
MATHEMATICS OF COMPUTATION
Volume 73, Number 245, Pages 359–375
S 0025-5718(03)01476-5
Article electronically published on July 17, 2003

AN EFFICIENT ALGORITHM FOR THE COMPUTATION
OF GALOIS AUTOMORPHISMS

BILL ALLOMBERT

Abstract. We describe an algorithm for computing the Galois automor-
phisms of a Galois extension which generalizes the algorithm of Acciaro and
Klüners to the non-Abelian case. This is much faster in practice than algo-
rithms based on LLL or factorization.

1. Introduction

Let T ∈ Z[X] be a monic irreducible polynomial of degree n, α a root of T in a
fixed algebraic closure Q of Q, and K = Q(α). The aim of this paper is to present
an efficient algorithm which checks whether or not K is a Galois extension of Q, and
when that is the case, computes the image of α by each automorphism, expressed
as a polynomial in α.

Algorithms for doing these tasks already exist in the literature and in computer
algebra systems (for example [11] and [9]). They essentially fall into four categories:

• the use of LLL algorithms, either real or p-adic (see for example [4, page
174]),
• explicit factorization of T (X) in the number field K (see for example [12,

page 19]),
• the use of unramified p-adic extensions and block system elimination (see

[6]),
• in the Abelian case, the lift of Frobenius automorphisms (see [2]).

All these methods have advantages and disadvantages: methods based on the
LLL algorithm are often quite fast but, due to the huge size of the solutions, do not
always guarantee the full result in reasonable time. Explicit factorization can be
implemented in polynomial time, but is nonetheless usually rather slow, although
it is of course failsafe. The Frobenius lifting method is by far the best practical
method, but unfortunately applies only to the Abelian case.

In the present paper, we give an efficient algorithm based on a combination of
techniques.
• A combinatorial approach based on the explicit knowledge of the group struc-

ture of groups of “small” cardinality (less than 100, say) (even though the Galois
group is not known initially); in particular, we will explain how to find a nearly
optimal strategy for minimizing the number of Frobenius liftings necessary to find
some nontrivial element in the automorphism group.

Received by the editor March 24, 2000.
2000 Mathematics Subject Classification. Primary 11Y40.

c©2003 American Mathematical Society

359

360 BILL ALLOMBERT

• The use of previously known elements and known relations to considerably
reduce the number of Frobenius liftings necessary to find new elements of the au-
tomorphism group.
• The polynomial chinese remainder theorem, which allows us to reconstruct all

the necessary Frobenius liftings from a single one.
• Several classical implementation tricks such as the “d−1-test” explained below,

which are possible thanks to use of the above techniques.
The above combinatorial techniques are mostly unnecessary in the Abelian case;

hence, even though our algorithm can be considered as a modification of the method
of [2] which is still valid in the non-Abelian case, its essential ideas are fundamentally
different. Even in the Abelian case, for reasonable-sized groups we use a more
efficient strategy to find the automorphisms.

The main advantage of our algorithm is that it is much faster than the LLL or
factorization methods, and of comparable speed with the Frobenius lifting methods
of [2] in the Abelian case. In [6], one can find a generalization of the Frobenius lifting
method to the non-Abelian case. However, the combinatorial techniques mentioned
above are not used; hence the number of necessary liftings is much larger than in
our algorithm. This is confirmed by the comparison of our timings with the only
available implementation of [6] in KASH, given below.

Although the ideas presented in this paper are valid in the general case, we will
only present a complete algorithm when the Galois group is supersolvable (see 6.1).
The reason for this is that, among the 1048 abstract groups of order less than
or equal to 100, only 73 are not supersolvable. Moreover, a modification of the
algorithm (as implemented in [11, function nfgaloisconj]) enables us to treat all
but 22 groups, the smallest one being of order 36.

2. Representation of automorphisms

In this section, we assume that T is the irreducible polynomial of a primitive
element α of a Galois extension K of Q. If ϕ is a Galois automorphism, we can
represent ϕ in two different ways which will both be useful: the first consists in
expressing ϕ(α) as a polynomial in α, and the second in expressing the action of ϕ
as a permutation of the roots of T . We give some algorithmic details.

2.1. Polynomial representation of ϕ. For algorithmic reasons, it is convenient
to identify K with Q[X]/(T) and α with the class X of X modulo T . A first
natural representation of a Galois automorphism ϕ is by the class modulo T of a
polynomial S such that

ϕ(X) = S ∈ Q[X]/(T) .
A polynomial S defines such an automorphism if and only if S is a root of T in
K, in other words if and only if T | T ◦ S. The polynomial S being known, we can
compute the image of an element P ∈ Q[X]/(T) by the formula

ϕ(P) = ϕ(P (X)) = P (ϕ(X)) = P ◦ S .

2.2. Permutation representation. Let ` be a prime such that the factorization
of T modulo ` is equal to a product of distinct linear factors, and let (αi)ni=1 be
suitable `-adic approximations of the roots of T . The element P (α) ∈ K can be
given by the `-adic conjugate vector representation (βi)ni=1 = (P (αi))ni=1.

Note that the only reason for which we use the `-adic conjugate vector repre-
sentation instead of the complex one is to avoid annoying accuracy problems which

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 361

can be handled much more easily in the `-adic case. Since the polynomial T is
assumed to be Galois, the cost to find a suitable prime ` is small. In addition, the
first stage of the algorithm will frequently return ` as a subproduct.

If ϕ is an automorphism defined by a polynomial S, there exists a permutation
π of the roots such that S(αi) = απ(i), and we have

ϕ((βi)ni=1) = ϕ(P (α)) = (P ◦ S)(α) = (P (S(αi)))ni=1 = (P (απ(i)))ni=1 = (βπ(i))ni=1;

hence the permutation π uniquely determines the automorphism ϕ.
Note that it is trivial to compute the product of two automorphisms using the

permutation representation, and it is more costly to do that using the polynomial
representation.

2.3. Testing permutations. If π is a permutation of the roots, we would like to
check whether π is the restriction of a Galois automorphism ϕ, and in this case to
compute the corresponding polynomial S.

