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ON THE CONVERGENCE
OF ENTROPY CONSISTENT SCHEMES
FOR LUBRICATION TYPE EQUATIONS

IN MULTIPLE SPACE DIMENSIONS

GÜNTHER GRÜN

Abstract. We present nonnegativity-preserving finite element schemes for a
general class of thin film equations in multiple space dimensions. The equa-
tions are fourth order degenerate parabolic, and may contain singular terms
of second order which are to model van der Waals interactions. A subtle dis-
cretization of the arising nonlinearities allows us to prove discrete counterparts
of the essential estimates found in the continuous setting. By use of the en-
tropy estimate, strong convergence results for discrete solutions are obtained.
In particular, the limit of discrete fluxes Mh(Uh)∇Ph will be identified with
the fluxM(u)∇(W ′(u)−∆u) in the continuous setting. As a by-product, first
results on existence and positivity almost everywhere of solutions to equations
with singular lower order terms can be established in the continuous setting.

1. Introduction

Lubrication approximation allows one to describe the evolution of thin films of
viscous liquids on plain surfaces by a fourth order degenerate parabolic equation of
the form

(1) ut + div
(
M(u)∇(∆u −W ′(u))

)
= 0 in Ω× (0, T ) ⊂ Rd+1.

The film height is denoted by u, and the generalized pressure p := −∆u+W ′(u) is
given as the sum of a capillarity term and an additional nonlinearity W ′(u) which
is to model molecular interactions (e.g., van der Waals forces) or effects of gravity.
In many applications, W ′(·) is singular at zero.

The explicit form of the nonlinear mobility M(u) depends on the boundary
condition at the liquid-solid interface. A no-slip condition entails M(u) = u3;
various slip conditions (cf. [6]) yieldM(u) = u3+βun, β > 0, n ∈ (0, 3). Combined
with no-flux boundary conditions and nonnegative initial data, (1) is an initial-
boundary-value problem which has a number of interesting features.

One peculiarity is the property to admit globally nonnegative solutions. In the
simplest case—that of the model problem with W ′ ≡ 0—this follows from the
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so-called entropy estimate∫
Ω

∫ u(T,x)

1

∫ s

1

1
M(r)

dr ds dx+
∫

ΩT

|∆u|2 =
∫

Ω

∫ u0(x)

1

∫ s

1

1
M(r)

dr ds dx.

That estimate goes back to the fundamental work of Bernis and Friedman [8], which
gave the first results on existence and nonnegativity of solutions to equation (1)
with W ′ ≡ 0 in space dimension d = 1 (for corresponding results in higher space
dimensions, we refer to [16] and [14]).

Later on, more refined versions of the entropy estimate could be established (see
[5] and [9] in one space dimension, [12] in multiple dimensions). These are key
ingredients to prove stronger regularity results as well as results on finite speed of
propagation (cf. [7] in one space dimension, [10] in multiple space dimensions) or
on a waiting time phenomenon (cf. [13]).

Moreover, if the mobility M(·) is sufficiently smooth and vanishes at zero, then
results on strict positivity follow. In this context, it is worthwhile to introduce the
mobility growth exponent n := sup{s ∈ R+ : limu→0

M(u)
us < ∞}, which governs

the qualitative behaviour of solutions. For instance, if n > 3
2 , then supp(u(t1, ·)) ⊂

supp(u(t2, ·)) for t1 < t2 (see [5], [9], and [12]).
In order to guarantee nonnegativity or even strict positivity of discrete solutions,

it seems therefore to be a natural approach to formulate a numerical scheme in such
a way that a discrete counterpart of the entropy estimate might be derived. For the
model problem with W ′ ≡ 0, this was accomplished simultaneously by Zhornitskaya
and Bertozzi in [23] and by Rumpf and the author of this paper in [18].

AssumingM(·) to be of class C2(R), i.e., n ≥ 2, Zhornitskaya and Bertozzi sug-
gested a time-continuous, space-discrete finite difference scheme for the approxima-
tion of strictly positive solutions. For this scheme, they proved strong convergence
of positive discrete solutions and showed equivalence to a finite element approach
with bilinear elements on uniform, rectangular grids. On account of numerical
experiments performed in one space dimension they conjectured that positivity-
preserving schemes might also be used to approximate solutions to initial data with
compact support.

In [18] Grün and Rumpf considered finite volume—finite element schemes for
continuous diffusion coefficients M(·) (i.e., n > 0) on simplicial grids. In arbitrary
space dimensions, results on nonnegativity (even on positivity, if n > 2) of discrete
solutions follow and the numerical cost merely consists of solving in each time
step a linear system involving a sparse matrix. A time-step control based on an
explicit formula for the normal velocity of the free boundary allows one to trace its
propagation very precisely. In space dimension d = 1 the convergence of discrete
solutions to a continuous solution in the sense of Theorem 3.1 in [8] could be
proven; in higher space dimensions it was only possible to establish a weaker result
which in particular did not allow us to identify the limit of the discrete fluxes
Jh = M(Uh)∇Ph with the continuous flux −M(u)∇∆u.

In [17] this algorithmic approach was generalized to equation (1) with nonvanish-
ing nonlinearities W ′, and in special cases results on existence of discrete solutions
and on their stability could be established. The publication [19] did not only provide
strong convergence results for discrete solutions to equation (1) in space dimension
d = 1; in addition, it contained numerical simulations on dewetting which are in
good agreement with physical experiments.
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In the multidimensional case, additional difficulties arise due to the fact that even
in the continuous setting no results about boundedness or continuity of solutions
are known. With the present paper, we intend to overcome those difficulties; the
purpose of the paper is threefold. First, we prove convergence of discrete solutions to
the numerical scheme suggested in [17] in multiple space dimensions for a wide class
of physically relevant conjoining or disjoining pressure functions W ′ (for details, see
section 2). In particular, it will be possible to identify the limit of the discrete fluxes
Jh = M(Uh)∇Ph with the continuous fluxM(u)∇(W ′(u)−∆u). As a by-product,
we obtain a first existence result in the case that W ′(·) is singular. Of course, our
technique also applies to the case that W ′ ≡ 0 andM(·) is not necessarily bounded.
Hence, the convergence results presented in [18] are strongly improved.

It is worth mentioning that equation (1) has a number of common features
with the Cahn-Hilliard equation with degenerate mobility, which models phase
separation of binary alloys (cf. [14]). In particular, it is not difficult to modify the
numerical approach presented in this paper to formulate entropy-consistent schemes
for that equation. Hence, the physically relevant space dimensions to be considered
in the following are d = 2 and d = 3.

Historically, the first successful attempt to construct a finite element scheme
guaranteeing nonnegativity of solutions was done by Barrett, Blowey and Garcke
(cf. [1] for the case W ′ ≡ 0 and the subsequent paper [2] in the context of the Cahn-
Hilliard equation). By solving in each time-step an elliptic variational inequality
of second order, they force solutions to stay nonnegative. In one space dimension,
they succeed in proving convergence to a solution in the sense of Theorem 3.1 in
[8]. That solution is not necessarily as regular as the limit of discrete solutions
obtained in [18], since a discrete Laplacian of discrete solutions is not controlled.

Let us briefly describe our technique to prove the aforementioned convergence re-
sults for numerical schemes in multiple space dimensions. The starting point is a dis-
crete version of the entropy estimate valid also in the case W ′ 6≡ 0 (cf. Lemma 4.3).
This estimate provides a uniform boundedness result in L2(ΩT ) for a certain dis-
crete Laplacian of discrete solutions Uh. This property enables us to prove that dis-
crete solutions (Uh)h→0 are uniformly bounded in L2((0, T );Cβ(Ω)) for β < 2− d

2 ,
and that their gradients (∇Uh)h→0 are uniformly bounded in L2((0, T );Lp(Ω)) for
p < 2d

d−2 . The latter result is needed for compactness in time of discrete solutions
when M(·) is not bounded. The former result is a main ingredient to identify the
limit of the flux terms Jh with M(u)∇(W ′(u)−∆u).

The outline of the paper is as follows. In section 2, the initial-boundary value
problem will be formulated in the continuous setting, and the physical background
of certain growth assumptions will be explained. Section 3 is devoted to algorithmic
questions. We formulate the numerical scheme and provide a preliminary existence
result for discrete solutions. In section 4, the energy and the entropy estimate
follow. These are used in section 5 to prove nonnegativity or positivity results for
discrete solutions. Section 6 is one of the main sections of this paper. It contains
the aforementioned improved regularity result for discrete solutions. This allows us
to prove in section 7 a result on compactness in time in the case that M(·) is not
bounded. Finally, section 8 is devoted to the proof of our convergence/existence
result. It also contains a theorem on positivity almost everywhere of solutions in
the continuous setting in the case that W ′(·) is singular. An appendix contains
a first numerical example to underline the practicality of the numerical method
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studied in this paper. For more results, in particular on the comparison between
numerical simulations and physical experiments, we refer to the joint paper [4]
with Becker, Blossey, Jacobs, Mecke, et al. Note that this work shows for the first
time that lubrication models are capable of describing thin film dewetting in precise
quantitative agreement with experiment over a time-interval that exceeds the initial
rupture event by far.

2. Formulation of the problem in the continuous setting

We consider the fourth order degenerate parabolic equation

ut + div
(
M(u)∇(∆u −W ′(u))

)
= 0 in Ω× (0, T ) ⊂ Rd+1,

∂
∂νu = ∂

∂ν∆u = 0 on ∂Ω× (0, T ),
u(0, ·) = u0( · ) in Ω.

(2)

on a convex polygonal domain Ω in Rd with d ∈ {2, 3}. For applications to the thin
film equation, the relevant dimension is d = 2; for applications to the Cahn-Hilliard
equation (cf. [1]) d = 3 becomes important as well.

For ease of presentation, let us assume that M(·) satisfies

(M1) M(s) = (s)n+ with an arbitrary exponent n ∈
{

(0,∞) if d ≤ 2,
(0, 4) if d = 3.

Here,

(s)+ :=

{
s if s ≥ 0,
0 if s < 0.

