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MONIC INTEGER CHEBYSHEV PROBLEM

P. B. BORWEIN, C. G. PINNER, AND I. E. PRITSKER

ABSTRACT. We study the problem of minimizing the supremum norm by
monic polynomials with integer coefficients. Let My (Z) denote the monic
polynomials of degree n with integer coefficients. A monic integer Chebyshev
polynomial M, € My (Z) satisfies

M, = inf P, .
1Ml =, inf 1Palle

and the monic integer Chebyshev constant is then defined by
. 1
tar(B) = lim || Mn|[3".
n—oo

This is the obvious analogue of the more usual integer Chebyshev constant
that has been much studied.

We compute tps(E) for various sets, including all finite sets of rationals,
and make the following conjecture, which we prove in many cases.
Conjecture. Suppose [a2/b2,a1/b1] is an interval whose endpoints are con-
secutive Farey fractions. This is characterized by aiba — azby = 1. Then

tM[ag/bg,al/bﬂ = maX(l/bl,l/bg).

This should be contrasted with the nonmonic integer Chebyshev constant
case, where the only intervals for which the constant is exactly computed are
intervals of length 4 or greater.

1. INTRODUCTION AND GENERAL RESULTS

Define the uniform (sup) norm on a compact set £ C C by
£l := sup [ f(2)]-
z€E

We study the monic polynomials with integer coefficients that minimize the sup
norm on the set E. Let P, (C) and P, (Z) be the classes of algebraic polynomials of
degree at most n, respectively with complex and with integer coefficients. Similarly,
we define the classes of monic polynomials M,,(C) and M, (Z) of ezact degree
n € N. The problem of minimizing the uniform norm on E by polynomials from
M, (C) is well known as the Chebyshev problem (see [I], [15], [17], [8], etc.). In
the classical case, E' = [—1, 1], the explicit solution of this problem is given by the
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monic Chebyshev polynomial of degree n:
T, (z) :=2'""cos(narccosz), n € N.

Using a change of variable, we can immediately extend this to an arbitrary interval

[a,b] C R, so that
b—a\" 2v—a—»b
tn = T ————
w=(3") = (55

is a monic polynomial with real coefficients and the smallest uniform norm on [a, b]
among all polynomials from M, (C). In fact,

b—a\"
(1) leallan =2 (*3%) . nen

and we find that the Chebyshev constant for [a, b] is given by

. 1 b —a

(1.2) te([a,b)) == tm /5 = ——
The Chebyshev constant of an arbitrary compact set £ C C is defined in a similar
fashion:
(1.3) te(B) == lim_|ta]|}{",
where t,, is the Chebyshev polynomial of degree n on E (the monic polynomial of
exact degree n of minimal supremum norm on E). Tt is known that i¢¢(E) is equal
to the transfinite diameter and the logarithmic capacity cap(F) of the set E (cf.
7, pp. 71-75], [8] and [14] for the definitions and background material).

An integer Chebyshev polynomial Q,, € P, (Z) for a compact set E C C is defined
by

1.4 =  inf P
(1.4) 1QnllE Ozpjgpn(z)ll B

where the inf is taken over all polynomials from P, (Z) which are not identically

zero. Further, the integer Chebyshev constant (or integer transfinite diameter) for
E is given by

(1.5) tz(E) == lim [|Qu 1™
n—oo

The integer Chebyshev problem is also a classical subject of analysis and number
theory (see [11, Ch. 10], B3], [2], [6], [7], [9], [16], [13] and the references therein). It
does not require the polynomials to be monic. We define the associated quantities
for the monic integer Chebyshev problem as follows. A monic integer Chebyshev
polynomial M, € M, (Z), deg M, = n, satisfies

(1.6) [Mn||g = inf [Ple
P,eM,(2)

The monic integer Chebyshev constant is then defined by
(17) tar(B) = lim [[My, | = inf || M, /",

where the existence of this limit and the last equality follows by a standard argument
presented in Lemma B3Il The monic integer Chebyshev problem is quite different
from the classical integer Chebyshev problem, as we show in this paper.

It is immediately clear from the definitions (C4)-(C7) that

(1.8) ta(E) > tz(E).



