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A FAMILY OF HYBRID CONJUGATE GRADIENT METHODS
FOR UNCONSTRAINED OPTIMIZATION

YU-HONG DAI

Abstract. Conjugate gradient methods are an important class of methods
for unconstrained optimization, especially for large-scale problems. Recently,
they have been much studied. This paper proposes a three-parameter family
of hybrid conjugate gradient methods. Two important features of the family
are that (i) it can avoid the propensity of small steps, namely, if a small step
is generated away from the solution point, the next search direction will be
close to the negative gradient direction; and (ii) its descent property and global
convergence are likely to be achieved provided that the line search satisfies the
Wolfe conditions. Some numerical results with the family are also presented.

1. Introduction

Consider the unconstrained optimization problem

min f(x), x ∈ Rn,(1.1)

where f is smooth and its gradient is available. Conjugate gradient methods are
very useful for solving (1.1), especially if the dimension n is large. The methods
are of the form

xk+1 = xk + αkdk,(1.2)

dk =

{
−gk, for k = 1,
−gk + βkdk−1, for k ≥ 2,

(1.3)

where gk denotes ∇f(xk), αk is a steplength obtained by a line search, and βk is a
scalar. The strong Wolfe line search is to find a steplength αk such that

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk,(1.4)

|g(xk + αkdk)T dk| ≤ −σgTk dk,(1.5)

where δ ∈ (0, 1
2 ) and σ ∈ (δ, 1). In the conjugate gradient field, it is also possible

[4, 10, 11] to use the Wolfe line search, which calculates an αk satisfying (1.4) and

g(xk + αkdk)T dk ≥ σgTk dk.(1.6)
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For the scalar βk, many formulas have been proposed. Some of them are called the
FR [13], PRP [21, 22], DY [10], HS [15], CD [12], and LS [16] ones, and are given
by

βFRk = ‖gk‖2
‖gk−1‖2 , βPRPk = gTk yk−1

‖gk−1‖2 ,

βDYk = ‖gk‖2
dTk−1yk−1

, βHSk = gTk yk−1

dTk−1yk−1
,

βCDk = ‖gk‖2
−gTk−1dk−1

, βLSk = gTk yk−1

−gTk−1dk−1
,

where yk−1 = gk − gk−1 and ‖ · ‖ is the two norm.
Although all nonlinear conjugate gradient methods should reduce to the linear

conjugate gradient method when f is a convex quadratic and the line search is exact,
their convergence properties may be quite different for nonquadratic functions. For
example, the FR method is globally convergent if the steplength αk satisfies (1.4)-
(1.5) with σ ≤ 1

2 (for example, see [6]). The DY method converges globally provided
that the Wolfe line search (with any σ < 1) is used [10]. In contrast, the PRP and
HS methods need not converge even with the exact line search [20]. Consequently,
nonlinear conjugate gradient methods were often analyzed individually. However,
it is well known that some quasi-Newton methods can be expressed in a unified
way and their properties can be analyzed uniformly (for example, see [1, 2]). Thus,
similarly to quasi-Newton methods, we wonder whether there exists a family of
conjugate gradient methods, and whether its properties can be analyzed uniformly.

Motivated by the above question, Dai and Yuan [7] proposed a family of conju-
gate gradient methods, in which

βk =
||gk||2

λ||gk−1||2 + (1 − λ)dTk−1yk−1
, λ ∈ [0, 1].(1.7)

This family can be regarded as some kind of convex combination of the FR and DY
methods. Dai and Yuan [8] further extended the family to the case λ ∈ (−∞,+∞)
and presented some unified convergence results. Almost simultaneously, Nazareth
[18] regarded the FR, PRP, HS, and DY formulas as the four leading contenders
for the scalar βk and proposed a two-parameter family:

βk =
λk||gk||2 + (1− λk)gTk yk−1

µk||gk−1||2 + (1− µk)dTk−1yk−1
, λk, µk ∈ [0, 1].(1.8)

Later, based on the six formulas in (1.7), Dai and Yuan [9] proposed a three-
parameter family:

