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AN OVERLAPPING DOMAIN DECOMPOSITION
PRECONDITIONER FOR A CLASS

OF DISCONTINUOUS GALERKIN APPROXIMATIONS
OF ADVECTION-DIFFUSION PROBLEMS

CAROLINE LASSER AND ANDREA TOSELLI

Abstract. We consider a scalar advection-diffusion problem and a recently
proposed discontinuous Galerkin approximation, which employs discontinuous
finite element spaces and suitable bilinear forms containing interface terms
that ensure consistency. For the corresponding sparse, nonsymmetric linear
system, we propose and study an additive, two-level overlapping Schwarz pre-
conditioner, consisting of a coarse problem on a coarse triangulation and local
solvers associated to a family of subdomains. This is a generalization of the
corresponding overlapping method for approximations on continuous finite el-
ement spaces. Related to the lack of continuity of our approximation spaces,
some interesting new features arise in our generalization, which have no analog
in the conforming case. We prove an upper bound for the number of iterations
obtained by using this preconditioner with GMRES, which is independent of
the number of degrees of freedom of the original problem and the number of

subdomains. The performance of the method is illustrated by several numeri-
cal experiments for different test problems using linear finite elements in two
dimensions.

1. Introduction

We consider the following scalar advection-diffusion problem with Dirichlet con-
ditions:

Lu = −∇ · (a∇u) + b · ∇u+ cu = f, in Ω ,
u = 0, on Γ ,(1.1)

where Ω is a bounded polyhedral domain in Rd, d = 2, 3, and Γ its boundary.
Problem (1.1) describes a large class of diffusion-transport-reaction processes.

Discontinuous Galerkin (DG) approximations have a very long history and have
recently become more and more popular for the approximation of problems in-
volving convection phenomena; we refer to [5] for a comprehensive review of these
methods. Here, we consider the discontinuous finite element method proposed in [9].
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As for many DG methods, the approximate solution belongs to a space of discontin-
uous finite element functions, i.e., it is piecewise polynomial of a certain degree on
a given triangulation, being in general discontinuous across the elements. Suitable
bilinear forms, which also contain interface contributions, are then employed, in
order to ensure consistency. The corresponding systems of algebraic equations are
sparse but often too large to be handled by direct solvers. In addition, they are
nonsymmetric, since the bilinear forms contain advection and interface terms.

Fixing a family of polynomial degrees on the elements, we construct and analyze
a Schwarz preconditioner for linear systems obtained from DG discretizations, to
be used with a Krylov-type method, like GMRES. Our two-level Schwarz precondi-
tioner is built from a coarse solver and a number of smaller local solvers, associated
with a partition of the domain Ω. While the coarse level is designed to reduce
the low-energy components of the error, the fine level splits the original problem
into a number of smaller problems, not only to reduce the problem size but also to
enable efficient parallel computing. We then generalize the additive Schwarz theory
for nonsymmetric problems, developed by Cai and Widlund in [2] and [3], to the
class of DG approximations in question. Our main result is an upper bound for the
convergence rate of the preconditioned system, which is independent of the size of
the fine mesh and the number of local problems.

Even though the linear systems that we consider come from hp finite element
approximations and the proposed preconditioner can be employed for general hp
approximations, the bounds that we prove are for the h version only, since they
depend in general on the polynomial degree p.

We only know of one previous work on domain decomposition (DD) precondi-
tioners for DG approximations. In [8], a two-level Schwarz preconditioner has been
proposed and analyzed for a different type of DG approximations for the Poisson
problem. As opposed to our approach, the method in [8] gives rise to a symmetric
positive-definite problem, and the conjugate gradient method can be employed. In
[8] an explicit bound for the condition number for a nonoverlapping preconditioner
is obtained, which grows linearly with the number of degrees of freedom in each
subdomain. The method that we present here is similar to that in [8], but designed
for a different DG approximation, which is suitable for advection-reaction-diffusion
equations. The coarse space that we consider is also different, and we believe more
appropriate for the case of overlapping methods. We use GMRES as an iterative
solver and prove an upper bound for the number of iterations obtained when a two-
level overlapping preconditioner is employed. Due to the available error estimates
for GMRES and the nonsymmetry of our problem, bounds that are explicit in the
relative overlap cannot be obtained in general, similarly to the case of conforming
approximations; see [2, 3]. Our numerical results show, however, that, as expected,
the rate of convergence improves when the overlap increases.

The rest of the paper is organized as follows. In section 2, we introduce our
model problem and the discontinuous finite element spaces. After defining the
bilinear form and the corresponding discrete problem in section 3, we describe our
overlapping Schwarz method in section 4. Section 5 provides technical tools, like
estimates for the coarse space and the local spaces, as well as a stable decomposition.
Section 6 contains the convergence result. We finally illustrate the performance of
our algorithm in section 7 by several numerical experiments for the case of linear
finite elements in two dimensions.



DOMAIN DECOMPOSITION PRECONDITIONER FOR DG APPROXIMATIONS 1217

2. Model problem and finite element spaces

We consider problem (1.1) and make some further hypotheses. We assume that
a = {ai,j}di,j=1 is a symmetric positive-definite matrix,

ξT a(x)ξ ≥ α0 > 0, ξ ∈ Rd, x ∈ Ω,

b and c are a vector field in W 1,∞(Ω) and a function in L∞(Ω), respectively, such
that

(c− 1
2
∇ · b)(x) ≥ γ0 > 0 , x ∈ Ω ,(2.1)

and the right-hand side f is a function in L2(Ω). The existence of a unique solution
of (1.1) is shown in [9]. We note that we have considered only the case of strongly
imposed homogeneous Dirichlet boundary conditions for simplicity, but that more
general ones can be employed, such as Neumann, Robin, or weakly imposed Dirich-
let conditions. Our analysis remains valid in these cases.

In the following, the norm, seminorm, and inner product of a Hilbert space H
are denoted by ‖ · ‖H, | · |H, and (·, ·)H, respectively.

In our analysis we will use some regularity properties for second order elliptic
problems, and tacitly assume that the domain Ω and the subdomains considered
satisfy them. Such properties are certainly valid for general polygonal and polyhe-
dral domains with angles between their edges (or faces) smaller than 2π. In par-
ticular we will assume that the Poisson problem on Ω (and consequently Problem
(1.1) and its adjoint) with Dirichlet or Neumann conditions has Hη+3/2 regularity,
for all η < ηΩ, where ηΩ > 0 depends on Ω and the particular type of boundary
conditions considered; see [6, Cor. 18.15 and Cor. 23.5].

We next introduce a conforming, shape-regular triangulation Th of Ω, consisting
of open simplices with diameter O(h). For a nonnegative integer k, we denote by
Pk(κ) the space of polynomials of total degree k on κ̄, and define the vector of local
polynomial degrees p = (pκ : κ ∈ Th). We consider the finite element space

Sp(Ω, Th) = {u ∈ L2(Ω) : u|κ̄ ∈ Ppκ(κ)} .

Let p be the maximum of the polynomial degrees in p.
Given a domain D ⊆ Ω, which is the union of some elements in Th, we define

the product space

H1(D, Th) = {u ∈ L2(D) : u|κ ∈ H1(κ) , κ ∈ Th , κ ⊂ D} ,

and equip H1(D, Th) with the broken Sobolev norm and seminorm, given by

‖u‖2H1(D,Th) =
∑
κ∈Th
κ⊂D

‖u‖2H1(κ) , |u|2H1(D,Th) =
∑
κ∈Th
κ⊂D

|u|2H1(κ) .