Assume further that the interfacial energy W ∈ C2(R+;R) can be decomposed
into a sum W = W+ +W− with a convex, nonnegative function W+ ∈ C2(R+) and
a concave function W− ∈ C2(R+).

To avoid further technical difficulties, let us suppose that W satisfies one of the
following hypotheses:

(H1) W ′ is given by W ′(s) := W ′+(s) + W ′−(s) := −H1s
−%1 + H2s

−%2 with
nonnegative constants H1, H2 and positive numbers %1 > %2 satisfying %1 >
2%2 + 1 > 0 and H1 > 0 if H2 > 0.

(H2) A positive constant K2 exists such that W ′′− ≥ −K2 on R.

Let us make a few comments on the physical background of these hypotheses. If
the motion is driven solely by surface tension, then W ′ has to be chosen zero. But
in many cases of interest, long range attractive or repulsive forces acting between
solid and gas cannot be neglected. A typical example is given by van der Waals
forces, which entail an interfacial energy of the form W (s) = As−2. For positive
A spreading is enforced, for negative A the corresponding forces are destabilizing.
In the latter case wellposedness globally in time can be guaranteed, if certain short
range repulsive forces (for instance, effects of Born repulsion) are taken into account.
A typical example is given by the classical 6 − 12-Lennard-Jones potential, which
entails growth assumption (H1) with %1 = 9 and %2 = 3.

On the other hand, gravity effects are modeled by energy functions satisfying
(H2). For more information on the physical background, we refer to [21] and the
references therein.
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3. Formulation of the algorithm—Existence of discrete solutions

Let Th be a regular and admissible triangulation of the domain Ω (cf. Ciarlet’s
monograph [11]) with simplicial elements. Let us suppose in addition that the
discretization is rectangular, in the sense that

(T1) for each simplicial element E ∈ Th, a vertex x0(E) exists such that the
edges connecting x0(E) with vertices xi(E) and xj(E) are perpendicular to
each other for i, j ∈ {1, · · · , d}, i 6= j.

We will take advantage of (T1) mainly in the proof of the entropy estimate (cf.
Lemma 4.3). Note that (T1) does not exclude the applicability of standard strate-
gies for local mesh refinement. However, (T1) induces a slight restriction on the
class of domains that can be considered. Fortunately, that restriction is negligi-
ble in applications. Indeed, we are mainly interested in the spreading of droplets
(i.e., compactly supported initial data) or in instabilities of extended films. In both
cases, Ω serves only as a substitute for Rd. Therefore, the “fine structure” of ∂Ω
seems to be of minor importance. Hence, in the sequel, when we call Ω a polygonal
domain, we implicitly assume that Ω permits triangulations Th endowed with the
property (T1).

By V h, we denote the subspace of H1,2(Ω) consisting of continuous functions
which are linear on each element E ∈ Th. In the following, elements of V h will
be denoted by capitals, and functions contained in nondiscrete function spaces will
be denoted by lower-case characters. A function V ∈ V h is uniquely defined by
its values on the set of nodes Nh = {xj}j∈J of the triangulation Th, where J

denotes a corresponding index set. A set of basis functions dual to the set of nodal
points Nh is given by the “hat”-type functions ϕj ∈ V h with ϕj(xi) = δij . Let us
furthermore introduce the well-known lumped masses scalar product corresponding
to the integration formula

(Θ,Ψ)h :=
∫

Ω

Ih(ΘΨ),

where Ih : C0(Ω)→ V h is the interpolation operator with Ihu =
∑

j∈J u(xj)ϕj .
By (u, v), we denote the usual L2-scalar product on Ω. The diagonal, positive

definite lumped masses matrix is given by (Mh)ij = (ϕi, ϕj)h, and Lh stands for
the standard stiffness matrix (Lh)ij = (∇ϕi,∇ϕj). The canonical basis on Rd is
denoted by 〈e1, · · · , ed〉. Let the time interval [0, T ] be subdivided into intervals
Ik = [tk, tk+1) with tk+1 = tk+τk for time increments τk > 0 and k = 0, · · · , N−1.
For simplicity, we assume τk ≡ τ for k = 0, · · · , N−1. We will denote the backward
difference quotients with respect to time by ∂−τ . Finally, we introduce S0,−1(V h)
as the space of functions v : [0, T ] → V h which are constant on each Ik, k =
0, · · · , N − 1.

We recall the following well-known estimates:

(3) |(U, V )− (U, V )h | ≤ Ch
1+l ‖U‖l ‖V ‖1 for all U, V ∈ Vh, l = 0, 1.

In the same spirit, there exist positive constants c, C such that for |.|h :=
√

(., .)h
we have

(4) c|.|2h ≤ (., .) ≤ C|.|2h.
Then, an implicit, backward Euler discretization scheme for equation (2) reads

as follows:
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For given U0 ∈ V h and k = 0, · · · , N−1, find functions (Uk+1, P k+1) ∈ V h×V h
such that (

∂−τ U
k+1,Θ

)
h

+
(
M(Uk+1)∇P k+1,∇Θ

)
= 0,(5) (

∇Uk+1,∇Ψ
)

+
(
W ′+(Uk+1),Ψ

)
h

+
(
W ′−(Uk),Ψ

)
h

=
(
P k+1,Ψ

)
h

(6)

for all Θ,Ψ ∈ V h.
Note that only the destabilizing term W ′− is discretized explicitly—a strategy

which is reminiscent of a method used for the discretization of nonlinear source
terms in second order semilinear parabolic equations (cf. [15]). Later on, this
will entail in a very natural way estimates controlling the total energy at a given
time t > 0 in terms of the initial energy. However, for the discretization of fourth
order degenerate parabolic equations we need additional concepts which are rather
subtle and which go far beyond the strategies applied in the case of second order
equations. This is mainly due to the fact that these degenerate equations admit
globally nonnegativity-preserving solutions—a property which is rather peculiar in
the class of fourth order parabolic equations. Heuristically, this particular behavior
occurs since the mobility M(·) degenerates at zero, and therefore the flux J =
M(u)∇p vanishes as soon as u approaches zero. As a consequence, the crucial point,
both with respect to analytical results on nonnegativity, positivity and convergence
of discrete solutions as well as to the performance of the algorithm, is the way
the mobility M(·) is discretized. In previous works ([18], [19], [23]; see also [3]
for an application to Cahn-Hilliard systems), it was shown that a certain class of
harmonic integral means is an efficient ansatz to accomplish this. Moreover, in the
multi-dimensional case it will be necessary to replace the scalar-valued mobility
M(·) in the discrete setting by a matrix-valued mobility field M in order to have
optimal control of different flux components. So let us introduce the notion of an
admissible entropy-mobility pair, which was proposed in [18].

Let m : R→ R+
0 be an approximation of the continuous mobilityM(.), and take

A as a fixed nonnegative number—both will be specified later on. We call a pair of
functions G : R → R+

0 , M : V h →
⊗|Th|

k=1R
d×d an admissible entropy-mobility pair

with respect to the triangulation Th if the following axioms are satisfied:

(i) M : V h →
⊗|Th|

k=1 Rd×d is continuous,
(ii) M(U)|E = m(U)Id if U |E is constant,
(iii) M(U)∇IhG′(U) = ∇U , whereG(s) :=

∫ s
A
g(r)dr with g(s) =

∫ s
A
m(r)−1dr,

and
(iv) on each element E, the matrix M(U)|E is symmetric and positive semidef-

inite.
By construction, G is nonnegative and convex. For nondegenerate reference sim-
plices Ê(α1,··· ,αd) := co(0, α1e1, · · · , αded), the axioms above are satisfied by

M̂ = (%(U(0), U(αiei))δij)i,j=1,··· ,d

with %(x, y) :=
(
�
y

x

1
m(s)

ds

)−1

δij .

Note that for U(αkek) = U(0) the definition simplifies to M̂kk = m(U(0)) . For
elements E which can be mapped onto a reference element Ê(α1,··· ,αd) by an or-
thogonally affine equivalent transformation x 7→ x̂ = x0 + A−1x, A an orthogonal
matrix, the mobility matrix is given by M := AM̂A−1 (for details, cf. [18]).
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To proceed, we will need explicit formulae for the mobility matrices correspond-
ing to M(s) = (s)n+. In order to optimize nonnegativity properties of discrete
solutions, we will distinguish two cases (for details the reader is referred to [18]). If
n ≥ 1, we take for positive σ � 1 the function mσ(s) =M(max(σ, s)) as approxi-
mation to the continuous mobility M(·). For %σ(·, ·), we obtain

(7) %σ(U1, U0) =


(n− 1) U1−U0

U1−n
0 −U1−n

1
if U0, U1 > σ, U0 6= U1,

(n−1)(U1−U0)

σ1−n−U1−n
1 +(1−n)(U0−σ)σ−n

if U1 ≥ σ, U0 ≤ σ, U1 6= U0,

σn if U1, U0 ≤ σ,
Un0 if U1 = U0 > σ,

if n > 1 and

(8) %σ(U1, U0) =


U1−U0

log(U1)−log(U0) if U0, U1 > σ, U0 6= U1,
U1−U0

log(U1)−log(σ)−(U0−σ)σ−1 if U1 ≥ σ, U0 ≤ σ, U1 6= U0,

σ if U1, U0 ≤ σ,
U0 if U1 = U0 > σ,

if n = 1.
If 0 < n < 1, we define the discrete entropy Gσ for 0 < σ � 1 as

(9) Gσ(s) :=

{
1

(1−n)(2−n)s
2−n if s ≥ 0,

1
σ

1
(1−n)(2−n) (−s)2−n if s < 0.

We take

mσ(s) :=

{
(G′′σ(s))−1 if s 6= 0,
0 if s = 0,

and A ≡ 0. Hence, for %σ(·, ·) we obtain

(10) %σ(U1, U0) :=



(1−n)(U1−U0)

U1−n
1 −U1−n

0
if min(U1, U0) ≥ 0, U1 6= U0,

(1−n)(U1−U0)

σ−1|U0|1−n+U1−n
1

if U0 < 0 < U1,

σ (n−1)(U1−U0)
|U0|1−n−|U1|1−n if max(U1, U0) ≤ 0, U1 6= U0,

M(U1) if U1 = U0 ≥ 0,
σM(−U1) if U1 = U0 < 0.