βk =
||gk||2 − λkgTk gk−1

||gk−1||2 + µkgTk dk−1 − ωkβk−1gTk−1dk−2
,(1.9)

where λk ∈ [0, 1], µk ∈ [0, 1] and ωk ∈ [0, 1− µk] are parameters.
In this paper, by analyzing how to keep the descent property of the method

(1.2)-(1.3) with the Wolfe line search, we will propose a three-parameter family of
hybrid conjugate gradient methods (see §2). One advantage of the family is that it
can avoid the propensity of small steps; namely, if a small step is produced far away
from the solution, the next search direction is automatically close to the negative
gradient direction. Under mild conditions, we prove that the family of methods
with the Wolfe line search produce a descent search direction at each iteration (see
§3). Convergence properties of the family are analyzed in §4, and some numerical
results are reported in §5. A brief discussion is given in the last section.
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2. A family of hybrid conjugate gradient methods

Special attention must be paid to how to keep the descent property of conjugate
gradient methods. Let us consider the method (1.2)–(1.3) with the steplength αk
satisfying the Wolfe conditions (1.4) and (1.6). Assume that the search direction
dk−1 is downhill, namely,

gTk−1dk−1 < 0.(2.1)

It follows from (1.3) that

dTk gk = −‖gk‖2 + βkg
T
k dk−1.(2.2)

Then the descent property of dk requires

βkg
T
k dk−1 < ‖gk‖2.(2.3)

Assuming that

βk = ‖gk‖2/(gTk dk−1 + bk),(2.4)

where bk satisfies

gTk dk−1 + bk > 0,(2.5)

we find that (2.3) is equivalent to

bk > 0.(2.6)

Thus if βk is given by (2.4) with bk satisfying (2.5) and (2.6), we must have that
dTk gk < 0. Therefore by d1 = −g1 and the induction principle, all search directions
{dk} are downhill.

To be such that the method (1.2), (1.3) and (2.4) is a nonlinear conjugate gradi-
ent method, we still need bk to reduce to ‖gk−1‖2 when f is a convex quadratic and
the line search is exact. From (2.2) with k replaced by k− 1, we see that the terms
‖gk−1‖2, dTk−1yk−1 and −dTk−1gk−1 all have this property. The three terms are pos-
itive if (2.1) and (1.6) hold. Hence we may choose bk as any convex combination
of the three terms:

bk = µk‖gk−1‖2 + ωkd
T
k−1yk−1 + (1− µk − ωk)(−dTk−1gk−1),(2.7)

where µk ∈ [0, 1] and ωk ∈ [0, 1− µk]. Consequently, by (2.4) and (2.7),

βk =
‖gk‖2

(1 + ωk)gTk dk−1 + µk‖gk−1‖2 + (1 − µk)(−dTk−1gk−1)
.(2.8)

If µk = ωk = 0, (2.8) reduces to the DY formula. The descent property and global
convergence of the DY method are achieved with the Wolfe line search (with any
σ < 1). For the family of methods (2.8), using the Wolfe line search, we can show
that if σ ≤ 1

4 , then (2.5) holds, and hence gTk dk < 0 for all k.
Although we would be satisfied with its descent property, the family of methods

(2.8) has the same drawback as the FR method. Powell [19] observed that the
FR method with exact line searches may produce many small steps continuously;
namely, if a small step is generated away from the solution, its subsequent steps
may also be very short. Since (2.8) reduces to the FR method in the case of exact
line searches, we know that the argument applies to the family of methods (2.8).
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However, in the same case, the PRP method generates a search direction close
to −gk and hence can avoid the propensity of small steps [19]. Combining FR and
PRP, Touati-Ahmed and Storey [23] proposed the hybrid method

βk = max{0,min{βPRPk , βFRk }}.(2.9)

Like the PRP method, the hybrid method can avoid the propensity of small steps.
In addition, its global convergence can be proved under the same assumptions as
for the FR method. Hybrid conjugate gradient methods are further considered in
[14] and [11]. Gilbert and Nocedal [14] considered the method

βk = max{−βFRk ,min{βPRPk , βFRk }},(2.10)

which allows negative values of βk. Dai and Yuan [11] studied the hybrid methods
of DY and HS. The numerical results in [11] show that the method

βk = max{0,min{βHSk , βDYk }}(2.11)

with the Wolfe line search is better than the PRP method with the strong Wolfe
line search.