H1
0 (Ω, Th) and Sp

0 (Ω, Th) denote the subspaces of functions in H1(Ω, Th) and
Sp(Ω, Th), respectively, vanishing on Γ.

Our FE approximation space is chosen as

V h = Sp
0 (Ω, Th) .

We denote by E the set of all open (d − 1)-dimensional faces (edges, for d = 2) of
the elements Th, and define the set of interior faces Eint = {e ∈ E : e ⊂ Ω} and the
interior interface Γint, such that Γ̄int =

⋃
e∈Eint ē.
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For κ ∈ Th, we denote the unit outward normal to ∂κ at x ∈ ∂κ by µκ(x) and
partition the part of its boundary that is also contained in Γint into two sets:

∂−κ = {x ∈ ∂κ ∩ Γint : b(x) · µκ(x) < 0} (inflow part) ,
∂+κ = {x ∈ ∂κ ∩ Γint : b(x) · µκ(x) ≥ 0} (outflow part) .

Given v ∈ H1(Ω, Th), its restriction to D̄ ⊂ Ω̄ is denoted by vD = v|D̄. Then, for
x ∈ ∂−κ there exists a unique neighbor κ′ with x ∈ ∂κ′, and we set

v+
κ (x) = vκ (x) , v−κ (x) = vκ′ (x) , bvcκ = v+

κ − v−κ .

Given an interior face e ∈ Eint, there are two elements κi, κj , with, e.g., i > j,
that share this face. We define

[v]e = v|∂κi∩e − v|∂κj∩e, 〈v〉e =
1
2

(v|∂κi∩e + v|∂κj∩e) ,

and ν as the unit normal which points from κi to κj . We note that µ and ν point
in different directions in general, and that b·c and [·] are distinct. While µ and b·c
depend on the sign of the advective normal flux on an element boundary, ν and [·]
depend on the element numbering. Similarly, for e = ∂κ ∩ Γ, we set

[v]e = v|e.

Finally, we introduce a discontinuity-penalization function σ defined on Γint: for a
face e = ∂κ ∩ ∂κ′ ∈ Eint, we denote the diameter of e by he and define

σe = σ0
āκp

2
κ + āκ′p

2
κ′

2he
,

where ā = ||a|| and σ0 is a suitably chosen positive constant.

3. Bilinear form and discrete problem

For u, v ∈ V h, we consider the bilinear form

B(u, v) =
∑
κ∈Th

∫
κ

a∇u · ∇vdx +
∑
κ∈Th

∫
κ

(b · ∇u+ cu)vdx

−
∑
κ∈Th

∫
∂−κ∩Γint

(b · µ)bucv+ds+
∫

Γint

σ[u][v]ds

+
∫

Γint

([u]〈(a∇v) · ν〉 − 〈(a∇u) · ν〉[v]) ds ,

which has been proposed in [9]. Our DG approximation of (1.1) is then defined as
the unique u ∈ V h such that

B(u, v) = (f, v)L2(Ω) , v ∈ V h .(3.1)

Problem (3.1) can be written in matrix form as

(3.2) Bu = f,

where we have used the same notation for a function u ∈ V h and the corresponding
vector of degrees of freedom, and a bilinear form, e.g., B(·, ·), and its matrix repre-
sentation in the space V h. Similarly, in the following we use the same notation for
functional spaces and the corresponding spaces of vectors of degrees of freedom.
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We next define some additional bilinear forms. It can be easily verified that

A(u, v) =
∑
κ∈Th

∫
κ

a∇u · ∇vdx +
∫

Γint

σ[u][v]ds

defines a scalar product in H1
0 (Ω, Th) and a norm ‖ · ‖A = A(·, ·) 1

2 .
Furthermore, let

D(u, v) =
∑
κ∈Th

∫
κ

b · ∇u v dx−
∑
κ∈Th

∫
∂−κ∩Γint

(b · µ)bucv+ds ,

S(u, v) =
∫

Γint

([u]〈(a∇v) · ν〉 − 〈(a∇u) · ν〉[v]) ds ,

C(u, v) = (cu, v)L2(Ω) .

We note that B(u, v) = A(u, v) +D(u, v) + C(u, v) + S(u, v).
An important tool in the analysis of Schwarz methods is represented by some

Poincaré and Friedrichs type inequalities valid for Sobolev spaces. The following
lemma provides two generalizations to the discontinuous space H1(D, Th); see also
[1, 8].

Lemma 3.1 (Poincaré-Friedrichs). Let D ⊆ Ω be a domain which is the union of
some elements in Th. Then there exists a positive constant C, depending only on
the geometry of D (but not on its size) and the shape-regularity constant of Th, such
that, for all u ∈ H1(D, Th),

(3.3) ‖u‖2L2(D) ≤ CH2
D

|u|2H1(D,Th) +
∑
e∈E
e⊂D

∫
e

h−1
e [u]2ds+

∑
e∈E
e⊂∂D

∫
e

h−1
e u2ds

 ,

where HD is the diameter of D. If in addition
∫
D
udx = 0, then

(3.4) ‖u‖2L2(D) ≤ CH2
D

|u|2H1(D,Th) +
∑
e∈E
e⊂D

∫
e

h−1
e [u]2ds

 .

Proof. Here, we only present a proof for the Poincaré-type inequality (3.4). A proof
for the Friedrichs inequality (3.3) can be found in [1] for the case of a convex D,
and can be easily generalized to our more general case.

We first suppose that D has unit diameter and proceed similarly to [1, Lem.
2.2]. Let u ∈ H1(D, Th) with

∫
D udx = 0 and v ∈ Hη+3/2(D), for an η > 0 be the

solution of the following Neumann problem:

−∆v = u, in D,
∂v

∂n
= 0, on ∂D,

∫
D

vdx = 0.

Then there exists a constant C > 0 such that

‖v‖Hη+3/2(D) ≤ C‖u‖L2(D).
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Integration by parts on each κ and summation over all the elements yield

‖u‖2L2(D) = (u,−∆v)L2(D)

= (∇u,∇v)L2(D) −
∑
κ⊂D

(
u,
∂v

∂n

)
L2(∂κ\∂D)

≤
(
|u|2H1(D,Th) +

∑
e⊂D

∫
e

h−1
e [u]2ds

) 1
2

×
(
|v|2H1(D,Th) +

∑
κ⊂D

∫
∂κ\∂D

hκ

(
∂v

∂n

)2

ds

) 1
2

.

Using a trace inequality for ∂v/∂n, as in [1], we obtain (3.4).
The corresponding inequalities for the case of a general D can be obtained em-

ploying a scaling argument. �
We note that (3.3) is the generalization of the corresponding estimate for func-

tions inH1(Ω) with support contained in D̄ to discontinuous functions inH1(D, Th).
In particular, (3.3) remains valid for a function that is constant in D and vanishes
in Ω \D, due to the contributions on the edges on ∂D. On the other hand, (3.4)
requires the additional restriction

∫
D udx = 0, which a constant function does not

meet.
The following inverse inequalities are proven in [13, Sect. 4.6.1].

Lemma 3.2 (Local inverse inequalities). There exists a positive constant C, de-
pending only on the shape-regularity constant of Th, such that for all u ∈ Ppκ(κ)
and for all κ ∈ Th

‖u‖2L2(∂κ) ≤ C
p2
κ

hκ
‖u‖2L2(κ) ,(3.5)

|u|2H1(κ) ≤ C
p4
κ

h2
κ

‖u‖2L2(κ) .(3.6)

Using these tools, we obtain the following lemmata.