To do this, we need an integer D such that the polynomial DS has integral
coefficients, and a bound B on these coefficients. A suitable value for D can be a
common multiple of the denominators of the entries of the matrix giving an integral
basis of K on the powers of α. For B we can use theoretical bounds which depend
only of the coefficients of T as in [2], but practical computations show that it is
faster to spend time to compute complex approximation for the roots of T and
derive a more accurate bound using the following lemma. Let us denote by ‖V ‖
the L∞-norm when V is a vector, and by ‖M‖ the functional L∞-norm when M
is a matrix, so that we have the inequality ‖MV ‖ ≤ ‖M‖‖V ‖, which is simply the
supremum of the L1-norms of the rows of M .

Lemma 2.1. Let vC(T) be the Vandermonde matrix with complex entries associated
to the complex roots (ri)ni=1 of T , given by

vC(T) = (rj−1
i) ∈Mn(C) .

Then
B = D‖ vC(T)−1‖ sup(|ri|)ni=1

is a suitable bound for the coefficient of DS.

Proof. Let C be the vector (rπ(i))ni=1 and let V be defined by DS =
∑n

i=1 ViX
i−1.

Then vC(T)V = DC. It follows that

‖V ‖ = ‖D vC(T)−1C‖ 6 D‖ v(T)−1‖‖C‖ 6 B ,

proving the lemma. �

Now let v(T)−1 be the inverse of the Vandermonde matrix with `-adic entries
associated to the roots of T . Note that this matrix can easily be computed explicitly
(row i is given by the coefficients of the polynomial T (X)/(T ′(αi)(X−αi)) in reverse
order), and this is the only matrix that we will need in practice.

We will assume that the `-adic roots (αi)ni=1of T have been computed with an
`-adic error less than (2B)−1. Let C be the vector (απ(i))ni=1 and let Ṽ be defined
by

Ṽ = D v(T)−1C .

362 BILL ALLOMBERT

If the permutation π corresponds to an automorphism, the entries of Ṽ must be
close to integers which are less than B. Thus,

1. We test if the entries of Ṽ are close to integers which are less than B.
Since the entries are `-adic, this upper bound gives a bound on the `-adic
accuracy.

2. If this condition is satisfied, let (Vi)ni=1 be the vector obtained from Ṽ by
rounding each entry to the `-adically closest integer less than B, and let
S =

∑n
i=1 ViX

i−1. We then check whether T | T ◦ S.

We perform the computations with a higher accuracy so as to eliminate many more
permutations in Step 1, because this step is much faster than Step 2.

Remarks. To compute an integral basis is generally slow. Instead, we get a suitable
value for D as follows. We partially factor the discriminant of T in the form
Disc(T) = duf2, where d is squarefree and u is not a perfect square and has no
small prime factors. Then D = uf is a multiple of the index, hence a multiple of
the common denominator of the integral basis.

As already mentioned, we could perform all the computations using complex
numbers instead of `-adic numbers; but, apart from the time spent in computing `,
computations are usually slower, and it is difficult to control rounding errors. Note
that we still have to compute the roots of T two times, since we must first compute
the needed accuracy.

We check whether the entries of Ṽ are close to integers which are less than B by
computing only a single entry Ṽi0 and testing whether this is true, and only then
computing the other entries. More importantly, we compute once and for all the n2

products (λiαj)16i,j6n of the entries (λi)ni=1 of the i0-th row of the matrix D v(T)−1

by the roots (αj)nj=1, so that we will need no multiplications when checking the i0-
th entry. In practice, the second entry seems to be a good choice and the first entry
a poor one. Furthermore, by using an idea known as the d − 1 test (see [1]), the
additions can be performed only in single precision.

3. Testing permutations directly

A simple method for computing the Galois automorphisms would be to test all
the possible permutations of the roots using the method explained above. This
would require n! tests, hence would be limited to very small values of n. A more
complex method consists in testing all the transitive subgroups of Sn (not up to
conjugation). In the present section, we give an example of this method for the
special case where we want to test whether a polynomial T of degree 12 has Galois
group G ∼= A4, and more importantly to find the Galois automorphisms. We choose
this example because it is the smallest nonsupersolvable group (see Subsection 6.1).
The group G acts simply transitively on the roots. An element g ∈ G acts as a
permutation whose cycles all have the same length. Indeed, if this was not the case,
if l is the length of the smallest cycle we would have gl 6= 1 and gl would have fixed
points, and this contradicts the fact that the action is simply transitive.

The number of permutations which are products of cycles of equal length l is
equal to

n!
(n/l)!l(n/l)

.

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 363

In the group A4, apart from the identity there exist 3 elements of order 2 and 8 of
order 3.

• For l = 2, we find 10395 possible permutations.
• For l = 3, we find 246400 possible permutations.
• More generally, n being fixed, the number of possible permutations is an

increasing function of l.

We can thus find an element σ of order 2 by testing at most 10395 permutations.
We must then find the two other automorphisms of order 2, which we will denote by
τ and ν, which satisfy the relations στ = τσ = ν. Replacing the roots by their index
and changing the ordering of the roots, we may assume that the cycle decomposition
of σ is (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12). For τ(1), we have 10 possible values, i.e.,
roots number 3 to 12. Assume first that τ(1) = 3. It follows that στ(1) = 4, hence
τσ(1) = 4 so τ(2) = 4, and of course also τ(3) = 1 and τ(4) = 2. Thus we know
immediately 3 new values of τ . For τ(5), we only have 6 choices left, i.e., roots
number 7 to 12. This will again give us 4 new values; for example, if τ(5) = 7, then
τ(6) = 8. There remain only 2 choices for τ(9), i.e., roots number 11 and 12. To
summarize, we find τ (hence ν) by testing at most 10× 6× 2 = 120 permutations.
In fact, possibly after exchanging τ and ν, we can always assume that τ(1) is odd,
which only makes 60 permutations to test.

We still need the 8 elements of order 3. One of them, which we will denote by ρ,
is such that ρσ = τρ and ρτ = νρ, and a similar reasoning allows us to find ρ with
only 15 tests. Since ρ, σ and τ generate A4, we can easily generate the remaining
automorphisms. Thus, in the worst case we have tested 10470 permutations. It is
important to note that, if done in a näıve way, we would instead need to test up to
12!=479001600 permutations.

