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ANALYSIS OF TRIANGLE QUALITY MEASURES

PHILIPPE P. PÉBAY AND TIMOTHY J. BAKER

Abstract. Several of the more commonly used triangle quality measures are
analyzed and compared. Proofs are provided to verify that they do exhibit the
expected extremal properties. The asymptotic behavior of these measures is
investigated and a number of useful results are derived. It is shown that some
of the quality measures are equivalent, in the sense of displaying the same
extremal and asymptotic behavior, and that it is therefore possible to achieve
a concise classification of triangle quality measures.

Introduction

Assessment of mesh quality is an important requirement in both the selection of a
finite element mesh and the evaluation of meshes that have undergone adaptation [2,
5]. Several measures of element quality have been proposed [1, 8, 11] based on the
dimensionless ratios of various geometric parameters. Apart from the work of [11],
there appears to be almost no discussion in the literature on the relative merits
of these particular quality measures. More recently, alternative quality measures
have been suggested [3, 7, 9, 10]. These alternative measures are derived from the
singular values of a matrix whose columns are formed by the edge vectors of the
mesh element.

An element is said to be degenerate if its volume is zero. Let Q be a quality
measure defined for any nondegenerate simplex t and let the range of Q be the real
interval [1,+∞[. It is assumed that Q satisfies the following extremal properties:

(i) Q attains its minimum value of 1 if and only if t is a regular simplex;
(ii) Q has no other extrema.

In many cases, these extremal properties have been assumed, or stated, without
proof. Although the extremal behavior of these quality measures might appear
obvious, we believe that this behavior should be established rigorously and precise
bounds should be found.

In this paper we examine the triangular case since properties of the triangle are
particularly amenable to analysis. We consider several of the more commonly used
triangle quality measures, provide proofs of their extremal properties, and examine
their asymptotic behavior. Our goal is to provide a number of useful results on
triangle quality measures that may lead to a better assessment of both planar
triangulations and triangulated surfaces.
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1. Preliminaries

In this paper, we consider a nondegenerate triangle t = ABC with area A,
half-perimeter p, edges of lengths a = BC, b = AC and c = AB, and denote the
angle at vertex A (resp. B, C) as α (resp. β, γ) and the radius of the inscribed
(resp. circumscribed) circle of t as r (resp. R). In addition, the vertices A, B and
C are defined respectively by the position vectors v0, v1 and v2 in an arbitrary
orthonormal affine reference frame. For simplicity, we choose a frame of reference
parallel to the plane of the triangle t, in which case the coordinates of the position
vectors v0, v1 and v2 are denoted respectively as (x0, y0), (x1, y1) and (x2, y2).

We shall also use the following standard norm-like notations:

|t|0 = min(a, b, c),
|t|2 =

√
a2 + b2 + c2,

|t|∞ = max(a, b, c),
θ0 = min(α, β, γ),
θ∞ = max(α, β, γ).

We shall assume without proof a number of results from elementary geometry (see,
e.g., [6] for proofs and details). In particular, we will make use of the well-known
relations

(1.1) 2R =
abc

2A =
a

sinα
=

b

sinβ
=

c

sinγ
,

where A is given by

(1.2) A = rp,

as well as by Heron’s formula

(1.3) A =
√
p(p− a)(p− b)(p− c).

We also recall two important results, valid for any n ∈ N∗: the arithmetic-geometric
inequality

(1.4)
(
∀(u1, ..., un) ∈ Rn+

)
n

√√√√k=n∏
k=1

uk ≤
1
n

k=n∑
k=1

uk;

and the Cauchy-Schwarz inequality

(1.5)
(
∀(u1, ..., un) ∈ Rn+

) k=n∑
k=1

uk ≤

√√√√n

k=n∑
k=1

u2
k.

We shall use the terms needle and flattened triangle to refer to two types of nearly
degenerate triangles. More precisely, these are defined as follows.

Definition 1.1. A needle is a nondegenerate triangle that has one and only one
angle close to 0.

Definition 1.2. A flattened triangle is a nondegenerate triangle that has one angle
close to π.
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Figure 1. Gray: Ω, definition set of θ0 and θ∞; the thin edge
with its endpoints is excluded.

2. Extremal angles

One of the most commonly accepted means of measuring triangle quality is to
examine θ0 or θ∞. By definition of these angles, one always has

(2.1) 0 < θ0 ≤
π

3
≤ θ∞.

Moreover, the implicit condition

(2.2) θ0 ≤ π − θ0 − θ∞ ≤ θ∞
is equivalent to

(2.3) θ∞ ≤ π − 2θ0 , 2θ∞ ≥ π − θ0.

For the sake of clarity, (2.1) and (2.3) are summarized by denoting as Ω the corre-
sponding definition set of (θ0, θ∞), shown in Figure 1. The bold edges correspond
to the two different kinds of isosceles triangle: acute on the lower one, obtuse on
the upper one, which meet when θ0 = θ∞ = π

3 (i.e., the equilateral case).
In other words, (2.3) gives the bounds for the maximal angle depending on the

minimal one

(2.4)
(
∀θ0 ∈ ]0 , π3 ]

)
π
2 −

θ0
2 ≤ θ∞ ≤ π − 2θ0,

while (2.1) and (2.2) conversely provide(
∀θ∞ ∈ [π3 ,

π
2 [
)

π − 2θ∞ ≤ θ0 ≤ π
2 −

θ∞
2 ,(2.5) (

∀θ∞ ∈ [π2 , π[
)

0 < θ0 ≤ π
2 −

θ∞
2 .(2.6)

Two useful inequalities arise directly: from (2.4),

(2.7) (∀(θ0, θ∞) ∈ Ω) π
2 ≤

θ0
2 + θ∞ ≤ π − 3θ0

2 ;

and from (2.5) and (2.6),

(2.8) (∀(θ0, θ∞) ∈ Ω) 0 < max
(
θ∞
2 , π − 3θ∞

2

)
≤ θ∞

2 + θ0 ≤ π
2 .
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These inequalities may be rewritten strictly over the interior
◦
Ω of Ω as

(2.9)
(
∀(θ0, θ∞) ∈

◦
Ω
)

π
2 <

θ0
2 + θ∞ < π − 3θ0

2

and

(2.10)
(
∀(θ0, θ∞) ∈

◦
Ω
)

0 < max
(
θ∞
2 , π − 3θ∞

2

)
< θ∞

2 + θ0 <
π
2 .

