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ON THE ORBIT-STABILIZER PROBLEM
FOR INTEGRAL MATRIX ACTIONS
OF POLYCYCLIC GROUPS

BETTINA EICK AND GRETCHEN OSTHEIMER

ABSTRACT. We present an algorithm to solve the orbit-stabilizer problem for
a polycyclic group G acting as a subgroup of GL(d,Z) on the elements of Q®.
We report on an implementation of our method and use this to observe that
the algorithm is practical.

1. INTRODUCTION

The determination of orbits and stabilizers is one of the most fundamental prob-
lems in algorithmic group theory. If the desired orbit is finite or, equivalently,
the stabilizer has finite index in the given group, then we can list the orbit and
calculate Schreier generators for the stabilizer as outlined in [2]. This method for
finite orbits can be improved if the acting group is polycyclic, as observed in [10].
However, none of these methods would terminate if the considered orbit is infinite.

The central aim here is to develop a practical algorithm to solve the orbit-
stabilizer problem for elements in Q% under an integral matrix action of a (possibly
infinite) polycyclic group G. Clearly, the desired orbits may be infinite and thus
cannot be listed explicitly. Nonetheless we can solve the following problems:

e stabilizer problem: for v € Q7 construct a generating set for Stabg(v).
e orbit problem: for v,w € Q¢ decide whether or not there exists an element
g € G with vg = w; if so, find such an element g.

These problems arise naturally in algorithms for polycyclic groups G which are
given by a polycyclic presentation: the natural conjugation action of G on a normal
free abelian subfactor gives rise to an integral matrix action. Thus practical meth-
ods to solve the orbit-stabilizer problem will have a variety of applications, such as
in the determination of centralizers or intersections of subgroups of G or in solving
the conjugacy problem for elements of G. We refer to [8] for details on this topic.

It is well-known that the orbit-stabilizer problem is undecidable for general ma-
trix groups, and yet it is decidable for polycyclic-by-finite integral matrix groups,
as observed in [I]. The algorithms introduced to establish this decidability were
not developed with a view to practicality. A more practical approach to solving the
orbit-stabilizer problem in the case of a nilpotent-by-finite rational matrix group
has been described in [[7], but this method has never been implemented and it is
expected to be limited to small dimensions only.
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The algorithms presented in this paper have been implemented in the computer
algebra system GAP [I5] using an interface to KANT [4]. This implementation
demonstrates that the developed methods are practical for a number of interesting
examples. We include a report on this implementation and its applications below.

This paper is organized as follows. Section P recalls background information
about polycyclic rational matrix groups. Section [3] describes a collection of basic
algorithms for polycyclic groups that will be needed for the orbit-stabilizer calcula-
tions. Section[] presents an algorithm for calculating orbits and stabilizers. Section
Bl outlines an example application of our method. Section [6] contains a report on
our implementation and the results of experiments that illustrate the practicality
of our methods.

2. PRELIMINARIES ON MATRIX ACTIONS

Throughout, Z denotes the ring of integers, Q the field of rationals, and F, the
field with p elements. We consider a group G acting viav : G — GL(d,Q): g — g
on V = Q% The image G of this action is a rational matrix group. In this section
we recall the properties and notations related to such actions and their modules
which we need in our later methods.

The module V is called irreducible if it has no proper QG-invariant subspaces.
Similarly, V' is semisimple if it is a direct sum of irreducible subspaces and it is
homogeneous if it is a direct sum of isomorphic irreducible subspaces. If V is
irreducible, homogeneous or semisimple, then we also describe G as irreducible,
homogeneous or semisimple, respectively. Further, G is unipotent if it is conjugate
to a group of upper unitriangular matrices in GL(d,Q). We say that G is C-
triangularizable if it is conjugate to an upper triangular subgroup of GL(d, C).

Let G be finitely generated. Then there is a finite set of primes 7 such that
the matrix entries of the elements of G have denominators divisible by primes
in w only. For example, 7 can be chosen as the prime divisors of the entries in
the generators of G and their inverses. We obtain that G < GL(d,Q,), where
Qr={3€Qfp fboforallp ¢} Thus, if pis a prime with p € 7, then the
natural ring homomorphism ¢ : Q, — IF,, extends to the congruence homomorphism

Yp 1 G — GL(d,Fp) : (gi5)ig — ((96,5))is-
The kernel G, of 1, is called the p-congruence subgroup of G. The following fun-

damental theorem on the structure of p-congruence subgroups of polycyclic matrix
groups is proved in [7], Lemma 9.

Theorem 2.1 (Dixon). Let G < GL(d,Q,) be polycyclic. If p & 7 is an odd prime,
then G, is torsion-free and @; is unipotent. Thus G, is unipotent-by-abelian.

The following lemma from [12] gives further insight into the structure of uni-
potent-by-abelian polycyclic rational matrix groups and the matrix algebras they
generate. For a rational matrix group G < GL(d, Q) we denote by Q[G] the matrix
algebra generated by the matrix elements of G. Thus Q[G] is a rational algebra of
dimension at most d?.

Lemma 2.2. Let G be a polycyclic subgroup of GL(d,Q,) and p € 7 an odd prime.
Let V.= Q% be the natural QG-module. Then the following are equivalent.

a) G is unipotent-by-abelian.

b) G is C-triangularizable.
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c) There exists a sequence of QG-invariant subspaces V. = Vi > >V >
Vi1 = 0 and a basis B through this sequence such that each § € G has the
following form with respect to B:

V1

qg * * *
0 7 =x *
yB = . )
0 0 L%
0 0 0 g”

where v; : G — GL(d;, Q) is a homomorphism with an abelian image H;
such that the matriz algebra Q[H;] is a field.

The factors V;/V;11 of a sequence as obtained in Lemma c¢) are homogeneous,
since the acting matrix algebra is simple. Thus we call such a sequence a homoge-
neous block flag for G. The sequence is called an irreducible block flag if its factors
are irreducible.

