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A COMPUTATIONAL APPROACH FOR SOLVING
y2 = 1k + 2k + · · ·+ xk

M. J. JACOBSON, JR., Á. PINTÉR, AND P. G. WALSH

Abstract. We present a computational approach for finding all integral solu-
tions of the equation y2 = 1k + 2k + · · ·+xk for even values of k. By reducing
this problem to that of finding integral solutions of a certain class of quartic
equations closely related to the Pell equations, we are able to apply the pow-
erful computational machinery related to quadratic number fields. Using our
approach, we determine all integral solutions for 2 ≤ k ≤ 70 assuming the
Generalized Riemann Hypothesis, and for 2 ≤ k ≤ 58 unconditionally.

1. Introduction

É. Lucas [18] proved that the diophantine equation

(1) y2 = 12 + 22 + · · ·+ x2

has only the solutions x = y = 1 and x = 24, y = 70. Schäffer [20] furthered this
work by studying the more general equation

(2) yq = 1k + 2k + · · ·+ xk.

The main result of this work was a proof that the only positive integers (k ≥ 1,
q > 1) for which this equation has infinitely many solutions are

(k, q) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}.

Schäffer also made the following

Conjecture 1.1 ([20]). Let k and q > 1 be positive integers, with (k, q) not in the
above list. Then apart from the solution (x, y) = (24, 70) when k = q = 2, the only
solution to equation (2) is the trivial solution x = y = 1.

In recent years there have been numerous papers on this topic (see [2], [3], [7],
[10], [22]). The interested reader may wish to refer to the notes at the end of chapter
10 in [21].

In a recent paper [4], the authors prove the following
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Theorem 1.1 ([4]). For k ≥ 2 even, the equation

(3) y2 = 1k + 2k + · · ·+ (x− 1)k

has at most max{c1, 9k} solutions in integers x and y, where c1 is an effectively
computable absolute constant.

Although this theorem does not prove Conjecture 1.1, its proof provides a meth-
odology for finding all integer solutions to equation (3). In particular, this was the
goal in [19], wherein Pintér found all solutions to (3) for k ∈ {2, 4, 6, 8, 10, 14}.

The purpose of the present paper is to improve on the result in [19] by reducing
the problem to finding all integer points on a certain class of quartic equations,
and appealing to the ideas from [1] to improve the computation. As a result of this
reduction, we can improve upon [19] as follows.

Theorem 1.2. For 2 ≤ k ≤ 58 and k even, the only positive integer solution (x, y)
to equation (3) is the trivial solution (x, y) = (2, 1), except in the case k = 2,
for which there is the anomalous solution (x, y) = (25, 70). Under the assumption
of the Generalized Riemann Hypothesis (GRH ), the result also holds in the range
60 ≤ k ≤ 70.

The dependence of Theorem 1.2 on the GRH is due to our algorithm’s use
of a conditional subexponential algorithm for computing the regulator of a real
quadratic field [11]. This is explained in more detail on Section 5

2. Reduction to a family of quartic diophantine equations

We begin by following the argument in [19]. For k > 0, we define Sk(x) to be
the polynomial

Sk(x) = 1k + 2k + · · ·+ (x− 1)k.
It is well known that for k even, (k+1)Sk(x) = Bk+1(x), where Bk+1(x) represents
the k + 1-st Bernoulli polynomial (see [8] for details on Bernoulli numbers and
polynomials). Suppose that k ≥ 2 is even, and that (x, y) is a positive integer
solution to y2 = Sk(x). From the above remark we have

(k + 1)y2 = (k + 1)Sk(x)

= Bk+1(x) =
(
k + 1

1

)
Bkx+

(
k + 1

3

)
Bk−2x

3 + · · ·+ xk+1,

where Bi(i ≥ 0) is the ith Bernoulli number. Define dk to be the minimal positive
integer such that dk(k + 1)Sk(x) has integer coefficients. It follows that

dk(k + 1)y2 = x((k + 1)dkBk + x2f(x)),

with f(X) a polynomial with integer coefficients. Therefore, x = au2 with u ≥ 1,
a ≥ 1 square-free, and a divides (k + 1)d2

kBk.
From the relation

Bk+1(X) = (−1)k+1Bk+1(1−X),

we deduce that x − 1 = cw2, where w ≥ 1, c ≥ 1 is square-free, and c also divides
(k + 1)d2

kBk. For future reference, we will define Ak as

Ak = {p prime | p|(k + 1)d2
kBk}.