For the case of a more general group, the above example shows that essentially all
the tests are performed to find the first element. Thus, we must start by computing
elements of minimal order. Afterwards, as the above example shows, the number
of tests decreases considerably, since the number of possible transitive subgroups
decreases very rapidly. In the worst case, we need at least n!

(n/2)!2(n/2) tests. With
a careful implementation, it is possible to perform the tests very quickly.

As the A4 example shows, we need to know precisely the group structure and
relations between elements to generate an efficient algorithm; hence it does not
seem possible to generate automatically the sequence of permutations to test in the
context of a general algorithm.

4. p-adic methods

4.1. The algorithm of Acciaro and Klüners. In [2], V. Acciaro and J.
Klüners give an algorithm for finding Galois automorphisms in the case where
the Galois group is Abelian. It can be summarized as follows. We choose a prime
number p such that T has no square factor modulo p, and we want to compute the
Frobenius automorphism ϕ corresponding to p. The following result is well known.

Proposition 4.1. If p is a prime number such that T has no square factor modulo
p, then

Z[X]/(p, T) ∼= ZK/pZK .

Their method is based on the following algorithms.

364 BILL ALLOMBERT

Algorithm 4.2. Under the above hypotheses on T and p, let S0 ∈ Z[X] be such that
T ◦ S0 ≡ 0 (mod (p, T)). There exists a unique sequence of polynomials (Sk)k>1 ⊂
Z[X] such that

T ◦ Sk ≡ 0 mod (p2k , T) and Sk ≡ S0 mod (p, T)

which is obtained using the recurrence relation

Sk+1 ≡ Sk −
T ◦ Sk
T ′ ◦ Sk

(mod (p2k+1
, T)) .

Algorithm 4.3. Under the above hypotheses on T and p, let S0 ∈ Z[X] be such
that T ◦ S0 ≡ 0 (mod (p, T)). We find explicitly an automorphism σ, if it exists,
such that σ(x) ≡ S0(x) (mod pZK) for all x ∈ ZK .

1. Apply Algorithm 4.2 until we have p2k > 2B.
2. Lift DSk to S̃ by choosing coefficients in {1 − p2k/2, . . . , p2k/2} and set
S = S̃/D.

3. Check whether T | T ◦ S. If this is the case, return the polynomial S.
Otherwise, return “No solution”.

If K/Q is an Abelian extension, we know that there exists a Frobenius au-
tomorphism ϕ =

(
p

K/Q

)
such that ϕ(x) ≡ xp (mod pZK). Hence we can use

Algorithm 4.3 with S0 = Xp. If this algorithm fails, K/Q is not Abelian, and
if it succeeds, we have computed an automorphism and we start again with an-
other value of p until the automorphisms that we have obtained generate n distinct
automorphisms.

4.2. Generalization to the non-Abelian case. We now want to generalize the
above method to the non-Abelian case. We assume that the extension K/Q is
Galois with Galois group G, and we let p be as above. If T =

∏g
i=1 T i (mod p) is

the factorization of T modulo p and Pi = (p, Ti(α)), we know that pZK =
∏g
i=1 Pi

is the splitting of p in ZK . Let FPi = ZK/Pi be the residue fields, ϕi =
(

Pi
K/Q

)
the

corresponding Frobenius automorphisms, and f = dimFp FPi the residual degree of
p.

Proposition 4.4. The map

Γ

∣∣∣∣∣∣∣
Gal(K/Q) −→ Aut(ZK/pZK) ∼= Aut

(
g∏
i=1

FPi

)
,

σ 7−→ (x + pZK 7→ σ(x) + pZK),

is an injective group homomorphism.

Proof. Let σ ∈ Ker(Γ). In particular, σ(x) ≡ x (mod P1) for all x ∈ ZK , so that σ
belongs to the inertia group of P1, which is the trivial group since P1 is unramified
in K/Q. �

The following proposition gives the structure of Aut(
∏g
i=1 FPi).

Proposition 4.5. Let ιi,j be an isomorphism from FPi to FPj . The group

Aut

(
g∏
i=1

FPi

)

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 365

is isomorphic to the wreath product (Z/fZ) o Sg = (Z/fZ)g o Sg, of order fgg!,
where multiplication is given by

((ai)
g
i=1;σ)((bi)

g
i=1; τ) = ((ai + bσ(i))

g
i=1;στ) .

Explicitly, we have

∆

∣∣∣∣∣∣∣
(Z/fZ) oSg −→ Aut

(
g∏
i=1

FPi

)
,

((ai)
g
i=1;σ) 7−→ ((xi)

g
i=1 7→ (ισ(i),i(xσ(i))

pai)).

Proof. Let ρ ∈ Aut(ZK/pZK). The maximal ideals of ZK/pZK are exactly the
(Pi/pZK)gi=1. The image of a maximal ideal by an automorphism is again a
maximal ideal; hence ρ permutes the Pi. Thus, there exists σ ∈ Sg such that
ρ(Pi/pZK) = Pσ(i)/pZK . Let Qi =

⋂
j 6=i Pj , so that Qi/pZK ∼= FPi and ρ(Qi) =

Qσ(i). Thus, ι−1
i,σ(i) ◦ ρ is an automorphism of FPi , and since Gal(FPi/Fp) is gen-

erated by the Frobenius automorphism x 7→ xp, there exists ai ∈ Z/fZ such that
ι−1
i,σ(i) ◦ ρ = x 7→ xp

ai , from which we obtain ρ((xi)
g
i=1) = (ισ−1(i),i(xσ−1(i))p

ai). �

Thanks to Algorithm 4.3, we can check if an element belongs to Im(Γ) and
find its inverse image by Γ if it does. It naturally leads to a second algorithm:
given an integer v which is expected to be the order of some automorphism, apply
Algorithm 4.3 to every element of order v of Aut(ZK/pZK). However, the number of
elements to test quickly becomes large, and this method is restricted to polynomials
of small degree. In fact, using the idea of Section 3 it is possible to greatly reduce
the number of tests, and we have thus designed an algorithm for the group S4.
This method needing knowledge of the group structure and of relations between
elements; it does not lead to a general algorithm.