For the reader’s convenience, let us give at least a few additional comments on
the meaning of the parameter 0 < σ < 1. If n ≥ 1, σ serves as a regularization
parameter which guarantees that %σ(s, t) is well defined also for arguments s, t ≤ 0.
In contrast, if 0 < n < 1, σ plays the role of a penalization parameter that is used
to enforce nonnegativity of discrete solutions. Indeed, we will prove in section 4
a kind of L∞(I;L1(Ω))-estimate for Gσ(U). Combining this result with equation
(9), it becomes evident that the smaller σ, the more strongly negative values of
discrete solutions will be penalized. Finally, let us emphasize once more that there
are not only technical reasons, e.g., the availability of the entropy estimate and thus
of improved results on regularity, which are in favor of our strategy of harmonic
integral averages. Unpublished numerical experiments indicate that for more naive
approaches, using for instance arithmetic averages, the performance of the algo-
rithm in fact drastically deteriorates with respect to preservation of nonnegativity.
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In the sequel, we will need the following estimate on the integrability of the field
Mσ(·) of discrete mobility matrices. To avoid clumsy notation, for given U ∈ V h
we will use the abbreviation M(U) for the function M̂(U) : Ω→ Rd×d that satisfies
for x ∈ E the relation M̂(U)(x) := M(U)|E . The lemma reads as follows.

Lemma 3.1. LetM(s) := (s)n+ and assume that for 0 < σ < 1 the field of mobility
matrices Mσ : V h →

⊗|Th|
k=1 Rd×d is given as above. Then, a positive constant C

exists, which only depends on the regularity of the mesh, such that for all U ∈ V h
we have

(11)
∣∣∣∣∫

Ω

Mσ(U)dx
∣∣∣∣ ≤ C (∫

Ω

|U |ndx + 1
)
.

Proof. Since Mσ(U) is symmetric, positive semidefinite and constant on each ele-
ment E ∈ Th, it is sufficient to estimate its eigenvalues, i.e., to estimate %σ(Ui, U0)
(cf. (7)-(8)), i = 1, · · · , d. Let us first show the existence of a positive constant C
such that for all 0 < σ < 1

(12) %σ(U1, U0) ≤ C (|U1|n + |U0|n + 1) .

We first consider the case n ≥ 1. Observing that Gσ : R → R+
0 is of class C2 and

that %σ(U1, U0) can be rewritten as

%σ(U1, U0) =
(
G′σ(U1)−G′σ(U0)

U1 − U0

)−1

,

we infer by means of Taylor’s formula the existence of a number ξ ∈ [U0, U1] such
that %(U1, U0) = mσ(ξ). Hence, if min(U0, U1) ≥ σ, we see immediately that
mσ(ξ) = ξn ≤ Un0 + Un1 . On the other hand, if U1 ≥ σ and U0 ≤ σ, then
σn ≤ mσ(ξ) ≤ Un1 . Using for the remaining cases the aforementioned assumption
0 < σ < 1, the desired estimate (12) can easily be established.

Let us now consider the case 0 < n < 1. We will only discuss the subcase
U0 < 0 < U1, as the other cases are straightforward consequences of Taylor’s
formula. Observing that

%σ(U1, U0) ≤ (1− n)(U1 + |U0|)
|U0|1−n + U1−n

1

≤ (1− n)(Un1 + |U0|n)

for arbitrary numbers U1 > 0, U0 < 0 and 0 < σ < 1, we see that (12) holds also
in the case 0 < n < 1. Therefore, on each element E ∈ Th we have

(13) |Mσ(U)| ≤ C
(

d∑
i=0

|Ui(E)|n + 1

)
.

Now observe that the function F (U) :=
∑d

i=0 |Ui|
n is homogeneous of degree n and

that it only vanishes for U0 = · · · = Ud = 0. The same obviously also holds for the
function G(U) := �E |U |n dx. Hence, we infer by homogeneity that∫

E

F (U)dx ≤ C
∫
E

|U |n,

where the constant C depends on the mesh regularity. Summing up,∫
Ω

|Mσ(U)| ≤ C
(∫

Ω

|U |n + 1
)
. �
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If W is sufficiently regular (for instance, if (H2) holds and W ′ is nonsingular),
existence of discrete solutions can be proven on the basis of Brouwer’s fixed-point
theorem. If (H1) is satisfied, we need additional results on strict positivity, which
will be given in section 5. Let us formulate a basic existence result for discrete
solutions:

Lemma 3.2. Assume that W ∈ C1(R;R) can be decomposed into a sum W =
W+ + W− with a convex function W+ ∈ C1(R;R+

0 ) and a concave function W− ∈
C1(R;R). For arbitrary initial data U0 ∈ V h, a discrete solution (U,P ) of (5)-(6)
does exist on [0, T ].

Remark. Note that we do not require W to be nonnegative. Nor do we impose
further growth conditions on W−.

Proof. For Zk = Uk − α with α := 1
|Ω|
∫

Ω U
0, we are looking for Zk+1 satisfying(

∂−τ Z
k+1,Θ

)
h

+
(
M(Zk+1 + α)∇P k+1,∇Θ

)
= 0,(14)(

∇Zk+1,∇Ψ
)

+
(
W ′+(Zk+1 + α),Ψ

)
h

+
(
W ′−(Zk + α),Ψ

)
h

=
(
P k+1,Ψ

)
h
.

Denoting the weighted stiffness matrix Lh(Z) for Z ∈ V h by

Lh(Z)ij :=
∫

Ω

M(Z + α)∇ϕi · ∇ϕj , i, j ∈ {1, · · · , dimV h},

we have to solve the following nonlinear system of q = dim V h equations in each
time step:

F (Z̄) = Z̄ − Z̄k + τkM
−1
h Lh(Z̄)

(
M−1
h LhZ̄ +W ′+(Z + α) +W ′−(Zk + α)

)
= 0.

Here, we denoted the nodal value vector for a function V ∈ V h by V̄ , and
with a slight misuse of notation we rewrote Lh(Z̄) for Lh(Z) and W ′(Z + α) for
IhW ′(Z + α).

Let us now introduce a new bilinear form on Rq by〈
Z̄, V̄

〉
:= (LhZ̄)T V̄ ,

where (V̄ )T denotes the transpose of a vector V̄ ∈ Rq. By definition this form is
symmetric and therefore a scalar product on K⊥ :=

{
W̄ | (MhW̄ )T1 = 0

}
, where

1 = (1, · · · , 1)T . By ‖.‖, we denote 〈., .〉
1
2 . We easily verify that Z̄0 ∈ K⊥, and by

induction that F : K⊥ → K⊥.
Let us assume now that, for a positive number R to be specified later on, a root

F (Z̄) = 0 did not exist on BR(0). Then, due to Brouwer’s fixed-point theorem, the
mapping G : BR(0) → BR(0) defined by G(X̄) := − RF (X̄)

‖F (X̄)‖ would have a fixed-

point X̄0 ∈ K⊥ satisfying
∥∥X̄0

∥∥ = R. Let us choose V̄ = V̄1 + V̄2 in such a way
that

LhV̄1 = Mh

(
W ′+(X0 + α)−

(MhW
′
+(X0 + α))T1
1TMh1 1

)
and

LhV̄2 = Mh

(
W ′+(Zk + α)−

(MhW
′
+(Zk + α))T1
1TMh1 1

)
,
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which is possible since ker(Lh) = 〈1〉. Using the relation XT
0 Mh1 = 0, we may

estimate
〈
X̄0, X̄0 + V̄

〉
in two different ways:

〈
X̄0, X̄0 + V̄

〉
=

∥∥X̄0

∥∥2 + X̄T
0 MhW

′
+(X0 + α) + X̄T

0 MhW
′
−(Zk + α)

=
∥∥X̄0

∥∥2 + (X̄0 + α1− α1)TMh(W ′+(X0 + α)−W ′+(α)1)(15)

+ X̄T
0 MhW

′
−(Zk + α) +W ′+(α)XT

0 Mh1
>

∥∥X̄0

∥∥2 − ε

2
X̄T

0 X̄0 −
1
2ε

(MhW
′
−(Zk + α))TMhW

′
−(Zk + α).

Here, we used the monotonicity of W ′+ as well as the fact that Mh is a diagonal
matrix. Taking into account the equivalence of norms on finite dimensional spaces,
we may find R1 > 0 such that

(16)
〈
X̄0, X̄0 + V̄

〉
> 0

if
∥∥X̄0

∥∥ = R and R ≥ R1.
On the other hand, by convexity of W+ we obtain (recall: F (X̄0) ∈ K⊥!)〈

F (X̄0), X̄0 + V̄
〉

=
〈
X̄0 − Z̄k, X̄0

〉
+ (X̄0 − Z̄k)TMh(W ′+(X0 + α) +W ′−(Zk + α))

+ τ(Lh(X̄0)(M−1
h LhX̄0 +W ′+(X0 + α) +W ′−(Zk + α)))T

∗ (M−1
h LhX̄0 +W ′+(X0 + α) +W ′−(Zk + α))

≥ 1
2

∥∥X̄0

∥∥2 − 1
2

∥∥Z̄k∥∥2
+ (X̄0 − Z̄k)TMhW

′
+(X0 + α)

+ (X̄0 − Z̄k)TMhW
′
−(Zk + α)

≥ 1
4

∥∥X̄0

∥∥2 − 1
2

∥∥Z̄k∥∥2
+
(1,W+(X0 + α)−W+(Zk + α)

)
h

− C · (W ′−(Zk + α))TMhW
′
−(Zk + α)

− (Z̄k)TMhW
′
−(Zk + α)

> 0

(17)

if
∥∥X̄0

∥∥ > R ≥ R2 for sufficiently large R2. Here, C is a positive constant which
only depends on Th.