We now wish to deduce a similar result for the integer 2x − 1. We will use the
following two properties of Bernoulli polynomials (i ≥ 1):
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1. B′i+1(X) = (i+ 1)Bi(X);
2. Bi(1/2) = (21−i − 1)Bi.

By Taylor’s formula

Bk+1(X) =
k+1∑
i=0

B
(i)
k+1(1/2)
i!

(X − 1/2)i,

and so, by applying the above properties, we obtain

Bk+1(X) =
k+1∑
i=1

(
k + 1
i

)
(2i−k − 1)Bk+1−i · 2−i(2X − 1)i.

Define ek to be the smallest positive integer such that

ei

k+1∑
i=1

(
k + 1
i

)
(2i−k − 1)Bk+1−i · 2−i(2X − 1)i

is a polynomial with integer coefficients in the variable (2X − 1). Therefore, as
above, we obtain

ek(k + 1)y2 = (2x− 1)(ek(k + 1)(21−k − 1)Bk + (2x− 1)g(x)),

where g(X) is a polynomial with integer coefficients. Therefore, 2x−1 = bv2, where
v ≥ 1, b ≥ 1 is square-free, and b is a product of primes which are divisors of the
integers

(4) {ek, k + 1, 2k−1 − 1, numerator(Bk)}.

For future reference, we will define the set of primes Ck to be those odd primes
which divide any one of the integers in (4).

Let Z = 2x− 1, ω = abc, and W = 2uvw, then (Z,W ) is an integer point on the
elliptic curve

(5) Z3 − Z = ωW 2.

Thus, the problem now reduces to finding all integer points on all possible curves
of the form (5), where ω ranges over the square-free integers composed of primes in
Ak ∪ Ck. It is well known that this can be accomplished in several ways, the most
efficient likely being the implementation of Gebel, Pethö, and Zimmer [9]. The
problem here is that the size of the sets Ak and Ck and the size of their elements
grow very quickly with k, thereby requiring not only the diophantine resolution of
many elliptic curves but, more importantly, curves whose defining parameters are
indeed quite large.

The main point in the present paper is to provide an alternative approach. With
a, b, c, u, v, w as defined above, let d = ac and z = 2uw. Then (X,Y ) = (v, z) is a
point on the quartic curve

(6) b2X4 − dY 2 = 1.

3. The diophantine equation b2X4 − dY 2 − 1

Equation (6) has been studied in considerable detail. We state two theorems on
its solubility which will provide the basis for our algorithm to solve equation (3).
The first theorem can be found in [6], while the second can be found in [1].
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Lemma 3.1 ([6]). Let d denote a square-free positive integer, and let T + U
√
d

denote the minimal solution to the equation X2 − dY 2 = 1. For k ≥ 1, let Tk +
Uk
√
d = (T + U

√
d)k. If (X,Y ) = (v, z) is a solution to X4 − dY 2 = 1, then

v2 = T1 or v2 = T2. T1 and T2 are both squares only for d = 1785.

Lemma 3.2 ([1]). Let b > 1 and d > 1 be square-free integers, then the equation
b2X4 − dY 2 = 1 has at most one solution in positive integers (X,Y ). If a solution
exists, then bX2 = Tβ(b), where β(b) is defined to be the minimal index k for which
b divides Tk (note that β(b) may or may not exist).