For the above reason, instead of (2.8), we consider the formula

βk =
max{0,min{gTk yk−1, τk‖gk‖2}}

(τk + ωk)gTk dk−1 + µk‖gk−1‖2 + (1 − µk)(−dTk−1gk−1)
,

(2.12)

where µk ∈ [0, 1], ωk ∈ [0, 1−µk] and τk ∈ [1,+∞) are parameters. If f is a convex
quadratic and the line search is exact, then (2.12) reduces to the FR formula, since
in this case gTk gk−1 = 0 and gTk dk−1 = 0. So the methods (1.2), (1.3), (2.12) with
different values of µk ∈ [0, 1], ωk ∈ [0, 1 − µk] and τk ∈ [1,+∞) form a three-
parameter family of hybrid conjugate gradient methods. Such a family can also
avoid the propensity of small steps (a formal description will be given in §4). In
addition, it reduces to (2.11) if τk = 1, µk = 0, ωk = 0.

3. Descent property of the family of methods (2.12)

In this section, we provide a condition that ensures the descent property of the
three-parameter family of hybrid conjugate gradient methods (2.12) with the Wolfe
line search. To begin our analyses, define

ξk = max
{

0,min
{
gTk yk−1

τk‖gk‖2
, 1
}}

.(3.1)

It is obvious that ξk ∈ [0, 1]. By (3.1), we write (2.12) as

βk =
ξkτk‖gk‖2

(τk + ωk)gTk dk−1 + µk‖gk−1‖2 + (1 − µk)(−dTk−1gk−1)
.(3.2)

Also define

rk = − g
T
k dk
‖gk‖2

and lk =
gTk dk−1

gTk−1dk−1
.(3.3)

Dividing (2.2) by −‖gk‖2 and substituting (3.2), we can get that

rk =
[(1 − ξk)τk + ωk]gTk dk−1 + µk‖gk−1‖2 + (1− µk)(−dTk−1gk−1)

(τk + ωk)gTk dk−1 + µk‖gk−1‖2 + (1− µk)(−dTk−1gk−1)
.

(3.4)
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Using the definitions of rk and lk in (3.4), we obtain

rk =
µk + [1− µk − ((1 − ξk)τk + ωk)lk]rk−1

µk + [1− µk − (τk + ωk)lk]rk−1
.(3.5)

Theorem 3.1. Consider the family of methods (1.2), (1.3), (2.12) with µk ∈ [0, 1],
ωk ∈ [0, 1− µk], τk ∈ [1,+∞), and with αk satisfying (1.6). If

τklk ≤
1
4
,(3.6)

the formula (2.12) is well defined. Further, for all k ≥ 1,

0 < rk ≤ 2.(3.7)

Proof. By (3.5), denote

rk =
tk
hk
,(3.8)

where

tk = µk + [1− µk − ((1− ξk)τk + ωk)lk]rk−1(3.9)

and

hk = µk + [1− µk − (τk + ωk)lk]rk−1.(3.10)

Since d1 = −g1 and r1 = 1, (3.7) holds for k = 1. Assume that (3.7) holds for k−1,
namely,

0 < rk−1 ≤ 2.(3.11)

It follows from (3.6) and τk ≥ 1 that

lk ≤
1
4
.(3.12)

If [1 − µk − (τk + ωk)lk] > 0, we have by (3.10), (3.11) and µk ≥ 0 that hk > 0.
If [1 − µk − (τk + ωk)lk] ≤ 0, by (3.10), (3.11), (3.6), (3.12) with µk ∈ [0, 1] and
ωk ∈ [0, 1− µk], we have

hk ≥ µk + 2[1− µk − (τk + ωk)lk]

≥ µk + 2[1− µk −
1
4

(1 + ωk)]

≥ 3
2
− µk −

1
2
ωk ≥

1
2
.(3.13)