Before examining how the more commonly used nondimensional quality measures
are related to these extremal angles, it is useful to prove the following result. It
seems obvious but we have not observed it in the literature.

Lemma 2.1. The three angles of a nondegenerate triangle are sorted in the same
order as the lengths of their respective opposite edges.

Proof. We can assume, without loss of generality, that a ≤ b ≤ c. Hence, it can
be directly deduced from (1.1) that sinα ≤ sinβ ≤ sin γ. Now, both α and β are
necessarily smaller than π

2 and the sine function is monotonically increasing over
]0, π2 ], thus α ≤ β. Concerning γ, two cases may occur: if it is acute, then the same
argument can be used; if it is obtuse or right, then clearly β ≤ γ. Therefore, in
either case, we have α ≤ β ≤ γ. �

Remark 2.2. In other words, the length of the edge opposite angle θ0 (resp. θ∞) is
|t|0 (resp. |t|∞).

3. Radius-ratio

A convenient, nondimensional and thus homogeneous, quality measure consists
in comparing r and R, resulting in the radius-ratio, defined as

(3.1) ρ =
R

r
.

Combining (1.1) with (1.2) leads to

(3.2) abc = 4Rrp,

and then a further application of (1.1) gives the following expressions for ρ in terms
of the angles of a triangle:

(3.3) ρ =
sinα+ sinβ + sin γ

2 sinα sinβ sin γ
,

whence, since α+ β + γ = π,

(3.4) ρ =
sinα+ sinβ + sin(α + β)

2 sinα sinβ sin(α+ β)
,

or, using the extremal angles,

(3.5) ρ =
sin θ0 + sin θ∞ + sin(θ0 + θ∞)

2 sin θ0 sin θ∞ sin(θ0 + θ∞)
.

If we write p = tan α
2 and q = tan β

2 in (3.4), then

(3.6) ρ =
(1 + p2)(1 + q2)

4pq(1− pq) .
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3.1. Extremum. The mapping x 7→ tan x
2 is a C∞ function, bijective from ]0, π[

onto R∗+. Thus both parametrizations of ρ are C∞-equivalent and, hence, differential
properties are bijectively transported from one to the other. Now, it is easy to prove
that the condition

(3.7) (α, β) ∈ ]0, π[2, α+ β < π,

is equivalent to

(3.8) (p, q) ∈ R∗+
2, pq < 1.

Therefore, let us consider the mapping

(3.9)
f : D −→ R∗+,

(p, q) 7−→ (1+p2)(1+q2)
pq(1−pq) ,

where D is the domain1 defined by condition (3.8). Clearly, f is C∞, when D is
open; hence, any extremum of f is attained at a stationary point. We have

∂f

∂p
(p, q) =

(1 + q2)(p2 + 2qp− 1)
qp2(1− pq)2

,(3.10)

∂f

∂q
(p, q) =

(1 + p2)(q2 + 2pq − 1)
pq2(1− pq)2

,(3.11)

and (p, q) is a stationary point if and only if

(3.12) p2 + 2qp− 1 = q2 + 2pq − 1 = 0.

Hence, this implies p = q and, since we know that the variables substitution is
bijective, α = β. Now, assuming this necessary condition is satisfied, (3.12) becomes
3p2 = 1, so that p = q = 1√

3
since these values must be positive. In other words,

the only critical point of ρ is met when α = β = π
3 (i.e., for an equilateral triangle).

In order to check whether this case corresponds, as expected, to a minimum, one
has to make sure that the hessian matrix is positive definite. The second-order
derivatives are given by

∂2f

∂p2
(p, q) = 2

(1 + q2)(p3q + 3p2q2 − 3pq + 1)
qp3(1 − pq)3

,(3.13)

∂2f

∂q2
(p, q) = 2

(1 + p2)(q3p+ 3p2q2 − 3pq + 1)
pq3(1− pq)3

,(3.14)

∂2f

∂p∂q
(p, q) =

pq + 5
(1− pq)3

+
(p2 + q2 − 1)(3pq − 1)

p2q2(1− pq)3
,(3.15)

which gives, when p = q = 1√
3
,

∂2f

∂p2

(
1√
3
, 1√

3

)
=
∂2f

∂q2

(
1√
3
, 1√

3

)
= 36,(3.16)

∂2f

∂p∂q

(
1√
3
, 1√

3

)
= 18.(3.17)

Thus the hessian determinant is equal to 362− 182 > 0 and the first diagonal entry
is 36 > 0. Hence, the hessian matrix is locally positive definite around the critical
point, which therefore corresponds to a strict minimum of f . It follows from the

1i.e., an open connected set.
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C∞-equivalent parametrizations, that ρ is minimal only for an equilateral triangle,
since arctan 1√

3
= π

3 . In this case, the radius-ratio is

(3.18)
1
4
f
(

1√
3
, 1√

3

)
=
(

4
3

)2

× 32

2
= 2.

3.2. Asymptotic behavior. An obvious link between the radius-ratio and the
extremal angles can be deduced from (3.5):

(3.19) ρ =
sin θ0 + sin θ∞ + sin (θ0 + θ∞)
2 sin θ0 sin θ∞ sin (θ0 + θ∞)

.