Hence,
〈
X̄0, X̄0 + V̄

〉
= − R

‖F (X̄0)‖
〈
F (X̄0), X̄0 + V̄

〉
< 0 if R ≥ max{R1, R2}, a

contradiction to (16). This proves the existence of discrete solutions. �

4. Basic a priori estimates—Compactness in space

In this section, we provide the integral estimates necessary for results on com-
pactness with respect to space. We begin with
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Lemma 4.1 (Energy estimate). Let (U,P ) ∈ S0,−1(V h)× S0,−1(V h) be a discrete
solution of (5) and (6). Then the following a priori estimate holds:

1
2

∫
Ω

∣∣∇UN(x)
∣∣2 dx +

∫
Ω

IhW (UN )dx +
∫ T

0

(M(U)∇P,∇P ) dt

+
τ

2

N−1∑
i=0

∫
Ω

∣∣∇(U i+1(x)− U i(x))
∣∣2 dx

≤ 1
2

∫
Ω

∣∣∇U0(x)
∣∣2 dx+

∫
Ω

IhW (U0)dx.

As the proof is similar to that of Lemma 3.2 in [19], we omit it. But we provide
the following corollary.

Corollary 4.2. Let (H1), (H2) and the assumptions of Lemma 4.1 be satisfied.
Assume further that ∫

Ω

∣∣∇U0
h

∣∣2 +
∫

Ω

W (U0
h) ≤ C <∞

uniformly, as h tends to zero. Then there exists a positive constant C(T ) such that
‖Uh‖L∞(I;H1,2(Ω)) + ‖IhW (Uh)‖L∞(I;L1(Ω))

+ ‖(M(Uh)∇Ph,∇Ph)‖L1((0,T )) ≤ C(T ).
(18)

If (H1) holds, then C is independent of time.

Proof. If (H2) holds, the assertion follows by a combination of Poincaré’s inequality
and a discrete version of Gronwall’s lemma (cf. [15]). For (H1), the result is a
straightforward consequence of the boundedness of W from below. �

We proceed with the entropy estimate, which will be important for two reasons.
First, it yields uniform L2(ΩT )-integrability of the discrete Laplacian ∆hUh—the
main ingredient in the convergence proof. Second, it is the key for nonnegativity
results in case (H2).

The proof of this entropy estimate relies on the property of the triangulation Th
to be rectangular (cf. (T1)). This means, for each element Ek ∈ Th, k = 1, · · · , |Th|,
there exist a nondegenerate reference simplex Êk(α1,··· ,αd) and an orthogonal matrix

Ak such that Ek → Êk(α1,··· ,αd) by the affine mapping x→ Ak(x− x0(Ek)).
We need some more notation. Given a finite element function U ∈ V h and

an element Ek ∈ Th, we consider the function Ûk : Êk(α1,··· ,αd) → R defined by

Ûk(x̂) := U(x0(Ek) +A−1
k x̂), x̂ ∈ Êk(α1,··· ,αd).

In addition, we introduce for C1-functions ϕ : R→ R and U ∈ V h the quantity〈
∇̂U, diag(∂ϕ(U))∇̂U

〉
:=
|Th|∑
k=1

|Êk(α1,··· ,αd)|∇x̂Ûk · diag(∂1ϕ(Ûk), · · · , ∂dϕ(Ûk)) · ∇x̂Ûk,
(19)

where

∂iϕ(Ûk) :=

{
ϕ(Ûk(αki ei))−ϕ(Ûk(0))

Ûk(αki ei)−Ûk(0)
if Ûk(αki ei) 6= Ûk(0),

ϕ′(Ûk(0)) otherwise,
i = 1, · · · , d.
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Lemma 4.3 (Entropy estimate). Let (U,P ) be a solution to the system of equa-
tions (5)–(6), let (M,G) be an admissible entropy-mobility pair and let one of the
hypotheses (H1), (H2) hold. Assume furthermore that the triangulation Th satisfies
(T1). Moreover, let the solution U be strictly positive if (H2) is not satisfied.1

Then, for arbitrary T = Kτ , K ∈ N, the following estimate holds:∫
Ω

IhG(U(T, x))dx +
∫ T

τ

∥∥P (t, ·)−W ′+(U(t, ·))−W ′−(U(t− τ, ·))
∥∥2

h
dt

+
1
2

∫ T

τ

〈
∇̂U, diag(∂W ′+(U))∇̂U

〉
≤
∫

Ω

IhG(U0(x))dx +R

(20)

If (H1) holds, then

R :=
H2

2

H1
C(%1, %2)

∫ T

τ

‖∇U‖2 + sup
xi∈Nh

∣∣W ′′−(U0(xi))
∣∣ ∫ 2τ

0

‖∇U‖2 .

Otherwise,

R := K2

(∫ T−τ

0

‖∇U‖2 +
∫ 2τ

0

‖∇U‖2
)
.

Remark. Note that |W ′′−(U0
h(·))| is uniformly bounded in h → 0 if u0 is strictly

positive or if (H2) holds.

Proof. We take the function Θ := IhG′(Uk+1) as test function in the weak formu-
lation (5)-(6). Using the convexity of G(·), we obtain

(21)
1
τ

(∫
Ω

IhG(Uk+1)−
∫

Ω

IhG(Uk)
)

+
(
∇P k+1,∇Uk+1

)
≤ 0.

Relation (6) implies

(
∇P k+1,∇Uk+1

)
=
(
P k+1, P k+1

)
h
−
(
W ′+(Uk+1) +W ′−(Uk), P k+1

)
h

=
∥∥P k+1−W ′+(Uk+1)−W ′−(Uk)

∥∥2

h
−
∥∥W ′+(Uk+1)+W ′−(Uk)

∥∥2

h

+
(
W ′+(Uk+1) +W ′−(Uk), P k+1

)
h

=
∥∥P k+1 −W ′+(Uk+1)−W ′−(Uk)

∥∥2

h

+
(
∇Uk+1,∇Ih(W ′+(Uk+1) +W ′−(Uk))

)
.

(22)

Integration with respect to time gives (note:
∫ T

0
= τ

∑N−1
k=0 )∫

Ω

IhG(U(T, ·)) +
∫ T

τ

∥∥P (t, ·)−W ′+(U(t, ·))−W ′−(U(t− τ, ·))
∥∥2

h

≤
∫

Ω

IhG(U0(·))− τ
N−1∑
k=0

(
∇Uk+1,∇Ih(W ′+(Uk+1) +W ′−(Uk))

)
= I1 − I2.

1In the next section, it will become evident that already the energy estimate implies strict
positivity of discrete solutions if (H1) holds. Hence, this assumption does not mean any restriction.
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It remains to estimate I2. Since the Euclidean scalar product ∇U · ∇V remains
invariant under orthogonal transformations on each element Ek, we observe that

I2 = τ
N−1∑
k=0

〈
∇̂Uk+1, ∇̂Ih(W ′+(Uk+1) +W ′−(Uk))

〉
= τ

N−1∑
k=0

〈
∇̂Uk+1, diag(∂W ′+(Uk+1))∇̂Uk+1

〉
+ τ

N−1∑
k=0

〈
∇̂Uk+1, diag(∂W ′−(Uk))∇̂Uk

〉
= τ

N−1∑
k=1

{〈
∇̂Uk, diag(∂(W ′+(Uk)))∇̂Uk

〉
+
〈
∇̂Uk+1, diag(∂W ′−(Uk))∇̂Uk

〉}
+ τ

〈
∇̂UN , diag(∂W ′+(UN ))∇̂UN

〉
+ τ

〈
∇̂U1, diag(∂W ′−(U0))∇̂U0

〉
(23)

= I1
2 + I2

2 + I3
2 .

Let us distinguish two cases. First, we assume that hypothesis (H1) holds. We may
estimate term I1

2 as follows:

I1
2 ≥ τ

N−1∑
k=1

{〈
∇̂Uk, diag(∂W ′+(Uk))∇̂Uk

〉
− ε

2

〈
∇̂Uk, diag2(∂W ′−(Uk))∇̂Uk

〉
− 1

2ε
‖∇Uk+1‖2L2(Ω)

}
.

Now we use the estimate on difference quotients:

|∂iW ′−(·)|2 ≤ C(%1, %2)
H2

2

H1

(
∂iW

′
+(·) +H1 · %1

)
,

which holds for positive arguments provided %1 > 2%2 + 1 as will be proven in the
next lemma.

Choosing ε in an appropriate way and collecting the remaining terms, case 1 can
be settled.

If hypothesis (H2) holds, I1
2 can be estimated by Young’s inequality in a standard

way:

I1
2 ≥ τ

N−1∑
k=1

〈
∇̂Uk, diag(∂W ′+(Uk))∇̂Uk

〉
−K2τ

N∑
K=1

∥∥∇Uk∥∥2
.

I2
2 is a nonnegative term, and I3

2 can be estimated by Young’s inequality. This
gives the assertion. �

For completeness, we state another lemma.
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Lemma 4.4. Assume that hypothesis (H1) holds. Then there exists a positive
constant C = C(%1, %2) such that for positive numbers u1 < u2 we have

(24)
(
W ′−(u2)−W ′−(u1)

u2 − u1

)2

≤ CH
2
2

H1

(
W ′+(u2)−W ′+(u1)

u2 − u1
+H1%1

)
.

Proof. Lemma 4.2 in [19] implies the existence of a positive constant Ĉ(%1, %2) such
that

(25)
(
W ′−(u2)−W ′−(u1)

u2 − u1

)2

≤ CH
2
2

H1
u%1−1−2%2

1

W ′+(u2)−W ′+(u1)
u2 − u1

.

Due to (H1), u%1−1−2%2
1 < 1 for u1 ≤ 1. For u1 > 1, a number ξ ∈ (u1, u2) exists

such that
W ′+(u2)−W ′+(u1)

u2 − u1
= W ′′+(ξ) = H1 · %1ξ

−%1−1.