Our main application of Lemma[Z2 is to investigate p-congruence subgroups of
groups G which act as subgroups of GL(d,Z). Recall that these groups G, act as
unipotent-by-abelian groups by Theorem[ZT] and thus Lemma 2.2 applies. Further,
these groups act on the rational space Q% but they also act on the integral lattice
Z%. In our later applications we want to exploit this fact, and thus we introduce
an integral version of Lemma 2.2

Remark 2.3. Let G be a group acting via v : G — GL(d,Z) on V = Q¢ and on
W =174,
a) Let U < V be a rational subspace and define U* = {w € W | vw =
0 for all u € U}, where uw is the natural scalar product. Then U** is a
subgroup of W with a free abelian factor group W/U**. Further, U** spans
U as a rational vector space.
by If V=WV >...>V, >V = 0is a series of G-invariant subspaces
of V, then using W; = V;** we obtain an equivalent series of G-invariant
subgroups W = Wy > ... > W; > W41 = 0 such that W;/W,; is free
abelian.

We call the series of Z¢ obtained by Remark 231 b) an integral block flag for G.
Using Remark 23 a), it is straightforward to determine an integral block flag from a
rational block flag. We denote an integral block flag as homogeneous or irreducible
if the factors in the series are homogeneous or irreducible as rational modules. The
following lemma from [§] yields an interesting application of integral block flags.

Lemma 2.4. Let G, be a p-congruence subgroup for the action v : G — GL(d,Z).
Let W = Z% and consider an integral homogeneous block flag W = Wy > ... >
Wi > W1 =0 for G,. Then the action of G, on each free abelian factor W; /Wit4
induces a homomorphism v; : G, — GL(d;,Z) whose image G} is a free abelian
group.

Proof. Let b € GL(d,Z) be the base change matrix corresponding to B, where B is a
basis of W exhibiting the given flag. Note that (G,)* < (GL(d,Z),)* = GL(d,Z),.
Thus (G,)® is a p-congruence subgroup. Hence g € G, yields g° = 1 + ph for a
matrix h. The matrix block form of §® implies now that g“* = 1+ ph; for a matrix
hi. Thus (G,)"* is a p-congruence subgroup. By Theorem 2. Ilwe obtain that (G,)":
is torsion-free and, since it is also abelian, we obtain that it is free abelian. O
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3. BASIC ALGORITHMS FOR POLYCYCLIC GROUPS

Let G be a polycyclic group and let G = {g1,...,gn} be a generating set for G.
We define G; = (g;,...,gn) and G,+1 = 1. Then G is called a polycyclic sequence
for G if G431 <G, for 1 < i < n; that is, the series of subgroups G = G; > ... >
G, > Gpy1 =1 is a subnormal series with cyclic factors of G. By definition, each
polycyclic group has a series of this type, and any such series can be used to obtain
a polycyclic sequence of G.

Within our algorithm to solve the orbit-stabilizer problem for a polycyclic group
G, we assume that G is given by a polycyclic sequence G. In many applications
of the orbit-stabilizer algorithm such a sequence will be known a priori; for exam-
ple, the determination of centralizers or intersections of subgroups in polycyclically
presented groups as outlined in [§] is an application of this type. Further, if G is
a polycyclic rational matrix group given by a generating set, then we can use the
practical method of [I2] to determine a polycyclic sequence for G. Similarly, the
algorithm developed by Lo [11] can be used to determine a polycyclic sequence for
a polycyclic finitely presented group.

In the following sections we recall a number of basic methods for polycyclic
groups given by polycyclic sequences. We refer to [14] for an introduction and pri-
mary applications, and to [8] for a detailed discussion and a variety of applications
of polycyclic sequences.

3.1. Orbits and blocks. Let G be a group acting by multiplication from the right
on an arbitrary set €0, and assume that K is a normal subgroup in G. Suppose that
we can solve the orbit-stabilizer problem in Q for K: for given v,w € € we can
find an element k € K such that vk = w, or else we can determine that no such k&
exists, and we can compute generators for the stabilizer Stabg (v). The following
lemma extends this to a solution for the orbit-stabilizer problem in G.

Lemma 3.1. Let G be a group acting on 2 and let K I G. Let v € Q) and denote
by Stabg(vK) = {g € G | (vK)g = vK} the setwise stabilizer of vKK under the
action of G.

a) vG = Jyeqp(vt) K, where T is a transversal for Stabg(vK) in G.

b) For each g € Stabg(vK) there exists an element kg € K with vg = vk,.

¢) Stabg(v) = (rk;!,Stabg(v) | 7 € R), where R C G with Stabg(vK) =
(R,K).

Proof. a) Since K is normal in G, we observe that (vK)g = (vg)K for each g € G.
Thus vG = J,cq(vg)K. If g = kh for an element k € Stabg(vK), then (vg)K =
(vK)g = (vK)kh = (vK)h = (vh) K. Hence we obtain vG = |J,c(vt) K.

b) is obvious.

c) We consider ¢). Let g € Stabg(vK) and let k, € K with vg = vky. Then
gk, ' € Stabg(v). Hence K Stabg(v) = Stabg(vK) and Stabg(v) is a supplement
to K in Stabg(vK) with intersection Stabg(v) N K = Stabg(v). This implies
c). O

To apply the approach of Lemma 3Tl we need a transversal T and generators R
for the stabilizer Stabg(vK) modulo K. In particular, Stabg(vK) must have finite
index in G.
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3.2. Determining finite orbits and their stabilizers. The approach of Section
B can be used to compute orbits and stabilizers in a finite set 2 under the action of
a polycyclic group G given by a polycyclic sequence G = {g1,...,gn}. We consider
K ={ga,...,gn). Using the polycyclic sequence {go, ..., g,} for K, we can assume
that we can solve the orbit-stabilizer problem for K by induction. We extend this
solution for K to G as follows.

Since 2 is finite, there exists an e € N with (vK)g{™ = vK. If e is min-
imal with this condition, then Stabg(vK) = (¢¢*', K). Thus we can choose
T ={l,01,...,9¢} and R = {g¢*'} in Lemma B Moreover, if {ki,... k.} is
a polycyclic sequence for Stabg (v), then {gkg_l, k1, ...,k } is a polycyclic sequence

for Stabg(v), where g = g{*! and k, is defined as in Lemma BIIb).