MONIC INTEGER CHEBYSHEV PROBLEM 1903

Note that, for any P, € P,(Z),
[Pnlle = [Pl

where E* := EU {2z : Z € E}, because P, has real coefficients. Thus the (monic)
integer Chebyshev problem on a compact set E is equivalent to that on E*, and
we can assume that E is symmetric with respect to the real axis (R-symmetric)
without loss of generality.

Our first result shows that the monic integer Chebyshev constant coincides with
the regular Chebyshev constant (capacity) for sufficiently large sets.

E*,

Theorem 1.1. If E is R-symmetric and cap(E) > 1, then
(1.9) ty(E) = cap(E).

We remark that tz(E) = 1 for the sets E with cap(E£) > 1. Indeed, || P,||z >
(cap(E))™ for any P, € P,(Z) of exact degree n (cf. [I4] p. 155]). Thus Qn(2) =1
is a minimizer for (L)) in this case.

An argument going back to Kakeya (cf. [12] or [16]) gives

Proposition 1.2. Let E C C be a compact R-symmetric set. If cap(E) < 1, then
tM(E) < 1.

We show below that this statement cannot be significantly improved.
The monic integer Chebyshev constant shares a number of standard properties
with tz(F) and tc(E), such as the monotonicity property below.

Proposition 1.3. Let E C F C C. Then
ty(E) <ty (F).

Another generic property of importance is the following (see [5] and Theorem 2
of [8l Sect. VIL.1]).

Proposition 1.4. Let E C C be a compact set. If P, (E) is the inverse image of
E under P, € M, (Z), deg P, = n, then

(1.10) tar (PY(E)) = (tm(E)V™.

Perhaps, the most distinctive feature of ¢ty (F) is that it may be different from
zero even for a single point. For example (see section 2 below), suppose that
m,n € Z, where n > 2 and (m,n) = 1. Then

o w({2) - 2

On the other hand, if a € R is irrational, then
(1.12) ty ({a}) =0.

This result has several interesting consequences. Consider E, := {z : 2" =
1/2}, n € N. It is obvious that cap(E,) = tc(E,) = 0 for any n € N. How-
ever, (LII) and (TI0) imply that tp(E,) = 2=Y/" — 1, as n — oo. Thus no
uniform upper estimate of ¢tp;(E) in terms of cap(F) is possible, in contrast with
the inequality t7(E) < /cap(E) (see the results of Hilbert [10] and Fekete [4]).
We also note that ta({1/v2}) = tm({-1/v2}) = 0 by (CIZ), while
ta({1/v2} U {~1/v2}) = 1/v2 by (CI0) and (LII). This shows that another
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well known property of capacity is not valid for t5/(F). Namely, capacity (Cheby-
shev constant) for the union of two sets of zero capacity is still zero (¢f. Theorem
II1.8 of [I7, p. 57]).

Combining Proposition[L.3], Proposition [.4 and (L.I1l), one can find the explicit
values of the monic integer Chebyshev constant for many intervals and other sets.

Theorem 1.5. Let n € Z. The following relations hold true:

[ 1 n—1 11 1
(L) = () - ([53]) -5 22
L n n n'n n

1 1 1 1

R = t — = — >2
(7)) \/M([O’nD VO

o+ 1) = _! — i (o, 2]) =2

_TL,TL 2 — M n 2,71 — M ) *27

2
1
2

(1.13)  ty

S

(1.14) ¢

(1.15)  tu

116) (ot 1) = tar (010 =y [ ([0.5]) =

and

(1.17) tar (o +20) = tar (-1.1) = Vi (0.1 = —=

Also, if E C [(1—+/2)/2,(1+V2)/2] and {1/2} € E, then

(1.18) tM(E)—thl_ﬁ L+ V2 )—tM <{%}>—%

2 2

Of course, the above list of values can be extended further. It is worth mentioning
that finding the value of tz([0, 1]) is a notoriously difficult problem, where we do
not even have a current conjecture (see [3], [II} Ch. 10], [2] and [13]). From this
point of view, the monic integer Chebyshev problem seems to be easier than its
classical counterpart.

The rest of our paper is organized as follows. We consider the monic integer
Chebyshev problem for finite sets in Section 2. Sections 3 and 4 contain proofs of
the results from Sections 1 and 2 respectively. Section 5 is devoted to the study
of Farey intervals, where we give some numerical results and state an interesting
conjecture on the value of the monic integer Chebyshev constant.