4. The algorithm

In this section we describe an algorithm based on the results of the previous
section for finding all integer points (X,Y ) on those curves b2X4 − dY 2 = 1, as b
and d range over the set of square-free integers composed of primes in Ck and Ak,
respectively. The bottleneck in the algorithm is easily seen to be the computation
of the minimal solution to the Pell equation X2 − dY 2 = 1. Once this has been
computed for a given value d, the remaining computations are completed with
relative ease. We remark that the steps involved in the algorithm are in some ways
dictated by properties of solutions to Pell equations, and so the interested reader
may wish to consult [15] or [23] for further details.

Algorithm 4.1. For each square-free integer d > 1 composed of primes in Ak,
perform the following steps:

1. Compute T + U
√
d, the minimal solution to X2 − dY 2 = 1.

2. For each p ∈ Ck such that p 6 | d, determine if (β(p) exists, and if so, then
compute β(p).

3. Let {p1, . . . , pt} denote those primes p for which β(p) exists. Partition the
set {p1, . . . , pt} into equivalence classes, where pi and pj are in the same
class if and only if β(pi) and β(pj) are exactly divisible by the same power
of 2.

4. This step is repeated for each equivalence class determined in Step 3. Let
C denote an equivalence class. For each square-free integer m > 1, divisible
only by primes in C, define β(m) = lcmp|m{β(p)}. (Note that m divides
some Ti if and only if the prime divisors of m are all in the same equivalence
class).

5. Determine if T1 or T2 is a square. For each m > 1 divisible only by primes
in Ck such that β(m) exists, determine if (Tβ(m))/m is a square.

4.1. Remarks concerning the implementation of Algorithm 4.1. The main
difficulty in implementing Algorithm 4.1 is computing and working with η = T +
U
√
d, the minimal solution of X2−dY 2 = 1. In general, log η is O(O

√
d), so except

for small values of d it is usually infeasible to compute T and U explicitly. However,
given a sufficiently accurate approximation of log η, and explicit representation of
η called a compact representation can be computed in polynomial time [5]. This
compact representation has the form

η = γ

k∏
j=1

(αj/dj)2k−j
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where dj ∈ Z+, γ ∈ Od, αj = (aj + bj
√

∆)/2 ∈ Od, aj , bj ∈ Z (j = 1, 2, . . . , k), ∆
is the discriminant of the quadratic field Q(

√
d), and Od is the ring of integers of

Q(
√
d). For our purposes, having a compact representation of η is almost always

sufficient. Indeed, unless a solution of b2X4 − dY 2 = 1 is actually found, we only
need to know T and U modulo various primes, a computation which can be carried
out very efficiently using the methods in [14] once a compact representation has
been obtained.

To compute log η, we first compute an approximation of R = log εd, the regulator
of Q(

√
d). Since η = ενd with ν ∈ {1, 2, 3, 6} (see, for example, [13]) we can easily

compute a compact representation of η from ν and R. Computing the regulator R
is in fact the most time-consuming part of the algorithm. The best unconditional
algorithm has complexity O(d1/5+ε) [16], [12], but for values of d > 1020, this is
much too inefficient. For these values of d, we used the subexponential algorithm
described in [11].

Once a compact representation of η has been computed, the next step is to
compute β(p) for each prime p ∈ Ck not dividing d. If β(p) exists, it must divide
(p−(d/p))/4 (see [23]), so we only have to compute Tl mod p for each l|(p−(d/p))/4
and take β(p) to be the smallest such l for which Tl ≡ 0 (mod p). Given the compact
representation of η, we can use the methods of [14] to compute T mod p. Using
the identities T2n = T 2

n + Y 2
n d and U2n = 2TnUn (see, for example, [23]), Tl can

be computed efficiently using an analogue of the well-known binary exponentiation
method given the binary representation of l. Computing the set of admissible values
of m and β(m) (Step 3 and 4) is straightforward after the β(p) have been computed.