It is therefore interesting to examine how sensitive the radius-ratio is to the in-
formation provided by an extremal angle measurement. In particular, it is well
known (cf. [12]) that among all triangulations of the convex hull of a given set of
points in R2, any Delaunay triangulation maximizes the minimal vertex angle; this
property is generally considered to be a guarantee for the quality of the elements
obtained through a Delaunay based algorithm, while (3.19) shows immediately that
this alternative view of triangle quality is not bijectively linked to the radius-ratio.

Figure 2 shows parts of the surface defined by the dependence of ρ
2 on two

angles of the triangle. The radius-ratio is normalized for convenience, since most
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Figure 2. Surface z = ρ
2 as a function of two angles in radians:

(i) z < 1.5; (ii) z < 2; (iii) z < 3; (iv) z < 10.
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Figure 3. Isovalues of ρ
2 as a function of two angles in radians

from the center to the exterior: 1 (spot), 1.5 (dashed), 2, 3 (dot-
ted), 10.

users tend to prefer that the quality of an equilateral triangle is 1; Figure 3 shows
the corresponding isovalues.

Figures 2 and 3 clearly indicate a weak dependence between ρ and the extremal
angles. Nevertheless, it is possible to derive some results, providing bounds for the
radius-ratio measure for given extremal angular values. More precisely, (3.5) gives

∂ρ

∂θ0
(θ0, θ∞) =

− cos
(
θ∞
2 + θ0

)
8 sin2 θ0

2 sin θ∞
2 cos θ0+θ∞

2

,(3.20)

∂ρ

∂θ∞
(θ0, θ∞) =

− cos
(
θ0
2 + θ∞

)
8 sin θ0

2 sin2 θ∞
2 cos θ0+θ∞

2

.(3.21)

It is now straightforward to study the variations of ρ when the minimal angle is
fixed: for any given θ0 in ]0, π3 ], it follows from (3.21) and (2.9) that both the
denominator and the numerator of ∂ρ

∂θ∞
are strictly positive for θ∞ in the interval]

π
2 −

θ0
2 , π − 2θ0

[
, since 0 < θ0 ≤ π

3 . Combining with (2.4), it then follows that
θ∞ 7→ ρ(θ0, θ∞) is a continuous strictly monotonically increasing function over the
closed interval

[
π
2 −

θ0
2 , π − 2θ0

]
and therefore attains a unique minimum (resp.

maximum) at the lower (resp. upper) bound of this interval. In other words,

Proposition 3.1. (
∀θ0 ∈ ]0, π3 ]

)
inf
θ∞

ρ =
1 + sin θ0

2

sin θ0 cos θ0
2

,(3.22)

(
∀θ0 ∈ ]0, π3 ]

)
sup
θ∞

ρ =
1 + cos θ0

sin θ0 sin 2θ0
.(3.23)

Example 3.2. Let the minimal angle be equal to 10◦ (resp. 20◦), then the nor-
malized radius-ratio ranges from circa 3.14 to 16.7 (resp. 1.74 to 4.41). Hence,
even for “reasonable” values of θ0, it is clear that the radius-ratio is only weakly
dependent on the minimal angle.
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Figure 4. Graphs at two different scales providing the range of
ρ
2 as a function of the minimal angle in radians.

Conversely, if the maximal angle is fixed, the sign of ∂ρ
∂θ0

is, according to (3.21)
and (2.10), strictly negative. Hence, it follows from (2.5) and (2.6) that for any
given θ∞ in [π3 , π[ the mapping θ0 7→ ρ(θ0, θ∞) is strictly monotonically decreasing
over

]
max(0, π − 2θ∞), π2 −

θ∞
2

]
. Here, the two subcases, depending on the lower

bound of the interval, have to be discussed. First, if π
3 ≤ θ∞ < π

2 , from the
definition interval of θ0 and the fact that θ0 7→ ρ(θ0, θ∞) is continuous, it follows
that a unique minimum (resp. maximum) is attained at the upper (resp. lower)
bound of this interval. Second, if π2 ≤ θ∞ < π, then the mapping remains bijective,
but from

]
0, π2 −

θ∞
2

]
to [1,+∞[, since

(3.24) lim
θ0→0+

sin θ0 + sin θ∞ + sin(θ0 + θ∞)
2 sin θ0 sin θ∞ sin(θ0 + θ∞)

= +∞.

Hence, ρ no longer has an upper bound. These results can be summarized as follows.

Proposition 3.3. (
∀θ∞ ∈ [π3 , π[

)
inf
θ0
ρ =

1 + sin θ∞
2

sin θ∞ cos θ∞2
,(3.25)

(
∀θ∞ ∈ [π3 ,

π
2 [
)

sup
θ0

ρ =
1 + cos θ∞

sin θ∞ sin 2θ∞
.(3.26)

Propositions 3.1 and 3.3 are illustrated in Figures 3 and 4.
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Figure 5. Graphs at two different scales providing the range of
ρ
2 as a function of the maximal angle in radians; for θ∞ > π

2 , the
upper bound is not defined.
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Example 3.4. Let the maximal angle be set to 120◦, which is a commonly accepted
value, then the normalized radius-ratio can be as low as from circa 2.15 which is
generally considered to be acceptable, but has no upper bound.

4. Edge ratio

Another rather intuitive approach is to compare the extremal edges of the tri-
angle by means of what we call the edge ratio, defined as

(4.1) τ =
|t|∞
|t|0

or, according to Lemma 2.1,

(4.2) τ =
sin θ∞
sin θ0

.

4.1. Extremum. It is clear that τ is a nondimensional measure, as ρ is. Moreover,
it is straightforward to see that τ ≥ 1, whereas the equality occurs if and only if the
triangle is equilateral. Hence, τ shares the essential property of ρ, that its minimal
value is attained for, and only for, an equilateral triangle.