Lemma 3.3 (Continuity). There exists C > 0 such that

|B(u, v)| ≤ C ‖u‖A‖v‖A , u, v ∈ V h .
Proof. The bilinear form B consists of five contributions I, II, III, IV, and V, all of
which can be bounded by C‖u‖A‖v‖A. We easily find that

|I| = |
∑
κ∈Th

∫
κ

a∇u · ∇v dx| ≤ C ‖u‖A‖v‖A ,

|IV | = |
∫

Γint

σ[u][v] ds| ≤ C ‖u‖A‖v‖A .

The Cauchy-Schwarz inequality and (3.3) with D = Ω yield

|II| = |
∑
κ∈Th

∫
κ

(b · ∇u+ cu)v dx|

≤ C
∑
κ∈Th

(
|u|H1(κ)‖v‖L2(κ) + ‖u‖L2(κ)‖v‖L2(κ)

)
≤ C ‖u‖A‖v‖A .
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Applying the inverse inequality (3.5), Lemma 3.1, and the definition of σ, we find
that

|III| = |
∑
κ∈Th

∫
∂−κ∩Γint

(b · µ)bucv+ds|

≤ C

(∑
κ∈Th

h−1
κ ‖buc‖2L2(∂−κ∩Γint)

) 1
2
(∑
κ∈Th

hκ‖v+‖2L2(∂−κ∩Γint)

) 1
2

≤ C

(∫
Γint

σ[u]2ds
) 1

2

‖v‖L2(Ω) ≤ C ‖u‖A‖v‖A .

Using (3.5), we finally obtain

|V | = |
∫

Γint

([u]〈(a∇v) · ν〉 − 〈(a∇u) · ν〉[v]) ds|

≤ C

 ∑
e∈Eint

h−1
e ‖[u]‖2L2(e) ·

∑
κ∈Th

∂κ⊂Γint

hκ‖〈a∇v〉‖2L2(∂κ)


1
2

+ C

 ∑
κ∈Th

∂κ⊂Γint

hκ‖〈a∇u〉‖2L2(∂κ) ·
∑
e∈Eint

h−1
e ‖[v]‖2L2(e)


1
2

≤ C

(∫
Γint

σ[u]2ds ·
∑
κ∈Th

‖a∇v‖2L2(κ)

) 1
2

+ C

(∑
κ∈Th

‖a∇u‖2L2(κ) ·
∫

Γint

σ[v]2ds

) 1
2

≤ C ‖u‖A‖v‖A .

�

Lemma 3.4 (Coercivity). We have

B(u, u) ≥ ‖u‖2A , u ∈ H1
0 (Ω, Th) .

Proof. Indeed,

B(u, u) =
∑
κ∈Th

‖
√
a∇u‖2L2(κ) +

∫
Γint

σ[u]2ds

+
∑
κ∈Th

∫
κ

(b · ∇u + cu)udx−
∑
κ∈Th

∫
∂−κ∩Γint

(b · µ)bucu+ds

=: ‖u‖2A +R(u, u).
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Therefore, we just have to make sure that R(u, u) ≥ 0. Integration by parts yields

R(u, u) =
∑
κ∈Th

∫
κ

(
−1

2
(∇ · b) + c

)
u2dx

+
∑
κ∈Th

(∫
∂κ∩Γint

1
2

(b · µ)u2ds−
∫
∂−κ∩Γint

(b · µ)bucu+ds

)
.

Condition (2.1) ensures that the first sum is positive. To deal with the second sum,
we consider an interior face e ⊂ Eint which is common to the elements κ and κ′.
Let e be an inflow edge of, e.g., κ′. Then the second sum can be written as∑

e⊂Eint

∫
e

(
1
2

(b · µκ)(uκ)2 +
1
2

(b · µκ′)(uκ′)2 − (b · µκ′)(uκ′ − uκ)uκ′
)
ds

=
∑
e⊂Eint

∫
e

1
2
|b · µκ′ |(uκ′ − uκ)2 ds =

∫
Γint

1
2
|b · µ|[u]2ds ≥ 0 ,

where we have used the fact that e ⊂ ∂−κ′ also belongs to ∂+κ. �
Using similar arguments as in the proofs of Lemmata 3.3 and 3.4, we can prove

the following lemma:

Lemma 3.5. There exists a constant C > 0 such that for all u, v ∈ V h

|D(u, v)| ≤ C‖u‖L2(Ω)‖v‖A ,
|D(u, v)| ≤ C‖u‖A‖v‖L2(Ω) .

Finally, we are able to control the interface penalization contribution by requiring
that the penalization coefficient is sufficiently large:

Lemma 3.6. Let H > 0 and σ0 ≥ c0/H for some constant c0 > 0. Then there
exists C > 0, such that for all u, v ∈ V h

|S(u, v)| ≤ C
√
H ‖u‖A‖v‖A .

Proof. Since σ−1 ≤ CHh, using the inverse inequality (3.5), we obtain

|S(u, v)| ≤
( ∑
κ∈Th

σ‖[u]‖2L2(∂κ)

) 1
2
( ∑
κ∈Th

σ−1‖〈a∇v〉‖2L2(∂κ)

) 1
2

+

( ∑
κ∈Th

σ‖[v]‖2L2(∂κ)

) 1
2
( ∑
κ∈Th

σ−1‖〈a∇u〉‖2L2(∂κ)

) 1
2

≤ C ‖u‖A
√
H

( ∑
κ∈Th

h ‖〈a∇v〉‖2L2(∂κ)

) 1
2

+ C ‖v‖A
√
H

( ∑
κ∈Th

h ‖〈a∇u〉‖2L2(∂κ)

) 1
2

≤ C
√
H ‖u‖A‖v‖A .

�
We remark that the restriction imposed by the previous lemma on σ does not

appear to be required in practice; see Section 7.
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4. An overlapping Schwarz method

In this section, we introduce our two-level algorithm. It is the generalization of
the classical overlapping method with a standard coarse space. We refer to [16] and
[14] for further details and some implementation issues. As previously remarked,
even though our preconditioner can be employed for general hp approximations,
the bounds that we prove are for the h version only, since they depend in general
on the polynomial degree p.

We first introduce a shape-regular coarse triangulation of Ω

TH = {Ωi}1≤i≤N ,
of diameter H > h, and suppose that Th is obtained by refining TH . We next
extend each Ωi to a larger region Ω′i ⊂ Ω, in such a way that Ω′i is the union of
some elements in Th. Concerning the overlap of the extended subregions, we assume
that there exists a constant α > 0 such that

dist(∂Ω′i ∩ Ω, ∂Ωi) ≥ αH , 1 ≤ i ≤ N .(4.1)

In addition, we also assume a finite covering property. We start by defining an
auxiliary partition, obtained by augmenting the {Ω′i} by one layer of fine elements.
Let

Ω′′i :=
⋃
κ∈Th
κ∩Ω′i 6=∅

κ ⊃ Ω′i, i = 1, . . . , N.

We assume

Property 4.1 (Finite covering). Every point x ∈ Ω belongs to at most Nc subdo-
mains in {Ω′′i }.

We note that conforming overlapping methods require a finite covering property
that just involves the original partition {Ω′i} (see [14, Sect. 1.3.1]). Here, in the dis-
continuous case we need a more restrictive covering to control the skew-symmetric
part of the bilinear form (see the proof of Lemma 5.7).

