finite family of quadratic parametrizations of the form (2). Since we
are interested in projective solutions, we are not interested in the primitivity, and
our task is therefore slightly simpler.

The application which led us to develop these methods is in higher descents on
elliptic curves overQ, starting with a descent via 2-isogeny. See [5] for details of this.
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Another application of which we are aware is the determination of explicit equations
for hyperelliptic curves whose Jacobians are quotients of modular Jacobians: see
the theses of Wilson [19] (Oxford, 1998) and Weber [17] (Essen, 1996) for examples
of these. It is remarkable that an algorithmic solution to the problem of finding
all rational points on a curve of genus 0 has not yet been perfected (as remarked
by Mazur in [9]), given the current activity on a wide scale concerning constructive
solutions to Diophantine equations of higher genus, so it is interesting to note that
efficient solutions to this simpler problem are also required for the study of curves
of higher genus.

We are grateful to Denis Simon for the reference [12].

2. Single solutions

2.1. Standard forms of equation. By elementary algebra we may complete the
square in the general quadratic form f(X,Y, Z) to obtain the diagonal form

(3) aX2 + bY 2 + cZ2 = 0,

often called Legendre’s equation. Since the equation is assumed to be nonsingular,
we have abc 6= 0. Furthermore, by simple scaling of the variables we may reduce
to the case where the coefficients are integers which are (i) pairwise coprime, and
(ii) square-free, so that abc is square-free. Achieving condition (i) only requires gcd
computations, while (ii) requires factorization of the coefficients. We will assume
throughout that this factorization is known. Such an equation (3) will be called
reduced; it is unique, up to permutations of the variables and changing all the signs.
Since real solubility requires that the coefficients do not all have the same sign, we
also assume that a > 0, b > 0 and c < 0.

It will also sometimes be useful to put our equation into norm form

(4) X2 − aZ2 = bY 2.

Solving this amounts to expressing b as a norm from Q(
√
a), if possible. In this

form we can require that a and b are both square-free integers, but not that they
are coprime. Real solubility requires that a and b are not both negative. We will
use this form for the first recursive solution of the equation below.

Lastly, for the applications to elliptic curves it is most convenient to use a form
of the equation slightly more general than the diagonal form, which we call the
semi-diagonal form:

(5) aX2 + bXZ + cZ2 = dY 2.

Here we require that all the coefficients are integers with d square-free, d(b2 − 4ac)
nonzero for nonsingularity, and gcd(a, b, c, d) = 1. In our application we also have
ac 6= 0, and so we will also assume this below.

2.2. Local solubility criterion and Holzer’s theorem. The necessary and suf-
ficient criterion for solubility of (3) is simply that it should have solutions in Qp for
all primes p, and also in R. This result is usually referred to as Legendre’s theorem.
For odd primes p not dividing abc there is always a local solution, so this only
gives a finite number of conditions to check. Checking these conditions in practice
does require us to factor the coefficients. Suppose that (3) is reduced, so that abc
is square-free. If p is odd and divides c (say), then solubility in Qp follows from
solubility modulo p (by Hensel’s lemma), and hence from the condition that the
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Legendre symbol
(
−ab
p

)
is +1. Hence the local conditions for all odd finite primes

are equivalent to the existence of solutions to the following quadratic congruences:

(6) X2
1 ≡ −bc (mod a); X2

2 ≡ −ca (mod b); X2
3 ≡ −ab (mod c).

Moreover, the number of local conditions which fail must be even (by the product
formula for the Hilbert symbol), so the solubility of these congruences together
with the sign condition ensuring real solubility is already sufficient to ensure global
solubility, and a 2-adic condition is not needed.

Definition 2.1. A triple (k1, k2, k3) ∈ Z3 is called a solubility certificate for (3) if
it gives a solution to the congruences (6).

We summarize the local solubility criterion as follows.

Lemma 2.1. Let a, b and c be nonzero integers with abc square-free, not all of the
same sign. Then (3) has a solution if and only if a solubility certificate exists.

If a, b and c are pairwise coprime (but not necessarily square-free), then the
existence of a solubility certificate is sufficient, but no longer necessary, for the
existence of solutions to (3).

A proof of the last statement is implicit in the algorithms below, which guarantee
to deliver a solution from a solubility certificate provided only that a, b and c are
pairwise coprime and not all of the same sign. That the existence of the certificate
is not necessary when the coefficients are square-free may be seen from the equation
9X2 − Y 2 − Z2 = 0, which has the solution (1, 3, 0), but no certificate since the
congruence X2

1 ≡ −1 (mod 9) has no solution.
To the triple of coefficients (a, b, c) and the certificate (k1, k2, k3) we will associate

a 3-dimensional sublattice L = L(a, b, c; k1, k2, k3) of Z3, called the solution lattice
for the certificate, as follows:

L(a, b, c; k1, k2, k3) = {(x, y, z) ∈ Z3 |by ≡ k1z (mod a),

cz ≡ k2x (mod b),(7)

ax ≡ k3y (mod c)}.

The index of L(a, b, c; k1, k2, k3) in Z3 is |abc|. One easily checks that for (x, y, z) ∈
L, we have ax2 + by2 + cz2 ≡ 0 (mod abc). In the second and third algorithms we
present below, we will construct a solution of (3) which lies in the solution lattice
for any given solubility certificate.

The first algorithm we give below for solving conics itself constitutes a proof of
Legendre’s theorem, since it is guaranteed to find a solution unless either a quadratic
congruence fails to be soluble, or the signs of the coefficients are wrong. Indeed,
Legendre’s own proof follows the same lines: see the account in Weil’s historical
book [18, p. 100]. Algorithmic solutions in the literature often follow essentially the
same reduction procedure as Legendre (see [8], or [15] for a recent example). As we
will see, this method has two disadvantages in practice: it takes many steps, each of
which involves the factorization of an integer, and the resulting solution can be very
large. Our first improvement already performs better in these respects; although it
does not eliminate the factorization from each step, the number of steps is reduced,
the numbers to be factored are smaller, and the resulting solution is also smaller.
Then the “factorization-free” version of the reduction method eliminates the need
for any factorization, given a solubility certificate, giving even greater improvement
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and making possible the solution of equations whose coefficients have hundreds of
digits in only a few seconds.

In the famous paper [1], in which higher descents were used to study the ranks of
elliptic curves of the form Y 2 = X3 −DX , the authors remark [1, p. 100] that the
solution of various auxiliary conics is the most time-consuming part of the descent
process. We also found this to be true (despite having 30 years of factorization
technology to hand) before using the new methods described here.

Now assume that (3) is soluble. Holzer’s theorem asserts that there exists an
integral solution (x, y, z) with

(8) |x| ≤
√
|bc|, |y| ≤

√
|ac|, |z| ≤

√
|ab|,

or equivalently,

(9) max(|a|x2, |b|y2, |c|z2) ≤ |abc|.
Such a solution we will call “Holzer-reduced”. Holzer’s theorem is not trivial to
prove: see [3] for a recent fairly short proof, improving earlier versions by Mordell
and Cassels (see section 2.4 below for more on this). In Mordell’s proof, one obtains
a solution which does not necessarily satisfy Holzer’s bounds, and then reduces the
solution using the following lemma from [10, Theorem 5, p. 47].

Lemma 2.2. Let a, b and c be nonzero integers with abc square-free, a > 0, b > 0
and c < 0, and let (x0, y0, z0) be a solution of (3). If |z0| >

√
ab, then there exists

a solution (x1, y1, z1) with |z1| < |z0|.

We will give Mordell’s construction below. After a finite number of steps, we
arrive at a solution (x, y, z) with |z| ≤

√
ab, and then the inequalities on x and y

follow immediately. We will also present a new method of reducing solutions which
is faster than Mordell’s, but only produces a solution satisfying

(10) max(|a|x2, |b|y2, |c|z2) ≤ 4
3
|abc|.

A similar result concerning small solutions to Legendre’s equation over totally
real number fields can be found in [11].

2.3. Algorithm I: Legendre-type reduction. The first algorithm for finding
one solution works with the equation in the norm form (4), where the coefficients
a and b are square-free nonzero integers, not necessarily coprime. By symmetry
we may assume that |a| ≤ |b|, interchanging a and b if necessary. The idea, which
originates with Legendre, is to proceed by descent, reducing the problem of solving
(4) to that of solving a similar equation with a smaller b coefficient. This step is
repeated until |b| < |a|, after which a and b are interchanged. The base cases in
which no further descent is necessary are trivially dealt with. The full procedure is
as follows.