4.2. Asymptotic behavior. The first-order derivatives of τ as expressed in (4.2)
are

∂τ

∂θ0
(θ0, θ∞) =

cos θ0 sin θ∞
− sin2 θ0

,(4.3)

∂τ

∂θ∞
(θ0, θ∞) =

cos θ∞
sin θ0

.(4.4)

Since 0 < θ0 ≤ π
3 , ∂τ

∂θ0
never vanishes and thus τ has no stationary value over Ω. In

particular, this implies that the tangent plane at the minimal value is not horizontal.
Therefore, the discrimination of configurations surrounding the equilateral triangle
is sharper than with, for example, the radius-ratio.

We now examine how the bounds of τ depend on the minimal angle. We note
that ∂τ

∂θ0
is strictly negative over Ω. Therefore, θ0 7→ τ(θ0, θ∞) is monotonically

decreasing for any particular value of θ∞. In addition,

(4.5)
(
∀θ∞ ∈ [π3 ,

π
2 ]
)

π − 2θ∞ ≤ θ0 ≤ π−θ∞
2

and

(4.6)
(
∀θ∞ ∈ [π2 , π[

)
0 ≤ θ0 ≤ π−θ∞

2 ,

whence the following properties can be asserted:

Proposition 4.1. (
∀θ∞ ∈ [π3 , π[

)
inf
θ0
τ = 2 sin θ∞

2 ,(4.7) (
∀θ∞ ∈ [π3 ,

π
2 [
)

sup
θ0

τ =
1

2 cos θ∞
.(4.8)

In addition, when θ∞ ≥ π
2 , τ is upper unbounded. These properties are illus-

trated in Figure 6.
The maximal angle dependency requires a more detailed discussion. In fact,

the sign of ∂τ
∂θ∞

is given by that of cos θ∞ (i.e., it is positive if and only if the
maximal angle is acute). Moreover, θ∞ has to comply with (2.3), thus π

2 belongs to
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Figure 6. Graphs at two different scales providing the range of
τ as a function of the maximal angle in radians; for θ∞ > π

2 , the
upper bound is not defined.

[π2 −
θ0
2 , π − θ0] if and only if θ0 ≤ π

4 . Therefore, θ∞ 7→ τ(θ0, θ∞) is monotonically
increasing for any particular θ0 ≥ π

4 . Taking into account the continuity of τ ,
the extrema arise immediately. When θ0 ≥ π

4 , the monotonicity is no longer true;
more precisely, θ∞ 7→ τ(θ0, θ∞) reaches a maximum, 1

sin θ0
when θ∞ = π

2 . One can
observe that this value is indeed equal to 2 cos θ0 when the minimal angle is π

4 , as
expected. Concerning the minimum, the only difficulty comes from the fact that
one, 1

2 sin
θ0
2

, is attained at π
2 −

θ0
2 and another one, 2 cos θ0, at π− 2θ0. Now, since

sin θ0 > 0,

τ
(
θ0,

π
2 −

θ0
2

)
≤ τ (θ0, π − 2θ0) ⇐⇒ cos θ0

2 ≤ sin 2θ0(4.9)

⇐⇒ cos θ0
2 ≤ cos

(
2θ0 − π

2

)
(4.10)

⇐⇒ cos
(
2θ0 − π

2

)
− cos θ0

2 ≥ 0(4.11)

⇐⇒ sin
(

5θ0−π
4

)
sin
(

3θ0−π
4

)
≤ 0.(4.12)

In addition, 0 < θ0
3 ≤

π
3 , whence

(4.13) τ
(
θ0,

π
2 −

θ0
2

)
≤ τ (θ0, π − 2θ0) ⇐⇒ sin

(
5θ0−π

4

)
≤ 0.

Given the range of the minimal angle, (4.13) is satisfied if and only if θ0 ≥ π
5 . We

can hence conclude:

Proposition 4.2. (
∀θ0 ∈ ]0 , π5 ]

)
inf
θ∞

τ = 2 cos θ0,(4.14) (
∀θ0 ∈ [π5 ,

π
3 ]
)

inf
θ∞

τ =
1

2 sin θ0
2

,(4.15)

(
∀θ0 ∈ [0 , π4 ]

)
sup
θ∞

τ =
1

sin θ0
,(4.16) (

∀θ0 ∈ [π4 ,
π
3 ]
)

sup
θ∞

τ = 2 cos θ0.(4.17)

This beautiful distribution of extrema is displayed Figure 7.
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Figure 7. Graphs at two different scales providing the range of τ
as a function of the minimal angle in radians.

5. Edge to circumradius

We consider the following two ratios:

(5.1) ω =
R

|t|∞
,

R

|t|0
.

Then (1.1) and Lemma 2.1 give

(5.2) ω =
1

2 sin θ∞
,

R

|t|0
=

1
2 sin θ0

.

The main problem with the two latter ratios lies in the fact that they take into
account only one edge, which has the consequence that the nice symmetry properties
of ρ and τ are lost. In order to avoid this problem while keeping a nondimensional
quantity, it is natural to use the perimeter or, since this quantity better fits with
classic triangle metric formulas, the half-perimeter. In fact, (1.1) gives

(5.3) ν =
R

p
=

2R
a+ b+ c

=
1

sinα+ sinβ + sinγ
,

which, in terms of the extremal angles, can be written as

(5.4) ν =
1

sin θ0 + sin θ∞ + sin(θ0 + θ∞)
.

5.1. Extremum. The mapping x 7→ 1
sin x strictly decreases (resp. increases) over

]0, π2 ] (resp. [π2 , π[); therefore, since θ0 (resp. θ∞) ranges over ]0, π3 ] (resp. [π3 , π[),
R
|t|0 (resp. ω) attains its unique minimum at equilateral (resp. right) triangles. In
addition, π2 is a stationary value.