3.3. Computing p-congruence subgroups. We consider the p-congruence sub-
group G, corresponding to an action v : G — GL(d, Q). We can use the finite orbit
stabilizer algorithm of Section to determine a polycyclic sequence for G, from
that for G. For this purpose we consider a basis B of FZ and successively stabi-
lize each basis vector in B. Thus we obtain a sequence of stabilizers S; = G and
Si+1 = Stabg, (b;). Note that the finite orbit stabilizer algorithm produces a poly-
cyclic sequence for the computed stabilizer. Hence we can iterate the application
of this method and eventually obtain a polycyclic sequence for Sqi1 = Gp.

3.4. Calculating homogeneous and irreducible block flags. In our orbit-
stabilizer algorithm, we will use an irreducible block flag to solve the orbit-stabilizer
problem for unipotent-by-abelian p-congruence subgroups G, by an inductive ap-
proach. Hence we need to determine such a flag.

In [12] there is described a practical method to determine a homogeneous block
flag for a unipotent-by-abelian matrix group given by a generating set. Using this,
it remains to refine a given homogeneous block flag to an irreducible one. Also,
for induction purposes we need to be able to refine an irreducible block flag for a
unipotent-by-abelian group G to an irreducible block flag for a subgroup H < G.
Both problems are addressed in [§], and practical solutions for them are obtained
there. We recall these solutions in the following for completeness.

Lemma 3.2. Let v : G — GL(d,Q) be such that the image of v is a finitely
generated abelian group G. Let V = Q% be its natural module.

a) If V is homogeneous as QG-module, then each nontrivial vector of V is
contained in an irreducible QG-submodule of V.

b) If V is irreducible as QG-module and H < G, then V is homogeneous as
QH -module.

Proof. a) We consider 0 # w € V and let U be the submodule of V' generated by
w. We have to prove that U is irreducible. Since V' is homogeneous, there exists
a direct factorization V. =V; @ ... ® V,. into isomorphic irreducible G-submodules.
Let w = wy + ...+ w, with w; € V;. Since w # 0, there exists a component i
with w; # 0. Let ¢» : U — V; be the projection onto the i-th component of V.
Since w; # 0, we obtain that v is surjective. It remains to show that 1 is injective.
Let u € ker(3). By construction, v = wa for an element a € Q[G], and thus
0=u? = (wa)¥ = (w¥)a = w;a. By Schur’s lemma we obtain that a acts trivially
on V;. Hence a = 0 and u = wa = 0, as desired.
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b) The matrix algebra Q[G] is abelian and acts irreducibly. Thus each nonzero
element of Q[G] is invertible by Schur’s lemma. Hence also each nonzero element of
the subalgebra Q[H] is invertible. Therefore, Q[H| cannot contain nontrivial ideals,

and Q[H] is simple. Thus V is homogeneous under the action of QH. O

Using Lemma[3.2 a), we can now readily refine a homogeneous block flag to an
irreducible block flag. For this purpose we consider each factor of the homogeneous
block flag and refine it by a series with irreducible factors. Such a series can be
determined by iterated computations of irreducible subspaces. In turn, as observed
in Lemma a), we can determine an irreducible subspace of the homogeneous
factor by choosing an arbitrary nontrivial vector and determining the subspace
it generates. The latter problem can be solved by a spinning algorithm. This
elementary algorithm acts iteratively with group generators on a basis of a subspace
and thus obtains the closure of the subspace under the group action.

Similarly, we can refine an irreducible block flag for a group G to an irreducible
block flag for a subgroup H, since by Lemma 32 b) the considered block flag is a
homogeneous block flag for H, and thus the above method applies.

Remark 3.3. Let v : G — GL(d,Z) be an integral action of G. Then we can
determine an integral irreducible block flag for G using a rational irreducible block
flag and Remark 2.3

3.5. Determining centralizers of abelian actions. The computation of kernels
of homomorphisms is one of the main tools in our orbit-stabilizer method. In all
applications of the tool we consider a homomorphism of a polycyclic group G given
by a polycyclic sequence G = {g1, ..., gn} into an abelian group: v: G — G : g — 3.
Since the image of v is abelian, we obtain that the relations of the images of G form
a lattice:
H(@) = {(ev, . ea) | F0 T = 1} < 2.

The following lemma shows that the relation lattice determines the kernel of v.
We include a brief sketch of its proof here for completeness, and we refer to [§] for
a detailed proof and background on kernel computations in polycyclic groups.

Lemma 3.4. Let G be a polycyclic group with polycyclic sequence G = (g1,...,gn),
and let v : G — G be a homomorphism with abelian image. Let B be a basis
in upper triangular form for the relation lattice v1(G) and let KK = {g5™ ---gé»
(e1,...,en) € B} be ils corresponding sequence in G. Then K forms a polycyclic

sequence for ker(v).

Proof. We denote K = (k1,...,k;). By construction, K = (K) < ker(v). We show
that IC generates ker(v) using induction. Since G is a polycyclic sequence, each g €
G can be written uniquely in a form g = ¢g7* - - - g5». The integer vector (eq,...,e,)
is called the exponent vector of g. In the inductive step we suppose that all elements
g € ker(v) whose exponent vectors have depth at least ¢ + 1 are contained in K.
We consider an element g € ker(v) whose exponent vector e = (eq,...,e,) has
depth i, and we show in the following that g € K. By construction, e € 71(G).
Since the basis B is in upper triangular form, there exists an element of depth i in
this basis, say b;, and there exists an integer a € N such that e — ab; has depth

greater than i. Now we obtain that k:;a - ¢ is an element of ker(v) whose exponent

vector has depth greater than i. Thus, by induction, we obtain that k;a g e K
and therefore g € K. Thus we obtain by induction that K = ker(v). In fact, this
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inductive argument shows that I is a polycyclic sequence for K, since it determines
the polycyclic series with subgroups K N G;, where G = G1 > ... > Gpy1 =1 is
determined by G. O

Remark 3.5. Lemma [34] will be applied in the following two cases.

a) v:G — Q%: g — 7,;, and the images g, are explicitly given vectors in
Q. In this case we can use the LLL-algorithm to determine a basis for the
lattice (gq,...,g,) and, simultaneously, determine the relations between
the given images.

b) v: G — GL(d,Q) : g; — 7;, and the images g, are explicitly given matrices
generating a free abelian subgroup of GL(d, Q) which acts irreducibly on
Q?. In this case the matrix algebra Q[G] is a field, and finding the relation
lattice can be translated into a number theoretic problem.