Algorithm I.
(1) If |a| > |b| then swap a and b, solve the resulting equation, then swap y

and z in the solution obtained.
(2) If b = 1 then set (x, y, z) = (1, 1, 0) and stop.
(3) If a = 1 then set (x, y, z) = (1, 0, 1) and stop.
(4) If b = −1 there is no solution (since a must be −1).
(5) If b = −a then set (x, y, z) = (0, 1, 1) and stop.
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(6) If b = a then let (x1, y1, z1) be a solution of X2
1 +Z2

1 = aY 2
1 , set (x, y, z) =

(ay1, x1, z1) and stop.
(7) Let w be a solution to X2 ≡ a (mod b) with |w| ≤ |b|/2, and set (x0, z0) =

(w, 1), so that x2
0 − az2

0 ≡ 0 (mod b).
(8) Use lattice reduction to find a new nontrivial solution (x0, z0) to the con-

gruence X2 − aZ2 ≡ 0 (mod b), with x2
0 + |a|z2

0 as small as possible.
(9) Set t = (x2

0 − az2
0)/b, and write t = t1t

2
2 with t1 square-free.

(10) Let (x1, y1, z1) be a solution to X2 − aZ2 = t1Y
2; then

(x, y, z) = (x0x1 + az0z1, t1t2y1, z0x1 + x0z1)

is a solution to (4): stop.

By the end of step 6 we have reduced the problem to solving equations in which
|b| ≥ 2, |b| > |a| and a 6= 1 (though a = −1 is possible). The reduction step
proceeds by first solving the quadratic congruence

X2 ≡ a (mod b)

to obtain a solution w with |w| ≤ |b|/2. The usual algorithm for this step involves
factoring b, finding a square root of a modulo each prime divisor of b, and combining
them with the Chinese Remainder Theorem. All these square roots must exist if
the equation passes the local solubility criterion. We then have w2 − a = bt, where
the integer t satisfies

|t| < 1
4
|b|+ 1 ≤ 1

2
|b|;

(here we use 1 ≤ |a| < |b|). The standard algorithm found in the literature (as
in [15], for example) omits step 8, using the fact that this value of t is strictly
less than b to obtain a descent. This procedure works perfectly well in practice,
provided that the initial coefficients a and b are fairly small. The size of the larger
coefficient is reduced by a factor of approximately 4 at each step; the main problem
with large examples is the need to factor all the coefficients b which arise, in order
to solve the associated quadratic congruences.

Our improvement consists of inserting the extra step 8 above. We have one
solution (x0, z0) = (w, 1) to the congruence

(11) X2 − aZ2 ≡ 0 (mod b).

Using an elementary lattice reduction technique, we find the solution (x0, z0) to this
congruence which minimizes x2 + |a|z2, and set t = (x2

0 − az2
0)/b. This will be very

much smaller than the earlier value of t. Explicitly, the minimal vector has length
O(b
√
a), so we see that in Step 9, t will be O(

√
a). Thus while the unimproved

method only reduces the size of ab (measured in bits, say) at a rate linear in the
number of steps, in the improved method the size is reduced quadratically. One
expects that the number of digits in ab should be roughly halved with each iteration.
We give an example in the next section.
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The rest of the procedure (steps 9 and 10) is identical, with or without the lattice
reduction step 8. The formula in step 10 comes from the multiplicativity of the
norm from Q(

√
a) to Q:

(x0 + z0

√
a)(x1 + z1

√
a) = (x0x1 + az0z1) + (x0z1 + z0x1)

√
a,

and hence

b(t1t2y1)2 = (bt1t22)(t1y2
1) = (x2

0 − az2
0)(x2

1 − az2
1)

= (x0x1 + az0z1)2 − a(x0z1 + z0x1)2.

Note that in Step 9, it is not really necessary to factor t, since t1 need not be
square-free in Step 10; but since solving the reduced equation in Step 10 will first
involve factoring t1 to solve the congruence X2 ≡ a (mod t1), there is no time lost
in finding this square-free decomposition immediately.

The square-free decomposition is the main time-consuming step in the algorithm,
together with the solution of the subsidiary quadratic congruences in Step 7. It
involves factorization of the numbers t which arise during the course of the com-
putation, but which need not be related in any direct way to the coefficients of
the original equation. We have developed a way of avoiding this factorization al-
together, which will be described below in Algorithm II. Starting with a solubility
certificate, either the solubility certificate at each level will determine a solubility
certificate at the next level (which immediately gives the solution to the quadratic
congruence we need), or alternatively a square factor of one of the coefficients will
be obtained, which also leads to a reduced problem. See Section 2.5 below.

A similar idea of using 2-dimensional lattice reduction to solve a modular version
of our problem was described in the paper [12].

For completeness we give the details of the lattice reduction used in Step 8.
Define a positive definite quadratic form on Z2 by

(u, v) · (u′, v′) = (wu + bv)(wu′ + bv′) + |a|uu′,

so that the (square) norm of (u, v) is

‖(u, v)‖2 = (wu + bv)2 + |a|u2.

Let (u0, v0) be the nonzero vector in Z2 which minimizes this norm. One may find
(u0, v0) by starting with the standard basis (1, 0), (0, 1) and applying Gaussian
reduction. Then set (x0, z0) = (u0w + bv0, u0): we have

x2
0 − az2

0 ≡ u2
0(w2 − a) ≡ 0 (mod b),

and x2
0 + |a|z2

0 = ‖(u0, v0)‖2 is minimal.

2.3.1. Example. To illustrate the dramatic improvement which the lattice reduction
trick (Step 8 of the algorithm) provides in a nontrivial example, we take the equation
(4) with a = −113922743 and b = 310146482690273725409, which occurs in [17].
The unimproved algorithm (omitting Step 8) proceeds with 18 reduction steps and
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the following sets of coefficients:

(a, b) = (−113922743, 310146482690273725409)

(a, b) = (−113922743, 6322888267334211334) (a, b) = (−5941135, 690379)

(a, b) = (−113922743, 22155222796709666) (a, b) = (690379,−5941135)

(a, b) = (−113922743, 13176519068967) (a, b) = (690379,−436439)

(a, b) = (−113922743, 552039370818) (a, b) = (−436439, 690379)

(a, b) = (−113922743, 10830811819) (a, b) = (−436439, 52017)

(a, b) = (−113922743, 52527821) (a, b) = (52017,−436439)

(a, b) = (52527821,−113922743) (a, b) = (52017,−14)

(a, b) = (52527821,−5941135) (a, b) = (−14, 52017)

(a, b) = (−5941135, 52527821) (a, b) = (−14, 942)

At this stage, the congruence X2 + 14 ≡ 0 (mod 942) yields the solution x = 92,
and luckily 922 + 14 = 942t, with t = 9. As this is a square, we obtain a solution to
the equation at this level. Passing back up the stack, we finally obtain the following
solution to the original equation:

(x : y : z) = (17096570497733995340458855914415817266660083175129
: 971656516633305795680905979479465911216

: 67668402208023840270008872724333068943397229).

By contrast, with the improved method we obtain the following much shorter
sequence of coefficients:

(a, b) = (−113922743, 310146482690273725409)

(a, b) = (−113922743, 339)

(a, b) = (339,−113922743)

The last equation has solution (31006 : 1 : 1781), and two back-substitutions lead
to the solution (320832774821087 : 21372 : −18438099853) of the original equa-
tion, considerably smaller than the previous solution found. Notice the dramatic
reduction in the size of b at the first descent step compared with the first solu-
tion. The congruence X2 ≡ −113922743 (mod 310146482690273725409) has so-
lution w = −88566846089432467791, leading to t = 25291553069336845336; but
then lattice reduction finds the solution (x0, z0) = (824644660421,−93793135) to
the congruence X2 ≡ −113922743Z2 (mod 310146482690273725409), which yields
the much smaller value t = 5424 = 42 · 339.