Hence, for u1 > 1 we have

(26)
(
W ′−(u2)−W ′−(u1)

u2 − u1

)2

≤ C(%1, %2)H2
2 · %1 · ξ−2−2%2 ≤ C(%1, %2) ·H2

2 · %1.

This gives the result. �

5. Estimates on nonnegativity or positivity of discrete solutions

Besides slight modifications, the approach used in [19] to prove nonnegativity or
strict positivity of discrete solutions in the one-dimensional setting carries over to
the multi-dimensional case. For the reader’s convenience, we gather here the main
results, without giving proofs.

If hypothesis (H1) holds, the energy estimate implies strict positivity of discrete
solutions independently of the dimension, provided the initial data are strictly posi-
tive. If hypothesis (H2) holds, results on nonnegativity or positivity can be obtained
by use of the entropy estimate. The following theorem holds.

Theorem 5.1 (Existence of nonnegative discrete solutions Uστh). Let Th be an
admissible triangulation of Ω satisfying (T1), and assume (M1) and (H2) hold. For
arbitrary ε > 0, there exists a positive control parameter σ0, which only depends on
d, n, ε, h, T , K2 and initial data u0 ≥ 0, such that:

For every 0 < σ < σ0 discrete entropy-mobility pairs (Gσ,Mσ) can be con-
structed having the property that on ΩT the corresponding discrete solutions Uστh of
equation (5)–(6) satisfy

• Uστh > −ε if u0 ≥ 0 and 0 < n < 2,
• Uστh > −ε if u0 ≥ σ0 and n = 2, and
• Uστh > σ/2 if u0 ≥ σ0 and n > 2.

Remarks. 1. As the proof of Theorem 5.1 is nearly identical to the corresponding
result in the case W ≡ 0, which can be found in [18], we refer to that paper for the
details.

2. Let us emphasize that the control parameter σ0 does not depend on the time-
increment τ . In order to ensure a lower bound Uστh ≥ −ε, σ0 has to tend to zero as
h tends to zero.

So let us assume now that hypothesis (H1) holds. We have
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Theorem 5.2 (Existence of strictly positive discrete solutions). Let Th be an ad-
missible triangulation of Ω satisfying (T1), and assume that (M1) and (H1) hold,
that initial data are strictly positive and that

∥∥U0
h

∥∥2

1
+
∫

Ω
IhW (U0

h) is uniformly
bounded for h→ 0. Then for arbitrary h, τ, T , a solution Uh to the discrete system
(5)–(6) exists globally on ΩT . Moreover, for arbitrary h there is a positive number
γ(h) such that Uh ≥ γ(h) on ΩT .

Remarks. 1. This result can be proven along the lines of Theorem 5.2 in [19]. It is
worth noting one difference between the case of one and multiple space dimensions:
As the energy estimate does not provide more than L∞(I;H1,2(Ω))-regularity, it
is no longer possible to prove the existence of a positive lower bound on discrete
solutions uniformly for h→ 0.

2. Observe that we may obtain a result in the spirit of Theorem 5.2 also in the
case that the discrete mobility M(·) is not necessarily part of an admissible entropy-
mobility pair. However, in that case we will lose those integrability properties of
the discrete Laplacian of discrete solutions which are essential to pass to the limit
as h → 0. Therefore, we always assume M(·) to be given as part of an admissible
entropy-mobility pair.

6. Higher regularity of discrete solutions uniformly as h→ 0

In this section, we will prove the key results on regularity of discrete solutions
which will enable us in the sequel to pass to the limit as h → 0 in the weak
formulation (5)-(6).

The following theorem holds:

Theorem 6.1. Let d ∈ {2, 3} and let (Uh)h→0 be a sequence of discrete solutions
to the system (5)–(6) which satisfy both the energy and the entropy estimate. Then

(27) (Uh)h→0 is uniformly bounded in L2(I;W 1,p(Ω))

for arbitrary p <

{
∞ if d = 2,
2d
d−2 if d = 3.

By Sobolev’s imbedding result (recall that mass is conserved!), we immediately
obtain

Corollary 6.2. Let d ∈ {2, 3} and let (Uh)h→0 be a sequence of discrete solutions
satisfying both the energy and the entropy estimate. Then

(28) (Uh)h→0 is uniformly bounded in L2(I;Cβ(Ω))

for arbitrary β < 2− d
2 .

Proof of Theorem 6.1. Combining the entropy estimate (20), the energy estimate
(18), and a discrete version of Gronwall’s lemma, we observe that the discrete
Laplacian

(29) −∆hUh := Ph − Ih(W ′+(Uh) +W ′−(Uh(· − τ)))

is uniformly bounded in L2(I;L2(Ω)) for h tending to zero. Hence, it will be
sufficient to prove, for

p <

{
∞ if d = 2,
2d
d−2 if d = 3,
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the existence of a positive constant C, depending only on the data, such that

(30) ‖∇U‖Lp(Ω) ≤ C · ‖F‖L2(Ω)

for arbitrary (F,U) ∈ V h × V h, which satisfy

(31) (∇U,∇Ψh) = (F,Ψh)h and
∫

Ω

U = 0

for arbitrary Ψh ∈ V h.
To this purpose, consider functions Û ∈ V h and u ∈ H1(Ω) which have mean

value zero on Ω and which solve the auxiliary problems

(32)
(
∇Û ,∇Ψh

)
= (F,Ψh) ∀Ψh ∈ V h

and

(33) (∇u,∇Ψ) = (F,Ψ) ∀Ψ ∈ H1,2(Ω),

respectively. Estimate (3) on the lumped masses scalar product implies

(34)
∣∣∣(∇U −∇Û ,∇Ψh

)∣∣∣ ≤ C · h ‖Ψh‖H1,2(Ω) · ‖F‖L2(Ω) ∀Ψh ∈ V h.

The choice Ψh = U − Û yields

(35)
∥∥∥∇U −∇Û∥∥∥

L2(Ω)
≤ C · h · ‖F‖L2(Ω) .

Elliptic regularity theory2 and standard estimates on the convergence of linear finite
elements (cf. [11]) imply∥∥∥∇Û −∇u∥∥∥

L2(Ω)
≤ C · h · ‖F‖L2(Ω).

Hence

(36) ‖∇U −∇u‖L2(Ω) ≤ C · h · ‖F‖L2(Ω).

Interpolation results for linear finite elements (cf. also the subsequent Lemma 6.3)
combined with (36) lead to the estimate

(37) ‖∇(Ihu)−∇U‖L2(Ω) ≤ C · h · ‖F‖L2(Ω).

From this, we infer the elementwise estimate

(38) |∇(Ihu)−∇U |E ≤ C · h
2−d

2 · ‖F‖L2(Ω).

Indeed, ∇(Ihu)−∇U is constant on each element, and from (37) we obtain

hd |∇(Ihu)−∇U |2E ≤ C · h2 ‖F‖2L2(Ω) .

This implies (38). Hence, for V := Ihu − U ∈ V h, we obtain in space dimension
d = 2,

(39) ‖∇V ‖L∞(Ω) ≤ C · ‖F‖L2(Ω).

In space dimension d = 3, we proceed as follows:∫
Ω

|∇V |
2d
d−2 dx ≤ sup

Ω
|∇V |

2d
d−2−2

∫
Ω

|∇V |2

≤ C · ‖F‖
2d
d−2
L2(Ω) ,

(40)

2Note that here we are implicitly using the assumption that the domain Ω is convex.
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where we used (38). Hence

(41) ‖∇V ‖
L

2d
d−2
≤ C · ‖F‖L2(Ω).

Now, writing

‖∇U‖Lp(Ω) ≤ ‖∇V ‖Lp(Ω) + ‖∇ (Ihu− u)‖Lp(Ω) + ‖∇u‖Lp(Ω)

for p < 2d
d−2 , we get the result provided ‖∇ (Ihu− u)‖Lp(Ω) can be bounded accord-

ingly. By the subsequent Lemma 6.3 we have, for each p < 2d
d−2 ,

(42) ‖∇ (Ihu− u)‖Lp(Ω) ≤ C · hε(p) ‖u‖H2(Ω) ≤ C · hε(p)‖F‖L2(Ω)

where ε(p) is a small positive number. This proves the theorem. �

For the sake of completeness, let us state the following interpolation result

Lemma 6.3. Let Th be a regular triangulation of the domain Ω with simplicial
elements. Let Ih be the corresponding nodal interpolation operator. Then, for
v ∈ H2(Ω) and

2 ≤ q
{
<∞ if d = 2,
< 6 if d = 3,

the following error estimate holds:

(43) ‖∇Ihv −∇v‖Lq(Ω) ≤ C · h
ε(q)

2 ‖v‖H2(Ω) .

Here, the nonnegative exponent ε(q) is given by

(44) ε(q) =
2d− q(d− 2)

q
.

Proof. We use the identity q = 2d
d−2+ε(q) , and we deduce from Theorem 3.1.5 in [11]

the existence of a positive constant C such that

‖∇Ihv −∇v‖Lq(E) ≤ C · h
ε(q)

2 ‖v‖H2(E) .

Summing up over all elements yields

‖∇Ihv −∇v‖qLq(Ω) ≤ C · h
ε(q)q

2

∑
E∈Th

‖v‖qH2(E) .

Since q ≥ 2, we may apply the inequality(
k∑
i=1

|ai|q
) 1
q

≤
(

k∑
i=1

|ai|2
) 1

2

,

which holds for arbitrary k ∈ N. Hence, (43) follows. �
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7. Basic a priori estimates—Compactness in time

Before formulating a result on compactness in time, let us state a few preliminary
observations. Lemma 3.1 implies

(A1) ∃C > 0, such that for all U ∈ V h∫
Ω

Mσ(U)dx ≤ C
(∫

Ω

|U |ndx + 1
)

if Mσ(U), 0 < σ < 1, is the entropy consistent field of
mobility matrices corresponding toM(u) = (u)n+, n ∈ R+.