Thus we always have hk > 0. This with (3.8) implies that βk is well defined.
Similarly, we can prove that

tk > 0(3.14)

and

2hk − tk = µk + [1− µk − ((1 + ξk)τk + ωk)lk]rk−1 ≥ 0.(3.15)

It follows from (3.8), hk > 0, (3.14) and (3.15) that 0 < rk ≤ 2. Thus, by induction,
{βk} is well defined and (3.7) is true for all k ≥ 1. �

Note by (1.6) that lk ≤ σ. Since it is preferred to set σ equal to a small value
in the implementations of conjugate gradient methods (a typical value of σ is 0.1,
see [11, 14]), we see that the condition (3.6) is not strict and allows relatively large
values of τk.
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4. Global convergence

Assume that gk 6= 0 for all k, for otherwise a stationary point has been found.
We give the following basic assumptions on the objective function.

Assumption 4.1. (i) The level set L = {x ∈ Rn : f(x) ≤ f(x1)} is bounded,
where x1 is the initial point.

(ii) In some neighborhood N of L, f is differentiable and its gradient ∇f is
Lipschitz continuous in N , namely, there exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for any x, y ∈ N .(4.1)

Denote sk−1 = xk − xk−1 and suppose that

0 < γ ≤ ‖gk‖ ≤ γ̄, for all k ≥ 1.(4.2)

We say [3] that a method (1.2)–(1.3) has Property (#) if there exist a positive
and uniformly bounded sequence {ψk} and constants b ≥ 1 and λ > 0 such that
|βk| ≤ b ψk

ψk−1
for all k, and if ‖sk−1‖ ≤ λ, then |βk| ≤ 1

b
ψk
ψk−1

.
Under Assumption 4.1 on f , we state a general lemma for any method (1.2)–(1.3)

having Property (#).

Lemma 4.2 ([3]). Suppose that Assumption 4.1 holds. Consider any method (1.2)–
(1.3) with βk ≥ 0 and Property (#). If the steplength αk satisfies the Wolfe condi-
tions (1.4), (1.6) and the descent condition gTk dk < 0, then either

lim inf
k→∞

‖dk‖ < +∞,(4.3)

or the method converges in the sense that

lim inf
k→∞

‖gk‖ = 0.(4.4)

For the family of methods (2.12) that satisfies (3.6), we can check that Property
(#) holds. In fact, define ψk = −gTk dk. It follows by (3.7) and (4.2) that {ψk} is
positive and uniformly bounded. By (3.2)-(3.4), we write

βk =
ξkτk
ηk

ψk
ψk−1

,(4.5)

where

ηk = 1− µk + µkr
−1
k−1 − [(1− ξk)τk + ωk]lk.(4.6)

By (3.7), (3.6), (3.12), ξk ∈ [0, 1], µk ∈ [0, 1] and ωk ∈ [0, 1− µk], we can show that

ηk ≥
3
4
− 1

2
µk −

1
4
ωk ≥

1
4
.(4.7)

It follows from (4.5), (4.7), ξkτk ≥ 0 and ψk > 0 that

βk ≥ 0.(4.8)

Denote b = 8γ̄
γ and λ = γ

4Lb . Noting by (3.1) and the Schwarz inequality that

ξkτk ≤
|gTk yk−1|
‖gk‖2

≤ ‖yk−1‖
‖gk‖

,(4.9)

we have by (4.5), (4.7), (4.9) and (4.2) that

βk ≤
4(‖gk−1‖+ ‖gk‖)

‖gk‖
ψk
ψk−1

≤ 8γ̄
γ

ψk
ψk−1

= b
ψk
ψk−1

.(4.10)
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If ‖sk−1‖ ≤ λ, then by (4.5), (4.7), (4.9), (4.1) and (4.2),

βk ≤
4L‖sk−1‖
‖gk‖

ψk
ψk−1

≤ 4Lλ
γ

ψk
ψk−1

=
1
b

ψk
ψk−1

.(4.11)

Relations (4.8), (4.10) and (4.11) indicate that the family of methods (2.12) that
satisfies (3.6) has Property (#).

Now we are ready to give our main convergence result.