Before proceeding, we remark that more general partitions and coarse meshes
can be employed in overlapping methods. In particular, the coarse mesh does not
need to be related to the fine one, and the nonoverlapping partition {Ωi} does not
need to be related to the coarse mesh TH . Indeed, one only needs to assume that
the diameter of TH and the diameters of the {Ωi} are of the same size H ; see, e.g.,
[4]. Our results and proofs remain valid in this more general case.

The first problem we need to address is the choice of the local solvers associated
with the {Ω′i}. Our FE spaces are discontinuous, and at a first glance there are
no traces to match! We then proceed in a purely algebraic way, by first defining
some local spaces (or, equivalently, by extracting some blocks from B) and then
identifying the corresponding problems, if any, that they represent.

Our local spaces are defined by

Vi = { u ∈ V h : u|κ = 0, κ ∈ Th, κ ⊂ Ω\Ω′i } , 1 ≤ i ≤ N .(4.2)

We note that a function in Vi is discontinuous and, as opposed to the case of
conforming approximations, in general does not vanish on ∂Ω′i. Let RTi : Vi → V h

be the natural injection operator from the subspace Vi into V h. We recall that the
restriction operator Ri : V h → Vi, defined as the transpose of RTi with respect to
the Euclidean scalar product, puts the degrees of freedom outside Ω̄′i equal to zero.
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The matrix block corresponding to the space Vi is obtained by extracting all the
degrees of freedom relative to the elements contained in Ω′i, and is equal to

Bi = RiBR
T
i : Vi −→ Vi.

It can easily be verified that the matrix Bi is the representation of the following
local bilinear form:

Bi(u, v) =
∑
κ∈Th
κ⊂Ω′i

∫
κ

(a∇u · ∇v + b · ∇uv + cuv)dx

−
∑
κ∈Th
κ⊂Ω′i

∫
∂−κ∩Ω′i

(b · µ)bucv+ds+
∫

Γint∩Ω′i

σ[u][v]ds

+
∫

Γint∩Ω′i

([u]〈(a∇v) · ν〉 − 〈(a∇u) · ν〉[v]) ds

−
∑
κ∈Th
κ⊂Ω′i

∫
∂−κ∩∂Ω′i

(b · µ)u+v+ds

+
1
2

∫
Γint∩∂Ω′i

(u((a∇v) · ν)− (a∇u) · ν)v) ds+
∫

Γint∩∂Ω′i

σuvds ,

for u, v ∈ Vi. The contributions in the first three lines come from the DG approx-
imation of the operator L on Ω′i, while the remaining contributions are boundary
contributions on ∂Ω′i, which appear since we have kept the boundary degrees of
freedom in the definition of Vi. We first consider the purely hyperbolic case a = 0.
Following [9], we see that Bi is the approximation of a Dirichlet problem with
weakly imposed boundary conditions on the inflow part of the boundary ∂Ω′i and
it is therefore well-posed. This is opposed to the standard overlapping method for
conforming approximations, where, by extracting local blocks, strongly imposed
Dirichlet conditions on all ∂Ω′i and thus potentially ill-posed local problems are
obtained. In the purely diffusive case b = 0, we note the presence of the term
1/2 in the skew-symmetric boundary contribution, arising from the average of the
fluxes. Without this multiplicative factor, Bi would still be the approximation of
a Dirichlet problem with weakly imposed boundary conditions on ∂Ω′i; see [9]. De-
spite the presence of the term 1/2, we note however that Bi is positive-definite
thanks to the presence of the penalization contribution, and the local problem on
Ω′i is well-posed. In the general transport-diffusion case, the local matrices are still
positive-definite, even if they do not represent local Dirichlet problems in general.
We will prove that our choice of local problems gives an optimal method, i.e. a
method converging independently of h and H .

We also note that, thanks to the choice of the local spaces, the case of zero
overlap,

Ω′i = Ωi, 1 ≤ i ≤ N,

can be considered, as was already noted in [8]. This has no analogue in the con-
forming case, and is due to the fact that we work with discontinuous FE spaces.
Most of our numerical results show that the number of iterations obtained in this
case is comparable, even if larger, to that for the overlapping case.
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We now introduce our coarse solver. It is defined on TH and is the FE approxi-
mation of our original problem on the continuous, piecewise linear FE space

V0 = S1(Ω, TH) ∩H1
0 (Ω) ⊂ V h.

If RT0 : V0 → V h is the natural injection operator from the subspace V0 into V h,
then our coarse solver is

B0 = R0BR
T
0 ,

and it can be easily shown to be positive-definite. Other choices are possible: we
could, e.g., consider a DG approximation of the original problem on the coarse
mesh TH with piecewise linear finite elements; see [8]. Our bounds remain valid in
this case.

We are now ready to define our Schwarz preconditioner

B̂−1 =
N∑
i=0

RTi B
−1
i Ri.

In order to analyze the spectral properties of the corresponding preconditioned
system B̂−1B, we write the latter using some projections; see [14]. As is standard
practice in Schwarz methods, for 0 ≤ i ≤ N we define the B-projections Pi : V h →
Vi by

B(Piu, v) = B(u, v) , v ∈ Vi .
It can be easily shown (see [14]) that

Pi = (RTi B
−1
i Ri)B,

and consequently that the preconditioned matrix B̂−1B is equal to the additive
Schwarz operator:

P =
N∑
i=0

Pi .

In Theorem 6.1 we will show that P is invertible.
We consider the generalized minimum residual method (GMRES) applied to the

preconditioned system

Pu = g,(4.3)

where g = B̂−1f . Some convergence bounds for GMRES are proven in [7], to which
we refer for a description of the algorithm. We denote by

cP = inf
u6=0

A(u, Pu)
A(u, u)

and CP = sup
u6=0

‖Pu‖A
‖u‖A

,

the smallest eigenvalue of the symmetric part and the operator norm of P , respec-
tively. Then, if cp > 0, GMRES applied to (4.3) converges in a finite number of
steps, and after m steps the norm of the residual of the preconditioned system
rm := g − Pum is bounded by

‖rm‖A ≤
(

1−
c2p
C2
P

)m
2

‖r0‖A .

5. Technical tools

In this section, we provide all the technical tools needed for the proof of our
convergence result contained in Theorem 6.1.
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5.1. Results for the coarse space. We start by defining an interpolation oper-
ator onto the coarse space. Let y be a node of the coarse mesh TH , and By be the
union of the elements in TH that share y. The following definition of the quasi-
interpolant and the proof of Lemma 5.1 are given for d = 2. Our definitions and
analysis can easily be adapted to the case d = 3, and we refer to [15, p. 10] for a
similar interpolant onto a conforming finite element space.

We define
QH : L2(Ω)→ V0

by assigning a nodal value to every vertex a, b, c of every coarse element K ∈ TH .
We set

(QHu)(y) = meas(By)−1

∫
By

u(x) dx, y ∈ {a, b, c} .

The following lemma ensures that QH is stable and provides an error bound.

Lemma 5.1 (Coarse mesh quasi-interpolant). There exists C > 0, independent of
h and H, such that, for all u ∈ H1(Ω, Th),

‖QHu− u‖2L2(Ω) ≤ CH2 ‖u‖2A ,(5.1)

‖QHu‖2A ≤ C ‖u‖2A .(5.2)

Proof. We consider a coarse element K ∈ TH with vertices a, b, c, and denote by K̃
the union of K and its neighboring elements. We clearly have

‖QHu‖L2(K) ≤ C ‖u‖L2(K̃), u ∈ L2(Ω) .