The last step of the algorithm is to determine whether T1, T2, or (Tβ(m))/m is a
square. Each square value yields an integral solution of the elliptic curve (5) where
ω = md, Z = T1, T2 or Tβ(m), and W =

√
(Z3 − Z)/w, which can in turn be tested

as to whether a solution of (3) has been found. In general, computing Tl explicitly
is infeasible, but once again we use compact representations to solve this problem.
In the vast majority of cases, especially for large values of d, we expect that Tl will
not be a square. Thus, we expect that computing the Legendre symbol (Tl/p) for
a number of small primes p will eventually yield a value of −1, demonstrating that
Tl is not square. For this test, we only need Tl mod p for each prime p; again, the
methods described in [14] can be used for this purpose. If we have tried 30 primes
p and we get (Tl/p) = 1 for each of them, then we assume that Tl is in fact square
and are forced to compute it explicitly, which was in practice a rare occurrence
(only occuring for small values of Tl).

5. Computational results

We have implemented Algorithm 4.1 from the previous section and used it to
numerically verify Conjecture 1.1 for 2 ≤ k ≤ 70. Our code is written with the
C++ library LiDIA [17] and compiled with the GNU g++ complier version 2.91.66.
The program was run on an 800 MHz Pentium processor running Linux. The entire
computation took just over 11 days. Complete listings of the sets Ak and Ck, and
all the integral points found on the curve (5) can be found in Table 2 and Table 3
in Appendix A. For each point in Table 3, we list the values of k for which that
point was found. The only solutions of (3) we found were the trivial solution for
each value of k, and for k = 2 the anomalous solution x = 24, y = 70.
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Because the correctness of the subexponential algorithm described in [11] for
computing R is conditional on the Generalized Riemann Hypothesis, the correct-
ness of our results is also conditional for those values of k which made use of this
algorithm. In practice, the subexponential algorithm does return a multiple of the
regulator, but in order for the values of β(p) to be correct, it is necessary that the
value returned is the actual regulator so that η is the fundamental solution of Pell’s
equation.

In our implementation, we used the subexponential algorithm to compute R
whenever d > 1020 and the unconditional baby step–giant step variant of complexity
O(d1/5+ε) [16], [12] otherwise. For k ≤ 34 there were no values of d > 1020, so
these results are unconditionally correct. For 36 ≤ k ≤ 58, we were forced to
use the subexponential algorithm to compute some of the regulators, but we were
nevertheless able to verify unconditionally that these regulators were correct. Given
a multiple S of the regulator produced by the subexponential algorithm, we first
verify that R > S2/3 using a baby step–giant step algorithm. Then, for each prime
p such that S/p > S2/3, we verify that S/p is not also a multiple of R by checking
that the ideal closest to S/p from Od is not Od. Both stages of the algorithm take
time O(S1/3) and, assuming that S = R, we get an overall run time of O(d1/6+ε)
for verifying that the value produced by the subexponential algorithm is indeed the
regulator. This method for unconditionally computing r is the subject of ongoing
research, and will be described in more detail in a forthcoming paper.

In Table 1 we present various run time statistics from the computation. For each
even value of k between 2 and 70, we list the time to execute Algorithm 4.1 (Time),
the maximum decimal length of d during the course of the algorithm (maxd), the
number of values of d generated (# d = 2|Ak|−1), the number of d values for which
the assumption of the GRH is necessary (# GRH), and the time to verify that
the value of R produced is unconditionally correct for all d (Verify Time). For the
times, seconds, minutes, hours, and days are denoted by “s”, “m”, “h”, and “d”,
respectively.

Clearly, two factors prevent us from extending this table much further. First of
all, the number of d values which must be processed by Algorithm 4.1 is exponential
in k. Even for k ≤ 70 we have three cases where 2047 values of d were generated.
The regulator has to be evaluated for each of them, and while a few examples of the
required sizes can be computed efficiently, evaluating 1024 regulators for d having
between 20 and 51 decimal digits, for example, is very time-consuming.

Secondly, the d values themselves get larger as k increases. Indeed, to do k = 72
would require processing 2047 values of d, the largest having 64 decimal digits.
Computing the regulator for a single d value of this size takes over 2 hours, so the
amount of computation required to process all 2047 values of d for k = 72 would
be significantly greater than for the previous values of k.