2. FINITE SETS OF POINTS

While finite numbers of integers can of course in no way affect tp;(E), it is readily
seen that the presence of noninteger rationals does restrict how small ¢5;(E) can
become, with

%EE, b>2= ty(E) >

S| =

(for a monic integer polynomial P of degree n we plainly have [0"P(a/b)| > 1).
Indeed for a finite set of rationals this bound is precise, as an immediate consequence
of the following;:
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Theorem 2.1. For any k rational points
L (anb) =1, i=1,... k
b;

there is a monic integer polynomial f(x) of degree n for some positive integer n

with
a; 1 3
— == =1,...,k.
f<b1> bZL, Z ) )

Corollary 2.2. If E = {‘g—ll, ceey Z_;:} with the a;/b; rationals written in their lowest

terms and b; > 2, then
1
ty(F) = max —.
w (E) i:l,“}.(,k b;
Two consecutive Farey fractions: It is perhaps worth noting that in the case
of two consecutive Farey fractions
az ai

2 o2 by —agh =1
b2 blv 102 a201 )

it is easy to explicitly write down a polynomial satisfying Theorem 2.1 (or any
congruence feasible values):
If n > 2 with
al =A;, modb;, i=1,2,
then

Ay —ab _ Ay —al _
e (A (2

1 2

has f(a;i/b;) = A;/b}, i =1,2.
Moreover, if a3 /b3 is the next Farey fraction between them, ag = a1 + ag, b =
b1 + b2, and n > 3 with af = A; mod b;, i = 1,2, 3, then the polynomial
A3 — agl
b3

o) = (o) (25 - 22t - Bt e i = a1
2 1
satisfies f(ai/bi) =A;/b7,i=1,2,3,forany 1 <j <n-—2.

For higher degree algebraic numbers which are not algebraic integers (adding an
algebraic integer can plainly not change the monic integer Chebyshev constant), the
presence of a full set of conjugates similarly leads to a lower bound. In particular,
if E contains all the roots aq, ..., ag of an irreducible integer polynomial of degree
d and lead coefficient b > 2, then

tu(E) > i;

bd

(since for any monic integer polynomial P of degree n the quantity o™ H?zl P(a;) is
an integer and necessarily nonzero). Proposition [[4land Corollary [ZZ can be used
to furnish nonrational cases where such a bound is sharp. However, if E consists
of a set of conjugates missing at least one real or pair of complex conjugates, then
in fact tpr(E) = 0. Similarly if E consists of a finite number of transcendentals.
These (and other similar examples) follow at once from the following result:



1906 P. B. BORWEIN, C. G. PINNER, AND I. E. PRITSKER

Theorem 2.3. Suppose that S = {aa,...,ax} is a set of k numbers, with the a;
transcendental or algebraic of degree more than k. If S is closed under complex
conjugation, then for any € € (0,1) there is a monic integer polynomial F of degree
n=n(o,...,or) with |[Fag)| <e,i=1,...,k.

3. PROOFS FOR SECTION 1

Lemma 3.1. The limit defining tp(F) in (1) by
tar(E) := Tim || Mo "
erists. Furthermore,

Tim (|0 || " = inf | Mo

Proof. The argument is identical to the classical Chebyshev constant case. Indeed,
let

Un = || Myl g = inf IP.lle, meN.
P,eM,(Z)
Then
Vktm < [ MMl g < [[Mill g [|Mm| g = vkvm.

On setting a,, = log v, we obtain that
ktm < ag + am, k,meN.

Hence

lim 2 = lim log (vn)l/n
n—oo N n—oo

exists (possibly as —oo) by the lemma on page 73 of [17].

If inf,, ||Mn||}5/n = liminf, ||Mn||11E/", then the second statement of this lemma
follows from the above. Otherwise, we have

. 1/n 1/k
inf || M| = | Mill
for a particular k € N. But then the sequence of polynomials {(M})™}5°_, satisfies
1/k . 1/(km . 1/n 1/k
1M E" = tim ()™ 5™ 2 tar(B) > inf | M| 5" = | Ml 5"
]

Proof of Theorem [[1} Let T,,(z) = 2" + agi)lz"’l + agi)Qz"’Q +...+ aén), n €N,
be the Chebyshev polynomials for E. Since E is R-symmetric, the coefficients of
Chebyshev polynomials are real (cf. [I7} p. 72]). By the definition of (I3, for any
€ > 0 there exists N € N such that

IT,[}™ < cap(E) +, n>N.