2.4. Improving the solution. The method of the preceding section will find one
solution (x0, y0, z0) to a diagonal equation (3), but this solution is not necessarily
“Holzer-reduced”. It is possible to reduce the size of a solution. We present two
methods for this: the first, due to Mordell in [10, Theorem 5, p. 47], is guaranteed
to produce a Holzer-reduced solution after a finite number of steps, but is slow
in practice since the number of steps appears to be linear in the size of z0. The
second method is based on the quadratic parametrizations which will be introduced
in Section 3. This is much faster in practice. The solution it produces is not always
Holzer-reduced, as it is only guaranteed to satisfy (10) rather than (9), though in
practice it usually is.
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As well as applying one of these reduction procedures to the solution produced
at the end of the recursion, it is also possible to reduce all the intermediate solu-
tions used in the back-substitution Step 10. This can be beneficial in practice for
large problems, since otherwise the exponential growth in the size of intermediate
solutions can cause serious degradation of the running time, owing to the need to
work with very large integers.

2.4.1. Mordell’s method for reducing solutions. Mordell’s method is used in [10] to
prove that Holzer-reduced solutions always exist. It is not presented there as an
algorithm, but is easily turned into one. We refer to [10, Theorem 5, p. 47] for the
proof that this method works (as stated in Lemma 2.2 above), giving here only a
sketch.

Suppose that we have a primitive solution (x0, y0, z0) to the equation (3), where
abc is square-free, a and b are positive and c is negative, with |z0| >

√
ab. Since c

is square-free, we have gcd(x0, y0) = 1.
If c is even, set k = c/2, solve k = uy0−vx0 for u and v, and let w be the nearest

integer to −(aux0 + bvy0)/(cz0). Then the equations

x =
1
k

(
x0(au2 + bv2 + cw2)− 2u(aux0 + bvy0 + cwz0)

)
,

y =
1
k

(
y0(au2 + bv2 + cw2)− 2v(aux0 + bvy0 + cwz0)

)
,(12)

z =
1
k

(
z0(au2 + bv2 + cw2)− 2w(aux0 + bvy0 + cwz0)

)
define integers x, y, z which also satisfy (3), and which satisfy 0 < |z| < |z0|. (These
follow easily from the identity (aux0 + bvy0 + cwz0)2 + ab(uy0 − vx0)2 = −kcz0z,
together with the inequalities |aux0 + bvy0 + cwz0| ≤ 1

2 |cz0| and ab < z2
0 .)

If c is odd, solve c = uy0 − vx0 for u and v. Now let w be the nearest integer to
−(aux0 + bvy0)/(cz0) which has the same parity as au+ bv. Then (12) with k = 2c
again defines an integral solution to (3), with 0 < |z| < |z0|.

If the new z is still too big, we apply this again; after a finite number of steps
the Holzer bounds (8) will be satisfied.

When we apply this in practice, we may either just apply it once, at the end, or
alternatively we may apply it to each solution in the recursive stack before back-
substituting at Step 10.

2.4.2. Reducing solutions via quadratic parametrization. Starting from a primitive
solution (x0, y0, z0) to a diagonal equation (3), we apply the method of Section 3
below to obtain three parametrizing quadratic polynomials Qi(U, V ) with respec-
tive discriminants −4bc, −4ac and −4ab. As shown in the proof of Corollary 3.2
below, after applying Gaussian reduction to whichever one of the ±Qi is a positive
definite quadratic form, we obtain a parametrization whose leading coefficients give
a solution (x1, y1, z1) to (3) satisfying the “almost-Holzer” bounds (21). See Section
3 below for details.

When we apply this in practice, we have found that in most cases, the new
solution obtained does in fact satisfy the Holzer bounds. Exceptional cases arise
when the root of the reduced positive definite quadratic, which lies in the usual
fundamental domain for SL(2,Z) in the upper half-plane, has imaginary part less
than one.
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For example, the equation X2 + 3Y 2 = 91Z2 has the solution (19, 1, 2), which
is not Holzer-reduced since x2 = 361 > 273 = 3 · 91 and z2 = 4 > 3 = 1 · 3. The
parametrizing quadratics are X = 19U2 − 16UV − 11V 2, Y = U2 − 20UV + 9V 2

and Z = 2(U2 − UV + V 2), with minimal discriminants 1092 = −4 · 3 · (−91),
364 = −4 · 1 · (−91) and −12 = −4 · 1 · 3 respectively. The latter is positive
definite and reduced, with root (−1 + i

√
3)/2, and this method cannot reduce the

solution further. However, applying Holzer’s method once to (19, 1, 2) gives the
Holzer-reduced solution (4, 5, 1). The corresponding parametrizing quadratics are
X = 4U2 + 30UV − 12V 2, Y = 5U2 − 8UV − 15V 2 and Z = U2 + 3V 2.

Note also that the leading coefficients of the reduced parametrizing quadratics
need not necessarily be coprime, so the solution (x1, y1, z1) may not be primitive;
if not, we obviously obtain a further reduction by cancelling the common factor.

2.4.3. Example. Continuing our earlier example, the solution (320832774821087 :
21372 : −18438099853) is not Holzer-reduced, but applying Mordell reduction once
yields the Holzer-reduced solution (30106379962113 : 7913 : 12747947692).

The much larger solution produced by the unimproved algorithm requires 27
steps of Mordell reduction to obtain the Holzer-reduced solution (47464775475069 :
3131 : 2629196804).

Using the quadratic parametrization method to reduce the solutions, we obtain
the new solutions (7523107023591 : 7244 : 11931641701) (starting from the smaller
original solution) and (70647575606369 : 5679 : 6632499416) (starting from the
larger). These solutions are both Holzer-reduced.

Note that, as illustrated by these examples, there is nothing at all canonical in
the solutions obtained, even amongst those which satisfy the Holzer bounds. The
solution obtained will depend on all the choices of modular square roots made along
the way, each such choice being equally valid, and leading to a distinct solution.
In fact, one remarkable feature of Holzer’s theorem (apparent from its proof) is
that it guarantees not only one reduced solution, but one in each class of modular
solutions modulo abc, the number of which is around 2k, where k is the number of
odd prime factors of abc.

2.5. Algorithm II: factorization-free reduction method. The preceding al-
gorithm is adequate for solving equations where the coefficients are of “reasonable”
size: reasonable in the sense that numbers of this size may be factored quickly.
But for larger problems, the time taken for intermediate factorizations makes it
impractical. For example, if we take the coefficients in (3) to be primes of around
100 digits (chosen so that (3) is soluble), then in the second step of the recursion
one is likely to have to factor a random integer with between 90 and 100 digits.

To avoid this, we have developed an alternative method which is quite similar
in theory but avoids all factorization. The idea is that, given a solubility certificate
(k1, k2, k3) for the diagonal equation (3) with coefficients (a, b, c), we can use it to
construct a new solubility certificate for a reduced problem with smaller coefficients,
without any (further) factorization, together with a linear transformation mapping
solutions of the reduced problem to solutions of the original. While this idea is
simple in principle, complications arise in practice, since at the general stage we
cannot assume that the various triples of integers which arise as coefficients are
square-free.
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One starts with the data (a, b, c; k1, k2, k3) and recursively reduces this to a
similar set of data which is smaller, in a suitably defined sense, until one reaches
an easy case where the solution can be written down immediately or found directly.
The coefficients a, b and c are assumed to be pairwise coprime, but not necessarily
square-free. The essential idea is that whenever certain numbers which would be
coprime in the square-free case are encountered and found not to be coprime, the
common factor can be used to reduce the problem by giving a nontrivial square
factor of one of a, b or c, which may then be divided out.

At each stage we take care to provide a solution which lies in the lattice defined
by the current solubility certificate, so that at the end the solution obtained lies in
the lattice defined by the original certificate.

The next lemma will deal with the base cases under this scheme.

Lemma 2.3. If two of the coefficients of equation (3) are ±1, then a solution in
the solution lattice may be found from a solubility certificate in time O(log |abc|).

Proof. By symmetry we may assume that ab = ±1. By changing the sign of all
three coefficients, and also of the solubility certificate (in order to keep the solution
lattice unchanged) we may also assume that a = 1. The certificate consists of an
integer k = k3 satisfying k2 ≡ −b = ±1 (mod c).