If discrete initial data satisfy
∫

Ω

{∣∣∇U0
h

∣∣2 + IhW (U0
h) + IhG(U0

h)
}
≤ C < ∞

uniformly for h→ 0, then the following regularity property follows as a consequence
of Theorem 6.1, Corollary 6.2 and the energy estimate.

(A2) The discrete solutions (Uh)h→0 are uniformly bounded in
L2(I;Cβ(Ω)) ∩ L2(I;W 1,p(Ω)) ∩ L∞(I;H1,2(Ω)) for β <

2− d
2 and p <

{
∞ if d = 2,
2d
d−2 if d = 3.

From (A1), (A2), and Corollary 4.2, we infer by straightforward calculations for
discrete solutions (Uh, Ph)h→0 in the limit as h→ 0 that

(45) |Mσ(Uh)∇Ph| is uniformly bounded in L2(I;Lq(Ω))

for each q < 4d
2d+n(d−2) if d = 2 and n > 0, or if d = 3 and 0 < n < 4.

The following estimate on compactness in time can be established:

Lemma 7.1 (Compactness in time). Let (Uh, Ph)h→0 be a sequence of discrete
solutions satisfying (A2). Let s < T be a positive number, and assume (A1) holds.

If d = 2 and n > 0 or if d = 3 and 0 < n < 4, a positive constant C = C(T, u0)
exists such that

(46)
∫ T−s

0

‖Uh(t+ s, x)− Uh(t, x)‖2hdt ≤ C · s.

Proof. Let us first prove the result for values s = lτ , l ≤ N a positive integer. We
will abbreviate Uh by U . For a fixed number j satisfying 0 ≤ j ≤ N − l we choose

Θ := U j+l − U j

in equation (5), multiply by τ and sum over k = j − 1, · · · , j + l − 1 . This implies

τ

j+l−1∑
k=j−1

(
Uk+1 − Uk

τ
, U j+l − U j

)
h

= −τ
j+l−1∑
k=j−1

∫
Ω

M(Uk+1)∇P k+1∇(U j+l − U j).

(47)
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As the term on the left-hand side is equal to (U j+l − U j , U j+l − U j)h, it follows
that (

U j+l − U j , U j+l − U j
)
h

≤ τ
l∑

k=0

(∫
Ω

∣∣M(U j+k)∇P j+k
∣∣q) 1

q
(∫

Ω

∣∣∇(U j+l − U j)
∣∣q′) 1

q′(48)

for arbitrary q < 4d
2d−n(d−2) . Summing from j = 1 to N − l gives

τ

N−l∑
j=1

(
U j+l − U j , U j+l − U j

)
h

≤ C · τ
l∑

k=1

(
τ
N−l∑
j=1

(∫
Ω

∣∣M(U j+k)∇P j+k
∣∣q) 2

q
) 1

2

×
(
τ

N−l∑
j=1

(∫
Ω

∣∣∇(U j+l − U j)
∣∣q′) 2

q′
) 1

2

≤ C · (l + 1)τ ,

which is inequality (46) for s = lτ . Since the remainder of the proof is similar to
that of Lemma 3.3 in [18], we omit it here. �

Remark. Observe that q′ = 4d
2d−n(d−2) <

2d
d−2 if n < 4

d−2 . This explains the restric-
tion that n < 4 if d = 3.

8. A convergence and existence result

In this section, we will present the main result of this paper. First, we need
some notation. We will consider a sequence of discrete solutions (Uh, Ph)h→0 which
converges to a pair of functions (u, p) in a sense to be specified later on. To avoid
clumsy notation, we assume implicitly that the functions Uh are bounded from be-
low by—not necessarily optimal—lower bounds κ(h) which converge monotonically
to zero with h. The existence of those lower bounds follows by the results on dis-
crete nonnegativity in section 5. Moreover, we write τ for the time-increment τ(h)
and σ for the regularization parameter σ(h) occurring in the definition of admissible
entropy-mobility pairs. We will use the following abbreviations:

Definition 8.1. For δ > 0, we consider the following sets:

Sδ := {(t, x) ∈ ΩT |u(t, x) ≥ δ} ,
Sδ(t) := {x ∈ Ω|u(t, x) ≥ δ} ,
SThδ := {(t, x) ∈ ΩT |∃E ∈ Th such that x ∈ E and Uh(t, ·)|E ≥ δ} ,

SThδ (t) := {x ∈ Ω|∃E ∈ Th such that x ∈ E and Uh(t, ·)|E ≥ δ} .

By µd(A), we denote the d-dimensional Lebesgue-measure of the set A.
We have

Theorem 8.2. Let Ω be a convex polygonal domain in Rd, d ∈ {2, 3}, and let
u0 ∈ H1(Ω;R+

0 ) ∩ C(Ω) be given. Suppose n ∈ R+ if d = 2 or n ∈ (0, 4) if d = 3.
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Assume that (H1) or (H2) is satisfied and that a positive constant C exists such
that discrete initial data U0

h := Ihu0 satisfy

(49)
∫

Ω

{∣∣∇U0
h

∣∣2 + IhW (U0
h) + IhG(U0

h)
}
≤ C <∞

uniformly for h → 0. Assume that Th satisfies (T1) and that (Uh, Ph)h→0 is a
sequence of discrete solutions to equations (5) and (6). Then, there exist a set
S ⊂ I, µ1(S) = µ1(I), a nonnegative function u ∈ L∞(I;H1,2(Ω)) ∩ L2(I;H2(Ω))
and a function p : [u > 0]→ R with the following properties: For t ∈ S, the function
u(t, ·) is Hölder continuous on Ω with exponent 0 < β < 2 − d

2 , the function p(t, ·)
is an element of H1

loc([u(t, ·) > 0]), and (u, p) solves (2) in the following sense:∫
ΩT

(u− u0)
∂

∂t
ψdxdt =

∫
[u>0]

M(u) · ∇p∇ψdxdt

for all ψ ∈ C1((0, T );H1,2(Ω)) satisfying ψ(T ) = 0,

p(t, ·) = −∆u(t, ·) +W ′(u(t, ·))
on [u(t, ·) > 0] for t ∈ S.

(50)

Moreover, for a subsequence h→ 0 the following convergence results hold true:
• Uh → u strongly L2(I;Cβ(Ω)) for any 0 < β < 2− d

2 ,
• Ph − IhW ′+(Uh) − IhW ′−(Uh(· − τ, ·)) ⇀ −∆u weakly in L2((ε, T );L2(Ω))

for arbitrary 0 < ε < T ,
• IhW ′+(Uh)χ

[Sδ
⋂
S
Th
δ
4

]
→W ′+(u)χ[Sδ] strongly in L2(ΩT ),

• IhW ′−(Uh(· − τ, ·))χ
[S
Th
δ
4

]
(· − τ, ·)χ[Sδ ](·, ·) → W ′−(u)χ[Sδ] strongly in the

space L2((ε, T );L2(Ω)) for arbitrary 0 < ε < T ,
• Ph(t, ·) ⇀ p weakly in H1(Sδ(t)) for arbitrary δ > 0 and t ∈ S.

Remarks. 1. In the continuous setting, Theorem 8.2 extends previous existence and
nonnegativity results (cf. [10]) to the parameter range n ∈ (0, 1/8]. In addition, it
is the first existence result for equation (1) with a pressure function p containing
singular lower order terms.

2. For fourth order degenerate parabolic equations like (1), uniqueness results are
only known within the class of strictly positive solutions (cf. [8] and [19]). There-
fore, the aforementioned convergence result only holds for subsequences. Neverthe-
less, it is conjectured that solutions in the continuous setting satisfying an entropy
estimate are unique.

The proof of this theorem relies on a number of auxiliary results which will be
listed and proven below.

The first result is about preliminary convergence results for discrete solutions
(Uh)h→0 and discrete fluxes (Jh)h→0. It can be obtained along the lines of the
proof for Theorem 8.1 in [18] using in addition Lemma 7.1, Corollary 6.2, and the
compactness of the imbedding Cα(Ω) ↪→ Cβ(Ω) for α > β.

Lemma 8.3. Under the assumptions of Theorem 8.2, functions

u ∈ L∞(I;H1,2(Ω)) ∩ L2(I;H2(Ω)) and J ∈ L2(I;Lq1(Ω)d),

q1 <
4d

2d+(d−2)n exist such that for a subsequence of discrete solutions (Uh, Ph) we
have, in the limit h→ 0,
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i) Uh → u strongly in L2(I;Cβ(Ω)) for 0 < β < 2− d
2 ,

ii) Ph − IhW ′+(Uh) − IhW ′−(Uh(· − τ, ·)) ⇀ −∆u weakly in L2((ε, T );L2(Ω))
for arbitrary 0 < ε < T , and

iii) Jh := Mσ(Uh) · ∇Ph ⇀ J weakly in L2(I;Lq1(Ω)) for q1 <
4d

2d+(d−2)n .

Furthermore, u is nonnegative, and ut = div J in the following weak sense:∫
ΩT

(u − u0)
∂

∂t
ψdxdt =

∫
[u>0]

J∇ψdxdt(51)

for all ψ ∈ C1((0, T );H1,2(Ω)) satisfying ψ(T ) = 0.

A combination of the Fréchet-Kolmogorov theorem (cf. [22]) with the strong
L2(I;Cβ(Ω))-convergence of (Uh)h→0 implies the following corollary.

Corollary 8.4. Under the assumptions of Lemma 8.3, there is a subsequence h→ 0
such that (Uh(t − τ(h), ·))h→0 uniformly converges to u(t, ·) in Cβ(Ω) for all 0 <
β < 2− d

2 and for almost every t ∈ I.

The next ingredient is a convergence result for the field of discrete mobility
matrices Mσ(Uh). By a slight misuse of notation, we identify the field of matrices
Mσ(Uh) ∈

⊗|Th|
k=1 Rd×d with a matrix valued function M̄σ(Uh) : Ω→ Rd×dsym which is

elementwise constant. The lemma reads as follows:

Lemma 8.5. Let Th be a regular triangulation of Ω satisfying (T1), and let (Uh)h→0

be a sequence of discrete solutions which strongly converges to u ∈ L2(I;Cβ(Ω)),
β ∈ (0, 2 − d

2 ), as h → 0. Assume further that (Uh)h→0 is uniformly bounded in
L∞(I;H1,2(Ω)). IfM(s) = (s)n+ with n as in Theorem 8.2, then the field of discrete
mobility matrices Mσ(Uh) as defined in section 3 strongly converges to M(u) · Id

in Lp(ΩT ) for any p <

{
∞ if d = 2,
6
n if d = 3.