In particular, if G < GL(d,Z), then G embeds into the units U of the
maximal order of the algebraic number field Q[G]. Thus in this case it
is sufficient to compute independent generators for U, express the given
generators g, in the independent ones, and then apply the Hermite normal
form algorithm to determine the relation lattice. Alternatively, we can
determine the relation lattice by directly using the additive valuation theory
which also underpins the unit group computation. For further background
on this topic we refer to [3], Section 6.5.4, and to [13].

Remark 3.6. A constructive membership test in irreducible abelian matrix groups
can also be obtained using relation lattices and Remark 35l More precisely, suppose
that the elements §,7,...,d, of an irreducible free abelian group G are given and
we want to determine an expression g = gi* --- gy if it exists. For this purpose
we can determine the relation lattice for §,gy,...,7, using Remark B Then an
expression of the desired type exists if and only if there exists a relation of the form
(=1,e1,...,ep,). This can be checked readily once the relation lattice is given.

(We also refer to [12] for methods to test membership in irreducible abelian
matrix groups.)

4. SOLVING THE ORBIT AND STABILIZER PROBLEMS

Let G be a polycyclic group which acts on Q¢ via v : G — GL(d, Z), and suppose
that a polycyclic sequence for G is known. In this section we introduce a method
to solve the orbit-stabilizer problem for elements of Q¢ under the action of G.

First we observe that it is sufficient to solve the orbit-stabilizer problem for
elements of Z¢. Let v,w € QZ. Then there exists an e, 0 # e € Q, with ev, ew € Z<.
We obtain that Stabg(v) = Stabg(ev) and vg = w if and only if (ev)g = (ew)g.

4.1. Reduction to p-congruence subgroups. Let GG, be a p-congruence sub-
group of G. Since G, < G and [G : G, is finite, we can use Lemma Bl to extend
a solution for the orbit-stabilizer problem for G, to G. Thus we need to determine
generators R with Stabg(vGy) = (R, G,) and a transversal T' for Stabg(vG,) in
G, assuming that we can solve the orbit-stabilizer problem for G,.

Since G has finite index in G, we obtain that the orbit € of vG) under the
action of G is finite. Since G is given by a polycyclic sequence, we can compute a
set R using the finite orbit-stabilizer algorithm of Section and the action of G
on €. Since 2 is finite, Stabg (vGy) has finite index in G. A finite transversal T’ can
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be determined together with the action of G on 2. Therefore, we can reduce the
orbit-stabilizer problem for G to finitely many orbit and stabilizer computations
for Gp.

Hence it remains to solve the orbit-stabilizer problem for G,. We use that G,
is polycyclic and unipotent-by-abelian, and we describe methods to solve these
problems in this case in Sections {3 and 4] First, in Section [42] we consider
approaches to optimize the reduction to G,,.

4.2. Optimizing the reduction. The extension of the solution for the orbit-
stabilizer problem from G, to G incorporates several calls to the solution of the
orbit-stabilizer problem in G,. While our methods to solve this problem are prac-
tical, it will increase the efficiency to reduce the number of such calls as far as
possible.

For this purpose we note that if we know a priori an intermediate subgroup
Stabg(vGp) < H < G, then Stabg(vG,) = Staby (vG)), and thus the block stabi-
lizer can be determined using a stabilizer computation in the smaller group H. It
will be an advantage for the determination of the block stabilizer if [H : Stabg (vGp)]
is small, since this index corresponds to the orbit length and this, in turn, has an
influence on the number of calls to the orbit algorithm for G,,.

Lemma 4.1. Consider the congruence homomorphism v, : G — GL(d,F,) with
kernel G,. Let v be an element in Z* with image v, in Iﬁ‘g. Note that G acts
naturally on F4 via vy, and let S, = Stabg (vp).

a) Stabg(v) < S, < G, and thus Stabg(v) = Stabg, (v).
b) Stabg(vGy) < S, < G, and thus Stabg(vG,) = Stabg, (vVG)).

Proof. a) is obvious, since 1), is an action homomorphism of G. To prove b), we
consider an element g € Stabg(vGp). By construction, there exists an element
k € G, with vg = vk. Since G, is a congruence subgroup, k acts as 1 + pr on Z¢
for some matrix . Thus vk = v + prv = v mod p. Hence ,(g) stabilizes v,, and
b) follows. O

Lemma BTl a) shows that we can start the orbit-stabilizer computation by ini-
tially computing S, for a suitable prime p and then replacing G by \S,. This process
may be iterated for a number of primes p if desired. Note that S, can be determined
effectively using the finite orbit-stabilizer algorithm of Section In particular,
we can use the finite field arithmetic for this computation, which is more efficient
than the rational arithmetic used for our remaining calculations.

Experiments suggest that it is useful to apply this approach for at least one
prime p. As indicated by Lemma[I]b), the best results are often obtained for the
prime p which is also used to determine G,. In turn, for the computation of G, it
is most effective to choose the smallest possible prime p. Unfortunately, this prime
is not always most suitable for this reduction approach, as the following example
illustrates.

Example 4.2. We consider the matrix g € GL(3,Z) defined by

01 0 . 1 0 0
g=|1 0 0 |. Theng¥ = 0 1 0 | forieZ.
301 3i 3 1
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We define G = (g) and we suppose that we want to determine Stabg(v) for v =
(0,0, 1) using the reduction outlined above. Let B, = Stabg(vG,).

First, we choose p = 3 and obtain that vg = (3,0,1) = (0,0, 1) mod 3. Hence
S3 = G. Further, the 3-congruence subgroup G3 is generated by g¢2, and thus
vGs = {(3i,3i,1) | i € Z}. We obtain G3 = Bs. Altogether, we find that Gg =
B; < S35 =G with [33 : Bg] = 2.

Performing the same calculation with p = 5 instead, we find that G5 = Bs =
S5 = (g'%) < G. Thus, p = 5 is a better choice for this example. But one can
also observe in this small example that the generators for G5 contain larger integer
entries, which is likely to make subsequent computations with G5 less effective than
similar computations with Gs.