If a = 1 and b = −1, then we have the trivial solution (1, 1, 0), but we must find
a solution satisfying x ≡ ky (mod c), where k is a fixed square root of +1 modulo c.
If k ≡ ±1 (mod c), we simply use (1,±1, 0). Otherwise, let c+ = gcd(k − 1, c) and
c− = gcd(k+ 1, c), and set z = c+c−/c. One may check that in all cases z = ±1 or
z = ±2; this is straightforward when c is square-free, but needs a little care when
4 | c. Now the required solution is (x, y, z) = (1

2 (c− − zc+), 1
2 (c− + zc+), z), which

duly satisfies x2 − y2 + cz2 = 0 and x ≡ ky (mod c).
Now assume that a = b = 1, and so c < 0. Let x + yi = gcd(k + i, c) in the

Euclidean ring Z[i] of Gaussian integers. Then it is easy to see (by considering the
prime factorization of c) that x2 + y2 = |c|, so that (x, y, 1) is a solution to (3), and
satisfies x ≡ ky (mod c), as required. The gcd may be computed in O(log |c|) steps
by [13]. �

The general reduction step will start with a triple of coefficients (a, b, c), pairwise
coprime but not necessarily square-free, defining an equation (3), together with a
solubility certificate (k1, k2, k3). We then construct a new equation

(3)′ a′(X ′)2 + b′(Y ′)2 + c′(Z ′)2 = 0,

with smaller coefficients (a′, b′, c′), a new solubility certificate (k′1, k
′
2, k
′
3), and a

linear map T from the new solution lattice L′ to L, mapping solutions to (3)′ to
solutions to (3).

During the main reduction step, it can happen that we find a nontrivial square
factor u2 of one of the coefficients. The following trivial lemma may then be used
to reduce the problem; however, it is not possible to do so in such a way as to
preserve the solution lattice. For this reason we do not in fact use this lemma in
our implementation.

Lemma 2.4. Let (k1, k2, k3) be a solubility certificate for (3), where the coefficients
(a, b, c) are pairwise coprime. Suppose that u2 | a for some integer u > 1. Let u′

be an inverse of u modulo bc. Then (k1, u
′k2, u

′k3) is a solubility certificate for the
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equation with coefficients (a/u2, b, c). Also, if (x′, y′, z′) is a solution to the latter
equation, then (x′, uy′, uz′) is a solution to the original equation.

Proof. Trivial. �

As an example to show that this lemma cannot be strengthened to respect the
solution lattices in all cases, take the equation p2X2 + Y 2 = Z2 with certificate
(k1, 0, 0) satisfying k2

1 ≡ 1 (mod p2), and take u = p. Then u′ = p also, and
the reduced equation is (X ′)2 + (Y ′)2 = (Z ′)2 with the same certificate (k1, 0, 0).
The new solution lattice is the whole of Z3; given a solution (x′, y′, z′) satisfying
(x′)2 + (y′)2 = (z′)2 and the vacuous condition y′ ≡ k1z

′ (mod 1), the solution to
the original equation is (x, y, z) = (x′, py′, pz′). This satisfies y− k1z ≡ 0 (mod p),
but not 0 (mod p2).

The following lemma is crucial: it shows that we may find partial factorizations
of any finite set of nonzero integers which approximate a full square-free decompo-
sition, using only the operations of gcd and exact integer division.

Lemma 2.5. Let ai for 1 ≤ i ≤ n be nonzero integers. There exist integers bi
for 1 ≤ i ≤ n, and pairwise coprime integers cI indexed by the nonempty subsets
I ⊆ {1, 2, . . . , n}, such that for 1 ≤ i ≤ n we have

(13) ai = b2i
∏
I, i∈I

cI .

Moreover, these integers may be computed from the ai using only the operations of
gcd and exact integer division, in O(

∑
log(ai)) steps.

Proof. We initialize by setting each bi = 1, c{i} = ai, and the other cI = 1. Then
(13) is satisfied, but the coprimality conditions may not hold.

If gcd(cI , cJ) = d > 1 for two subsets I and J , we divide cI and cJ by d, multiply
cI+J by d (where I+J is the symmetric difference (I∪J)−(I∩J)), and multiply bi
by d for all i ∈ I∩J . This preserves the relations (13) while decreasing the product
of all the cI by a factor of d. Hence, after a finite number of steps we achieve the
conditions stated. �

Remark. Of course, without the last sentence of its statement, the lemma would
be trivial, using the prime factorizations of the ai, and we could even require that
the cI should be square-free. A useful trick in practice is to use a small amount of
trial division at the start: to ensure that the cI are not divisible by the square of
any prime p ≤ p0, say, we may (for each such p in turn) divide out the largest even
power of p from c{i} and adjust bi accordingly.

We will apply this lemma with n = 3 below.
Now we come to the main reduction step, which constructs a new reduced equa-

tion together with a solubility certificate, and an appropriate linear transformation.

Proposition 2.6. Given data (a, b, c; k1, k2, k3) with (k1, k2, k3) a solubility cer-
tificate for (3) and |bc| > 1, with (a, b, c) pairwise coprime and not all of the
same sign. There is an algorithm, requiring no factorization, which either finds
a nontrivial square factor of one of a, b, or c, or constructs a smaller set of data
(a′, b′, c′; k′1, k

′
2, k
′
3) such that (k′1, k

′
2, k
′
3) is a solubility certificate for the equation

(3)′, together with a linear transformation from solutions of this equation to solu-
tions of (3).
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Remark. When we use the algorithm described below, the situation where we fail
to construct a reduced equation only arises when one of the coefficients is not
square-free. At the top level we will insist that the coefficients are square-free, so
this cannot happen there; this is reasonable, since the criterion for solubility given
in Lemma 2.1 requires square-free coefficients. At lower levels, if we identify a
nontrivial square factor of one of the coefficients, then rather than deal with this
using Lemma 2.4, we instead pass the factor we have found back to the level above.

Proof. We will subdivide the proof into a number of steps.

Step 1: Preliminaries. Let w ≡ c−1k1 ≡ −bk−1
1 (mod a). Consider the sublattice

of Z2 defined by the congruence y ≡ wx (mod a), with Z-basis (1, w), (0, a), to-
gether with the weighted Euclidean norm ||(x, y)|| = |b|x2 + |c|y2. Let (w1, w2) be
a minimal nonzero vector in this lattice (obtained by Gaussian reduction). Then

k1w1 ≡ cw2, k1w2 ≡ −bw1 (mod a),

so that

(14) bw2
1 + cw2

2 = at

with t a small integer. Explicitly, 0 < ||(w1, w2)|| ≤ 4
π |a|

√
|bc|, so we have |t| ≤

4
π

√
|bc|. Note that by minimality of the vector (w1, w2), we know that gcd(w1, w2)

has no prime factors p which do not divide a, for then p2 | t and we could divide
out a factor p2 from (14). In particular, gcd(w1, w2) is coprime to bc.

To ease notation we use the abbreviations (u, v) = gcd(u, v), and write u ⊥ v to
mean gcd(u, v) = 1.

Step 2: The reduced coefficients. Using Lemma 2.5, applied to the three integers
bc, a, t, and using the fact that a ⊥ bc, we may write

bc = α2b′c′, a = β2n1n3, t = γ2n2n3c
′,

where the integers n1, n2, n3, b′ and c′ are pairwise coprime. If |α| > 1, then either
u = (α, b) or u = (α, c) gives a nontrivial square divisor u2 of b or c respectively,
and we may stop. So we may assume α = 1. Similarly, we may assume β = 1, since
otherwise we have a nontrivial square factor of a.

Hence the above equations simplify to

bc = b′c′, a = n1n3, t = γ2a′c′,

where a′ = n2n3. Both triples (a′, b′, c′) and (n1, n2, n3) are pairwise coprime.
Moreover, a′, b′ and c′ cannot all have the same sign, since then t > 0 and bc > 0;
but then (14) would imply that a, b, c all had the same sign.

Define d1 = (c, c′) and d2 = (b, c′). Then c′ = ±d1d2 with d1 | c, d2 | b, and
(d1, d2) = 1. Adjust the sign of d1 or d2 if necessary so that c′ = d1d2.