Theorem 4.3. Suppose that Assumption 4.1 holds. Consider the family of methods
(1.2), (1.3), (2.12) with µk ∈ [0, 1], ωk ∈ [0, 1−µk], τk ∈ [1,∞), and with the Wolfe
line search (1.4) and (1.6). Assume that (3.6) holds. Then we have (4.4) if one of
the following conditions holds: (i) lk is uniformly bounded; (ii) ωk is bounded away
from zero; (iii) µk is bounded away from zero.

Proof. We proceed by contradiction, assuming that

‖gk‖ ≥ γ, for some γ > 0 and all k ≥ 1.(4.12)

According to the previous discussions, we know that Property (#) holds and βk ≥ 0.
We now prove

lim
k→∞

‖dk‖ = +∞(4.13)

for (i), (ii) and (iii), in turn.
(i) It follows from (4.12), the uniform boundness of lk and Corollary 2.4 in [5]

that ∑
k≥1

1
‖dk‖2

< +∞,(4.14)

which gives (4.13).
(ii) Assume that

ωk ≥ ε, for some ε > 0 and all k ≥ 1.(4.15)

(3.5) implies that rk is monotonically decreasing as lk → −∞. Hence

rk > lim
lk→−∞

µk + [1− µk − ((1 − ξk)τk + ωk)lk]rk−1

µk + [1− µk − (τk + ωk)lk]rk−1

=
(1− ξk)τk + ωk

τk + ωk
.(4.16)

In addition, Assumption 4.1 implies that

‖gk‖ ≤ γ̄, for some γ̄ > 0 and all k ≥ 1.(4.17)

The definition of ξk, (4.12) and (4.17) show that

0 ≤ ξk ≤ min{1, ‖yk−1‖
τk‖gk‖

} ≤ min{1, ‖gk−1‖+ ‖gk‖
τk‖gk‖

} ≤ min{1, 2γ̄
γτk
}.

(4.18)

If τk ≤ 4γ̄
γ , we have by (4.16) and (4.15) that rk ≥ ε/(4γ̄γ−1 + ε). If τk > 4γ̄

γ ,
it follows by (4.18) that ξk ≤ 1

2 . This and (4.16) indicate that rk ≥ 1
2 . Thus we

always have

rk ≥ min{1
2
,

εγ

4γ̄ + εγ
}.(4.19)
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Since, under Assumption 4.1 on f , any descent method (1.2) with the Wolfe line
search gives the Zoutendijk condition [24],∑

k≥1

(gTk dk)2

‖dk‖2
< +∞,(4.20)

we know from this, (4.19) and (4.12) that (4.13) holds.
(iii) Assume that

µk ≥ ε, for some ε > 0 and all k ≥ 1.(4.21)

If (4.13) is false, there exists an infinite subsequence {ki} such that

‖dki‖ ≤M, for some M < +∞ and all i ≥ 1.(4.22)

It follows from this and (4.17) that

|gTki+1dki | ≤ γ̄M.(4.23)

Using (3.4), (4.12), (4.17), (4.18), (4.21), (4.23) and ωk ∈ [0, 1], we can similarly to
(4.19) prove that

rki+1 ≥ min{1
2
,

εγ3

(4γ̄ + γ)γ̄M + εγ3
}.(4.24)

By this, the Zoutendijk condition (4.20) and (4.12), we get

lim inf
i→∞

‖dki+1‖ = +∞.(4.25)

Still define hk as in (3.10). If 1− µk − (τk +ωk)lk > 0, we have by (4.21) and (3.7)
that hk ≥ ε. If 1− µk − (τk + ωk)lk ≤ 0, it follows by (3.13) that hk ≥ 1

2 . Thus we
always have

hk ≥ min{ε, 1
2
}.(4.26)

By (3.2), (4.26), (4.9), (4.17) and (4.12), we obtain

βki+1 =
ξki+1τki+1‖gki+1‖2

ζki+1‖gki‖2
≤ c,(4.27)

where c = 2γ̄3/(γ3 min{ε, 1
2}) is a positive constant. It follows by (1.3), the triangle

inequality, (4.17) and (4.27) that

‖dki+1‖ ≤ γ̄ + c ‖dki‖.(4.28)

Letting i → ∞ in (4.28), we find that (4.22) and (4.25) give a contradiction. So
(4.13) also holds.