Since K̃ has a diameter of order H , inequality (3.4) ensures the existence of a
positive constant C, independent of h and H , such that for v ∈ H1(Ω, Th) with∫
K̃
v dx = 0

‖v‖2
L2(K̃)

≤ CH2

(
|v|2

H1(K̃,Th)
+
∫

Γint∩K̃
σ[v]2ds

)
.

Now let u ∈ H1(Ω, Th) and ū := u −meas(K̃)−1
∫
K̃
udx. Since QH reproduces

the constant functions on K, we obtain

‖QHu− u‖2L2(K) = ‖QH ū− ū‖2L2(K) ≤ C ‖ū‖2
L2(K̃)

≤ CH2

(
|u|2

H1(K̃,Th)
+
∫

Γint∩K̃
σ[u]2ds

)
.

Summing over all K ∈ TH and using the finite covering property for the partition
{K̃ : K ∈ TH}, we have, for u ∈ H1(Ω, Th),

‖QHu− u‖2L2(Ω) ≤ C
∑
K̃∈TH

‖QHu− u‖2L2(K̃)

≤ CH2
∑
K̃∈TH

(
|u|2

H1(K̃,Th)
+
∫

Γint∩K̃
σ[u]2ds

)
≤ CH2‖u‖2A ,

which concludes the proof of (5.1).
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Using the inverse inequality (3.6) for an element K ∈ TH and (3.4), we find that

|QHu|2H1(K) = |QH ū|2H1(K) ≤ C H−2 ‖QH ū‖2L2(K)

≤ CH−2
(
‖QH ū− ū‖2L2(K) + ‖ū‖2

L2(K̃)

)
≤ C

(
|u|2

H1(K̃,Th)
+
∫

Γint∩K̃
σ[u]2ds

)
.

Since QHu is continuous in Ω, ‖QHu‖A is equal to the broken H1-seminorm, and
summing over all K ∈ TH concludes the proof of inequality (5.2). �

We note that we have considered the interpolantQH instead of the L2-orthogonal
projection, in order to make our analysis valid for the case of a coarse mesh that is
not quasi-uniform; see, e.g., [4].

The following lemma contains some bounds for the B-projection P0.

Lemma 5.2. There exists C > 0 such that, for all u ∈ V h,

‖P0u‖A ≤ C ‖u‖A,
‖P0u− u‖L2(Ω) ≤ C Hγ ‖u‖A,

where γ > 1/2 is related to the regularity constant of the adjoint problem with
Dirichlet boundary conditions.

Proof. The coercivity and continuity of B, and the definition of P0, yield

‖P0u‖2A ≤ B(P0u, P0u) = B(u, P0u) ≤ C ‖u‖A‖P0u‖A ,

which gives the first inequality.
In order to obtain a bound for the error u − P0u, we consider the auxiliary

problem
L∗w = P0u− u in Ω, w = 0 on Γ ,

where L∗ is the adjoint of L. We have, for any w0 ∈ V0,

‖P0u− u‖2L2(Ω) = (P0u− u,L∗w)L2(Ω) = B(P0u− u,w)

= B(P0u− u,w − w0) ≤ C ‖P0u− u‖A‖w − w0‖A .

Since P0u − u ∈ L2(Ω), then w ∈ Hη+3/2(Ω) for an η > 0, and the Sobolev
embedding theorem implies Hη+3/2(Ω) ⊂ C(Ω). Therefore, w − w0 is continuous,
and ‖w − w0‖A is equal to the broken H1-seminorm. Standard approximation
estimates yield the existence of w0 ∈ V0 such that

‖w − w0‖H1(Ω) ≤ C Hγ ‖w‖H1+γ(Ω) ,

with γ = η + 1/2; see, e.g., [12]. Therefore,

‖P0u− u‖2L2(Ω) ≤ C Hγ ‖P0u− u‖A‖P0u− u‖L2(Ω) ,

which gives the L2-bound. �

As for the analogous algorithm in the conforming case ([2, 14]), we need to control
the lower-order and skew-symmetric terms of the bilinear form B. Lemmata 3.5,
3.6, and 5.2 set the stage for the proof of the following bounds, which can be carried
out as in [14, Lem. 16, Ch. 5.4].
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Lemma 5.3. There exists a constant C > 0, independent of h and H, such that,
for all u ∈ V h,

|C(P0u− u, P0u)| ≤ C Hγ ‖u‖2A , |D(P0u− u, P0u)| ≤ C Hγ ‖u‖2A ,
and, if σ0 ≥ c0/H,

|S(P0u− u, P0u)| ≤ C
√
H ‖u‖2A .

5.2. Local results. We first define some local seminorms that we need to control
the skew-symmetric part of B (see the proof of Lemma 5.7). For u ∈ V h, i =
1, . . . , N , we set

‖u‖2Ai := |u|2H1(Ω′i,Th) +
∑
e∈E
e⊂Ω′i

∫
e

h−1
e [u]2ds,

‖u‖2A′i := |u|2H1(Ω′′i ,Th) +
∑
e∈E
e⊂Ω′i

∫
e

h−1
e [u]2ds.

The following two lemmata are immediate consequences of the finite covering prop-
erty of the subdomains.

Lemma 5.4. Let u =
∑N
i=0 ui, with ui ∈ Vi. Then there exists a constant C > 0

such that

‖u‖2A ≤ C
N∑
i=0

‖ui‖2A.

Lemma 5.5. Let u ∈ V h. Then there exists a constant C > 0 such that
N∑
i=1

‖u‖2L2(Ω′i)
≤ C ‖u‖2L2(Ω),(5.3)

N∑
i=1

‖u‖2Ai ≤ C ‖u‖2A,(5.4)

N∑
i=1

‖u‖2A′i ≤ C ‖u‖2A.(5.5)

The Friedrichs inequality (3.3) directly yields

Lemma 5.6. There exists C > 0 such that, for all u ∈ V h and 1 ≤ i ≤ N ,

‖Piu‖L2(Ω) ≤ C H ‖Piu‖A .

We are now ready to prove the key result of this technical subsection.

Lemma 5.7. There exists a constant C > 0, independent of h and H, such that,
for all u ∈ V h,∣∣∣∣∣

N∑
i=1

C(Piu− u, Piu)

∣∣∣∣∣ ≤ C H

(
‖u‖2A +

N∑
i=1

‖Piu‖2A

)
,(5.6)

∣∣∣∣∣
N∑
i=1

D(Piu− u, Piu)

∣∣∣∣∣ ≤ C H

(
‖u‖2A +

N∑
i=1

‖Piu‖2A

)
,(5.7)
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and, if σ0 ≥ c0/H,∣∣∣∣∣
N∑
i=1

S(Piu− u, Piu)

∣∣∣∣∣ ≤ C√H
(
‖u‖2A +

N∑
i=1

‖Piu‖2A

)
.(5.8)

Proof. We start with (5.6). We can write

(5.9)

∣∣∣∣∣
N∑
i=1

C(Piu− u, Piu)

∣∣∣∣∣ ≤ C
N∑
i=1

∫
Ω′i

|Piu− u| |Piu|dx

≤ C

N∑
i=1

‖Piu− u‖L2(Ω′i)
‖Piu‖L2(Ω′i)

≤ C

(
N∑
i=1

‖Piu− u‖2L2(Ω′i)

)1/2( N∑
i=1

‖Piu‖2L2(Ω′i)

)1/2

.