Remark. When we call this proposition recursively with the reduced coefficients, it
will return either a solution to the reduced equation or a nontrivial square factor of
one of a′, b′ or c′. In the former case we transform the solution using Step 5 below,
returning the result to the level above (or stopping if we are already at the top
level). If we obtain a factor f2 of a′, then we divide a′ by f2 and multiply γ by f
and repeat the process at this level. Similarly if we obtain a square factor of c′.
Finally, if we obtain a nontrivial square factor f2 of b′, then at least one of gcd(f, b)
and gcd(f, c) will be greater than 1, and can be passed back as a nontrivial square
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factor of b or c respectively. This final possibility cannot happen at the top level,
where the coefficients are square-free. Clearly the number of these “back-tracking”
steps will be finite.

Step 3: Refinements. In this step we show that various coprimality and divisibil-
ity conditions can be assumed between these variables, since otherwise nontrivial
square factors of a, b or c are found. This will enable us to construct the new
solubility certificate in Step 4.

• di | wi for i = 1, 2:
For di | c′ | t, hence (14) implies that di | w2

i . Let e = (di, wi), and write
di = eu and wi = ev with u ⊥ v. Then di | w2

i =⇒ u | ev2 =⇒ u | e =⇒
u2 | di. This gives a nontrivial square factor of either b or c, unless u = 1,
so we may assume that u = 1 and deduce that di | wi for i = 1, 2.

Now we may divide by c′ = d1d2 in (14) to obtain

(15) d1
b

d2

(
w1

d1

)2

+ d2
c

d1

(
w2

d2

)2

= aa′γ2.

• (b, γ) = (c, γ) = 1:
For let d = (b, γ). Then d ⊥ c, so (14) implies that d | w2

2 . As before,
this implies d | w2 (else we obtain a nontrivial square factor of b). Then
(14) implies d2 | bw2

1. But (b, w1, w2) = 1 by the remarks made in Step 1, so
d2 | b, and we have a square factor of b unless d = 1. Similarly, (c, γ) = 1,
else we have a square factor of c.
• (d2, w1) = (d1, w2) = 1:

For let d = (d2, w1). Then d ⊥ d1, so d | (w1/d1). Now (15) implies
d | aa′γ2. But d is coprime to each of a, γ and a′, since d | d2 | b | b′c′, so
d = 1. Similarly, (d1, w2) = 1.
• (w1, n2) = (w2, n2) = 1:

For let d = (w1, n2). Then d | cw2
2 from (14), but d ⊥ c since n2 ⊥ bc, so

d | w2
2 . Now a prime divisor p of d would divide both w1 and w2, but not

divide a = n1n3, contradicting the observation made below (14). Hence
d = 1. The proof that (w2, n2) = 1 is similar.

Step 4: The new certificate. Next we define the new solubility certificate (k′1, k
′
2, k
′
3)

for the equation with coefficients a′ = n2n3, b′ = (c/d1)(b/d2), c′ = d2d1 as follows:

k′1 =

{
−bw1w

−1
2 (mod n2),

−k1 (mod n3),
(16)

k′2 =

{
(aγ)−1k3w1 (mod c/d1),
(aγ)−1k2w2 (mod b/d2),

(17)

k′3 =

{
k2a
′γw−1

1 (mod d2),
−k3a

′γw−1
2 (mod d1).

(18)

This uniquely defines the k′i modulo a′, b′, c′ respectively by the Chinese Remainder
Theorem, since (n2, n3) = (c/d1, b/d2) = (d1, d2) = 1. By Step 3, all the modular
inverses in these formulae exist.
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To check that we do indeed have a solubility certificate is now straightforward;
each of the required quadratic congruences is proved in two steps using the fac-
torization of the relevant modulus. Note that at present the signs of the k′i are
immaterial; but they will be important in Step 5.

• (k′1)2 + b′c′ ≡ 0 (mod a′): First, modulo n2 we have

(k′1)2 + b′c′ ≡ (bw1w
−1
2 )2 + bc ≡ bw−2

2 (bw2
1 + cw2

2) ≡ 0,

since n2|(bw2
1 + cw2

2); note that it also follows that k′1 ≡ cw2w
−1
1 (mod n2).

Modulo n3 we have

(k′1)2 + b′c′ ≡ k2
1 + bc ≡ 0,

since n3|a.
• (k′2)2 + a′c′ ≡ 0 (mod b′): First, modulo c/d1 we have

(k′2)2 + a′c′ ≡ (aγ)−2k2
3w

2
1 + a′c′

≡ (aγ)−2(k2
3w

2
1 + a2t)

≡ a−1γ−2(−bw2
1 + at) ≡ 0,

while modulo b/d2 we have

(k′2)2 + a′c′ ≡ (aγ)−2k2
2w

2
2 + a′c′

≡ a−1γ−2(−cw2
2 + at) ≡ 0.

• (k′3)2 + a′b′ ≡ 0 (mod c′): Observe that the equation (14) implies that

(c/d1)w2
2 ≡ aa′d2γ

2 (mod d1)

on dividing by d1 and then reducing modulo d1. Now, modulo d1 we have

d2w
2
2((k′3)2 + a′b′) ≡ d2(k3a

′γ)2 + a′b′d2w
2
2 ≡ −d2ab(a′γ)2 + a′b′d2w

2
2

≡ −a′b(c/d1)w2
2 + a′b′d2w

2
2 ≡ a′w2

2(b′d2 − bc/d1)
≡ 0,

since bc/d1 = b′c′/d1 = b′d2. This implies that (k′3)2 + a′b′ ≡ 0 (mod d1),
since (d2w

2
2 , d1) = 1. A similar calculation shows that (k′3)2 + a′b′ ≡ 0

(mod d2).

Step 5: The linear transformation. Recall that we defined in (7) a lattice L =
L(a, b, c; k1, k2, k3) associated to equation (3) and its solubility certificate. Let L′ =
L(a′, b′, c′; k′1, k

′
2, k
′
3) be the similarly defined lattice for the reduced data. We now

define a linear transformation T : L′ → L which maps solutions to the new equation
into solutions to the original.

Given (x′, y′, z′) ∈ L′, set T (x′, y′, z′) = (x, y, z), where

x = −γn3x
′,

y =
1
n2

(
c

d1

w2

d2
y′ + w1z

′
)
,(19)

z =
1
n2

(
b

d2

w1

d1
y′ − w2z

′
)
.

Assuming for the moment that y, z ∈ Z and that T (L′) ⊆ L, direct calculation
shows that

n2
2

(
ax2 + by2 + cz2

)
= aa′γ2

(
a′(x′)2 + b′(y′)2 + c′(z′)2

)
.
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Hence T maps solutions of the equation a′(x′)2 + b′(y′)2 + c′(z′)2 = 0 to solutions
of the equation ax2 + by2 + cz2 = 0. Nontrivial solutions are mapped to nontrivial
solutions, since T has nonzero determinant; specifically, another direct calculation
shows that |detT | = (γn3)3n1/n2 6= 0.

Note that in general T (L′) 6= L, since

[L : T (L′)] = [Z3 : L′][L′ : T (L′)]/[Z3 : L]

= a′b′c′(γn3)3n1/(n2abc)

= γn3
3.

If t were square-free and coprime to a, we would have γ = n3 = 1. In this situation,
which is usually the case in practice, we do have T (L′) = L.

It remains to show that (19) does define a well-defined map from L′ to L.
• y, z ∈ Z: Since n2y ∈ Z and n2 ⊥ c′, it suffices to show that c′(n2y) ≡ 0

(mod n2). But modulo n2 we have

c′(n2y) ≡ cw2y
′ + c′w1z

′ ≡ w1(k′1y
′ + c′z′) ≡ 0,

since k′1y
′+ c′z′ ≡ 0 (mod a′) (from the definition of L′) and n2|a′, and we

have used cw2 ≡ k′1w1 (mod n2). The verification that z ∈ Z is similar.
• by ≡ k1z (mod a): using n2 ⊥ a and c′ ⊥ a, we compute modulo a:

n2c
′(k1z − by) ≡ k1(bw1y

′ − c′w2z
′)− b(cw2y

′ + c′w1z
′)

≡ by′(k1w1 − cw2)− c′z′(k1w2 + bw1) ≡ 0.

• cz ≡ k2x (mod b): Here it suffices to work modulo d2 and b/d2 separately,
since they are coprime, and we may multiply by n2 since n2 ⊥ b.