4.3. Vector stabilizer for p-congruence subgroups. We consider an action
of Gviav: G — GL(d,Z) : ¢ — 7, and we suppose that G is a p-congruence
subgroup with respect to this action for an odd prime p. Thus the image G of the
action homomorphism is unipotent-by-abelian, and we can determine an integral
irreducible block flag V =V; > ... > V; > Vi;1 = 0 for G by applying Remark B.3
We use induction down this flag to determine Stabg(v) for v € Z4.

In the inductive step, we assume that G = Stabg(v + V;) and we calculate a
polycyclic sequence for Stabg(v + Viy1). We then replace G by Stabg(v + Vig1)
and proceed by induction. Note that after such an induction step we might have to
refine the integral irreducible block flag to such a flag for the computed subgroup.
This can be achieved using the method of Lemma [3.2]

To simplify notation, we assume that V;1; = 0 and we denote V; by U. By our
induction hypothesis, G stabilizes v + U, and thus v(g — 1) = vg — v € U for each
g € G. Hence we obtain amap § : G — U : g — v(g — 1). It is straightforward to
verify that d is a derivation of G; that is, (gh)® = (¢°)h+h? and 1° = 0. Further, we
observe that Stabg(v) = ker(8) = {g € G | ¢° = 0}. Hence we want to determine
the kernel of the derivation §.

Let K = Cg(U); that is, K is the kernel of the natural action of G on the module
U. By our setup, U = Z€ for some e € N, and thus G acts via a homomorphism G —
GL(e,Z) with free abelian image, as observed in Lemma 4. Hence a polycyclic
sequence for K can be computed from a polycyclic sequence of G using the method
of Section B8] We consider the restriction of § to K in the following lemma.

Lemma 4.3. Let G be a group acting on a module U. Define K = Ce(U) and let
0:G — U be a deriwation.

a) The restriction 0 : K — U is a group homomorphism.
b) The image K° is a G-invariant sublattice of U.

Proof. a) Since K centralizes U, we obtain for k,h € K that (kh)’ = (k%)h + h® =
k® + h®. Thus d is a homomorphism into the additive group U.

b) Since d is a derivation, we obtain for k € K and g € G that (k9)° = (¢~ kg)? =
(g7 H)kg + (k%)g + ¢° = (k%)g, since k centralizes U, and thus ((g~)%)kg =
((g71)%)g = —¢°. Hence (k°)g = (k9)° € K?°, using that K is normal in G. O

Thus the stabilizer problem for K is easy to solve: Stabg(v) = ker(dx ), which
is the kernel of a group homomorphism with abelian image. Further, the abelian
image is explicitly given by generators for the lattice K°, and thus a polycyclic
sequence for Stabg (v) can be computed effectively as described in Remark a).
The following theorem provides the basis for our solution of the stabilizer problem

for G .
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Theorem 4.4. Let G be a polycyclic group acting as irreducible free abelian group
on the integral module U. Let K = Cq(U) and let § : G — U be a derivation. Then
one of the following cases holds:

(1) K? =0 and ker(§) = G.

(2) K% =0 and ker(§) = K.

(3) dimg K? = dimg U.

Proof. As observed in Lemma B3] the sublattice K? of U is G-invariant. Since
G acts irreducibly on U, we obtain that K?° either generates all of U or is trivial.
Suppose that K° = 0 and ker(§) < G. We have to show that ker(§) = K and
we are in case 2). Since K° = 0, we have that K < ker(d). On the other hand,
ker(§) < G and there exists an element g € G with g° # 0. Let h € G\ K be
an arbitrary element. First note that gh = hgk for some k € K, since G/K is
abelian by our setup. Thus, (gh)? = (hgk)® = ((hg)®)k + k? = (hg)°, since k
acts trivially on U and k% = 0. This yields (¢°)h + h® = (h%)g + ¢°, and hence
(¢%)(h — 1) = (R®)(g — 1). Both g and h are elements which act nontrivially on
U. Since G acts as an abelian irreducible group, we have that the matrix algebra
induced by the action of G on U is a field, and thus ¢ — 1 and h — 1 act as invertible
elements on U. Thus h® = (¢°)(h — 1)(g — 1)~ # 0. Therefore, h ¢ ker(§). Since
h € G\ K is arbitrary, we obtain that ker(d) = K, as desired. O

This theorem translates into the following approach to determine Stabg(v) as
the kernel of the given derivation §. First, we can readily check if § is trivial. In this
case, ker(d) = G and there is nothing to do. If § is nontrivial, then we determine
K and check if K% = 0. In this case, we obtain ker(§) = K by Theorem E4l It
remains to consider the case where K? # 0. Theorem 4 shows that K? generates
U as a rational vector space in this case, and thus [U : K°] < co. This finiteness
condition yields that the remaining kernel computation for ker(d) is essentially a
finite computation which can be solved by the finite orbit-stabilizer algorithm. This
is discussed in more detail in the following theorem.

Theorem 4.5. Let G be a polycyclic group acting as irreducible free abelian integral
matriz group on the integral module U. Let K = Cg(U) andlet § : G — U : g —
v(g — 1) be a derivation such that 0 # K°. Then we obtain the following.

a) v:G— U/K®: g ¢°+ K9 is a derivation with K < ker(y).

b) ker(y) = Stabg (v + K?) and [G : ker(y)] < oc.

c¢) ker(y) = ker(0)K.

Proof. Denote I = K? and recall that I is a G-invariant sublattice of U. Thus ~ is
a derivation and, by construction, K < ker(v), obtaining a).

For b) we observe that § : G — U : g — v(g — 1), and thus we can read off that
the kernel of v is the stabilizer of the coset of v modulo I. Further, since U/I is a
finite set, we obtain that [G : ker(vy)] is finite as well.

Let g € ker(y); that is, g7 = g° + I = I. Thus ¢ € I, and hence there exists an
element k € K with g° = k%. Then (gk—1)° = 0, and thus gk—* € ker(5). Therefore
we can write g = hk for an element k € K and h € ker(d), which proves c). O

We determine ker(d) using Theorem EH] in two steps. First, we compute a
polycyclic sequence for ker(y). By Theorem b), we can use the finite orbit-
stabilizer algorithm of Section for this purpose. Second, we use Theorem
¢) to translate a polycyclic sequence of ker(y) into a polycyclic sequence of ker(d).
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Let g € ker(y). Then ¢° € K°, and we can use the solution to the orbit problem
for K to determine an element k € K with ¢° = k°. Now (gk~')°® = 0, and thus
gk™1 € ker(d). If we apply this process to the elements of a polycyclic sequence of
ker(y) mod K, then we obtain a polycyclic sequence of ker(d) mod ker(dx ).