We shall construct a sequence of monic polynomials with integer coefficients and
small norms from the Chebyshev polynomials on E. This is done by the following in-
ductive procedure. Consider n > N and the polynomial T}, — (asﬁ)l - [aslnjl]) Th—1,
with the two highest coefficients integers. We have that

17 = (a5, = [a$1]) Tu-alle < (cap(E) + )" + (cap(E) + )" .
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Continuing in the same fashion, we eliminate the fractional parts of all coefficients
from the n-th to (N + 1)-st, and obtain the following estimate:

< 3 (cap(E) + <)’

E I=N+1

N
31) |2+ [l L [N Y bt

Note that

N
> (b e <Z||z’“||Ef N,
k=

where A(N) > 0 depends only on N and the set E. Hence we have from (31]) that

N
+ [l L [N Y [l
E

N1 (cap(E) +e)" N —1
cap(E) +e—1

< (cap(E) +¢)

+ A(N),

because cap(F) > 1. Denote the constructed polynomial by @, € M(Z), n € N. It
follows that

limsup [|Qu " < cap(E) +¢
and
ty(F) < cap(E) +¢.
Letting € — 0 and recalling that ty(E) > tc(E) = cap(E) by definition, we finish
the proof. O
Proof of Proposition[I.4. See Kakeya’s proof in [12] or [16]. O
Proof of Proposition[L.3. This proposition readily follows from the inequality

1pnll < llpnlle,

valid for any polynomial p,(z). O

Proof of Proposition [I.4. The following argument is due to Fekete [5]. Let Mj/(z),
k € N, be monic integer Chebyshev polynomials for E, and let M} (z), k € N,
be monic integer Chebyshev polynomials for E* := P, 1(E). It follows from the
definition that

| M|l g= < |Mg o Pollge < ||Mi|lp, keN.
Hence
tar(E*) < (tar (E))/™.
To prove the opposite inequality, we consider the roots z;, i = 1,...,n, of the
equation P, (2) —w = 0, where w € E is fixed. If 27, j =1,...,k, are the roots of

M}:(z), then we have that

kK n k
= (IITIG:i = =) = [ITTI - 2] = 1Tz

i=1j=1 j=1li=1
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k . . o -

Note that Qr(w) := [[,_;(w — P,(2})) is a monic polynomial in w, with integer
j,l J p y ’

coefficients. Indeed, its coefficients are symmetric functions in the z¥’s, which are

J
integers by the fundamental theorem on symmetric forms. Thus we obtain that

IMylle < Qklle < (IM¢lle-)"s  keN,

and
tar(E) < (tar (B*)"
O

Proof of Theorem We first prove (LI3). The sequence of polynomials {2*}2°
shows that ¢/([0,1/n]) < 1/n and tp([—1/n,1/n]) < 1/n. On the other hand,
we have that ta/([0,1/n]) > tar({1/n}) = 1/n by Proposition [3 and (CII). The
remaining equality for ¢57([1 — 1/n, 1]) follows from Proposition [ by using the
change of variable z — 1 — z.

Applying the substitution z — 22, we obtain (II4) from Proposition [[4 and
(C13).

Note that tas([0,1/2]) = 1/2 follows from (CI3)). We can now map [0,1/2] to
[n,n+1/2] by z = z+4n (or to [n —1/2,n| by 2z — n — z), and apply Proposition
[[.4 to prove (I.I5). Similarly, (L.16) is obtained from Proposition [I.4] and (L.13)
by the transformations z — z — n mapping [n,n + 1] — [0,1], and z — 2z(1 — 2)
mapping [0, 1] — [0,1/4]. The same argument applies to (L.17), where we first map
[n,n+2] — [~1,1] with 2 — z —n — 1 and then map [—1,1] — [0, 1] with z — 22