Modulo d2, we have

n2(k2x− cz) ≡ −a′k2γx
′ − c

(
b

d2

w1

d1
y′ − w2z

′
)

≡ −a′k2γx
′ − b′w1y

′ (since d2|w2)

≡ −a′k2γx
′ + w1k

′
3x
′ (since k′3x

′ ≡ −b′y′ (mod c′) and d2|c′)
≡ 0 (since k′3w1 ≡ k2a

′γ).

Modulo b/d2:

n2(k2x− cz) ≡ −a′k2γx
′ + cw2z

′

≡ k′2z′k2γ + cw2z
′ (since −a′x′ ≡ k′2z′ (mod b′) and (b/d2)|b′)

≡ a−1k2
2w2z

′ + cw2z
′

≡ a−1w2z
′(k2

2 + ac) ≡ 0.

• ax ≡ k3y (mod c): We work modulo d1 and c/d1 separately.
Modulo d1, we have ax ≡ k3y ⇐⇒ k3x ≡ −by, and

n2(k3x+ by) ≡ −k3a
′γx′ + b

(
c

d1

w2

d2
y′
)

≡ w2(k′3x
′ + b′y′) ≡ 0.
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Modulo c/d1:

n2(k3y − ax) ≡ k3(w1z
′) + aγa′x′

≡ aγ(k′2z
′ + a′x′) ≡ 0. �

When implementing this method, we first factor the coefficients of the given
diagonal equation, removing square factors and common factors of the coefficients.
Then we compute a solubility certificate, returning failure if none exists. A recursive
procedure based on Lemma 2.3 and Proposition 2.6 is used to find a solution in the
solution lattice defined by the certificate. Finally, the solution is reduced in size
using the algorithms of Section 2.4.2 and (if necessary) Section 2.4.1.

This completes the description of the factorization-free reduction method.

2.6. Algorithm III: lattice methods. Both the preceding algorithms use 2-
dimensional lattice reduction. One can also use the 3-dimensional lattice L =
L(a, b, c; k1, k2, k3) (defined in (7)) directly as follows. As already observed, for
(x, y, z) ∈ L we have f(x, y, z) = ax2 + by2 + cz2 ≡ 0 (mod abc). Moreover,
Minkowski’s theorem implies that L contains a nonzero vector (x, y, z) satisfying
Holzer’s bounds (8). This implies that

−|abc| < f(x, y, z) < 2|abc|,
so that either f(x, y, z) = 0 or f(x, y, z) = |abc|. In the former case, we have a
Holzer-reduced solution to (3), but in the latter case we do not have a solution.
Various ways of fixing this problem have been proposed, by Mordell, Cassels and
more recently by Cochrane and Mitchell in [3]. They impose extra 2-adic conditions
to define a sublattice L′ of index 2 in L such that points (x, y, z) ∈ L′ satisfy
f(x, y, z) ≡ 0 (mod 2abc), and apply a theorem of Gauss to assert the existence of
a point (x, y, z) ∈ L′ with |f(x, y, z)| < 2|abc|, giving a solution. The case a = b = 1
requires special treatment in the proof, as in Lemma 2.3.

In order to turn this into an algorithm for solving equations in practice, one
needs methods of finding short vectors in 3-dimensional lattices, since the shortest
vector in L′ certainly gives a solution. In most cases, the first vector in an LLL-
reduced basis of L gives a solution, and the following lemma1 says that one does
not have to look much further.

Lemma 2.7. Let b1, b2, b3 be an LLL-reduced basis of a 3-dimensional lattice L.
Then the shortest vector of L has the form n1b1 + n2b2 + n3b3, where each ni ∈
{−1, 0, 1}.
Remark. Since ±v have the same length, this leaves us with 13 nonzero vectors to
check to find the shortest vector, given an LLL-reduced basis.

Proof. Let b∗i for i = 1, 2, 3 be the orthogonalized basis vectors in R3, so that

b1 = b∗1,

b2 = b∗2 + µ21b
∗
1,

b3 = b∗3 + µ31b
∗
1 + µ32b

∗
2.

Since the bi are LLL-reduced, we have |µij | ≤ 1/2 for 1 ≤ j < i ≤ 3, and

|b∗i |2 ≥
(

3
4
− µ2

i,i−1

)
|b∗i−1|2 ≥

1
2
|b∗i−1|2

1Shown to us by R. J. Chapman.
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for i = 2, 3. Hence
|b∗1|2 ≤ 2|b∗2|2 ≤ 4|b∗3|2.

Let x = α1b1 + α2b2 + α3b3 ∈ L with αi ∈ Z. Then

|x|2 = (α1 + µ21α2 + µ31α3)2|b∗1|2 + (α2 + µ32α3)2|b∗2|2 + α2
3|b∗3|2.

Suppose |x| < |b1|. We will show that this forces |αi| ≤ 1 for i = 1, 2, 3.
First of all, from α2

3|b∗3|2 ≤ |x|2 < |b∗1|2 ≤ 4|b∗3|2 we have α2
3 < 4, so |α3| ≤ 1.

Case 1: α3 = 0. Then α2
2|b∗2|2 ≤ |x|2 < |b∗1|2 ≤ 2|b∗2|2 implies α2

2 < 2, so
|α2| ≤ 1. If α2 = 0, then x = α1b1, so α1 = 0. Otherwise, α2 = ±1, giving
|b∗1|2 > |x|2 ≥ (α1 + µ21α2)2|b∗1|2, which implies (α1 ± µ21)2 < 1, so |α1| ≤ 1 since
|µ21| < 1

2 and α1 ∈ Z.
Case 2: α3 = ±1. Now

|b∗1|2 > |x|2 ≥ (α2 + α3µ32)2|b∗2|2 + |b∗3|2

≥ 1
2

(α2 ± µ32)2|b∗1|2 +
1
4
|b∗1|2,

so (α2 ± µ32)2 ≤ 3
2 , giving |α2| ≤ 1. �

We now give a recipe for bases of the lattices L and L′, in terms of the solubility
certificate (k1, k2, k3).

Basis for L: Using the fact that a, b, c are pairwise coprime, solve the following
for u, v, a′ and b′:

ub+ vc = 1, aa′ + bcb′ = 1.
Now set

α ≡ b′ck1 (mod a), β ≡ ua′bk3 (mod bc), γ ≡ va′ck2 (mod bc).

The following vectors give a basis for L:

v1 = (bc, 0, 0), v2 = (aβ, a, 0), v3 = (αβ + γ, α, 1),

for one easily checks that these vectors all satisfy the defining congruences for L,
and they evidently generate a lattice of index |abc|.

Basis for L′: One easily checks that the map ε : L → Z/2Z given by (x, y, z) 7→
f(x, y, z)/(abc) (mod 2) is an additive homomorphism. It is surjective, since the
images of (bc, 0, 0), (0, ac, 0) and (0, 0, ab) (which all lie in L) are bc, ac and ab
(mod 2) respectively, and at least one of these is odd. Hence L′ = {v ∈ L | f(v) ≡ 0
(mod 2abc)} is a sublattice of L of index 2. [Again, we are grateful to R. J. Chapman
for this observation.]

Let vi be a basis vector of L (from the above list) such that ε(vi) = 1 (mod 2).
Define

wj =


2vi if j = i,

vj − vi if j 6= i and ε(vj) = 1,
vj if j 6= i and ε(vj) = 0.

Then w1, w2, w3 is a basis for L′.
Now use a standard integer LLL-algorithm, such as in [4], to find an LLL-reduced

basis b1, b2, b3 of L′ with respect to the norm ||(x, y, z)||2 = |a|x2 + |b|y2 + |c|z2.
Then for at least one of the 13 nonzero vectors v = n1b1 + n2b2 + n3b3 (up to sign)
we have f(v) = 0 by Lemma 2.7.
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It would also be possible to use the algorithm of Vallée (see [16]) for finding the
shortest vector in the 3-dimensional lattice L′. We have not implemented this.

2.7. Other methods. Finally, we mention that there are two methods for solving
Legendre’s equation due to Gauss: see [7, Arts. 294, 295]. These both involve
the theory of reduction of ternary quadratic forms: specifically, in both solutions
one constructs an indefinite ternary form of determinant −1 and reduces it to the
form x2 + 2yz using a suitable unimodular substitution. While Gauss does give
an algorithm for this reduction in [7, Arts. 272, 274], it does not seem to be very
efficient in practice. Without a fast method of carrying out such a reduction,
Gauss’s methods of solving Legendre’s equation are much slower than the method
we presented above.