Proof. Let us prove the result first for p = 1. We have to estimate the quantity

∫
ΩT

|Mσ(Uh)−M(u) · Id| =
N(h)∑
k=1

|Th|∑
i=1

∫
Ik

∫
Ei

|Mσ(Uh)−M(u) · Id| .

Here Ik, k = 1, · · · , N(h), denote the subintervals of I on which Uh is constant, and
Ei, i = 1, · · · , |Th|, stand for the elements of the triangulation Th. By construction,
Mσ(Uh) is a constant symmetric positive semi-definite matrix on Eki(h) := Ik ×
Ei ⊂ ΩT . It will be sufficient to estimate on each element the difference between
M(u) and the eigenvalues of this matrix. Since the latter are given by %σ(Uj , U0),
j = 1, · · · , d (cf. section 3), we may assume without loss of generality that the
elements Ei are rectangular and that their vertices x0(Ei) = 0, · · · , xd(Ei) lie on the
coordinate axes. Using the mean-value theorem, we obtain for the jth component,
j = 1, · · · , d, ∫

Eki(h)

|Mσjj(Uh)−M(u)| =
∫
Eki(h)

∣∣mσ(ξkij )−M(u)
∣∣



1272 G. GRÜN

with ξkij ∈ [Uh(kτ, x0(Ei)), Uh(kτ, xj(Ei))]. Hence∫
Eki(h)

|Mσjj(Uh)−M(u)|

≤
∫
Eki(h)

∣∣M(u)−M(ξkij )
∣∣+
∫
Eki(h)

∣∣M(ξkij )−mσ(ξkij )
∣∣

= I1 + I2.

By construction,
I2 ≤ σ|Eki(h)|.

Summing up over all the sets Eki(h), k = 1, · · · , N(h), i = 1, · · · , |Th|, we obtain
for I1:

N(h)∑
k=1

|Th|∑
i=1

∫
Eki(h)

∣∣M(u)−M(ξkij )
∣∣ ≤ N(h)∑

k=1

|Th|∑
i=1

∫
Eki(h)

|M(u)−M(Uh)|

+
N(h)∑
k=1

|Th|∑
i=1

∫
Eki(h)

∣∣M(Uh)−M(ξkij )
∣∣ .

The first term tends to zero on account of the uniform L∞(I;H1,2(Ω))-property of
(Uh)h→0, Vitali’s theorem and the strong convergence of Uh → u in L2(I;Cβ(Ω)).
To treat the second term, observe that ξkij ∈ co(Uh(kτ, x0(Ei)), · · · , Uh(kτ, xd(Ei))),
and that for almost every t ∈ I, the discrete solution Uh(t, ·) strongly converges to
u in Cβ(Ω). As a consequence,

∑N(h)
k=1

∑|Th|
i=1 ξ

ki
j · χEki(h)(t, x) converges to u(t, x)

for arbitrary x ∈ Ω. An application of Vitali’s theorem shows that the second term
converges to zero; hence the convergence of the field of discrete mobility matri-
ces in L1(ΩT ) is established. Another application of Vitali’s theorem, combined
with the uniform L∞(I;H1,2(Ω))-regularity of Uh and Lemma 3.1, shows that the

convergence in fact takes place in Lp(ΩT ) provided p <

{
∞ if d = 2,
6
n if d = 3.

�

If W ′ is singular (e.g., if (H1) applies), the convergence of Ih(W ′+(Uh(·, ·)) +
W ′−(Uh(·−τ, ·))) to W ′(u) is not a direct consequence of the L2(I;Cβ)-convergence
of (Uh)h→0. Before formulating the result, it is worth reflecting upon the technical
difficulties which will arise. If we only had to show that W ′(Uh) converges to W ′(u)
on Sδ for h→ 0, the proof would be rather straightforward, using the convergence
properties of (Uh)h→0 and the equi-continuity of W ′(·) on (δ,∞). But we need a
corresponding result for IhW ′(Uh), and in order to make use of the convergence
properties of W ′(Uh), it is necessary to control the norm

‖IhW ′(Uh)−W ′(Uh)‖L2(Ah)

uniformly for h → 0 on sets Ah ⊂ Sδ satisfying limh→0 Ah = Sδ in an appropriate
sense. This can be achieved, as the subsequent Lemma 8.7 shows, if we guarantee
that Uh is bounded from below by a positive number on these subsets Ah. That is
the reason why we will confine ourselves in the following lemma to the convergence
of IhW ′(Uh)χ

[Sδ
⋂
S
Th
δ
4

]
. It reads as follows.
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Lemma 8.6. Let (Uh)h→0 be a sequence of discrete solutions such that
(Uh(t− τ, ·))h→0 and (Uh(t, ·))h→0 uniformly converge to u(t, ·) in Cβ(Ω) for arbi-
trary 0 < β < 2− d

2 and almost every t ∈ I. Then:
• IhW ′+(Uh)χ

[Sδ
⋂
S
Th
δ
4

]
converges strongly to W ′+(u)χ[Sδ ] in L2(ΩT ), and

• IhW ′−(Uh(· − τ))χ
[S
Th
δ
4

]
(· − τ)χ[Sδ ] converges strongly to W ′−(u)χ[Sδ] in

L2(ΩT ).

Remark. If W ′+(·) (or W ′−(·)) is not singular at zero, then the stronger results
IhW ′+(Uh) → W ′+(u) in L2(ΩT ) (or IhW ′−(Uh(· − τ, ·)) → W ′−(u) in L2(ΩT ), re-
spectively) can be obtained. On the other hand, if (H1) holds and %1 is sufficiently
large, i.e.,

%1 >

{
4 if d = 2,
9 if d = 3,

then u(t, ·) is strictly positive for almost every t ∈ (0, T ), as a combination of the
energy estimate and Corollary 6.2 shows. Hence, for almost every t ∈ (0, T ) and
for sufficiently small δ > 0 the set Sδ(t) coincides with Ω.

Proof. As a consequence of the uniform convergence of (Uh(t− τ, ·))h→0 in Cβ(Ω),
the functions χ

[S
Th
δ
4

(t−τ)]
χ[Sδ(t)] converge strongly in L2(Ω) to χ[Sδ(t)] for almost

every t ∈ I. Therefore, also W ′−(Uh(t−τ, ·))χ
[S
Th
δ
4

(t−τ)]
χ[Sδ(t)] converges strongly to

W ′−(u(t, ·))χ[Sδ(t)] in L2(Ω) for almost every t ∈ I. Combining this result with the
subsequent auxiliary Lemma 8.7 and Lebesgue’s theorem on majorized convergence,
the assertion follows for W ′−. The modifications necessary to treat W ′+ are obvious.

�

It remains to prove the following auxiliary result

Lemma 8.7. Let G : R → R be of class H1,∞, let a regular triangulation Th of a
domain Ω be given which satisfies (T1), and let V h be the corresponding space of
linear finite elements. Then, for arbitrary U ∈ Vh,

(52) ‖IhG(U)−G(U)‖L2(Ω) ≤ C · ‖G‖
2
1,∞ · hd

∫
Ω

|∇U |2

Proof. After an appropriate affine-equivalent transformation, we can assume an
element K to be given by

K = co(0, h · s1 · e1, · · · , h · sd · ed).
Here, (e1, · · · , ed) is the canonical basis of Rd, and the positive numbers (si)i=1,··· ,d
are uniformly bounded away from zero and also bounded from above.

For arbitrary x ∈ K, we have

G(U(x)) = G(U(0)) +G′(ξ1) · 〈∇U, x〉
with a number ξ1 ∈ co{U0, · · · , Ud}. On the other hand,

(IhG(U))(x) = G(U0) +
d∑
i=1

(xi ·G′(ζi) ·
Ui − U0

h · si
)

with numbers ζi ∈ co{U0, · · · , Ud}.
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Hence

|G(U(x)) − (IhG(U))(x)| ≤ d · ‖G′‖L∞(Ω) |∇U | · |x|.

Furthermore,∫
K

|G(U(x)) − (IhG(U))(x)|2 ≤ C · d2 ‖G′‖L∞(Ω) | · h
d

∫
K

|∇U |2,

which gives the result. �

The main ingredient for the proof of Theorem 8.2 is the following lemma, which
allows an identification of the limit J of discrete fluxes Jh with the continuous flux
M(u)∇p.

Lemma 8.8. Assume that (H1) or (H2) is satisfied and that a sequence (Uh)h→0

of discrete solutions has the following properties:

Uh → u strongly in L2(I;Cβ(Ω)) for 0 < β < 2− d

2
,(53)

−∆hUh = Ph − IhW ′+(Uh)− IhW ′−(Uh(· − τ, ·)) ⇀ −∆u

weakly in L2((ε, T );L2(Ω)) for arbitrary 0 < ε < T ,(54)

Jh := Mσ(Uh) · ∇Ph ⇀ J weakly in L2(I;Lq1(Ω)) for q1 <
4d

2d+ (d− 2)n
,(55)

Mσ(Uh)→M(u) strongly in Lp(ΩT ) for all p <

∞ if d = 2,
6
n

if d = 3,
(56)

IhW ′+(Uh)χ
[Sδ

⋂
S
Th
δ
4

]
→W ′+(u)χ[Sδ] strongly in L2(ΩT ),(57)

IhW ′−(Uh(· − τ))χ
[S
Th
δ
4

]
(· − τ)χ[Sδ ] → W ′−(u)χ[Sδ] strongly in L2(ΩT ).(58)

Then a set S ⊂ I, µ(S) = µ(I), exists such that for all t ∈ S, the function u(t, ·)
is Hölder-continuous to the exponent β < 2 − d

2 , and a function p(t, ·) : Ω → R,
p(t, ·) ∈ H1

loc([u(t, ·) > 0]), exists such that

p(t, ·) =

{
−∆u(t, ·) +W ′(u(t, ·)) on [u(t, ·) > 0],
0 on [u(t, ·) = 0],

(59)

J(t, ·) =

{
M(u(t, ·))∇p(t, ·) on [u(t, ·) > 0],
0 on [u(t, ·) = 0].