5. An algorithm using the two methods

5.1. Lift of diagonal elements. The idea of this section is to lift diagonals au-
tomorphisms.

Definition 5.1. We will say that an automorphism σ ∈ G is a diagonal automor-
phism (with respect to p) if ∆−1 ◦ Γ(σ) ∈ (Z/fZ)g × {1}.
Lemma 5.2. The set of diagonal automorphisms is equal to the intersection of the
decomposition groups of the prime ideals above p.

Proof. The automorphism σ is diagonal if and only if for all 1 6 i 6 g there exists
ai such that σ(x) ≡ xp

ai (mod Pi), which means that σ belongs to 〈ϕi〉, which is
exactly the decomposition group of Pi. �

Let b be a positive integer and a ∈ Z/bZ. In the sequel, let us denote by a the
only nonnegative integer in the class a strictly less than b. The following proposition
allows us to find the diagonal automorphisms.

Proposition 5.3. There exists a diagonal automorphism σ 6= id if and only if there
exists a divisor d of f , different from f , such that 〈ϕd1〉 E G. In addition, if this
condition is satisfied, we have:

(i) There exists a map ψ : {1, . . . , g}−→ (Z/ fdZ)
∗

such that

∀i ∈ {1, . . . , g} σ = ϕ
dψ(i)

i .

366 BILL ALLOMBERT

(ii) The set Im(ψ) is a subgroup of (Z/ fdZ)
∗
, and all the elements of Im(ψ)

have the same number of preimages.

Proof. If σ is a diagonal automorphism different from the identity, then σ ∈ 〈ϕi〉;
hence σ = ϕaii . Since the ϕi all have the same order, there exist d and ψ(i) ∈
(Z/ fdZ)

∗
such that σ is of order f/d and dψ(i) = ai. If τ ∈ G, there exists i such

that

τϕd1τ
−1 = ϕdi = ϕ

dψ(1)/ψ(i)

1 ∈ 〈ϕd1〉;(1)

hence 〈ϕd1〉 E G.
Conversely, if there exists d | f, d 6= f , such that 〈ϕd1〉 E G, we set σ = ϕd1 and

we let τ be such that τϕ1τ
−1 = ϕi. Then there exists ψ(i) ∈ (Z/ fdZ)

∗
, which does

not depend on τ , such that

τϕd1τ
−1 = ϕdi = ϕ

dψ(i)−1

1 ;

hence ϕd1 = ϕ
dψ(i)

i belongs to the decomposition group of Pi.
Finally, we must prove the stated properties of ψ, which factors as follows:

{1, . . . , g} ψ1←→ G/〈ϕ1〉
ψ2� G/CG(〈ϕd1〉)

i 7→ {τ ; τ(P1) = Pi} 7→ {τ ; τϕd1τ
−1 = ϕdi }

ψ3
↪→ Aut(〈ϕd1〉)

ψ4←→ (Z/ fdZ)
∗
,

7→ Intτ 7→ ψ(i),

where CG(〈ϕd1〉) is the centralizer of 〈ϕd1〉 and Intτ is the inner automorphism cor-
responding to τ . In addition, Ker(τ 7→ Intτ) = CG(〈ϕd1〉), showing that ψ3 is a
well-defined injective group homomorphism. The map ψ1 corresponds to the bijec-
tion from G/ StabP1 to OrbP1 , where StabP1 is the stabilizer of P1 in the set of
prime ideals above p and OrbP1 is the orbit of P1 in the same set. The map ψ4 is
trivially a group isomorphism. The map ψ2 is the canonical projection from G/〈ϕ1〉
to G/CG(〈ϕd1〉); hence it is surjective and all the elements of Im(ψ2) have the same
number of preimages by ψ2. Thus the same is true for ψ, and Im(ψ) = Im(ψ3) is a
subgroup. �

Algorithm 5.4. Let T and p be as before, and let d be a divisor of f different from
f . We find ϕd1 when 〈ϕd1〉 E G.

1. For each subgroup H ⊆ (Z/ fdZ)
∗

of order h dividing the number g of prime
ideals above p, and for every surjective map ψ from {1, . . . , g} to H such
that ψ(1) = 1 and such that every element of H has g/h preimages, do the
following.
(a) Use the chinese remainder theorem to find S0 such that

∀i ∈ {1, . . . , g} S0 ≡ xp
dψ(i)

(mod Pi) .

(b) Apply Algorithm 4.3.
(c) If it succeeds, return S and terminate.

2. Return “〈ϕd1〉 5 G or T not Galois” and terminate.

For a given subgroup H of order h, there are g!
h(g/h)!h

maps ψ to be tested. In
practice, if the number of maps is large, the following algorithm is much faster.

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 367

Algorithm 5.5. Let T and p be as before, and let d be a divisor of f different from
f . We find ϕd1 when 〈ϕd1〉 E G.

1. Find N such that pN > 2B.
2. Apply Algorithm 4.2 to S0 ≡ xp

d

(mod (p, T)) until 2k > N .
3. Let U1 ≡ Sk (mod (pN , T)) and compute (Uk)f/dk=2 given by the formula

Uk+1 ≡ Uk ◦ U1 (mod (pN , T)).

4. Lift the factorization T =
∏g
i=1 T i (mod p) to a factorization T ≡

∏g
i=1 Ti

(mod pN) so that ZK/PN
i
∼= Z[X]/(pN , Ti).

5. Compute polynomials (Vi)ni=1 so that Vi ≡ δji (mod Tj , p
N) for all (i, j) ∈

{1, . . . , g}2, usually as a subproduct of the previous factorization.
6. For each subgroup H ⊆ (Z/ fdZ)

∗
of order h dividing the number g of prime

ideals above p, and for every surjective map ψ from {1, . . . , g} to H such
that ψ(1) = 1 and such that every element of H has g/h preimages, do the
following.
(a) Compute

S ≡
g∑
i=1

ViUψ(i) (mod (pN)) .

(b) if T | T ◦ S, then return S and terminate.
7. Return “〈ϕd1〉 5 G or T not Galois” and terminate.

Note that the ideas for pruning the tests given in Subsection 2.3 still apply, by
precomputing the products ViUj and then by trying only one coefficient of S first,
with the d − 1 test. Moreover, before testing if T | T ◦ S, we can check whether
(S(αi))ni=1 is a permutation of the approximates roots (αi)ni=1 of T , which is much
faster.