From these considerations, it becomes clear that, except for particular applica-
tions which require right angles, ω is not a quality measurement in the usual sense
of assigning a high grade to equilateral triangles. Moreover, each of them is only
related to one extremal angle; this is problematic especially for ω, which confuses
needles with “good” right triangles.

Now, since 0 < θ0 ≤ π
3 , (5.2) makes it clear that θ0 7→ R

|t|0 is bijective; therefore,
the properties of this ratio can be directly deduced from those of the minimal angle
through

(5.5) θ0 = arcsin
|t|0
2R

.
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In particular, R
|t|0 and ρ both attain their absolute minimum for an equilateral

triangle.
Now, since the denominator in (5.4) is strictly positive, ν is minimal if and only

if

(5.6) sin θ0 + sin θ∞ + sin(θ0 + θ∞) = g(θ0, θ∞)

attains a maximum. For the same reasons as for ρ, the necessary condition for an
extremum is

(5.7)
{

cos θ0 + cos(θ0 + θ∞) = 0,
cos θ∞ + cos(θ0 + θ∞) = 0,

which implies cos θ0 = cos θ∞, thus θ0 = θ∞, since these two angles are in ]0, π[.
Moreover, they have to comply with both (2.1) and (2.3), hence θ0 = θ∞ = π

3 . In
addition, the hessian determinant at any point is

(5.8) sin θ∞ sin θ0 + (sin θ0 + sin θ∞) sin(θ0 + θ∞),

which is strictly positive, since θ0, θ∞ and θ0 + θ∞ are in ]0, π[. Lastly,

(5.9)
∂2ν

∂θ2
0

(θ0, θ∞) = − sin θ0 − sin(θ0 + θ∞) < 0,
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Figure 8. Surface z = 3
√

3
2 ν as a function of two angles in radians:

(i) z < 1.5; (ii) z < 2; (iii) z < 3; (iv) z < 10.
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which means that ν is concave over the domain. Hence, its unique stationary point
is also its unique absolute maximum; in other words, ν is minimal if and only if the
triangle is equilateral, as illustrated by Figure 8.

5.2. Asymptotic behavior. In addition, Figure 8 also clearly suggests that,
whereas ρ and ν have a similar asymptotic behavior for flattened triangles, this
is not the case for needles. More precisely, it follows from (5.7) that

(5.10)
∂ν

∂θ0
(θ0, θ∞) ≥ 0 ⇐⇒ θ0 + θ∞ ≤ π − θ0,

which is satisfied because of (2.1). Whence, using the same arguments as for ρ,

Proposition 5.1. (
∀θ∞ ∈ [π3 , π[

)
inf
θ0
ν =

1
2 cos θ∞2 + sin θ∞

,(5.11)

(
∀θ∞ ∈ [π3 ,

π
2 ]
)

sup
θ0

ν =
1

2 sin θ∞ + sin 2θ∞
,(5.12)

(
∀θ∞ ∈ [π2 , π[

)
sup
θ0

ν =
1

2 sin θ∞
= ω.(5.13)

We also observe that (5.7) implies that

(5.14)
∂ν

∂θ∞
(θ0, θ∞) ≥ 0 ⇐⇒ θ0 + θ∞ ≤ π − θ∞,

which is never true because of (2.3). Thus,

Proposition 5.2. (
∀θ0 ∈ ]0, π3 ]

)
inf
θ∞

ν =
1

2 cos θ0
2 + sin θ0

,(5.15)

(
∀θ0 ∈ ]0, π3 ]

)
sup
θ∞

ν =
1

2 sin θ0 + sin 2θ0
.(5.16)

As illustrated by Figure 9, the range of ν depending on θ∞ is extremely narrow
compared to ρ, which confirms the intuitive idea of a measurement driven by the
maximal angle, but which remains symmetric. In fact, the important point is the
supremum: it is equal to 1

2 (to 3
√

3
4 for the normalized ν, as displayed in the figures)

when θ∞ = π
2 , hence needles are considered to be good elements by ν, which makes
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Figure 9. Graphs at two different scales providing the range of
3
√

3
2 ν as a function of the maximal angle in radians.
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Figure 10. Graphs at two different scales providing the range of
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2 ν as a function of the minimal angle in radians.
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Figure 11. Surfaces z = ρ
2 (interior) and z = 3

√
3

2 ν (exterior) as
functions of two angles in radians: (i) z < 1.5; (ii) z < 2.

another difference with ρ. Moreover, and this is the essential difference with R
|t∞| ,

while these needles are considered acceptable, they are not assumed to be the best
possible configuration. These remarks are confirmed when examining Figure 10: ν
does not provide any discriminant information for small minimal angles, since they
can occur both in needles and flattened triangles. For these reasons, we tend to
consider ν to be an excellent measurement.

Finally, it is also interesting to compare the variations of ρ and ν in the neigh-
borhood of equilateral triangles. This is illustrated by Figure 11, which shows
both normalized measurements for values not bigger than 2 (i.e., for good qual-
ity elements in the sense of the corresponding measurement). It is clear that ρ
distinguishes angles much better than ν does. Hence, these two measurements
complement each other in the following way: first, ρ discriminates good triangles
(i.e., at a user-defined distance from equilateral); second, among the remaining
ones, ν is able to sort the needles.