3. Parametric solutions

Now we have one solution (x0, y0, z0) to our equation (1), and we wish to pa-
rametrize all solutions. Our starting point is a classical method (see [10]), which
was also used in [6] and may also be found in the book [15].

3.1. The diagonal equation. First assume that our equation is in diagonal form
(3) with abc square-free. Assuming that z0 6= 0 by symmetry, one sets X = x0W +
U , Y = y0W + V , z = z0W and eliminates W to obtain the following parametric
solution:

x = Q1(U, V ) = ax0U
2 + 2by0UV − bx0V

2,

y = Q2(U, V ) = −ay0U
2 + 2ax0UV + by0V

2,(20)

z = Q3(U, V ) = az0U
2 + bz0V

2.

These quadratics have the following discriminants:

disc(Q1) = −4bcz2
0, disc(Q2) = −4acz2

0 , disc(Q3) = −4abz2
0.

Also, the 3 × 3 matrix of coefficients of the Qi (which is used in the application
in [6]) has determinant −4abcz3

0. We claim that the powers of z0 which appear
here are entirely superfluous and may be removed. This is hardly surprising, since
we made an arbitrary choice of the variable Z at the start. But it is significant,
since in many of the applications, such as the one in [6] and our own in 2-descent
on elliptic curves, it is crucial to keep these quantities as small as possible, and to
avoid introducing spurious prime factors. Our result is as follows.

Proposition 3.1. Let a, b, c be nonzero integers, with abc square-free, such that the
equation aX2+bY 2+cZ2 = 0 has a (nontrivial) solution. Then the set of all rational
solutions may be parametrized in the form (2), where each Qi(U, V ) ∈ Z[U, V ] is
quadratic, with discriminants

disc(Q1) = −4bc, disc(Q2) = −4ac, disc(Q3) = −4ab,

and the determinant of the coefficient matrix of the Qi is 4abc. Moreover, these
discriminants cannot be further reduced.

Proof. We start with the parametrization given by (20) in terms of a primitive
solution (x0, y0, z0) with z0 6= 0. It is sufficient to find an integer e such that
Qi(U + eV/z0, V/z0) has integer coefficients for i = 1, 2, 3, since this change of
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variables clearly reduces the discriminants of each Qi by a factor of z2
0 as required,

and the coefficient determinant by a factor z3
0 .

Since a is square-free, gcd(y0, z0) = 1, so we can find an integer e satisfying

ey0 ≡ x0 (mod z2
0).

From ax2
0 + by2

0 + cz2
0 = 0 it easily follows that ae2 ≡ −b (mod z2

0), and then

eax0 + by0 ≡ 0 (mod z2
0),

e2ax0 + 2eby0 − bx0 ≡ 0 (mod z2
0).

Now

Q1(U + eV/z0, V/z0) = ax0U
2 + 2

eax0 + by0

z0
UV +

e2ax0 + 2eby0 − bx0

z2
0

V 2,

which has integral coefficients.2 A similar check shows that the coefficients of
Qi(U + eV/z0, V/z0) are also integral for i = 2 and i = 3.

For the last statement, observe that since abc is square-free, the only square
dividing all the discriminants−4ab,−4ac, −4bc is 4. Now−ab, −ac, and−bc cannot
all be discriminants: none is a multiple of 4, and they cannot all be congruent to 1
(mod 4) since their product is −(abc)2. �

Corollary 3.2. With the notation as in Proposition 3.1, there exist values (u0, v0)
of the parameters (U, V ) such that gcd(u0, v0) = 1 and if we set x1 = Q1(u0, v0),
y1 = Q2(u0, v0), z1 = Q3(u0, v0), then (x1 : y1 : z1) is a solution of (3) satisfying
the “almost-Holzer” bounds

(21) |x1| ≤
√

4|bc|/3, |y1| ≤
√

4|ac|/3, |z1| ≤
√

4|ab|/3.

Proof. Assume, without loss of generality, that a > 0, b > 0 and c < 0. Then
Q3(U, V ) is definite (and even positive definite if we take z0 > 0, as we may).
Applying standard Gaussian reduction to Q3, we find a unimodular substitution of
the parameters (U, V ), say U = αU ′ + βV ′, V = γU ′ + δV ′ with αδ − βγ = ±1,
so that the transformed quadratic Q∗3(U ′, V ′) = Q3(U, V ) has leading coefficient
z1 = Q∗3(1, 0) = Q3(α, γ) satisfying z2

1 ≤ | disc(Q3)/3| = 4ab/3. Applying the same
transformation to Q1(U, V ) and Q2(U, V ), we obtain new parametrizing quadratics
Q∗i satisfying aQ∗1(U, V )2+bQ∗2(U, V )2+cQ∗3(U, V )2 = 0 and the same discriminants
as the Qi. Substituting (U, V ) = (1, 0), we obtain a new solution x1 = Q∗1(1, 0),
y1 = Q∗2(1, 0), z1 = Q∗3(1, 0), with z2

1 ≤ 4ab/3. Finally, ax2
1 ≤ ax2

1 + by2
1 = cz2

1 ≤
4|abc|/3, so that x2

1 ≤ 4|bc|/3, and similarly y2
1 ≤ 4|ac|/3. This proves the result,

with (u0, v0) = (α, γ). �

3.2. Example. We apply the method of the previous section to the equation

X2 + 113922743Z2 = 310146482690273725409Y 2

2In fact, R. Buchholz has observed that it is sufficient for e to satisfy ey0 ≡ x0 (mod z0);
this may produce smaller coefficients at this stage, but the reduction given in Corollary 3.2 below
makes this redundant.
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treated earlier, starting with the primitive and Holzer-reduced solution (x, y, z) =
(70647575606369, 5679, 6632499416). We obtain the parametrization

X = 70647575606369U2− 272768472153240UV − 236838674874023V 2,

Y = 5679U2 − 536UV + 20073V 2,

Z = 6632499416U2 + 24254293278UV − 24587834368V 2.

These have discriminants 4 · 113922743 · 310146482690273725409, −4 · 113922743
and 4 · 310146482690273725409, as expected. While the size of the coefficients in
this parametrization may seem large (up to 15 digits), recall that the coefficients
of the original equation have 9 and 21 digits. By comparison, the parametrization
given in [17], obtained using Maple, involves coefficients all of which have between
25 and 35 digits; and more seriously, the discriminants of the quadratics given there
are k2 times the ones given above, where k = 25 · 3 · 59 · 67 · 79 · 149 · 1993 · 7187 ·
45757 · 16215770450329.

3.3. The semi-diagonal equation. For convenience for our elliptic curve appli-
cations, we give an alternative form of Proposition 3.1 suited to the semi-diagonal
form.

Proposition 3.3. Let a, b, c, d be integers with acd(b2 − 4ac) 6= 0 and d square-
free, such that the equation aX2 + bXZ + cZ2 = dY 2 has a (nontrivial) solution.
Then the set of all rational solutions may be parametrized in the form (2), where
each Qi(U, V ) ∈ Z[U, V ] is quadratic, with discriminants

disc(Q1) = 4cd, disc(Q2) = b2 − 4ac, disc(Q3) = 4ad.

Proof. Rather than change variables and apply Proposition 3.1, it is simpler to
start from scratch with a primitive solution (x0, y0, z0) to (5). Set ∆ = b2 − 4ac.