4.4. Vector orbit for p-congruence subgroups. We consider an action of G
viav:G — GL(d,Z) : g — g, and we suppose that G is a p-congruence subgroup
with respect to this action for an odd prime p. Thus the image G of the action ho-
momorphism is unipotent-by-abelian, and we can determine an integral irreducible
block flag V =V > ... >V, > Vj4; = 0 for G by applying Remark B3, We use
induction down this flag to check if the two elements v,w € Z¢ are in the same
G-orbit, and if so, then we compute an element g € G with vg = w.

In the inductive step, we assume that we have found an element h in G such that
vh — w is an element of V;. Replacing v with vh, we may assume that v — w € V.
We want to decide if there exists an element g € G such that vg —w € V4,
and, if so, to find such a g. Such a g would fix v + V;, so we may assume that
G = Stabg(v + V;). This stabilizer can be determined using the method of the
previous section. If necessary, we refine the given integral irreducible block flag to
such a flag for this subgroup using the method of Lemma B.2.

To simplify notation, we assume that V;11 = 0 and we denote V; by U. As in
Section [4.3] we define a derivation § : G — U : g — v(g — 1) and we compute
K = Cg(U). It remains now to check if the element u = w — v € U is contained
in the image G, and if so, then determine g € G with u = ¢g°. This element then
yields v(g — 1) = vg — v = w — v = u, and thus vg = w.

Our solution to this problem is based on the same approach as the stabilizer
algorithm of Section 3] Thus we next determine which case of Theorem K4
applies to our given situation, and proceed accordingly.

Case (1) In this case G° = 0. Thus u € G? if and only if u = 0. In other words,
v and w are in the same G-orbit if and only if v = w.

Case (2) In this case K% = 0 and G # 0. Since K < ker(5), we can consider §
as a derivation of the free abelian group G/K. The next lemma and the following
theorem yield the basis for our method to decide if a given element v € U is
contained in G? in this case.

Lemma 4.6. Let G be a polycyclic group acting as a nontrivial free abelian irre-
ducible group G on the module U = Z¢. Then there exist elements g1,...,9. € G

such that {g; —1,...,7. — 1} is a basis of the matriz algebra Q[G].

Proof. We consider the Q-span W of {7 —1 | g € G}. Then W is a subspace of
the vector space Q[G)]. Further, (g — Wh=gh—h=(gh—1)—(h—1)€ W, and
W is G-invariant. Since G acts as a free abelian irreducible group on U, we obtain

that Q[G] is a field and thus W = Q[G]. Further, dimg Q[G] = e, and thus Q[G] is
spanned by e elements of the form g — 1. O

We note that a basis for Q[G] as described in the above lemma can be computed
readily. It provides the setup for the following fundamental theorem.

Theorem 4.7. Let G be a polycyclic group acting as free abelian irreducible group
G on the module U = 7Z¢. We consider a derivation § : G — U and an element
u € U. We suppose that K° =0 for K = Cg(U) and G° # 0. Then we obtain the
following.
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a) If{g, —1,...,9. — 1} is a basis of Q[G], then {g3,...,g°} is a basis of Q°.
Thus we can write w = a1 g3 + ...+ acgd for certain ay,...,a. € Q.

b) Let ay = a1(gy — 1) +...+ac(g, — 1) +1 € Q[G]. Then u € G° if and only
if ay € G. In this case we obtain that uw = ¢° for a preimage g of a, in G.

Proof. Since K < ker(d), we can consider ¢ as a derivation of G/K. To simplify
notation, we assume K = 1, and thus G = G < GL(e,Z). In particular, G is an
abelian group acting irreducibly on Q¢. We consider the mapping defined by

0:G—GL(e+1,Z):g— g = ( ggé ? )
Since ¢ is a derivation, we obtain that ¢ is a homomorphism and thus an isomor-
phism from G to H = {j | g € G}. In particular, H is abelian. If / is defined as
the upper left e x e submatrix of an (e + 1) x (e + 1) matrix h, then the inverse of
 is obtained by
viH—G:h— h.
We consider the matrix algebra Q[H]. The elements of this algebra are of the

form
a

a:(v O)withvae(@eandqae(@.
Note that for g € G we have that v5 = g°. We extend v to an algebra homomor-
phism

v:Q[H] - Q[G] :ar a.

In the following we investigate the algebra homomorphism v in various steps.

1) Let b be an arbitrary element in Q[G]. Since g1 — 1,...,g. — 1 span Q[G], we
can write b—1 =b1(g1 — 1) + ... 4+ be(ge — 1) for certain by,...,b. € Q. We define
a=0b1(g1—1)+...+be(ge — 1)+ 1 € Q[H]. Then a” =b, and a is a preimage of b
in Q[H| with the property that ¢, = 1 and v, = b1g{ + ... + beg?.

2) We determine the kernel of v. First, we construct nontrivial elements in
ker(v): we choose an element b € Q[H] with g, # 1 (say b = 2g for some g € H),
determine ¢ € Q[H| with ¥ =" and ¢, = 1 as in 1), and obtain ¢ = a —b € ker(v)
with ¢c = ¢o — @» = 1 — q» # 0. Thus dimg ker(v) > 1.

Now let a € ker(v); that is, a¥ = 0. Since H is an abelian group, Q[H] is an
abelian algebra and thus a commutes with each element ¢ € H. We compute

(T Y (i )
g ¢ 1 Vo o Vo qa g Vad + ¢a9° Ga

and we obtain v,g + ¢ag® = v, and thus ve(g — 1) = —qag°. Hence, if ¢, = 0,
then v, = 0, since g stabilizes v, for all g € G in this case and G acts irreducibly.
Otherwise, if g # 0, then — ¢ = g°(g—1)"'foralll # g € G. Thus & is constant
over all a € ker(v) with ¢, # 0 and dimgker(v) < 1. In summary, we obtain that
ker(v) has dimension 1.