6. Edge to inradius

Finally, we compare edge lengths with the inradius:

(6.1) ζ =
p

r
.
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It follows from (3.5) and (5.3) that

ζ =
ρ

ν
=

(sinα+ sinβ + sin γ)2

2 sinα sinβ sin γ
(6.2)

=
(sin θ0 + sin θ∞ + sin(θ0 + θ∞))2

2 sin θ0 sin θ∞ sin(θ0 + θ∞)
(6.3)

Because it is often considered to be the standard quality measurement for finite
element error estimates, we also say a word about

(6.4) ι =
|t|∞
r
,

often referred to as the aspect ratio.2 First, as for ω, the symmetry properties
vanish; this affects computational efficiency, since it implies that two tests must
be performed in order to decide which is the largest angle or the longest edge.
Second, (3.19) and (5.2) lead to

(6.5) ι =
sin θ0 + sin θ∞ + sin (θ0 + θ∞)

sin θ0 sin (θ0 + θ∞)
,

which can be rewritten in a more convenient way just by replacing sin θ∞ by
sin(θ0 + θ∞ − θ0), as

(6.6) ι(θ0, θ∞) = tan
θ0 + θ∞

2
+ cot

θ0

2
.

6.1. Extremum. It is not necessarily useful to begin a full study of ζ, since what
we already know about ρ and ν allows us to directly summarize its main properties
in Table 1.

For good quality triangles, ρ, ν and ζ give equivalent results. More precisely,
combining (1.3) and (1.2) gives

(6.7) ζ =

√
p3

(p− a)(p− b)(p− c) ,

whence ζ is minimal when (p−a)(p−b)(p−c)
p3 is maximal. This expression is, of course,

a function of only the three variables a, b and c, which can be expressed as

(6.8) h(a, b, c) =
(b + c− a)(a+ b− c)(a+ c− b)

(a+ b + c)3
,

Table 1. Qualitative values of various measurements for the three
triangle categories.

good needle flattened
1
2ρ ∼ 1 � 1 � 1

3
√

3
2 ν ∼ 1 ∼ 3

√
3

4 � 1
1

3
√

3
ζ ∼ 1 � 1 ?

2However, since there is no uniform nomenclature in this field, we do not use this term in order
to avoid confusion and instead simply refer to it as ι.
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and it is clear that h(1, ba ,
c
a ) = h(a, b, c) for any a ∈ R∗+. This means that h

only depends on two variables, given by the ratios of two edge lengths to the third
one. In other words, h is invariant through homotopy, as expected, since ζ is
nondimensional. We therefore study the variations of

(6.9)
h̃ : R∗+

2 −→ R,

(x, y) 7−→ (x+y−1)(x+1−y)(y+1−x)
(x+y+1)3 .

The first-order derivatives are given by

∂h̃

∂x
(x, y) =

4(1− y − y2 + y3 + 2yx− (1 + y)x2)
(1 + x+ y)4

,(6.10)

∂h̃

∂y
(x, y) =

4(1− x− x2 + x3 + 2yx− (1 + x)y2)
(1 + x+ y)4

,(6.11)

whence the stationary point condition implies that (x − y)((x + y)2 − 1) = 0 (i.e.,
x = y or x = 1 − y). If x = y, then x = y = 1, while assuming x = 1 − y in
∂h̃
∂x = 0 implies that y = 0, which is impossible. Furthermore, the calculation of the
hessian determinant at (1, 1) returns a positive number, while ∂2h̃

∂x2 < 0. Hence, for
the same reasons as previously, since R∗+

2 is a domain, ζ reaches its only extremum,
which is a minimum, for equilateral triangles.

For the ratio ι, the first-order derivatives are given by

∂ι

∂θ0
(θ0, θ∞) =

− cos θ∞2 cos 2θ0+θ∞
2

2 sin2 θ0
2 cos2 θ0+θ∞

2

,(6.12)

∂ι

∂θ∞
(θ0, θ∞) =

1
2 cos2 θ0+θ∞

2

.(6.13)

Hence ι has no stationary point, thus no extremum over the interior of Ω, while
some may exist on the boundary ∂Ω. Now (6.6) can be written on the upper edge
of ∂Ω as θ0 7→ 2 cot θ0

2 , which is clearly minimal when θ0 = π
3 = θ∞. On the lower

edge, the situation is a bit trickier, since ι becomes θ∞ 7→ tan θ∞ + cot θ∞2 , hence
its derivative is

(6.14) θ∞ 7−→
1

cos2 θ∞
− 1

2 sin2 θ∞
2

,

the sign of which is given by that of 2 sin2 θ∞
2 − cos2 θ∞, which can be rewritten

as 1 − cos θ∞ − cos2 θ∞. Now cos θ∞ ∈ ] − 1, 1
2 ], since θ∞ ∈ [π3 , π[. In addition,

the polynomial −X2 −X + 1 obviously has two distinct real roots, and is positive
between −

√
5−1
2 < −1 and

√
5−1
2 > 1

2 . Hence, the derivative is strictly positive for
any θ∞, and this proves that the minimum of ι on the lower boundary is obtained
for θ∞ = π

3 = θ0.

6.2. Asymptotic behavior. Concerning ζ, the last point to be addressed is the
behavior for flattened triangles. Without loss of generality, one can make a ≈ 2b ≈
2c in (6.7), which gives that ζ � 1. Hence, ρ and ζ have basically the same behavior
and the first one, being easier to compute, should be preferred.

The asymptotic behavior of ι can be found from (6.12) (resp. (6.13)), which
shows that θ0 7→ ι(θ0, θ∞) (resp. θ∞ 7→ ι(θ0, θ∞)) is always strictly monotonically
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decreasing (resp. increasing). Since it is also continuous, we have the following
results:

Proposition 6.1. (
∀θ0 ∈ ]0, π3 ]

)
inf
θ∞

ι = cot θ0
2 + tan θ0+π

4 ,(6.15) (
∀θ0 ∈ ]0, π3 ]

)
sup
θ∞

ι = 2 cot θ0
2 ;(6.16)

and

Proposition 6.2.