Observe that

1—-v2 1 2
(1 - 2)] < 1/4, e[ V2 1+ 92|
2 2
Hence
1—v2 142 1
tm , < —.
2 2 2

For 1/2 € E C [(1 —+/2)/2, (1 ++/2)/2], Proposition 3 and (1) give that

R (| B

It is clear that the segment [1*2‘/5, 1+2‘/§} can be replaced here by the lemniscate

{zeC:|2(1—-2)| <1/4}. O

4. PROOFS FOR SECTION 2
Proof of Theorem [2.1l Set

E(j)

[I(asbi —aiby), j=2,....k,
i<J

D := lem[E(2),...,E(k)],
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and write D := D1(5)D2(j), E(j) := E1(j)E2(j), where
Di(j) = ] »* Do) =[] »*

p*||D p*||D
p‘bj P’fbj
EG)y= [[ » B = ] »~
p*|E() p*|E()
plb; ptb;

Take m to be a positive integer large enough that
p*ID=a<m

and choose n > km such that for j =1,...,k

(4.1) aj = 1 mod bfm,

(4.2) b7 = 1 mod Dy(j)"™.

Choose integers [; such that
a;l; =1 mod b;,

and write a;l; — b; f; = 1.
The proof proceeds by induction on the number of rationals 1 < r < k, con-
structing a polynomial

n—(k+1—r)m
Fo(zr) =a™ + Z Bira’
i=0
with Fy.(a;/b;) = 1/b%, j=1,...,7.
The first step, r = 1, is easy;
1—a?
phm

Fi(z) = 2" + < > (liz — f1)n—km,

Next, given F,.(x) with r < k, we construct F,y;(z). This amounts to finding
an integer polynomial Q(x), of degree at most n — (k — r)m — r, such that

T

Fria(z) = Fo(x) + Q(z) [ [ (biz — a;)

i=1
has Fyy1(aprq1/bry1) = 1/b7, . Thus it is enough if

1 _r (aT+1>+E(r+1) A
1

— — !
bry1 by mer

by
for some integer A, since we can then take
Q@) = Allraz = fryn)" "7
For this we require that bffi_lr)mE (r+1) divides
n—(k+1—r)m

n Qr41 n j n—j
B:=b' F, <b +1) —l=(alyy =D+ Y Bieal b7
T ]:0
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Clearly from E1(r 4 1)|D1(r + 1) and the definition of m we have Ey(r 4 1)[b] ;,
and bﬁ_lr)mEl (r+ 1)|b£’fﬂl_r)m. So from (4.1) and r > 1 we certainly have that

bf,’i_lr)mEl (r+1) divides (a',; — 1), and bf;f for j <n— (k+1—r)m, and hence
B. Thus it remains to check that Eo(r + 1) divides B.

Suppose that p®||Es(r+1). Then p|(bjar+1 —a;by41) for some nonempty subset,
S say, of the 1 < j < r. Note that since p { b,41 we have p{b; and b =1 mod p™*
for all j € SU{r+1} from (4.2). Hence, choosing integers b; with b;b; = 1 mod p™*
for j € SU{r + 1}, we have

0 =0} F-(a;/bj) —1= Fr(a;b;) =1 mod pmk,

for the j € S, with B = F,.(a,11b,11)—1 mod p™* and p°|| Hjes(arﬂg,«“—ajgj).
Thus we can successively divide F}.(z) — 1 by (z — a;b;) for the j € S (assume we
proceeed in order of increasing j). In particular, after dealing with a subset S’ of

the j in S we can write

F.(x)—1=Tg(x) H (z —a;b;) mod pkt1=1s"hm
JjES’
for some integer polynomial Ts/(z), where p™ { [];cq (aib; — a;b;) (as p™ t E(i))
and F,.(a;b;) — 1 =0 mod p*™ imply that

Ts/(a;b;) =0 mod p(k“_ls/‘_l)m
for any remaining i € S\ S’. So

B = Ts(ar41brs1) [ [ (@ri1bris — a;b;)  mod phti=Ishm
jes
=0 mod p%,
as claimed. O

Proof of Theorem Suppose that we have a set of £ numbers as in the statement
of Theorem [2:3]