3) We define A = {a € Q[H] | a # 0 and ¢, = 1}. Then each a € A is invertible,

with )
a 0\' [ &' o
v, 1 T\ a1 )

and thus A is a multiplicative group. We show that the restriction vy : A —
Q[G] \ {0} : a — a is an isomorphism of multiplicative groups. Clearly, it is a
homomorphism, since v is an algebra homomorphism. It is surjective by 1). Thus
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it remains to observe that v4 is injective. Suppose that a € A with ¢ = 1. Then
a—1¢€ Q[H] with (a—1) =0. Thus a—1 € ker(v) and q,—1 = 0, since ¢, = 1 and
g1 = 1. By the discussion in 2) we obtain that v,—1 = 0, and thus a = 1. Hence
V4 is injective and thus an isomorphism.

4) Clearly, H < A. Further, for a € A the element v, depends only on a € Q[G]
by 3).

Now we are in position to prove the theorem, as follows.

a) Let W be the rational space spanned by ¢9,...,g°. Using 1) and 4), we
observe that W = (v, | a € A). Since

(a0 g 0 _ ag 0 (a5 0
ag<va 1><9“ 1)<va9+9“ 1)andag(vag 1)

we obtain v,g9 = vqg — q° = Vag — Vg € W, and W is a G-invariant subspace of Q°.
As G acts irreducibly on Q¢ and W # 0, this yields W = Q¢, proving a).
b) Let u € Q° and write u = a1 ¢ + ... + a.g’. Let

a=a1(g1—1)+...+ac(ge — 1)+ 1€ Q[H]

Then by 1) and 4) we observe that a is the unique element in A with v, = u. Hence
u € G if and only if @ € H. Equivalently, v € G° if and only if & € G. Since
a=a1(g1 —1)+... 4+ ac(ge — 1) + 1, we obtain b). O

Using Theorem [£.7] we can now readily decide if u € @6. First we determine a
basis of the form g; —1,..., g. — 1 of Q[G] using a spinning algorithm as in Section
B4 Then we can readily determine v = a1g3 + ...+ a.g°. This defines the element
a., € Q[G] as in Theorem @7 b). Now it remains to check if a,, € G and, if so, to
find a preimage in G of a,,. Since G is an abelian irreducible matrix group, this can
be achieved using the constructive membership test of Remark B.6

Case (3) In this case K% # 0, and hence [U : K° < oo. We first check if
u € K. If so, then we obtain an element k € K with v = k°, and this solves the
problem. Note that a basis for the lattice K° can be computed readily, and thus
the membership test in K?° is straightforward.

If u ¢ K° then we determine the (finite) G-orbit of v + K° € U/K?®. Similarly
to Theorem EH, we can now observe that v and w are in the same G-orbit if and
only if v+ K? is in the same G-orbit as w + K?. If this is the case, then we obtain
an element g € G with wg = v+ k® = v +v(k — 1) = vk, and thus wgk™! = v.

5. AN EXAMPLE APPLICATION

Let G = (a, b, c) with

-1 1 8 47 —24 192
a=| -5 =2 2|, = o 1 o |,
-1 0 5 —12 -6 49
—23 0 96
c=| 0 1 0

—6 0 25

It is a determinant computation to observe that G < GL(3,Z). We want to
determine Stabg(v) for v = (—1,0,5) using the methods introduced in the above
sections. These need as input a polycyclic sequence of the considered group. We
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note that G = (a,b,¢) is such a sequence; in fact, the elements a,b, ¢ fulfill the
relations of the polycyclic presentation

—1 -1 -1
W=c, b* =ble, *=be, ¢ =b L=¢ & =c

Step 1. We choose p = 3 as an admissible odd prime for G. As an initial step
for the desired stabilizer computation, we determine a polycyclic sequence for the
3-congruence subgroup Gz as described in Section[3.3] We obtain that G acts as a
cyclic group of order 8 on F3 and G5 = (a®,b, c).

In Section 1] we observed that the stabilizer problem for G reduces to a solution
for the orbit-stabilizer problem for G5. This reduction has been improved in Section
B2 To apply this improvement, we consider the action of G on F3 and determine
the orbit and the stabilizer of the element v in this induced action. Using the
finite orbit-stabilizer methods of Section B.2] we obtain that the orbit of the image
vs € F3 of v has length 4 under the action of G. The preimage of the stabilizer
of v3 in G is given by S3 = (a*,b,c). Hence, as outlined in Section L2} we may
replace G by S3 and thus simplify the desired stabilizer computation.

Step 2. Now we determine a polycyclic sequence for Stabg,(v), using the
method for p-congruence subgroups introduced in Section [£3l As a first step we
construct an irreducible block flag for G3 by applying Section[3.4l We observe that
the base change matrix

4 0 -5
g=1| 0 -1 2
1 0 -1
conjugates the generators of G5 such that
1 54 87 ~ 1 6 0
a=0@®=[0 13 21 |, b=v=(01 0|,
0 21 34 0 01
1 0 6
c=c¢9=|0 1 0
0 01

Further, 7 = vg = (1,0,0). It remains now to compute the stabilizer Stabg, (7)
using the new action of G3. This new action exhibits the irreducible block flag
73 =Vy > Vo > Va3 = 0 with Vo = {(0,1,0), (0,0, 1)). Obviously, o+ V5 is stabilized
by G3, and thus we can proceed directly to the next iteration step, considering the
action of Gz on V5.

Following the notation in Section [£:3] we denote U = V5. Next, we set up the
derivation é. For this purpose we compute the values of § on the polycyclic sequence
of G3, and we obtain that

@ =v(@—1)=(0,54,87), o =v(b—1)=(0,6,0), & =v(@—1)=/0,0,6).

Note that the values of § on the polycyclic sequence are sufficient to determine the
value of ¢° for an arbitrary element g: we can write g as a product of the generators
and then use the relation (hk)? = (h°)k + k°. Recall that we want to determine
the kernel of the derivation d to obtain ker(d) = Stabg, (7).

Obviously, this derivation § is nontrivial. Hence we have to determine the kernel
K of the action of G3 on U. Generally, we use the methods of Section for this
purpose. However, in this case it is straightforward to read off from the conjugated
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generators of G that K = Cg,(U) = (b,¢) and {b,¢} forms a polycyclic sequence
for K.