The first term on the right-hand side can be bounded by using the triangle inequal-
ity, (5.3), and the Friedrichs inequality (3.3) with D = Ω. We find that

(5.10)

(
N∑
i=1

‖Piu− u‖2L2(Ω′i)

)1/2

≤
√

2

(
N∑
i=1

‖Piu‖2L2(Ω′i)

)1/2

+
√

2

(
N∑
i=1

‖u‖2L2(Ω′i)

)1/2

≤
√

2

(
N∑
i=1

‖Piu‖2L2(Ω′i)

)1/2

+ C‖u‖L2(Ω)

≤
√

2

(
N∑
i=1

‖Piu‖2L2(Ω′i)

)1/2

+ C‖u‖A .

Combining (5.9) and (5.10), and using Lemma 5.6, we obtain∣∣∣∣∣
N∑
i=1

C(Piu− u, Piu)

∣∣∣∣∣
≤ C

( N∑
i=1

‖Piu‖2L2(Ω′i)

)1/2

+ ‖u‖A

 (
N∑
i=1

‖Piu‖2L2(Ω′i)

)1/2

≤ C

H ( N∑
i=1

‖Piu‖2A

)1/2

+ ‖u‖A

 H

(
N∑
i=1

‖Piu‖2A

)1/2

≤ CH

(
N∑
i=1

‖Piu‖2A + ‖u‖2A

)
.

In order to prove (5.6), we first note that

|D(Piu− u, Piu)| ≤ C‖Piu− u‖Ai‖Piu‖L2(Ω′i)
, i = 1, . . . , N.



1230 CAROLINE LASSER AND ANDREA TOSELLI

We can then write∣∣∣∣∣
N∑
i=1

D(Piu− u, Piu)

∣∣∣∣∣ ≤ C
N∑
i=1

‖Piu− u‖Ai‖Piu‖L2(Ω′i)

≤ C

(
N∑
i=1

‖Piu− u‖2Ai

)1/2( N∑
i=1

‖Piu‖2L2(Ω′i)

)1/2

≤ C

( N∑
i=1

‖Piu‖2Ai

)1/2

+

(
N∑
i=1

‖u‖2Ai

)1/2
( N∑

i=1

‖Piu‖2L2(Ω′i)

)1/2

.

Using (5.4), Lemma 5.6, and the fact that

‖Piu‖Ai = ‖Piu‖A, i = 1, . . . , N,

we obtain (5.7).
In order to prove (5.8), we first need a bound for each term S(Piu − u, Piu).

Proceeding as for Lemma 3.6, we find

(5.11) |S(Piu− u, Piu)| ≤ C
√
H‖Piu− u‖A′i‖Piu‖Ai , i = 1, . . . , N.

We can then write∣∣∣∣∣
N∑
i=1

S(Piu− u, Piu)

∣∣∣∣∣ ≤ C√H
N∑
i=1

‖Piu− u‖A′i‖Piu‖Ai

≤ C
√
H

(
N∑
i=1

‖Piu− u‖2A′i

)1/2( N∑
i=1

‖Piu‖2Ai

)1/2

.

Using (5.5) and the fact that

‖Piu‖Ai = ‖Piu‖A′i = ‖Piu‖A, i = 1, . . . , N,

we obtain (5.8). �

5.3. A stable decomposition. The following lemma ensures that, for every func-
tion in the discontinuous space V h, a stable decomposition can be found for the
family of subspaces {Vi}.

Lemma 5.8 (Decomposition). There exists a constant C0 > 0, independent of h
and H, such that for all u ∈ V h there exists {ui ∈ Vi}0≤i≤N with u =

∑N
i=0 ui and

N∑
i=0

‖ui‖2A ≤ C2
0 ‖u‖2A .

Proof. We denote by C(Ω, Th) = {u ∈ L2(Ω) : u|κ̄ ∈ C(κ̄) , κ ∈ Th} the space of
piecewise continuous functions. We define the operator

Ih : C(Ω, Th)→ V h ,

where for each element κ ∈ Th, the restriction Ih|κ̄ to κ̄ is equal to the nodal
interpolation operator onto Ppκ(κ).

For u ∈ V h, we define{
u0 = QHu,
ui = Ih(θi(u − u0)) , 1 ≤ i ≤ N ,
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where {θi}1≤i≤N is a piecewise linear partition of unity relative to the family
{Ω′i}1≤i≤N ; see, e.g., [14]. We recall, in particular, that θi ∈ [0, 1], supp(θi) ⊂ Ω̄′i,
for 1 ≤ i ≤ N , and

∑N
i=1 θi(x) = 1 for all x ∈ Ω. Furthermore, our assumption

(4.1) on the overlap of the extended subdomains ensures that ‖∇θi‖L∞(Ω) ≤ CH−1,
where C depends on α. By construction, ui ∈ Vi for 0 ≤ i ≤ N , and u =

∑N
i=0 ui.

Let w = u − u0. The same arguments used in the proof of the decomposition
lemma for standard conforming finite elements [14, Chapter 5.3] yield, for κ ∈ Th
and 1 ≤ i ≤ N ,

|ui|2H1(κ) ≤ 2 |w|2H1(κ) + CH−2 ‖w‖2L2(κ) .

The finite covering property ensures that on summing over i we obtain

N∑
i=1

|ui|2H1(κ) ≤ C |w|2H1(κ) + CH−2 ‖w‖2L2(κ) .

We next sum over all the elements κ, and obtain

N∑
i=1

|ui|2H1(Ω,Th) ≤ C |w|2H1(Ω,Th) + CH−2 ‖w‖2L2(Ω) .

Furthermore, we have, for all 1 ≤ i ≤ N ,

‖[θiw]‖L∞(Γint) ≤ ‖[w]‖L∞(Γint) ,

where we have used the fact that θi is continuous and that ‖θi‖L∞(Ω) ≤ 1. Since
w ∈ V h, we obtain ∫

Γint

σ[ui]2ds ≤
∫

Γint

σ[w]2ds .

The finite covering of the subdomains yields

N∑
i=1

∫
Γint

σ[ui]2ds ≤ C

∫
Γint

σ[w]2ds .

Summing the H1-seminorms and jump terms, we obtain

N∑
i=1

‖ui‖2A ≤ C ‖w‖2A + CH−2 ‖w‖L2(Ω) ,

and the proof is concluded by applying Lemma 5.1. �

Remark 5.1. The proof of the previous lemma can be carried out also in the case
of zero overlap: Ω′i = Ωi. In this case the partition of unity {θi} consists of
the (discontinuous) characteristic functions of the subdomains {Ωi}. However, C2

0

depends on H/h in this case; see also [8] for a similar algorithm.

6. The convergence result

We have now completed all the preparations required to obtain a lower bound
for cP and an upper bound for CP . We remark that the following proof is similar
to those in [2], [3], and [14, Ch. 5.4].
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Theorem 6.1. There exist constants C > 0, H0 > 0, c(H0) > 0, such that, for all
u ∈ V h,

A(Pu, Pu) ≤ C A(u, u) ,

c(H0)A(u, u) ≤ A(u, Pu), H ≤ H0.