As mentioned earlier, we were successful in removing the dependence on the GRH
from our results for k ≤ 58. Although we spent as much as 3.75 days verifying our
results for a single k value, even this would not have been possible without the new
O(d1/6+ε) method mentioned above. Extending this part of the computation would
also be difficult. For k ≤ 58, we had to compute regulators unconditionally for d
values with as many as 39 decimal digits. To do the same for k = 60 would require
handling d values with up to 51 decimal digits, a computation which currently
appears to be out of reach with the available methods.
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Table 1. Run time statistics.

k Time max d # d # GRH Verify Time
2 0.01s 1 3
4 0.03s 2 7
6 0.09s 2 7
8 0.07s 2 7

10 0.26s 3 15
12 1.66s 7 63
14 0.25s 3 15
16 0.91s 7 31
18 2.08s 9 63
20 3.46s 9 127
22 5.92s 9 127
24 16.55s 12 127
26 2.23s 9 31
28 20.53s 14 127
30 2m 38.32s 18 255
32 4m 40.55s 18 511
34 27.32s 15 63
36 6m 41.59s 27 255 127 42m 42.43s
38 4m 58.13s 19 127
40 5m 50.06s 26 255 64 23m 9.65s
42 3m 35.36s 27 127 64 37m 42.75s
44 39m 27.89s 27 1023 173 30m 37.89s
46 9m 38.90s 29 255 64 57m 27.35s
48 18m 46.91s 34 511 256 8h 49m 34.44s
50 14m 44.81s 31 255 86 2h 39m 44.29s
52 57m 56.25s 35 1023 391 12h 4m 5.38s
54 29m 12.05s 37 511 241 1d 6h 4m 25.78s
56 31m 49.05s 39 511 256 3d 17h 5m 14.47s
58 38m 49.77s 39 511 243 2d 18h 2m 6.00s
60 13h 13m 16.35s 51 2047 1024 ?
62 2h 57m 20.11s 43 2047 1074 ?
64 1h 9m 54.65s 47 255 125 ?
66 19h 34m 6.74s 53 1023 512 ?
68 7h 8m 6.09s 49 2047 1101 ?
70 6h 42m 43.14s 53 511 383 ?

total 2d 7h 15m 38.08s 53 14873 6187 81d 19h 56m 50.43s

A. Appendix

Table 2 contains the complete sets Ak and Ck described in Section 2. Table 3
contains all the integral points found on the elliptic curve (5) during the course of
our computations. For each point in Table 3, we list the values of k for which that
point was found.
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Table 2. Ak and Ck values.

k Ak and Ck
2 Ak = {2, 3}, Ck = {3}
4 Ak = {2, 3, 5}, Ck = {3, 5, 7}
6 Ak = {2, 3, 7}, Ck = {3, 7, 31}
8 Ak = {2, 3, 5}, Ck = {3, 5, 127}

10 Ak = {2, 3, 5, 11}, Ck = {3, 5, 7, 11, 73}
12 Ak = {2, 3, 5, 7, 13, 691}, Ck = {3, 5, 7, 13, 23, 89, 691}
14 Ak = {2, 3, 5, 7}, Ck = {3, 5, 7, 8191}
16 Ak = {2, 3, 5, 17, 3617}, Ck = {3, 5, 7, 17, 31, 151, 3617}
18 Ak = {2, 3, 5, 7, 19, 43867}, Ck = {3, 5, 7, 19, 43867, 131071}
20 Ak = {2, 3, 5, 7, 11, 283, 617}, Ck = {3, 5, 7, 11, 283, 617, 524287}
22 Ak = {2, 3, 5, 11, 23, 131, 593}, Ck = 3, 5, 7, 11, 23, 127, 131, 337, 593}
24 Ak = {2, 3, 5, 7, 13, 103, 2294797},

Ck = {3, 5, 7, 13, 47, 103, 178481, 2294797}
26 Ak = 2, 3, 7, 13, 657931}, Ck = {3, 7, 13, 31, 601, 1801, 657931}
28 Ak = {2, 3, 5, 7, 29, 9349, 362903},