We first show that for any 1 > ¢ > 0 there is a nonzero integer polynomial
P(z) = 27Q(z) with j < (g) and @Q of degree at most k, with 0 < |P(«;)| < ¢/k,
i=1,...,k, and P(o;) # P(ay) when «;/aq is not a root of unity. This essentially
follows from Minkowski’s theorem on linear forms: Taking an arbitrary real agy1 #

a;,i=1,...,k, we can find a nonzero (ag, ...,a;) € Z*1 with
lap 4+ arc + - - + apal| < c
1 —_
"7 kmax{1, oy} 2R*E-D7
if a;, i =1,...,k, is real, and for any pairs of complex conjugate «;
€
ao + a1Ra; + -+ + apRal| <
| i z| ﬁkmaX{Llai'}%k(kaa
k, 6

ap + a1, + - -+ arpSey| <
| e /| V2k max{1, |og|} 2R¢E=1)

and
Dk Hle max{1, |ai|}%k(k_1)
ok

k
lao + arogqr + -+ agag 4| <
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where
1 ... o/f
D = |det | : :H|ai—aj|7é0.
1 ... O‘Zﬂ i<y

Taking Q(z) = ag + - - - + axz*, we plainly have Q(a;) # 0 (since [Q(a;) : Q] > k)
and an(ai) + a{ (o), when «;/ay is not a root of unity, for at least one 0 <
j < k(k—1)/2 (since when a;/qy is not a root of unity Q(cy)/Q (i) = (a;/cy)? for
at most one integer j, and there are at most k(k — 1)/2 such pairings with ¢ < [).
Choosing P(x) = 27Q(z) for such a j then has the desired property.

To complete the proof of Theorem 23] take the polynomial P(z) as above, and
an n > k?(k +1)/2 such that o = ol whenever «;/o is a root of unity, and solve
the linear system

A1P(ozi) —|— AQP(OQ‘)2 —|— e —|— AmP(Oéz)m = —a?, Z = 1, e,y

where P(a1),..., P(am,) are the distinct values of P(«;) (any remaining a; with
P(o) = P(ay), of = af, will merely repeat one of these equations). This will
have a solution, since

P(ay) -+ Plag)™

det | : : = [P(a1)| -+ [P(am)| [ ] 1P(ew) = P(ay)] # 0.

P(am) o P(Oém)m 1<j
Moreover, since the complex «; come in complex conjugate pairs, the solution
Aq, ..., A, will be real. Hence taking b; = [A,], j = 1,...,m, gives a monic
integer polynomial

F(x) = 2" + by P(2)™ + b1 P(x)™ 1 4+ - + by P(x)
with
[Fai)] = Y _{A}P()| <) (e/k) <e.

Jj=1 Jj=1

5. INTERVALS OF CONSECUTIVE FAREY NUMBERS

Conjecture 5.1. Suppose [az/b2, a1/b1] is an interval whose endpoints are consec-
utive Farey fractions. This is characterized by a1bs — asby = 1. Then

tarlaz/be, a1 /b1] = max(1/by,1/bs).
From Corollary 2.2] we have

tM[ag/bg,al/bl] 2 max(l/bl, ]./bg),

and by Theorem the conjecture holds on intervals of the form [0,1/n]. The
following table gives enough solutions to fill in all Farey intervals with denominator
less than 22. On the remaining intervals z works or the symmetry x — m + x
works.
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The computations for the table are done with LLL. As in section 2, for certain
n, we can find a polynomial p of degree n that satisfies p(az/bs) = 1/by and
p(a1/b1) = 1/b7. One now constructs a basis

B = (p(x), (hix — a1)(bax — az), x(bix — a1)(bar — az),
2" (b — a1)(baw — az))

and we reduce the basis with respect to the norm

a1 /by 1/2
/ p(z)* dx .
a2/b2

We then search the reduced basis for solutions of the conjecture. These calculations
were done in Maple using an LLL implementation that can accommodate reduction
with respect to any positive definite quadratic form. (This was implemented by
Kevin Hare, and we would like to thank him for his code.)

Here T'(az/b2,a1/b1) is a polynomial that satisfies

T (a2 /b2, a1/01) |y /by a0 jon] = max(1/b1, 1/bg) 0T,

so that Conjecture Bl holds on [ag/bz, a1/b1] by Lemmal3Il There is no guarantee
that it is the lowest degree example.