(
∀θ∞ ∈ [π3 , π[

)
inf
θ0
ι = 2

1 + sin θ∞
2

cos θ∞2
,(6.17)

(
∀θ∞ ∈ [π3 ,

π
2 [
)

sup
θ0

ι = 2
1 + cos θ∞

sin 2θ∞
,(6.18)

while ι is not bounded above for θ∞ ∈ [π2 , π[. The corresponding curves are provided
by Figures 12 and 13.
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Figure 12. Graphs at two different scales providing the range of
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as a function of the minimal angle in radians.
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7. Matrix norms

As described in [3, 7, 9], we define an edge matrix of t by

(7.1) T0 =

 x1 − x0 x2 − x0

y1 − y0 y2 − y0


and let W be the edge matrix of a reference equilateral triangle, for example,

(7.2) W =

 1 1
2

0
√

3
2

 .

We now let A0 = T0W
−1 be the matrix that maps W into T0 and define matrix

norms based on the singular values σ of A0. The singular values are given by the
positive square roots of the eigenvalues of the positive definite matrix AT0 A0. Now

(7.3) AT0 A0 =

 u w

w v

 ,

where

u = |v1 − v0|2,(7.4)

3v = 4|v2 − v0|2 − 4(v2 − v0) · (v1 − v0) + |v1 − v0|2(7.5)

and

(7.6)
√

3w = 2(v2 − v0) · (v1 − v0)− |v1 − v0|2.
In the above expressions, · denotes the usual scalar product. The singular values σ
of A0 are thus obtained from the characteristic equation of AT0 A0 as

(7.7)
3
4σ

4 −
(
|v1 − v0|2 + |v2 − v0|2 − (v2 − x0) · (v1 − v0)

)
σ2

+ |v1 − v0|2|v2 − x0|2 − ((v2 − x0) · (v1 − v0))2 = 0.

Alternatively, this equation can be written as

(7.8) 3σ4 − 2(a2 + b2 + c2)σ2 + 16A2 = 0.

Hence,

(7.9) σ2
1 + σ2

2 = 2
3 (a2 + b2 + c2) = 2

3 |t|
2
2

and σ1σ2 = 4 A√
3
, where σ2

1 and σ2
2 (0 < σ1 ≤ σ2) are the two roots of (7.8). A

quality measure can be constructed from the condition number of any unitarily
invariant norm of the matrix A0 (cf. [3]). One such family is derived from the
Schatten p-norms defined by

(7.10) Np(A0) = (σp1 + σp2)1/p
, p ∈ [1,+∞[.

The case p = 2 is the Frobenius norm, the limiting case p → ∞ is the spectral
norm, and the case p = 1 is the trace norm. A nonnormalized quality measure is
given by the condition number κp(A0), which is defined as

(7.11) κp(A0) =
[
(σp1 + σp2)

(
σ−p1 + σ−p2

)]1/p
.
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For the particular case p = 2, we find that

(7.12) κ2 =
σ2

1 + σ2
2

σ1σ2
=
a2 + b2 + c2

2
√

3A
=
|t|22

2
√

3A
,

and from (1.1) it then follows that

κ2 =
sin2 α+ sin2 β + sin2 γ√

3 sinα sinβ sin γ
(7.13)

=
sin2 θ0 + sin2 θ∞ + sin2(θ0 + θ∞)√

3 sin θ0 sin θ∞ sin(θ0 + θ∞)
.(7.14)

The Frobenius norm has been investigated in [7, 9]. Interestingly, this quality
measure, more specifically its inverse called shape regularity, has been independently
suggested by [4] in the context of mesh adaptation based on a posteriori error
estimates.

For p = 1, we get

(7.15) κ1 =
(σ1 + σ2)2

σ1σ2
= 2 + κ2,

and for p→∞ we obtain

κ∞ =
σ2

σ1
=

σ2
2

σ1σ2
=
|t|22 +

√
|t|42 − 48A2

4
√

3A
(7.16)

= 1
2κ2 + 1

2

√
κ2

2 − 4 .(7.17)

7.1. Extremum. From (7.15) and (7.17), we see that κ1 and κ∞ are both mono-
tonically increasing C∞(]2,+∞[) functions of κ2 and can therefore be regarded as
C∞-equivalent to κ2 and thus share the same extremal and asymptotic properties.
Using (1.4), we see that

(7.18)
σp1 + σp2

2
≥ (σp1σ

p
2)1/2

and

(7.19)
σ−p1 + σ−p2

2
≥
(
σ−p1 σ−p2

)1/2
,

which imply that κp ≥ 22/p. Moreover, it is shown in [3] that this minimum is the
only stationary value of κp, which is attained when σ1 = σ2. When p = 1 (resp.
p = 2, p→∞), it is obvious that the minimal value is 4 (resp. 2, 1). The variation
of κ2 as a function of the two angles α and β is plotted in Figure 14.

7.2. Asymptotic behavior. It follows from (7.13) that

∂κ2

∂θ0
(θ0, θ∞) =

−2 sin θ∞ sin(2θ0 + θ∞)√
3 sin2 θ0 sin2(θ0 + θ∞)

,(7.20)

∂κ2

∂θ∞
(θ0, θ∞) =

−2 sin θ0 sin(θ0 + 2θ∞)√
3 sin2 θ∞ sin2(θ0 + θ∞)

.(7.21)

In addition, (2.9) and (2.10) respectively imply that

(7.22)
(
∀(θ0, θ∞) ∈

◦
Ω
)

π < θ0 + 2θ∞ < 2π − 3θ0 < 2π
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Figure 14. Surface z = κ2
2 as a function of two angles in radians:

(i) z < 1.5; (ii) z < 2; (iii) z < 3; (iv) z < 10.

and

(7.23)
(
∀(θ0, θ∞) ∈

◦
Ω
)

0 < 2θ0 + θ∞ < π.