Ck = {3, 5, 7, 29, 73, 9349, 262657, 362093}
30 Ak = {2, 3, 5, 7, 11, 31, 1721, 1001259881},

Ck = {3, 5, 7, 11, 31, 233, 1103, 1721, 2089, 1001259881}
32 Ak = {2, 3, 5, 7, 11, 17, 37, 683, 305065927},

Ck = {3, 5, 7, 11, 17, 37, 683, 305065927, 2147483647}
34 Ak = {2, 3, 5, 7, 17, 151628697551},

Ck = {3, 5, 7, 17, 23, 89, 599479, 151628697551},
36 Ak = {2, 3, 5, 7, 13, 19, 37, 26315271553053477373},

Ck = {3, 5, 7, 13, 19, 31, 37, 71, 127, 122921, 26315271553053477373}
38 Ak = {2, 3, 5, 7, 13, 19, 154210205991661},

Ck = {3, 5, 7, 13, 19, 223, 616318177, 154210205991661}
40 Ak = {2, 3, 5, 7, 11, 41, 137616929, 1897170067619},

Ck = {3, 5, 7, 11, 41, 79, 8191, 121369, 137616929, 1897170067619}
42 Ak = {2, 3, 5, 7, 11, 43, 1520097643918070802691},

Ck = {3, 5, 7, 11, 43, 13367, 164511353, 1520097643918070802691}
44 Ak = {2, 3, 5, 7, 11, 23, 59, 8089, 2947939, 1798482437},

Ck = {3, 5, 7, 11, 23, 59, 431, 8089, 9719, 2099863, 2947939, 1798482437}
46 Ak = {2, 3, 5, 7, 23, 47, 383799511, 67568238839737},

Ck = {3, 5, 7, 23, 31, 47, 73, 151, 631, 23311, 383799511, 67568238839737}
48 Ak = {2, 3, 5, 7, 13, 17, 653, 56039, 153289748932447906241},

Ck = {3, 5, 7, 13, 17, 653, 2351, 4513, 56039, 13264529,
153289748932447906241}

50 Ak = {2, 3, 5, 11, 13, 17, 417202699, 47464429777438199},
Ck = {3, 5, 11, 13, 17, 127, 417202699, 4432676798593, 47464429777438199}

52 Ak = {2, 3, 5, 11, 13, 53, 577, 58741, 401029177, 4534045619429},
Ck = {3, 5, 7, 11, 13, 53, 103, 577, 2143, 11119, 58741, 131071, 401029177,

4534045619429}
54 Ak = {2, 3, 5, 7, 11, 19, 39409, 660183281, 1120412849144121779},

Ck = {3, 5, 7, 11, 19, 6361, 39409, 69431, 20394401, 660183281,
1120412849144121779}
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Table 2. (Continued)

k Ak and Ck
56 Ak = {2, 3, 5, 7, 19, 29, 113161, 163979, 19088082706840550550313},

Ck = {3, 5, 7, 19, 23, 29, 31, 89, 881, 3191, 113161, 163979, 201961,
19088082706840550550313}

58 Ak = {2, 3, 5, 29, 59, 67, 186707, 6235242049, 37349583369104129},
Ck = {3, 5, 7, 29, 59, 67, 32377, 186707, 524287, 1212847, 6235242049,

37349583369104129}
60 Ak = {2, 3, 5, 7, 11, 13, 31, 61, 2003, 5549927,

109317926249509865753025015237911},
Ck = {3, 5, 7, 11, 13, 31, 61, 2003, 179951, 5549927, 3203431780337,

109317926249509865753025015237911}
62 Ak = {2, 3, 5, 7, 11, 13, 31, 157, 266689, 329447317, 28765594733083851481},

Ck = {3, 5, 7, 11, 13, 31, 157, 266689, 329447317, 28765594733083851481,
28765594733083851481}

64 Ak = {2, 3, 5, 11, 13, 17, 1226592271, 87057315354522179184989699791727},
Ck = {3, 5, 7, 11, 13, 17, 73, 127, 337, 92737, 649657, 1226592271,