T(1/3,2/5)=2% -3z +1
T(1/4,2/7)=2% —4z+1
T(2/5,3)7) = 2* — 716 2> + 890 22 — 369 2 + 51
T(1/3,3/8)=2% -3z +1
T(3/8,2/5)=a% -3z +1
T(1/5,2/9) = —2® —202> + 9z — 1
T(3/7,4/9) = —2° +372* =322+ 7
T(2/7,3/10) = —2® + 1151931 2° — 1691236 z* + 993150 2> — 291587 2

+ 42802 x — 2513
T(1/6,2/11) = —2® —302* + 11z — 1
T(1/4,3/11) = 2? —4x +1
T(3/11,2/7) = —x% — 2359829 2° + 3291253 2* — 1836029 x* + 512089 x>
— 71410 x + 3983
T(1/3,4/11) = 2* — 62 + 2
T(4/11,3/8) = —a* + 8302 — 928 2% + 346 — 43
T(4/9,5/11) = —2” — 29635158678 x° + 106792009997 ” — 168361710540 z°
+ 151671807240 2° — 85396766648 2* + 30771806151 2*
— 6930101424 2 + 891832252 x — 50211113
T(2/5,5/12) = 2® +2x — 1
T(5/12,3/7) = —2® — 262> + 232 -5
T(1/7,2/13) = —a® —422% + 132 — 1
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T(2/9,3/13) = —2* —202% + 92 — 1

T(3/10,4/13) = —a® — 2627119 2° + 3994979 x* — 2429980 2 + 739017 2>
— 112375z + 6835

T(3/8,5/13) = 2? —3x +1
T(5/13,2/5) = 2> =32 + 1
T(5/11,6/13) = 2° + 131482 2" — 240886 x° + 165494 2° — 50532 x + 5786
T(1/5,3/14) = 2* =52+ 1
T(3/14,2/9) = —2* + 106 2> — 46 2 + 5
T(1/3,5/14) = 2> — 6+ 2
T(5/14,4/11) = 2° + 98683 2% — 142309 2® + 76957 2* — 18496  + 1667
T(1/8,2/15) = —x* + 41122% — 1602 2 + 208 2 — 9
T(1/4,4/15) = 2® — 8z + 2
T(4/15,3/11) = 2® + 162382 x* — 175226 2> 4 70906 2* — 12752 x + 860
T(6/13,7/15) = —x'? 4 72422527702901325 ! — 369852358365610457 2°
+ 858538529519890462 x” — 1195753892838600326 2°
4 1110278480747979603 27 — 721638086761400063 2°
+ 335025835998692775 x° — 111098573305754871 *
4 25789093045603361 2° — 3990908419523891 2
+ 370559601060925 x — 15639435102355

T(2/11,3/16) = 2° — 16175 2* + 12295 2® — 3502 2% + 443 x — 21
T(4/13,5/16) = 2° — 369076253174 2% + 917724840702 27 — 998350365312 2°
+ 620599596183 ° — 241110478731 z* + 59951042224 3
— 9316515227 2% + 827310070  — 32140845
T(3/7,7/16) = ® — 372> + 322 — 7
T(7/16,4/9) = —2% — 10576186 2° + 23312009 2* — 20553597 z*
+ 9060737 2% — 1997132 x + 176079
T(1/9,2/17) = 2* — 1953 2% 4 676 2> — 78z + 3

T(1/6,3/17) = 2> — 62+ 1
T(3/17,2/11) = 2° — 164752 x* 4 117596 2 — 31475 2* + 3744z — 167

T(3/13,4/17) = —a® 4 5654596 2° — 6591735 x* 4 3073650 2° — 716598 2>
+ 83534 — 3895

T(2/7,5/17) = —a — 822% + 482 — 7
T(5/17,3/10) = —a* — 3986 2° + 3547 2% — 1052z + 104
T(1/3,6/17) = 2* — 6.2 + 2
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T(6/17,5/14) = —z'? — 312068777674512248 z'* + 1218635449662069926 .*°

— 2163086830555697775 2 + 2303693455082796817 2
— 1635624110167518281 7 + 812904818934872080 x5
— 288580642413016261 2° + 73175550293900447 24—