5.2. Example of a complete computation of the Galois automorphisms.
Before giving a general algorithm, we will show by an example how the above
method combined with permutation tests allows us to finish the computation of
the Galois automorphisms. Assume for example that we know that the Galois
group G is isomorphic to the dihedral group of order n, and assume that we know a
prime number p such that 2f = n, where f = fp is the residual degree of the prime
ideals above p. Algorithm 5.4 combined with a single application of Algorithm 4.3
allows us to find an element ρ of order f . We then need to find an element σ 6∈ 〈ρ〉.
Our hypothesis on G implies that σ is of order two and that σρσ−1 = ρ−1. We
reorder the roots so that the cycle decomposition of the permutation corresponding
to ρ is

((α1, . . . , αf)(αf+1, . . . , αn)) .

Since G acts transitively, we can assume that σ(α1) = αn. Since σρ(α1) =
ρ−1σ(α1), we must have σ(α2) = αn−1, and by induction σ(αi) = αn+1−i, which
completely determines σ, and terminates the computation with very little extra
work. This is the method that we will generalize in the next section.

5.3. Computation of the other automorphisms using permutations. We
assume that Algorithm 5.4 has succeeded, and that it has given us σ = ϕd1 and the
corresponding map ψ. The next step is to compute a polynomial whose splitting
field is Kσ. We denote by s the order of σ.

368 BILL ALLOMBERT

We use the following result, which follows from [8].

Proposition 5.6. Let A be the set of roots of T in a fixed algebraic closure, and
{Oi; i = 1 to k} the set of orbits of A under the action of σ. Let Σ be a symmetric
polynomial in s indeterminates and integral coefficients. For 1 6 i 6 k we set

ri = Σ(o1, o2, . . . , os), where Oi = {o1, o2, . . . , os},

and

R =
k∏
i=1

(X − ri) .

Assume that the polynomial R is squarefree. Then R is monic, irreducible, and
defines Kσ. For an automorphism τ ∈ G, we have τ(ri) = rj if and only if
τ(Oi) = Oj.

There exists exactly one polynomial of degree at most n − 1 such that for each
1 6 i 6 k and each α ∈ Oi we have M(α) = rj. For this polynomial, T | R ◦M ,
and it defines the inclusion from Kσ to K.

To apply this result, we need to have approximations of the roots with suffi-
cient accuracy, and to find a symmetric polynomial Σ such that the resulting R is
squarefree. A deterministic way to find Σ is given in [7, Lemma 32]. To reduce the
needed accuracy on the roots, it is better to find a polynomial Σ of small degree.
In practice, it may also be convenient to choose Σ so that R is squarefree modulo a
specific prime or prime power. Note that Lemma 43 in [7] is false, since Lemma 42
applies only to irreducible polynomials.

Thus, we find a symmetric polynomial Σ such that the resulting polynomial R
is squarefree and even squarefree modulo p, and we recursively apply our algorithm
to R to obtain the group of Galois automorphisms Gal(Kσ/Q) = G/〈σ〉. We must
now lift τ ∈ G/〈σ〉 to an element τ ∈ G. For this, we will test permutations as
explained in Subsection 2.3. To reduce the number of permutations to be tested,
we search for relations between σ and τ in the group Sn.

Proposition 5.7. Let t denote the order of τ and s = f/d the order of σ. There
exist (u, v) ∈ (Z/sZ)2 such that

τστ−1 = σu,(2)
τ t = σv;(3)

moreover:

(i) We have (u− 1)v ≡ 0 (mod s).
(ii) The element u does not depend on the choice of the lift τ of τ .
(iii) If we denote w = GCD(

∑t
i=1 u

i, s), then the class of v modulo w does not
depend of the choice of the lift τ of τ .

(iv) u = ψ(1)/ψ(c), where c is such that τ(P1) = Pc.

Proof. The subgroup 〈σ〉 being normal, it follows that τστ−1 ∈ 〈σ〉, and there
exists one and only one u ∈ Z/sZ such that (2) holds. The equality τ t = 1 implies
that τ t ∈ 〈σ〉. Thus there exists v ∈ Z/sZ such that (3) holds. Since

σuv = (τστ−1)v = τσvτ−1 = ττ tτ−1 = σv ,

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 369

we have σ(u−1)v = 1; hence (u − 1)v ≡ 0 (mod s). Let ρ = τσk be another
representative of τ . Then

ρσρ−1 = τσkσσ−kτ−1 = τστ−1 = σu ,

and hence u is independent of k. On the other hand,

ρt =
t∏
i=1

τσk =
t∏
i=1

τ−(i−1)τ iσk = (
t∏
i=1

τ iσkτ−i)τ t = (
t∏
i=1

σku
i

)τ t = σ
∑t
i=1 u

i

σv;

hence ρt = σv+w′k with w′ =
∑t
i=1 u

i, so that the class of v modulo w = GCD(w′, s)
is independent of k. Finally, if c is such that τ(P1) = Pc, identity (1) gives
τστ−1 = σψ(1)/ψ(c), and we deduce that u = ψ(1)/ψ(c). �

We can compute u explicitly by using the following algorithm.

Algorithm 5.8. With the notation of Proposition 5.6, if R is squarefree and is
squarefree modulo p and τ is given, we find an integer c such that τ(P1) = Pc.

1. Factor R modulo p as R =
∏g
i=1 Ri (mod p).

2. By trying successive values of m ∈ {1, . . . , g}, find m such that T 1 | Rm ◦
M , where M is as in Proposition 5.6.

3. Compute Rd = GCD(R, Rm ◦ τ).
4. By trying successive values of c ∈ {1, . . . , g}, find c such that T c | Rd.
5. Return c.