87057315354522179184989699791727}
66 Ak = {2, 3, 5, 7, 11, 17, 23, 67, 839,

159562251828620181390358590156239282938769},
Ck = {3, 5, 7, 11, 17, 23, 31, 67, 839, 8191, 145295143558111,

159562251828620181390358590156239282938769}
68 Ak = {2, 3, 5, 7, 17, 23, 37, 101, 123143, 1822329343,

5525473366510930028227481},
Ck = {3, 5, 7, 17, 23, 37, 101, 123143, 193707721, 1822329343, 761838257287,

5525473366510930028227481}
70 Ak = {2, 3, 5, 7, 11, 71, 688531, 20210499584198062453,

3090850068576441179447},
Ck = {3, 5, 7, 11, 47, 71, 178481, 688531, 10052678938039,

20210499584198062453, 3090850068576441179447}

Table 3. Points on Z3 − Z = ωW 2.

k ω Z W

4, 8− 24, 28− 70 5 9 12
2− 70 6 3 2
2− 70 6 49 140

4, 8− 24, 28− 70 15 4 2
4,6,10− 48,52− 70 21 7 4

10,20,22,30,32,40− 44,50− 54,60− 66,70 22 99 210
28,56,58 29 9801 180180

4,8− 24,28− 70 30 5 2
16,32,34,48,50,64,66,68 34 17 12

12,24,26,36,38,48,50,52,60-64 39 25 20
46 141 48 28

28,56,58 145 289 408
18,36,38,54,56 190 19 6
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Table 3. (Continued)

k ω Z W

12,14,18,20,24,28− 48,54,56,60,62,66− 70 210 15 4
12,14,18,20,24,28− 48,54,56,60− 70 210 1681 4756

16,32,34,48,50,64− 68 255 16 4
10,20,22,30,32,40− 44,50− 54,60− 66,70 330 11 2

60 366 243 198
40 410 81 36

50,52,60− 64 429 12 2
30,60,62 434 63 24

12,24,36,38,48,60,62 455 64 24
16,30,36,46,56,60,62,66 465 31 8
12,24,26,36,38,48,60,62 546 13 2
12,24,26,36,38,48,60,62 546 27 6

32,50,64,66 561 33 8
28,56,58 609 28 6
22,44,66 759 23 4

12,22,34,44,56,56,66,68 805 161 72
36 889 127 48
60 915 121 44
60 915 244 126
52 1154 577 408

20,30,32,40− 44,54,60,62,66,70 1155 55 12
16,32,34,48,64− 68 1190 35 6

32,36,68 1295 36 6
48,50,64 1326 51 10

36 1406 37 6
32,34,48,66,68 1785 169 52
32,34,48,66,68 1785 57121 323128
18,36,38,54,56 1995 20 2

30,60,62 2170 125 30
10,20,22,30,32,40− 44,52,54,60− 66,70 2310 21 2

42 2365 44 6
36,70 2485 71 12

22,44,66 2530 45 6
60,62 3003 351 120

24 3090 59535 261324
36,38 3705 39 4

52 4134 53 6
36 4218 75 10

50,52,60− 64 4290 65 8
40 4305 41 4
54 4389 76 10

28,56 6090 29 2
46 6486 47 4

24,52 7210 721 228
36 7215 1444 646
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Table 3. (Continued)

k ω Z W

32 8547 1849 860
58 8555 13689 17316
56 11571 57 4
50 12155 441 84
44 13629 176 20
36 14430 961 248
66 17085 135 12
52 17490 529 92
42 19866 43 2
12 20930 13455 10788
58 51330 59 2
60 56730 61 2
66 62645 9841095 123345108
66 75174 67 2
66 78591 68 2

34,66,68 82110 69 2
32 85470 111 4
64 130305 511 32
46 201066 93 2
56 380190 115 2
46 473478 415151 388470
66 508530 18491 3526
68 607614 1701 90
46 609546 4417 376
70 700770 141 2

60,62 930930 155 2
62 949065 156 2
52 1332870 1155 34
52 6240255 2884 62
52 337567503 15001 100
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