Therefore, for any θ∞ in [π3 , π[ (resp. θ0 in ]0, π3 ]), the mapping θ0 7→ κ2(θ0, θ∞)
(resp. θ∞ 7→ κ2(θ0, θ∞)) is continuous and strictly monotonically decreasing (resp.
increasing) over

]
max(0, π − 2θ∞), π2 −

θ∞
2

]
(resp.

[
π
2 −

θ0
2 , π − 2θ0

]
), thus the fol-

lowing properties arise:

Proposition 7.1. (
∀θ0 ∈ ]0, π3 ]

)
inf
θ∞

κ2 =
2 + 4 sin2 θ0

2√
3 sin θ0

,(7.24)

(
∀θ0 ∈ ]0, π3 ]

)
sup
θ∞

κ2 =
2 + 4 cos2 θ0√

3 sin 2θ0

.(7.25)

Proposition 7.2. (
∀θ∞ ∈ [π3 , π[

)
inf
θ0
κ2 =

2 + 4 sin2 θ∞
2√

3 sin θ∞
,(7.26)

(
∀θ∞ ∈ [π3 ,

π
2 [
)

sup
θ0

κ2 =
2 + 4 cos2 θ∞√

3 sin 2θ∞
.(7.27)

In addition, when θ∞ ≥ π
2 , κ2 is not bounded above. These results are illustrated

by Figures 15 and 16.
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Figure 15. Graphs at two different scales providing the range of
κ2
2 as a function of the minimal angle in radians.
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Figure 16. Graphs at two different scales providing the range of
κ2
2 as a function of the maximal angle in radians; for θ∞ > π

2 , the
upper bound is not defined.

8. Inequalities

8.1. ρ and τ . According to (1.1), it is obvious that 2R > |t|∞. On the other hand,
the assumption that 2r ≥ |t|0 implies that the two longest edges cannot meet at
the third vertex, since they are tangent to the in-circle. This contradiction shows
that 2r < |t|0. Hence, for any nondegenerate triangle, one always has

(8.1) τ < ρ.

Let us assume that x is the length of the side opposite the middle-angle θ of t.
Then x ≤ |t|∞ and x ≥ |t|0, hence

x2 = |t|2∞ + |t|20 − 2|t|∞|t|0 cos θ(8.2)

⇒

 x2 − |t|2∞ = |t|20 − 2|t|∞|t|0 cos θ ≤ 0

x2 − |t|20 = |t|2∞ − 2|t|∞|t|0 cos θ ≥ 0
(8.3)

⇒ 1
2τ
≤ cos θ ≤ τ

2
.(8.4)

Hence, since t 7→ arccos t is monotonically decreasing over [0, π],

(8.5) θ ≤ arccos
1
2τ
,

and, if τ ≤ 2,

(8.6) θ ≥ arccos
τ

2
.
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In particular, it is easy to check that

(8.7) θ = arccos
τ

2
⇒ x = |t|0

and

(8.8) θ = arccos
1
2τ

⇒ x = |t|∞.

8.2. κ2, ρ and ζ. Now x2 ≤ x for any x in ]0, 1] with equality if and only if x = 1.
Since it is not possible for sinα, sinβ, and sin γ to equal 1 simultaneously, it follows
from (7.13) that

(8.9) κ2 <
sinα+ sinβ + sin γ√

3 sinα sinβ sin γ
=

2√
3
ρ.

Now, using both (1.4) and (1.5), we obtain

2ρ =
sinα+ sinβ + sin γ

sinα sinβ sinγ

=
sinα sinβ sin γ (sinα+ sinβ + sinγ)4

sin2 α sin2 β sin2 γ (sinα+ sinβ + sin γ)3

≤
(

sinα+ sinβ + sin γ
3

)3 9
(
sin2 α+ sin2 β + sin2 γ

)2
sin2 α sin2 β sin2 γ (sinα+ sinβ + sin γ)3

≤
(

sin2 α+ sin2 β + sin2 γ√
3 sinα sinβ sin γ

)2

= κ2
2.

An application of (1.5) yields the following inequality:

ζ

3
√

3
=

(sinα+ sinβ + sin γ)2

6
√

3 sinα sinβ sin γ
(8.10)

≤ sin2 α+ sin2 β + sin2 γ

2
√

3 sinα sinβ sin γ
=
κ2

2
.(8.11)

Conclusion

Of the quality measures that have been investigated, ι has the disadvantage of
being unsymmetric and lacks a stationary point. Among the remaining measures, τ
rejects only needles and ν rejects only flattened triangles, while the minimal value
of ω selects right triangles. The measures κ1, κ2 and κ∞, based on matrix norms,
are equivalent to one another and, from the inequalities derived in the final section,
we conclude that their behavior is asymptotically equivalent to that of the quality
measure ρ. Therefore, we can conclude that five classes of triangle quality measures
exist whose main properties are summarized in Table 2.
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Table 2. Summary of triangle quality measures: “stat.” refers
to the existence of a stationary value when the quality is optimal.
The kind of “good” triangle is indicated as either right or equilat-
eral.

good stat. needle flat.

1
2
ρ ∼ 1 (equil.) yes � 1 � 1

1

3
√

3
ζ ∼ 1 (equil.) yes � 1 � 1

1
2
κ2 ∼ 1 (equil.) yes � 1 � 1

1

2
√

3
ι ∼ 1 (equil.) no � 1 � 1

√
3 R
|t|0

∼ 1 (equil.) no � 1 � 1

τ ∼ 1 (equil.) no � 1 ∼ 2

3
√

3
2
ν ∼ 1 (equil.) yes ∼ 3

√
3

4
� 1

2ω ∼ 1 (right) yes ∼ 1 � 1
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