Proof. Since σ belong to the decomposition group of Pi in K/Q, which is unram-
ified, the prime ideal Qi = Pi ∩ ZKσ of Kσ is inert in K, and this is true for
all i. We get pZKσ =

∏g
i=1 Qi, and the identity τ(P1) = Pc holds if and only if

τ(Q1) = Qc. Step 2 finds m such that Q1 = (p,Rm), Step 3 finds Rd such that
τ(Q1) = (p,Rd), and Step 4 finds c such that Qc = (p,Rd). �

Proposition 5.9. Let σ, τ , u and v be defined as above. Let o = n/st, and let
(Ci)oi=1 be the orbits of τ acting on the roots of R. We can specify the roots of T
using three coordinates (see Example 5.10):

[a, b, c] ∈ Z/oZ× Z/tZ× Z/sZ,

where [a, b, c] stands for the c-th element of the orbit Oi and ri is the b-th element
of Ca, where Oi and ri are defined in Proposition 5.6. Then we have the following
rules, which are immediate consequences of (2):

σ([a, b, c]) = [a, b, c+ 1],(4)
τ([a, b, c]) = [a, b+ 1, d] ⇒ τ([a, b, e]) = [a, b+ 1, u(e− c) + d].(5)

Assume chosen the τ([a, b, 0]) for all pairs (a, b) such that b 6= t − 1. Then (3)
determines τ([a, t− 1, 0]), and (5) determines the other values of τ .

Example 5.10. Assume σ and τ correspond to the following permutations:

σ = (1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)

(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30),

τ = (123)(456),

370 BILL ALLOMBERT

with o = 2, t = 3 and s = 5. The numbers represented by the three-index coordi-
nates are, in lexicographic order,

(1 2 3 4 5) (6 7 8 9 10) (11 12 13 14 15)
(16 17 18 19 20) (21 22 23 24 25) (26 27 28 29 30),

where, for example

[0, 0, 0] = 1; [0, 0, 1] = 2; [0, 1, 0] = 6; [1, 0, 0] = 16; [1, 1, 4] = 25 .

Algorithm 5.11. Let σ, τ and u be as above. This algorithm lifts τ to an element
τ of G.

1. Compute the cycle decomposition of σ as a permutation of the roots of T ,
and of τ as a permutation of the roots of R.

2. Order the cycles and renumber the roots using 3 components as in Propo-
sition 5.9.

3. Compute u and w thanks to Proposition 5.7 and Algorithm 5.8.
4. For each v such that 0 6 v < w and for each map C from {0, . . . , o− 1} ×
{0, . . . , t− 2} to {0, . . . , s− 1}, do as follows.
(a) Using Proposition 5.9, compute τ such that

∀(a, b) ∈ {0, . . . , o− 1} × {0, . . . , t− 2} τ([a, b, 0]) = [a, b+ 1, C(a, b)] .

(b) Test if τ corresponds to an element of the Galois group of T .
(c) If this is the case, return τ and terminate.

5. Return “G not Galois” and terminate.

Note that for each u, the number of maps to test is at most equal to

s(t−1)(n/st) = sn/s(1−1/t),

so it is important to keep t as small as possible. One way to do this is to lift some
powers of τ as in the following example: suppose τ is of order 6. It is much faster
to lift τ2 and τ3 and then to compute τ = (τ2)2τ3 than to lift τ directly. In fact,
using the ideas of Section 3, we can reduce the number of tests even further.

6. The general algorithm

6.1. Supersolvable groups. Algorithm 5.4 assumes that there exists at least one
nontrivial cyclic normal subgroup in G. Since we use this algorithm inductively,
this limits the general algorithm to supersolvable groups, defined as follows.

Definition 6.1 (Supersolvable groups). A finite group G is supersolvable if there
exists an increasing sequence of subgroups (Hi)ki=0 such that:

1. We have H0 = {1} and Hk = G.
2. For each 0 6 i < k, the subgroup Hi is a normal subgroup of G.
3. For each 0 6 i < k, the quotient Hi+1/Hi is cyclic.

For n = |G| 6 100, almost all groups are supersolvable: using the computer alge-
bra system [10], it appears that 975 out of 1048 possible groups are supersolvable,
and nonsupersolvable groups of order less than or equal to 100 have order a multiple
of 12, or have order 56, 75 or 80. The group A4 is the smallest nonsupersolvable
group, of order 12.

We will assume the following structure theorem (see [5, page 169]).

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 371

Theorem 6.2. Let G be a supersolvable group of order

n =
r∏
i=1

pi

with p1 > p2 > . . . > pr prime. Then there exists a sequence (hi)ri=1 of elements
of G such that for all 1 6 i < r, the subgroup Hi generated by (hj)ij=1 is a normal
subgroup of G of order

Ci =
i∏

j=1

pj .

In addition, any increasing sequence of normal subgroups of G can be refined to a
sequence of the above type.

Corollary 6.3. If m if an integer such that 1 6 m < r and pm 6= pm+1, then there
exists exactly one subgroup of order Cm, and it is a normal subgroup. In addition,
any subgroup whose order divides Cm is a subgroup of Hm.

Corollary 6.4. The p1-Sylow subgroup of G is unique, hence normal.

We will also use the following easy result.

Theorem 6.5. Let G be a finite group and p the smallest prime divisor of the order
of G. Then all the subgroups of index p are normal.

If we find an element g of order Cm in G with m as in Corollary 6.3, then it
generates Hm, which is a normal subgroup; hence all the elements of Cm are powers
of g. In addition, if we find that the group generated by g is not a normal subgroup,
this shows that G is not supersolvable.

6.2. The general algorithm in detail.

Algorithm 6.6. Let T ∈ Z[X] be a monic irreducible polynomial. If T is Ga-
lois with a supersolvable Galois group, the algorithm returns Galois automorphisms
(σi)ri=1 of G such that for all 1 6 m 6 r we have 〈σi〉mi=1 E G and 〈σi〉ri=1 = G.
If not, the algorithm may terminate with a message indicating that T is not Galois
or not supersolvable, or may not terminate at all.

1. Set mmax := 0, pmax := 0 and

M := {0 6 m 6 r; m = 0 or m > r − 1 or (1 6 m < r − 1 and pm 6= pm+1)} .
2. For the first 3n/2 prime numbers p > 2n, factor T modulo p.

(a) If T has a square factor modulo p, choose another p.
(b) If the factors of T do not have the same degree, return “T is not

Galois” and terminate.
(c) If the factors have the same degree, let f be the common degree of the

factors of T modulo p. Compute the largest m ∈M such that Cm | f .
(d) If m > mmax, then set mmax = m and pmax = p.