Thus for each case (i), (ii) and (iii), (4.13) is true. By Lemma 4.2, we must have
(4.4), contradicting (4.12). Therefore this theorem is true. �

Since the condition (1.5) implies the bound |lk| ≤ σ, one direct corollary of
Theorem 4.3 is that the family of hybrid conjugate gradient methods (2.12) with
the strong Wolfe line search converges globally for general functions. Assume that
the objective function f is uniformly convex and there exists some positive constant
η > 0 such that

(∇f(x) −∇f(y))T (x− y) ≥ η‖x− y‖2, for all x, y ∈ L.(4.29)
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Then by (1.4), (4.29) and Taylor’s series expansion, it is easy to show that

αk‖dk‖2 ≤ 2(1− δ)η−1|gTk dk|, for all k ≥ 1.(4.30)

In addition, by the triangle inequality and (4.1),

|gTk+1dk| ≤ |gTk dk|+ |(gk+1 − gk)T dk| ≤ |gTk dk|+ αkL‖dk‖2.
(4.31)

The above two relations imply that |lk| is also uniformly bounded. Thus, by Theo-
rem 4.3, the family with the Wolfe line search is globally convergent for uniformly
convex functions.

5. Numerical results

In this section, we present some numerical results for the family of hybrid con-
jugate gradient methods (2.12). Our tests were done on an SGI Indigo workstation
with double precision. All the codes are written in FORTRAN. For each method,
we use the Wolfe line search (1.4) and (1.5) with δ = 0.01 and some value of σ.
The initial value of αk is always set equal to 1. Our test problems are drawn from
Moré et al. [17]. See Tables 5.1 and 5.2. The first column “P” denotes the problem
number in [17], and the second gives the name of the problem. We tested each
problem with two different values of n ranging from n = 20 to n = 10000. The
numerical results are given in the form of I/F/G, where I, F, G denote numbers of
iterations, function evaluations, and gradient evaluations. The stopping condition
is

‖gk‖ ≤ 10−6.(5.1)

Our numerical experiments were divided into two parts. First, we tested the
family (2.12) with τk ≡ τ ∈ {1, 2, 4}. The parameter σ corresponding to τ is set
equal to 1

4τ , which is the largest that ensures the condition (3.6). This part of the
numerical results are listed in Table 5.1, where the column (2.11) means the hybrid
method (2.11) and the other stand for the method (3.6) with µk = ωk = 0 and some
values of (τ, σ). Second, we tested the family (2.12) with variable τk. Specifically,
we are interested in the following choice of τk:

τk = max{1,min{ν|lk−1|−1, 4}},(5.2)

where ν is some positive constant. The idea behind (5.2) is that we force the
method to be closer to (2.11) if the line search is more inexact; otherwise, we use a
relatively large value of τk such that the conjugacy quantity dTk yk−1 tends to zero.
See Table 5.2 for the numerical results of the method (2.12) with µk = ωk = 0, τk
given by (5.2), and different values of (σ, ν).

We compared each method with the method (2.11). Denote by Fa and Ga the
numbers of function evaluations and gradient evaluations required by method (a)
for some problem. Then we say that method (a) beats method (b) if Fa < Fb and
Ga ≤ Gb or if Fa ≤ Fb and Ga < Gb. If it happens that (Fa−Fb)(Ga−Gb) < 0, we
decide who is the winner by their CPU times (Since this seldom occurs, we do not
list the CPU times in the tables). The numbers of wins for each method comparing
with the method (2.11) are given at the bottom of the tables. We can see that
the method (4, 1

16 ) in Table 5.1 and the method (0.25, 0.05) in Table 5.2 perform
similarly to or even slightly better than the hybrid method (2.11). Further, if we
only consider the test problems whose dimensions are not less than 100, then the
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numbers of wins of the methods (4, 1
16 ) and (0.25, 0.05) compared with the method

(2.11) are both 7 : 3. This means that the two methods perform better than the
hybrid method (2.11) for relatively large problems. To sum up, although we do
not know yet what are the best choices for the parameters in (2.12), our numerical
results indicate that the introduction of the hybrid family (2.12) is worthwhile.