We first suppose that y0 6= 0, which will certainly be the case unless ∆ is a
square. One parametrization is given by

X = Q1(U, V ) = x0U
2 + 2(bx0 + 2cz0)UV + x0∆V 2,

Y = Q2(U, V ) = y0U
2 − y0∆V 2,(22)

Z = Q3(U, V ) = z0U
2 − 2(bz0 + 2ax0)UV + z0∆V 2,

with disc(Q1) = 16cdy2
0, disc(Q2) = 4y2

0∆, and disc(Q3) = 16ady2
0. These must

now be divided by (2y0)2.
The argument is slightly complicated by the fact that we cannot assume that

either gcd(x0, y0) = 1 or gcd(z0, y0) = 1. But gcd(x0, z0) = 1 since d is square-
free, so without loss of generality we may assume that x0 is odd, and we may factor
y0 = y1y2 with gcd(2y1, y2) = gcd(2y1, x0) = gcd(y2, z0) = 1. Hence by the Chinese
Remainder Theorem we may find e satisfying

ex0 ≡ −(2cz0 + bx0) (mod 4y2
1),(23)

ez0 ≡ (2ax0 + bz0) (mod y2
2).(24)

Explicitly, if sx0 + tz0 = 1, then we may set e = t(2ax0 + bz0) − s(2cz0 + bx0)
(mod 4y2

0). In particular, we may compute e in practice without having to deter-
mine the factorization y0 = y1y2.

Using the fact that ax2
0+bx0z0+cz2

0 ≡ 0 (mod y2
0), simple calculations show that

(23) also holds modulo y2
2 and that (24) also holds modulo 4y2

1; hence both hold
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modulo 4y2
0. Also, squaring (23) and using ax2

0 +bx0z0 +cz2
0 ≡ 0 (mod y2

0), we find
that e2 ≡ ∆ (mod 4y2

1), and (24) similarly implies that the same congruence holds
modulo y2

2 , so we have e2 ≡ ∆ (mod 4y2
0). Now a trivial calculation shows that the

quadratics Qi(U + eV/(2y0), V/(2y0)) have integer coefficients and the properties
stated.

The case where y0 = 0 may easily be handled: this can only happen when ∆ is a
square, say ∆ = δ2. Note that δ ≡ b (mod 2). We start with the parametrization

x = Q1(U, V ) =
1
2

(ad(δ − b)U2 + (δ + b)V 2),

y = Q2(U, V ) = aδUV,

z = Q3(U, V ) = a2dU2 − aV 2,

with discriminants 4a2cd, a2∆ and 4a3d respectively. Write a = a1a2, where a1 =
gcd(a, (δ + b)/2). Then a2 divides (δ − b)/2, and a simple calculation shows that
the quadratics (1/a1)Qi(U/a2, V ) have the desired properties. �

4. Timings

We have implemented the algorithms described in Section 2 using C++ together
with the LiDIA library (version 1.4) for multiprecision integer arithmetic and fac-
torization routines. Modular square roots were computed using the implementation
in LiDIA of Shanks’s RESSOL algorithm in order to find certificates. The integer
LLL algorithm was implemented by us following [4].

As sample problems we considered only diagonal equations aX2 +bY 2 +cZ2 = 0
where a, b and −c are primes chosen so that the equation is soluble. The advantage
of using prime coefficients is that the factorization-free solution methods then have
to do no factorization at all (other than verifying that the coefficients are prime,
which was done using a standard pseudo-primality test).

We precomputed sets of test data as follows, for

k ∈ {5, 10, 15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 500, 1000}.

For each k, let a be the smallest prime above 10k, and b the next prime after a;
then for each of the next primes p after b such that the equation aX2 + bY 2 = pZ2

is soluble, we store the triple (a, b, c) with c = −p. The corresponding data set
for each k will be denoted Sk. We precomputed datasets containing 100 triples for
k ≤ 200, five triples for k = 500 and just one for k = 1000. This last one uses
coefficients a = 101000 + 453, b = 101000 + 1357, and c = −(101000 + 2713). We
remark that computing these data sets took longer than solving the corresponding
equations using our algorithms.

Each of the algorithms was then used to compute (reduced) solutions to each of
the equations in each data set. For k > 20 it was not practical to use Lagrange
reduction (Algorithm I), either with (LAG+R) or without (LAG) the lattice reduc-
tion improvement described above. This was partly because of the excessively long
time this would have taken, but also because a bug in LiDIA’s MPQS factorization
routine meant that integers of this size often could not be factored reliably, so that
the timings obtained on repeated runs were very inconsistent. Since the coefficients
used are prime, no factorization at all was needed for either the factorization-free
reduction method (FFR) or the LLL-based methods.
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Table 1.

k LAG LAG+R FFR LLL
5 35.243s 4.612s 0.407s 0.362s
10 169.764s 11.869s 0.765s 0.737s
15 18.554s 1.139s 1.185s
20 31.978s 2.537s 2.629s
25 2.763s 2.982s
50 7.168s 8.839s
75 13.073s 17.819s
100 21.920s 34.871s
125 30.611s 52.856s
150 40.603s 74.219s
175 57.991s 109.221s
200 73.597s 147.364s
500 32.372s 69.576s
1000 34.031s 79.320s

The results are shown in Table 1, given in seconds, based on a DEC alpha EV6.
Recall that each entry for k ≤ 200 gives the time taken to solve 100 different
problems of size around 10k for data set Sk, the datasets for k = 500 and k = 1000
having size 5 and 1 respectively.

We may draw the conclusion that methods which do not require factorization at
intermediate stages are much faster than those which do. Of the factorization-free
methods, LLL and the factorization-free reduction methods are of comparable speed
for small and medium-sized problems, but for larger problems the reduction method
starts to gain, being twice as fast for the problems with 200-digit coefficients.

The above comparative timings between the FFR and LLL methods are some-
what misleading, however. By using equations with prime coefficients we have
avoided all factorization in computing the solutions, but both the FFR and LLL
methods start by computing the solubility certificate (k1, k2, k3) for each equation,
and this computation takes a substantial proportion of the total time. To investi-
gate further, we isolated the time for this step, which involves the computation of
three square roots modulo primes of size 10k for each equation, and found that it
takes almost all the time of the FFR method, and about half the time of the LLL
method. In Table 2, the first column of timings gives the times for just computing
the certificates; the next two columns give the time to find the solutions, given the
precomputed certificates using both FFR and LLL methods.

It is now apparent that our FFR method is very much faster than LLL in finding
the solution from the certificate, by a factor of about 15 in the largest example. We
give some more details of this last computation: 10 levels of recursion were needed;
at each depth except one, the value of the variable γ is 1, the exceptional value
being 5. This agrees with our expectation that γ = 1 in most cases. With the
FFR method, the solution (x, y, z) produced initially had content gcd(x, y, z) = 6,
with no cancelling of common factors during the recursion (in order to stay on the
appropriate lattice). This small content shows the efficiency of the formulae used to
map the solutions back from lower levels. After cancelling this common factor, the
nonreduced solution has integers x, y, z each of 1004 digits, with “Holzer measure”
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Table 2.

k Certificate FFR LLL
5 0.237 0.181 0.175
10 0.470 0.257 0.329
15 0.735 0.327 0.522
20 1.981 0.404 0.766
25 2.093 0.484 1.025
50 5.801 0.914 3.283
75 10.809 1.411 7.290
100 18.343 2.055 16.372
125 26.485 2.746 25.966
150 35.092 3.475 38.445
175 50.607 4.633 58.593
200 63.534 5.883 83.435
500 30.003 1.888 39.575
1000 30.248 1.983 48.766

max{x2/|bc|, y2/|ac|, z2/|ab|} = 5.7 · 107. After reduction (using the quadratic
parametrization) we obtain the Holzer-reduced solution with integers of 1000 digits
each and Holzer measure 0.54. The LLL method produces a solution which has
Holzer measure 0.47, and again 1000 digits for each of x, y and z.

In our implementation of Lemma 2.5 we use the technique mentioned in the
remark after that lemma above, to ensure that the factors cI are not divisible by p2

for primes p < 20. For all the examples, this was sufficient to avoid ever having to
backtrack, since (without this adjustment) the only square factors of the coefficients
which were discovered at lower levels were products of the primes ≤ 11. A small
time saving was achieved in this way.

Analyzing these two algorithms further may throw some light on this marked
difference in their running times for large problems. In both cases we start by
constructing a 3-dimensional lattice L in which the solution will lie. With the LLL
method, we repeatedly find new bases for this same lattice, while with the FFR
method we construct a new lattice at each step, and the only lattice reduction we do
is on 2-dimensional projections of these. These successive lattices have decreasing
index in Z3, and their bases have smaller and smaller integer coordinates, so we
would expect the computations to be faster as we go deeper into the recursion.
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16. B. Vallée, Algorithmique dans les réseaux de petite dimension: un point de vue affine sur la
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