3. At the end of the tests, we have two possibilities.
• mmax > 0 (Good case)

(a) Apply Algorithm 5.4 to T and pmax with d = f/Cmmax.
(b) If it fails, return “T is not Galois or not supersolvable” and

terminate.
• mmax = 0 (Bad case)

(a) Choose p such that p1 | fp.

372 BILL ALLOMBERT

(b) Apply Algorithm 5.4 to T and p with d = f/p1.
(c) If Algorithm 5.4 fails, we start again in (a) with another p.

At the end of this step, Algorithm 5.4 gives us an automorphism σ = ϕd1.
4. If σ is of order n, return σ and terminate.
5. If σ is of order less than n, apply Proposition 5.6 to compute a suitable

polynomial R.
6. Applying the present algorithm recursively to the polynomial R, find a family

(τ1, . . . , τt) which generates G/〈σ〉.
7. Using Algorithm 5.11, compute (τ1, . . . , τt), return (σ, τ1, . . . , τt), and ter-

minate.

The first stage of the algorithm is essential, and the value 3n/2 is quite arbitrary.
Numerical experimentation seems to show that the value n/2 is sufficient for large
values of n. This stage enables us to get the structure of the Galois group with
high probability, and to optimally choose the order of the lift and in particular the
subgroup H in Algorithm 5.4.

The algorithm may loop indefinitely only if T is Galois of Galois group G not
supersolvable and whose Sylow subgroups corresponding to the largest prime factor
of n are not cyclic. In practice, for n 6 100 this happens only for n = 36, 72 and
75, and can be predicted with high probability during the first stage.

On the other hand, if the algorithm fails in the middle of the recursive process,
it is possible to use another algorithm such as those mentioned in the preceding
sections at that point, and then terminate the recursion. For instance, if T has
Galois group isomorphic to Z/5Z × A4, the algorithm easily finds an element of
order 5 and reduces the problem to the computation of the Galois automorphisms
of a polynomial of degree 12 with Galois group A4, which can easily be done, for
example using the method of Section 3. The problem appearing with this kind of
group is that we need much more detailed knowledge on the structure of groups of
a given order than that given by Theorem 6.2

7. A complete example

In this section, we will compute the Galois automorphisms of the polynomial

T = x21 − 7x20 − 21x19 + 238x18 − 245x17 − 1848x16 + 4732x15 + 1861x14

−18536x13 + 16856x12 + 14819x11 − 32431x10 + 8897x9 + 16660x8

−13533x7 + 392x6 + 3514x5 − 1547x4 + 161x3 + 49x2 − 14x+ 1

with nonabelian Galois group, but we do not want to use this knowledge in the
computation. First we write 21 = p1p2 with p1 = 7 and p2 = 3. We set M =
{0, 1, 2}. Then we factor T modulo the first primes greater than 42. We get

p 43 47 53 59 61 67 71 73 79 83 89
fp 7 3 3 3 3 3 7 3 3 7 3
sup{m ∈M ;Cm | fp} 1 0 0 0 0 0 1 0 0 1 0

We are in a good case, as mmax = 1. We have not found any primes with fp = 1,
so we continue the factorizations until finding that p = 449 is such a p, so we set
` = 449. We compute the discriminant of T and B:

Disc(T) = (2)18(7)32(181)6(2339)6 = D2,

B 6 1044.

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 373

We compute the roots of T modulo `, {2, 35, 45, 51, 66, 79, 96, 109, 174, 180, 223,
225, 236, 301, 305, 342, 370, 373, 397, 440, 448} and we lift them to the precision `17

so that `17 > 2B. We set p = pmax = 43, f = fp = 7, g = gp = 3 and d = 1, and
we apply Algorithm 5.4. We have to test 3 maps ψ from {1, 2, 3} to (Z/7Z)∗,

1 7→ 1
2 7→ 1
3 7→ 1

,
1 7→ 1
2 7→ 2,
3 7→ 4

1 7→ 1
2 7→ 4.
3 7→ 2

The last one gives the automorphism

α 7→ (−14791767248α20 + 95714137173α19 + 361204094449α18

− 3328779599255α17 + 1864224944156α16 + 28304237511321α15

− 55006453622284α14 − 56486002410703α13 + 244003596280558α12

− 120533924745455α11 − 281694320179321α10 + 330143856833197α9

+ 41475180195786α8 − 222891172143821α7 + 82722087561988α6

+ 36804911589073α5 − 32245355397328α4 + 6074801569203α3

+ 699019170541α2 − 345689725163α+ 29710312476)/76627979

corresponding to the following permutation of the `-adic roots:

(2, 301, 96, 66, 370, 342, 440)(35, 225, 109, 180, 236, 305, 51)

(45, 223, 373, 79, 448, 397, 174).

We then compute the fixed field using Proposition 5.6, and we get R = x3 −
x2 − 9x + 1. We then recursively apply the algorithm to R: we find that R is
irreducible modulo 11, and then by lifting the Frobenius we find the automorphism
−1/2x2 + 7/2, which generates the whole Galois group of the fixed field. We must
now lift it to an automorphism of G. Using Algorithm 5.8, we get u = 2, and using
Algorithm 5.11, we have to test the following seven permutations:

(2, 35, 45)(301, 109, 448) (96, 236, 223)(66, 51, 397)
(370, 225, 373)(342, 180, 174)(440, 305, 79),

(2, 35, 223)(301, 109, 397) (96, 236, 373)(66, 51, 174)
(370, 225, 79)(342, 180, 45)(440, 305, 448),

(2, 35, 373)(301, 109, 174) (96, 236, 79)(66, 51, 45)
(370, 225, 448)(342, 180, 223)(440, 305, 397),

(2, 35, 79)(301, 109, 45) (96, 236, 448)(66, 51, 223)
(370, 225, 397)(342, 180, 373)(440, 305, 174),

(2, 35, 448)(301, 109, 223) (96, 236, 397)(66, 51, 373)
(370, 225, 174)(342, 180, 79)(440, 305, 45),

(2, 35, 397)(301, 109, 373) (96, 236, 174)(66, 51, 79)
(370, 225, 45)(342, 180, 448)(440, 305, 223),

(2, 35, 174)(301, 109, 79) (96, 236, 45)(66, 51, 448)
(370, 225, 223)(342, 180, 397)(440, 305, 373)

374 BILL ALLOMBERT

The second permutation corresponds to the automorphism

α 7→ (−194129435α20 + 1263256585α19 + 4695474072α18 − 43866808007α17

+ 26044995959α16 + 370791458219α15 − 735728499700α14

− 716698532307α13 + 3233978982336α12 − 1696567684697α11

− 3658157589221α10 + 4481659267398α9 + 407309044781α8

− 2976215526118α7 + 1190032598839α6 + 464793759571α5

− 447754215324α4 + 90593004738α3 + 9006434498α2

− 5016784391α+ 438769426)/423359

We now have a generating set for the Galois group, and we can compute all the
elements.