Proof. First we observe that Lemma 5.4 implies

‖Pu‖2A =

∥∥∥∥∥
N∑
i=0

Piu

∥∥∥∥∥
2

A

≤ C

N∑
i=0

‖Piu‖2A .(6.1)

Since B is coercive and continuous, we find that
N∑
i=0

‖Piu‖2A ≤
N∑
i=0

B(Piu, Piu) =
N∑
i=0

B(u, Piu) = B(u,
N∑
i=0

Piu)

≤ C ‖u‖A

∥∥∥∥∥
N∑
i=0

Piu

∥∥∥∥∥
A

≤ C ‖u‖A

(
N∑
i=0

‖Piu‖2A

) 1
2

.(6.2)

Combining (6.1) and (6.2), we obtain ‖Pu‖2A ≤ C ‖u‖2A, which proves our upper
bound.

In order to prove the lower bound, we first provide a bound for
∑N
i=0 ‖Piu‖2A.

The coercivity and continuity of B, Lemma 5.8, and the Cauchy-Schwarz inequality
yield

‖u‖2A ≤ B(u, u) =
N∑
i=0

B(u, ui) =
N∑
i=0

B(Piu, ui)

≤ C

N∑
i=0

‖Piu‖A‖ui‖A ≤ C

(
N∑
i=0

‖Piu‖2A

) 1
2

·
(

N∑
i=0

‖ui‖2A

) 1
2

≤ C

(
N∑
i=0

‖Piu‖2A

) 1
2

· C0 ‖u‖A ,

which gives

(6.3)
N∑
i=0

‖Piu‖2A ≥ C ‖u‖2A.

Using the definition of Pi and B, we have

0 = B(Piu− u, Piu)
= A(Piu− u, Piu) + C(Piu− u, Piu) +D(Piu− u, Piu) + S(Piu− u, Piu) ,

and consequently,

A(u, Pu)

=
N∑
i=0

[A(Piu, Piu) + C(Piu− u, Piu) +D(Piu− u, Piu) + S(Piu− u, Piu)] .

Using 6.3, we find that

A(u, Pu) ≥ C‖u‖2A −
∣∣∣∣∣
N∑
i=0

[C(Piu− u, Piu) +D(Piu− u, Piu) + S(Piu− u, Piu)]

∣∣∣∣∣ .
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Upper bounds for the terms in the sum can be found using Lemmata 5.3 and 5.7,
for i = 0 and i > 0, respectively. We obtain, after applying (6.3),

A(u, Pu) ≥
[
C − C1 max(Hγ ,

√
H,H)− C2 max(Hγ ,

√
H,H)

]
‖u‖2A.

The proof of the lower bound is completed by choosing H sufficiently small. �

Remark 6.1. Our analysis is valid for FE spaces of arbitrary polynomial degree
on each element, but the constants C, H0, and c in Theorem 6.1 depend on p in
general.

7. Numerical results

We present some numerical results to illustrate the performance of our overlap-
ping Schwarz algorithm for piecewise linear finite elements in two dimensions. We
have tested the two-level preconditioner introduced in the previous sections, as well
as the one-level preconditioner built on the same partitions, and we are interested
in the performance of the two methods when varying h, H , and the overlap. We
consider problem (1.1) in Ω = (0, 1)2 with weakly imposed Dirichlet boundary con-
ditions; see, e.g., [9]. Our test cases are a Poisson problem, an advection-diffusion
equation with constant coefficients, and an advection-diffusion equation with a ro-
tating flow field.

We use a two-level subdivision of Ω, consisting of a fine triangulation Th, obtained
by dividing Ω into h−2 squares that are then cut into two triangles, and a coarse
triangulation consisting of H−2 squares {Ωi}, which are possibly extended in order
to form a partition {Ω̃i} by adding q ∈ {0, 1, 2, . . .} layers of h-level triangles in all
directions. We set Ω′i = Ω̃i ∩ Ω. The overlap is δ = qh, δ ≥ 0.

Though our theory requires H to be sufficiently small and the penalization pa-
rameter σ0 to be of order H−1, our experiments show that in practice these re-
strictions are not required. We have chosen σ0 = 1 and solved the coarse and local
problems exactly by using Gaussian elimination.

We remark that all our theoretical estimates employ the A-induced scalar prod-
uct, but that our GMRES implementation employs the standard Euclidean product.
Our theoretical results are still valid in this case:

The inverse estimates (3.5) and (3.6) yield positive constants d0 and d1, inde-
pendent of h, such that

d0h
d‖x‖22 ≤ ‖x‖2A ≤ d1h

d−2‖x‖22, x ∈ Rn ;

see for example [10, Sect. 7.7]. Therefore, the use of the Euclidean norm increases
the iteration counts only by an additive term of order log10(h), which is hard to
observe in our computational experiments; see also [11, Sect. 5].

In our experiments we stop GMRES as soon as ‖ri‖2 ≤ 10−6‖r0‖2 or after 100
iterations. Our numerical results have been obtained with Matlab 5.3.

7.1. Poisson equation. We first consider the Poisson equation with inhomoge-
neous Dirichlet conditions:

−∆u = xey in Ω , u = −xey on Γ .

and partitions into N ×N squares (H = 1/N), with N = 2, 4, 8, 16, 32.
Table 7.1 shows the iteration counts for the one- and two-level algorithms, as

functions of h, H , and the inverse of the relative overlap. We have also considered
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Table 7.1. Poisson’s equation: Iteration counts for GMRES with
the one-level and two-level preconditioners, respectively, versus h,
H , and the relative overlap.

H/δ

h−1 H−1 ∞ 16 8 4 2
16 2 17 - 16 14 12
16 4 24 - - 22 17
32 2 22 21 17 14 12
32 4 33 - 30 23 18
32 8 44 - - 38 29
64 2 30 27 22 17 14
64 4 45 40 32 24 18
64 8 60 - 53 41 30
64 16 84 - - 73 54
128 4 60 54 44 33 25
128 8 82 72 57 43 31
128 16 100 - 100 78 57
128 32 100 - - 100 100

H/δ

h−1 H−1 ∞ 16 8 4 2
16 2 13 - 11 11 11
16 4 13 - - 13 14
32 2 16 13 12 11 10
32 4 15 - 13 12 13
32 8 13 - - 13 15
64 2 21 16 14 12 11
64 4 19 15 14 13 13
64 8 16 - 13 13 14
64 16 13 - - 13 15
128 4 25 18 16 14 13
128 8 35 15 14 13 14
128 16 15 - 13 13 15
128 32 12 - - 13 15

the case of zero overlap, denoted by H/δ =∞. We note that both methods appear
to be rather insensitive to the size of the original problem when H is fixed, but that,
as expected, the iterations for the one-level preconditioner (table on the left-hand
side) grow with the number of subdomains. The two-level algorithm (table on the
right-hand side), on the other hand, appears to be scalable: the iteration numbers
appear to depend only on the relative overlap δ/H and decrease when the relative
overlap increases. Since our convergence bound for the two-level preconditioner
is not explicit in the overlap, we can only give the heuristic explanation that the
subproblems capture more and more of the entire problem when the overlap is
increased, and thus convergence is improved.

Finally, we remark that the restrictions that H be sufficiently small and that
σ0 > C/H are not required in practice for all problem types we have consid-
ered. Again, we can only offer a heuristic explanation: the convergence bounds we
proved are based on the known bounds for GMRES, and are therefore not sharp.
The restriction H < H0 was already observed not to be necessary in practice for
conforming approximations of nonsymmetric, positive-definite, second order prob-
lems; see, e.g., [2, 14]. We also emphasize that the accuracy of the DG solution
deteriorates if σ0 is chosen too large, and it is thus essential that the theoretically
derived restriction σ0 > C/H does not apply in practice.