(60)

Moreover, for arbitrary δ > 0 and t ∈ S, the sequence (Ph(t, ·))h→0 converges weakly
to p(t, ·) in H1(Sδ(t)).

Proof. Let us first prove the existence of a set S ⊂ I with µ(S) = µ(I) such that
for each t ∈ S and for a subsequence which we will denote again by the index h we
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have

Mσ(Uh(t, ·))→M(u(t, ·)) strongly in Lp(Ω) for all p <
2d

(d− 2)n
,(61)

Uh(t, ·)→ u(t, ·) strongly in Cβ(Ω) for all β < 2− d

2
,(62)

Uh(t− τ, ·)→ u(t, ·) strongly in Cβ(Ω) for all β < 2− d

2
,(63)

IhW ′+(Uh)χ
[Sδ

⋂
S
Th
δ
4

]
(t, ·)→W ′+(u)χ[Sδ](t, ·) strongly in L2(Ω),(64)

IhW ′−(Uh(t− τ, ·))χ
[S
Th
δ
4

]
(t− τ, ·)χ[Sδ ](t, ·)→W ′−(u)χ[Sδ](t, ·) strongly in L2(Ω),

(65)

∫
Ω

|∆hUh(t, ·)|2 is uniformly bounded for h→ 0,(66)

(Mσ(Uh(t, ·))∇Ph(t, ·),∇Ph(t, ·)) is uniformly bounded for h→ 0.(67)

Let us first discuss (61)–(65). The existence of a set S1 ⊂ I with measure µ1(S1) =
µ1(I) on which (61)–(65) are satisfied follows at once due to Corollary 8.4 and the
fact that convergence in Lp implies convergence almost everywhere for a subse-
quence. To prove a uniform bound on (Mσ(Uh(t, ·))∇Ph,∇Ph) and

∫
Ω |∆Uh(t, ·)|2

for almost every t ∈ I, we argue as follows: Consider the set

E :=
{
t ∈ I| lim inf

h→0
(Mσ(Uh(t, ·))∇Ph(t, ·),∇Ph(t, ·)) = +∞

}
.

Define Kh(t) := (Mσ(Uh(t, ·))∇Ph(t, ·),∇Ph(t, ·)) and

[A]L :=

{
A if A < L,

L otherwise.

By the energy estimate,

C ≥
∫
E

(Mσ(Uh)∇Ph,∇Ph) ≥
∫
E
[Kh(t)]Ldt

h→0−→ L · |E|.

We let L tend to infinity, and (67) is proven for almost every t ∈ I. A similar
reasoning also applies to (66). Therefore a subset S with the required properties
exists.

Let us next prove a result on weak convergence of ∆hUh(t, ·) in Ω pointwise
for all t ∈ S. Combining (62) and (66), we observe that the whole sequence
(∆hUh(t, ·))h→0 converges to ∆u(t, ·) weakly in L2(Ω) for t ∈ S. This allows us to
define for t ∈ S a function

p(t, x) :=

{
−∆u(t, x) +W ′(u(t, x)) if u(t, x) > 0,
0 if u(t, x) = 0.

For t ∈ S, the function p(t, ·) is obviously an element of L2
loc(u(t, ·) > 0), and on

Sδ(t) := {x ∈ Ω|u(t, x) ≥ δ} the function p(t, ·) can be obtained as weak limit of
the discrete pressure Ph(t, ·).
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Let us now investigate for δ > 0 the limit behaviour of ∇Ph(t, ·) on Sδ(t) as h
tends to zero. We decompose

Ph(t, ·) = −∆hUh(t, ·) + IhW ′+(Uh(t, ·))︸ ︷︷ ︸
P 1
h

+ IhW ′−(Uh(t− τ, ·))︸ ︷︷ ︸
P 2
h

.

Relation (62) implies that

Sδ(t) ∩ SThδ
4

(t) = Sδ(t)

for t ∈ S and h = h(t) sufficiently small. Take η ∈ C∞0 ((Sδ(t))◦;Rd) and observe
that

∫
Sδ(t)

|∇Ph(t, ·)|2 is uniformly bounded due to (67). We obtain, for a weak
limit ξ,

(68)
∫
Sδ(t)

ξ · η = lim
h→0

{
−
∫
Sδ(t)

P 1
h div η −

∫
Sδ(t)

P 2
h div η

}
,

provided the limit on the right-hand side exists. To prove this, let us first study the
convergence behaviour of the first term on the right-hand side. By (62) and (64),∫

Sδ(t)

P 1
h div η h→0−→

∫
Sδ(t)

(
−∆u(t, ·) +W ′+(u(t, ·))

)
div η

for all η ∈ C∞0 ((Sδ(t))◦;Rd). To show that
∫
Sδ(t)

P 2
h div η converges for h → 0 to∫

Sδ(t)
W ′−(u(t, ·)) div η, observe that (63) implies that

Sδ(t) ∩ SThδ
4

(t− τ) = Sδ(t)

for t ∈ S and h = h(t) sufficiently small. The previous argument can be repeated,
and altogether we may identify

ξ = ∇p on Sδ(t).

It remains to prove the identification

J(t, ·) =

{
M(u(t, ·)∇p(t, ·) on [u(t, ·) > 0],
0 on [u(t, ·) = 0],

for t ∈ S.
Assumption (55) combined with (61), (67) and the fact that ∇Ph(t, ·) weakly

converges on Sδ(t) to ∇p(t, ·) implies that

Jh(t, ·) ⇀M(u(t, ·))∇p(t, ·)
weakly in Lq(Ω) for all q < 4d

2d+(d−2)n . The asserted identification on [u(t, ·) > 0]
follows.

It remains to consider the set N = [u(t, ·)] = 0 for t ∈ S. We have∫
N
Mσ(Uh)|∇Ph|(t, ·) ≤

(∫
Ω

Mσ(Uh)|∇Ph|2(t, ·)
) 1

2

·
(∫
N
|Mσ(Uh)|(t, ·)

) 1
2

= oh(1)

This proves the lemma. �
Proof of Theorem 8.2. This is a direct consequence of Lemmas 8.3, 8.6, and 8.8. �

Passing to the limit as h → 0 in the integral estimates, we obtain the following
positivity result on the continuous solution u:
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Theorem 8.9. For arbitrary T > 0 there exists a positive constant C(T ) such that
the solution u constructed in Theorem 8.2 satisfies the following integral estimate:

(69) ess sup
0<t<T

{∫
Ω

|∇u|2 +
∫

Ω

W (u) +
∫

Ω

G(u)
}
< C(T ).

If (H1) holds or if n > 2, then for almost every t ∈ (0, T ) the d-dimensional measure
of the set [u(t, ·) = 0] vanishes.

Proof. Estimate (69) is a direct consequence of Fatou’s lemma, the energy estimate
(18), the entropy estimate (20) and the fact that Uh(t, ·) −→ u(t, ·) in Cβ(Ω),
0 < β < 2− d

2 , for almost every t ∈ (0, T ).
The asserted positivity result follows by the growth assumption on W or the

singular behaviour of G(·) near zero for n > 2, respectively. �

9. Appendix

To give a first flavor of the practicality of the numerical method analyzed in this
paper, we present a simulation of film instabilities due to gravity effects (Rayleigh-
Taylor effect). From every day experience (for instance, a liquid film hanging below
the ceiling), we expect the film to be unstable and we expect droplets to form.
This effect is shown in Figure 1, where the different stages correspond to times
t1 = 0.0, t2 = 0.00289, t3 = 0.00312, and t4 = 0.005. Note that the droplets are
paraboloid-shaped, which is an effect due to the linearized curvature term in the
lubrication model.

This simulation was performed together with Martin Rumpf, based on a joint
numerical code. For more detail and simulations addressing different phenomena
encountered in thin film flow, we refer to the papers [4] and [20].

Let us nevertheless make a few comments on the computational aspects. Choos-
ing the domain Ω = (−1, 1)2, we solve the equation

ut + div
(
u2∇ (∆u+ 200u)

)
= 0

using a simplicial triangulation with 1282 grid points. Note that the pressure p =
−∆u−200u is given as the sum of a linearized surface tension term and an additional
gravity term which causes the instability.

As initial data, we take the interpolant of the function

u0(x, y) = (1 + 0.005 sin(50(x− 0.4)2))(1 + 0.0005 sin(50(y + 0.4)2)).

We choose σ = 10−12 and use a time-step control inspired by the concept presented
in [18]. More precisely, we determine in each time-step tk on each element E ∈ Th
numbers

v(tk, E) :=


M((Uστh)E)

(Uστh)E

d∑
i=1

|∂xiP στh| if Uστh|E ≥ 0 and (Uστh)E > 0,

0 otherwise,

and we define the time-increment τk by the formula

τk :=
γh

β + maxE∈Th v(tk, E)
with 0 < β < γ ≤ 1.

The reader familiar with the modeling aspects of lubrication approximation will
realize that the heuristics of that strategy are the following. Vertical averages
of horizontal components of the fluid’s velocity field correspond to the quantity
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Figure 1. Droplet formation due to gravity effects—side view and
bird’s eye perspective.

M(u)
u ∇p, and as soon as these components become large, the time-increment is

chosen small. Otherwise, large increments are allowed. This concept is not only
well-suited to track contact lines efficiently (see [18]); in addition it also helps to
reduce the number of iterations necessary to solve the arising discrete equations.

With respect to the analytical issues raised in the present paper, we note that—
obviously—hypothesis (H2) is satisfied. Hence, discrete nonnegativity follows by
the entropy estimate.
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