Table 5.1. Comparing different conjugate gradient methods

P Name n (2.11) (1, 1/4) (2, 1/8) (4, 1/16)

24 Penalty 2 20 135/419/228 159/446/224 125/378/205 301/926/477
40 122/366/177 137/399/176 418/1127/489 186/559/275

25 Variably 20 5/30/10 5/30/10 5/30/10 5/30/10
dimensioned 50 9/51/17 9/51/17 9/51/16 8/45/14

35 Chebyquad 20 100/321/119 124/376/138 140/434/154 155/484/171
50 350/1156/406 437/1353/460 375/1229/427 438/1407/487

30 Broyden 50 50/158/58 50/156/56 51/161/59 60/186/66
tridiagonal 500 58/183/67 64/199/71 52/161/57 54/170/62

31 Broyden 50 30/113/49 19/62/23 18/58/21 31/112/46
banded 500 23/74/27 20/62/22 20/63/23 24/78/29

22 Extended 100 66/203/87 63/179/73 83/237/102 65/195/81
Powell 1000 66/203/87 72/202/82 86/250/110 65/195/81

26 Trigonome- 100 58/97/95 56/83/82 57/91/90 56/98/96
tric 1000 52/87/87 54/80/80 58/94/94 56/99/99

21 Extended 1000 28/87/39 27/97/44 39/151/68 21/80/39
Rosenbrock 10000 28/87/39 27/97/44 39/151/68 22/82/41

23 Penalty 1 1000 54/154/110 74/178/132 62/162/119 27/86/59
10000 35/111/66 30/121/59 43/137/89 22/63/42

winners - 8:8 6:11 9:8

Table 5.2. Comparing different conjugate gradient methods

P Name n (0.1,0.05) (0.1,0.25) (0.25,0.05) (0.25,0.25)

24 Penalty 2 20 165/497/278 135/443/249 159/464/254 170/488/260
40 141/426/215 248/690/310 149/443/213 158/462/222

25 Variably 20 5/30/10 5/30/10 5/30/10 5/30/10
dimensioned 50 7/44/15 8/45/14 8/46/15 9/55/18

35 Chebyquad 20 103/323/119 138/432/158 135/422/152 114/361/129
50 372/1200/416 389/1244/429 490/1505/507 374/1169/398

30 Broyden 50 55/173/63 57/179/65 50/156/56 52/163/59
tridiagonal 500 59/186/68 63/198/72 66/205/73 56/174/62

31 Broyden 50 31/115/49 35/128/53 19/62/23 18/58/21
banded 500 23/74/27 23/74/27 20/62/22 19/59/21

22 Extended 100 72/209/88 87/254/108 61/171/69 99/287/116
Powell 1000 85/245/105 83/242/106 73/201/81 115/334/136

26 Trigonome- 100 58/99/97 62/97/96 60/91/89 63/96/94
tric 1000 55/95/95 60/105/105 54/83/82 63/93/93

21 Extended 1000 28/113/55 28/99/45 29/101/46 31/113/50
Rosenbrock 10000 28/113/55 29/102/46 29/101/46 31/113/50

23 Penalty 1 1000 42/116/76 36/104/67 45/112/71 62/143/102
10000 25/96/52 28/95/55 28/114/54 33/98/58

winners 4:12 3:13 9:8 7:10
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6. Discussions

This paper presents a three-parameter family of hybrid conjugate gradient meth-
ods for unconstrained optimization. As mentioned in Section 2, this family of meth-
ods has the hybrid method (2.11) as a special case. It is known [11] that the hybrid
method (2.11) with the Wolfe line search is globally convergent for general func-
tions. However, our main convergence theorem, Theorem 4.3, does not cover this
result. We wonder whether Theorem 4.3 holds for all the methods in the family.

Although we do not know yet what are the best choices for the parameters in
(2.12), the numerical results of this paper show that the family of hybrid conjugate
gradient methods is very promising. Both the theoretical analyses and numerical
results with the family again show that it is possible to use the Wolfe line search
in the nonlinear conjugate gradient field.
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