The case of zero overlap requires a special discussion. Our results show that
the numbers of iterations are slightly higher than those obtained in the case of
δ > 0 for both algorithms, except for h = 1/128 and H = 1/8, where the two-level
preconditioner without overlap has iteration counts considerably higher than with
overlap. From our numerical results, we are unable to deduce whether the two-
level method without overlap is nonoptimal with the number of iterations growing,
e.g., as a power of H/h. We refer to the following tables for a clearer behavior of
the convergence rate in the nonoverlapping case, and to [8] for a method with the
same local solvers but a different coarse space, which exhibits a rate of convergence
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that appears to grow linearly with H/h. However, we believe that, due to the
minimal communication between the subdomains and the relatively small iteration
counts that we have obtained, the two-level algorithm with zero overlap might be
competitive in practice.

7.2. Advection-diffusion problem with constant coefficients. We next con-
sider the advection-diffusion equation

−∆u+ b · ∇u = f in Ω , u = 0 on Γ ,

with constant coefficients and zero Dirichlet boundary conditions. We consider the
two cases

b ∈ {−(kπ, kπ) : k = 3, 300} .
The right-hand side f is always chosen such that the exact solution is given by
u = xexy sin(πx) sin(πy).

Table 7.2 presents the results for k = 3, for the one- and two-level algorithms,
respectively. As for the Poisson problem with nonvanishing overlap, the iteration
counts decrease when the overlap increases, and are independent of the number of
subdomains for the two-level method. The use of a coarse solver clearly improves
the convergence properties. Here, for moderate convection, the behavior for zero
overlap appears to be more regular. As expected, the iteration counts increase when
the number of subdomains increases for the one-level algorithm. On the other hand,
if a coarse solver is employed, the number of iterations appears to decrease with H
only, independently of h.

Our second set of results is for k = 300 and is shown in Table 7.3. The iteration
counts obtained with the two-level method are significantly higher than in the
examples above, which is due to the strong convection (the Reynolds number is
approximately 1000). The one-level method performs fairly well, but our coarse
space slows down the convergence considerably. Such behavior is partly due to
the fact that our coarse solver comes from a nonstabilized approximation of an
advection-diffusion problem on a continuous FE space. We believe that a different
type of coarse solver needs to be devised for this class of convection-dominated
problems. Note that the iterations for the one-level method appear to depend only

Table 7.2. Case of b = −(3π, 3π): iteration counts for GMRES
with the one-level and two-level preconditioners, respectively, ver-
sus h, H , and the relative overlap.

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 25 - - 15 17
32 4 33 - 21 16 17
32 8 45 - - 25 22
64 4 49 28 22 16 17
64 8 59 - 36 27 24
64 16 84 - - 47 39
128 4 43 28 22 16 17
128 8 59 36 27 24 24
128 16 84 - 47 39 39

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 15 - - 14 16
32 4 16 - 15 14 15
32 8 12 - - 14 16
64 4 20 16 16 15 15
64 8 14 - 13 13 16
64 16 10 - - 12 16
128 4 20 16 16 15 15
128 8 14 13 13 16 16
128 16 10 - 12 16 16
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Table 7.3. Case of b = −(300π, 300π): iteration counts for GM-
RES with the one- and two-level preconditioners, versus h, H , and
the relative overlap.

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 13 - - 12 16
32 4 14 - 13 13 16
32 8 22 - - 16 21
64 4 15 13 13 13 16
64 8 23 - 21 17 20
64 16 38 - - 26 27
128 4 15 13 13 14 16
128 8 23 21 17 20 20
128 16 38 - 26 27 27

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 32 - - 21 19
32 4 32 - 28 21 18
32 8 74 - - 32 23
64 4 32 30 27 21 18
64 8 73 - 47 32 23
64 16 100 - - 36 27
128 4 33 31 27 21 18
128 8 73 47 32 23 23
128 16 100 - 36 27 28

on H , and grow with 1/H . For both the one- and two-level methods with zero
overlap, they also seem to depend only on H and to grow with 1/H .

7.3. Advection-diffusion problem with a rotating flow field and boundary
layers. Finally, we consider an advection-diffusion equation with a rotating wind
b = 0.5 (y + 1,−x − 1), a constant c = 10−4, the right-hand side f = 0, and
discontinuous Dirichlet boundary data:

−ν∆u+ b · ∇u + cu = f, in Ω ,

u = 1 if (x, y) ∈ ]0.5, 1]× {−1, 1} ∪ {1} × [0, 1] ,
u = 0 elsewhere on Γ .

We note that for small values of ν, the solution exhibits internal layers and boundary
layers along the four sides of Ω.

Table 7.4. Rotating flow field, case of ν = 1: iteration counts for
GMRES with the one- and two-level preconditioners, versus h, H ,
and the relative overlap.

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 22 - - 14 16
32 4 30 - 19 15 17
32 8 39 - - 23 22
64 4 40 26 20 16 18
64 8 53 - 33 25 24
64 16 72 - - 42 37
128 4 54 28 21 16 18
128 8 53 33 25 24 26
128 16 72 - 42 37 42

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 13 - - 13 14
32 4 15 - 13 13 13
32 8 14 - - 13 15
64 4 19 15 14 13 14
64 8 16 - 14 13 14
64 16 13 - - 13 15
128 4 24 18 14 13 14
128 8 16 14 13 13 14
128 16 13 - 13 15 14
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Table 7.5. Rotating flow field, case of ν = 0.01: iteration counts
for GMRES with the one- and two-level preconditioners, versus h,
H , and the relative overlap.

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 13 - - 10 13
32 4 16 - 11 10 14
32 8 23 - - 15 17
64 4 19 13 10 10 14
64 8 28 - 18 15 18
64 16 43 - - 25 25
128 4 25 13 11 10 14
128 8 28 18 15 18 19
128 16 43 - 25 25 27

H/δ

h−1 H−1 ∞ 16 8 4 2
16 4 27 - - 19 16
32 4 28 - 22 19 16
32 8 33 - - 20 18
64 4 31 26 23 19 17
64 8 36 - 24 20 17
64 16 23 - - 17 19
128 4 35 26 23 19 17
128 8 36 24 20 17 17
128 16 23 - 17 19 18

Table 7.4 shows the results for the two methods for a case of small Reynolds
number (ν = 1). The remarks made for the example with moderate convection
(Table 7.2) apply in this case as well.

We then consider a convection-dominated problem. Table 7.5 shows the results
for a much smaller diffusion coefficient (ν = 0.01). As for the the convection-
dominated example with constant flow, the results for the one-level method are
better than those with a coarse space, even though, due to the smaller Reynolds
number (100 compared to 1000), the difference is not as large as in Table 7.3. On
the other hand, similarly to the example with moderate constant flow, the iteration
counts for the two-level algorithm decrease when the overlap increases and seem
to be independent of the number of subdomains. For the case of zero overlap, the
one-level algorithm shows increasing iteration counts when H decreases, while for
the two-level algorithm the iteration counts do not seem to follow a regular pattern.

7.4. Concluding remarks for the numerical results. The numerical experi-
ments confirm our convergence analysis and suggest that the restrictions H < H0

and σ0 > c0/H are not needed in practice. For low Reynolds numbers the two-level
algorithm with zero overlap performs similarly to the analyzed overlapping method,
but with larger iteration counts. A comparison of overlapping one- and two-level
methods in the case of high Reynolds numbers reveals the need for a coarse space
which is better adjusted to the convection-dominated regime.
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