— 12988595068142207 2° + 1536973706418270 2>
—109124254036404 = + 3521703559324

T(2/5,7/17) = 2* + 22 — 1

T(7/17,5/12) = 2* + 22 — 1
T(7/15,8/17) = —z* + 6130 23 — 8618 2 + 4039 z — 631

T(5/13,7/18

= 2% —892% 4502 —7

= —25 — 6049372 2° 4+ 11706532 2* — 9061607 2> + 3507125 2
— 678682 x + 52534

T(7/18,2/5) = 2® =3z + 1

T(5/18,2/7

)
)
)
T(3/11,5/18) = x° + 303655 x* — 334282 2 + 137998 22 — 25319 2 + 1742
)
)

T(1/10,2/19) = 2* — 271023 + 841 2% — 87 x + 3
T(2/13,3/19) = 2° 4+ 16300632 x° — 12702977 x* + 3959686 2* — 617135 2

+ 48091 = — 1499
T(1/5,4/19) = 2* — 52+ 1

T(4/19,3/14) = 2° — 2941000101126 2® + 4994011925448 =7

— 3710051448922 2° + 1574961728536 2° — 417866792428 2*
+ 70955073227 23 — 7530205493 2% + 456656790 x — 12115709
T(1/4,5/19) = 2* —4x + 1

T(5/19,4/15) = z* 4+ 3607 3 — 2866 2 + 759 = — 67
T(5/16,6/19) = —x% + 51931371494 27 — 114207671161 2° + 107642363378 2°

— 56363495447 2* + 17707739051 23 — 3337942176 2
+ 349559613 2 — 15688671

T(4/11,7/19) = —2° — 167972 2" + 246584 2 — 135743 2 + 33211 x — 3047

T(7/19,3/8) = 2* + 8594 2% — 9574 2% + 3555z — 440

T(5/12,8/19) = 2® — 13761534 2° + 28842552 z*

— 24180158 2% + 10135687 22 — 2124300 x 4+ 178089
T(8/19,3/7) = 2® — 107 2> + 902 — 19

T(8/17,9/19) = —z% + 63880292236 " — 211132804023 2° + 299066280893 2.°

— 235345759625 z* + 111121028980 > — 31480170773 2
+ 4954560070 = — 334191985

T(1/7,3/20) = 3 + 23122 — 682 +5
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T(3/20,2/13) = —2® 4 28336792 2° — 21517541 * 4 6535640 2° — 992538 2*
+ 75365 x — 2289

T(1/3,7/20) = 2® — 62 + 2
T(7/20,6/17) = 2® — 70615270260 =" + 173702478683 2° — 183120134018 2°

+ 107248975216 z* — 37687812630 2> + 7946199062 22
— 930775452 x + 46725407

T(4/9,9/20) = 23 + 224 22 — 201 = + 45
T(9/20,5/11) = —° — 28247 2* 4 50444 x> — 33775 2% 4+ 10049 = — 1121
T(1/11,2/21) = 2* — 3641 23 + 1024 2% — 962 + 3
T(3/16,4/21) = —2® 4+ 136425013870z — 180508372914 z:°
+ 102358062346 1° — 32245743882 x* 4 6094977959
— 691227923 22 4- 43550791  — 1175959

T(4/17,5/21) = 2° 4 1414956 2° — 1686559 x* + 804089 > — 191673 22
+ 22844 - — 1089

T(3/8,8/21) = 2® =3z + 1

T(8/21,5/13) = 2% =3z + 1

T(9/19,10/21) = x'® — 265066219851470073896475021927 x*7
+ 2140395330694655830972341091874 216
— 8133445821830247750162364615479 z°
+ 19316795672890032633988244072508
— 32113936273710937029720760450948 '3
+ 39660410718965991151182638887921 22
— 37677096594660667022412296504028 2!
+ 28123036244133465310172098724688 :*°
— 16697915529194766473201489538076 z°
+ 7931442994928916901189904965470 2
— 3013922280150590577654465661841 7
+911018436460175951387551399941 2°
— 216364915651909887212093381346 z°
+ 39527838685420394912701179067 x*
— 5364441433555090728913121916 z°

+ 509616986326961914742507595 2>
— 30258208210601324759757834
+ 845441362748491768882081
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