8. Timings

The above algorithm has been implemented using the PARI library (see [11,
function nfgaloisconj]), and the computations have been made on a 800Mhz
Pentium III and 1 Gb of RAM. In the first benchmark, we have compared our
implementation with Klüners’ Algorithm in [6] as implemented in [9, version 2.2.7].
The given timings are the averages of the individual timings over the nb polynomials
tested.

The polynomials used were chosen to represent all the abstract groups of order
between 10 and 27, with the exception of one group of order 16 and one group of
order 24. We were not able to compute automorphisms of larger polynomials with
[9, function OrderAutomorphism] in less than one hour. The list of polynomials
used is available from [3].

degree nb PARI KASH

10 2 55 ms 115 ms
11 1 50 ms 10 ms
12 5 88 ms 266 ms
13 1 80 ms 60 ms
14 2 100 ms 385 ms
15 1 90 ms 20 ms
16 13 193 ms 662 ms
17 1 170 ms 220 ms
18 5 188 ms 1082 ms
19 1 270 ms 810 ms
20 5 332 ms 2906 ms
21 2 290 ms 2265 ms
22 2 340 ms 25 ms
23 1 280 ms 100 ms
24 14 616 ms 63859 ms
25 2 580 ms 4440 ms
26 2 560 ms 637560 ms
27 5 1584 ms 11538 ms

degree nb av. time

28 4 1.66 s
32 20 1.57 s
36 8 1.67 s
40 5 4.78 s
44 4 15.82 s
48 12 17.44 s
52 2 5.48 s
56 3 2,88 s
60 3 3,93 s
64 14 29.51 s
68 1 4,78 s
72 5 4,35 s
76 1 87,0 s
80 4 77.79 s
84 3 110.21 s
88 3 9.44 s
92 1 10.25 s
96 5 10.8 s

160 1 49 min
192 1 108 min
220 1 85 min

EFFICIENT ALGORITHM FOR COMPUTING GALOIS AUTOMORPHISMS 375

For the second bench, polynomials from our database were used. The abstract
Galois groups of these polynomials are distinct. The last three polynomials are the
minimal polynomials of 20

√
2 + ζ20, 24

√
5 + ζ24 and 22

√
2(ζ22 − 2) respectively.

9. Acknowledgment

The author wishes to thank an anonymous referee for the application of the d−1
test and the reference to [1], which have led to an important performance gain in
the implementation of the algorithm.

References

[1] John Abbott, Victor Shoup and Paul Zimmerman, Factorization in Z[x]: The Search-
ing Phase (Carlo Traverso, ed.), Proc. ISSAC 2000, ACM Press, 2000, pp. 1–7.
http://www.shoup.net/papers/asz.ps.Z.

[2] Vincenzo Acciaro and Jürgen Klüners, Computing Automorphisms of Abelian Number
Fields, Math. Comp., 68, 1999, 1179–1186. MR 99i:11099

[3] List of polynomials of the benchmark, http://www.math.u-bordeaux.fr/~allomber/

nfgaloisconj_benchmark.html

[4] Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in
Mathematics, 138, Springer, 1993. MR 94i:11105

[5] Marshall Hall, The theory of groups, Macmillan, New York, 1959. MR 21:1996

[6] Jürgen Klüners, Über die Berechnung von Automorphismen und Teilkörpern algebraischer
Zahlkörper, Thesis, Technischen Universitt Berlin, 1997.

[7] Jürgen Klüners, On computing subfields—A detailed description of the algorithm, J. Théorie
des Nombres Bordeaux, 10, 1998, 243–271. MR 2002c:11178

[8] Jürgen Klüners and Gunter Malle, Explicit Galois realization of transitive groups of degree
up to 15, J. Symb. Comput. 30, 2000, 675-716. MR 2001i:12005

[9] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig and
K. Wildanger, KANT V4, J. Symb. Comput., 24, 1997, 267–283. MR 99g:11150

[10] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,
J. Symb. Comput., 24, 1997, 235–265. CMP 98:05

[11] PARI, C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User’s Guide to
PARI-GP, version 2.2.1.

[12] Xavier Roblot, Algorithmes de factorisation dans les extensions relatives et applications
de la conjecture de Stark à la construction de corps de classes de rayon, Thesis, Université
Bordeaux I, 1997.

Université Bordeaux I, Laboratoire A2X, 351 cours de la Libération, 33 405 Talence,

France

E-mail address: allomber@math.u-bordeaux.fr

http://www.ams.org/mathscinet-getitem?mr=99i:11099
http://www.ams.org/mathscinet-getitem?mr=94i:11105
http://www.ams.org/mathscinet-getitem?mr=21:1996
http://www.ams.org/mathscinet-getitem?mr=2002c:11178
http://www.ams.org/mathscinet-getitem?mr=2001i:12005
http://www.ams.org/mathscinet-getitem?mr=99g:11150

	1. Introduction
	2. Representation of automorphisms
	2.1. Polynomial representation of
	2.2. Permutation representation
	2.3. Testing permutations

	3. Testing permutations directly
	4. p-adic methods
	4.1. The algorithm of Acciaro and Klüners
	4.2. Generalization to the non-Abelian case

	5. An algorithm using the two methods
	5.1. Lift of diagonal elements
	5.2. Example of a complete computation of the Galois automorphisms
	5.3. Computation of the other automorphisms using permutations

	6. The general algorithm
	6.1. Supersolvable groups
	6.2. The general algorithm in detail

	7. A complete example
	8. Timings
	9. Acknowledgment
	References