As a major tool in the computation of ker(d) we use the restriction of ¢ to the
centralizer K. This restriction can be computed readily for the polycyclic sequence
of K. We obtain that

K°® = ((0,6,0),(0,0,6)) = 6U.

In this case, the images of § on the polycyclic sequence of K yield a lattice basis
for K% In general, we only obtain generators for the lattice, and a basis is then
determined easily by applying a Hermite normal form computation on the images.
We note that the image K?° is indeed a Gs-invariant sublattice of U, as observed in
Lemma b). Further, the restriction dx is a group homomorphism by Lemma F.3
a), and thus we can use the methods of Section B.5 to compute that ker(dx) = 1.

As our next step, we have to check which case of Theorem [£4] applies to the
given situation. Since K°® # 0, we are in case (3) of this theorem. Thus we have
to consider Theorem and determine the induced derivation v from §. Since
K < ker(y), we can consider 7 as a derivation of Gg/K. We determine ker(vy) as
described in Theorem H5] b), using the finite orbit-stabilizer algorithm of Section
B We obtain that 74 K° has an orbit of length 3 under the action of Gs; in fact,
we obtain

7a = (1,54,87)=(1,0,3) mod K°,
ma’ = (1,0,3)a=(1,117,189) = (1,3,3) mod K°,
ma® = (1,3,3)a = (1,156,252) = (1,0,0) = T mod K°.

Thus ker(y) = (@, b,¢) with index 3 in G3. Using Theorem FEH ¢), we now translate
ker(y) into ker(d). As described in Section 3] we consider the polycyclic sequence
of ker(v) and lift it to a polycyclic sequence of ker(d). Note that ker(dx) = ker(d) N
K. Thus the polycyclic sequence of ker(dx) can be used as the initial part of the
desired sequence, while the remaining part of K is avoided by ker(d). In our case
ker(6x) = 1, while b, € K, and thus these two elements are avoided by ker(s).
Hence it remains to consider @. Here we obtain

Ta® = (1,121392,196416) = 7 + 20232 (0, 6, 0) + 32736 (0,0, 6).
Hence @ - 1_7720232 - € 32736 stabilizes 7. Using the original basis and the original
generators a, b, ¢ of G, we obtain

Stabg, (v) = ker(8) = <a24 . p—20232 6732736>.

Step 3. Finally, we extend the solution for the stabilizer problem in Gg to the
corresponding solution in S3. Since [S3 : G3] = 2 and S3 = (a*, G3), we determine
w = va* = (=26, —7,105) and obtain w = wg = (1,7,11). Now we have to check if
v and w are contained in the same Gs-orbit. Thus we have to apply the solution
to the orbit problem in Gj.

This orbit problem for G3 is solved using the same machinery as the stabilizer
computation of step 2. Thus we use induction down the irreducible block flag of G
and we consider the action of G3 on U = V5. We observe that @ = (1,1,5) mod K°.
Since this element is not contained in the Gg-orbit of T+ K°, we can read off that
w is not in the same G3-orbit as v.
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Result: We obtain Stabg(vGs) = G3 and thus Stabg(v) = Stabg, (v). Hence
by Step 2 we can now read off

838801 231840 —3355200
Stabg(v)—<a24.b20232-c32736>—< —231840 —64079 927360 >
167760 46368  —671039

6. IMPLEMENTATION AND EXPERIMENTS

Our algorithms have been implemented in the computer algebra system GAP
incorporating an interface to KANT to solve the number theoretic problems of
Remark b). The GAP part of the implementation builds on the PoLycycLic
package [9] for computations with infinite polycyclic groups defined by polycyclic
presentations.

It is rather difficult to give precise limits for the range of applications of the
methods considered. Clearly, the efficiency of applications depends on the number
and the dimensions of an integral irreducible block flag for the group. The orbit
lengths arising in applications of the finite orbit-stabilizer algorithm are a further
limiting factor. However, the most unpredictable difficulties arise from integer
arithmetic problems if large integers turn up in the matrices or the underlying
lattices.

We estimate that the orbit-stabilizer computation is usually practical for mod-
ules Q¢ up to dimension d < 10 if no integer arithmetic problems occur. Our
experiments suggest that it can also be practical for larger dimensions, depending
on the action of the polycyclic group.

In the following sections we give a more detailed report on the practicality of
the methods, and we include an outline of various runtimes for our methods. All
timings have been obtained on a PC with 128 MB Ram and a Celeron 500 Mhz
processor running under Linux, and they are given in seconds.

6.1. Almost crystallographic groups. Almost crystallographic groups can be
defined as finitely generated nilpotent-by-finite groups with trivial normal torsion
subgroup. Dekimpe [5] introduced a library of almost crystallographic groups of
Hirsch lengths 3 and 4. This catalog of groups is available in GAP as share package
Aclib [6]. All groups in this catalog are polycyclic, and they can be accessed in
two different representations: as rational matrix groups in dimension 4 or 5 and as
polycyclically presented groups.

We consider the almost crystallographic groups of Hirsch length 4 in their matrix
representation in GL(5, Q), and we determine the stabilizers of elements in Q® under
the action of these groups. These matrix groups are unipotent-by-finite, and we can
conjugate them so that the unipotent normal subgroup is integral. In this setting
we can then apply the method of Section [4l.

The Aclib classification contains 95 different types of groups of Hirsch length 4.
The runtimes to determine the stabilizer of a random element of Z® under a group
from this list range between 0.03 seconds and 1.1 seconds. This shows that the
stabilizer method for such groups is practical.

In Table [l we consider the groups G; and G2 which are defined by the types
(4,41) and (4,82) in [5] in more detail. These groups have a polycyclic series
with factors of the orders (2,2, 2, 00, 00, 00, 00) and (2, 6, 00, 00, 00, 00), respectively.
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TABLE 1.
(45_7527_173) (150705070) (070517050)
stabilizer | time | stabilizer | time stabilizer time
G1 (00) 0.5 (2,00) 0.3 | (2,00,00,00) | 0.1
Go (00) 0.7 (00) 1.1 | (2,00,00,00) | 0.2

Table[l contains runtimes in seconds for some stabilizer computations of elements in
@7, and it includes the orders of the factors of a polycyclic series for the stabilizers.

6.2. Further examples. In Table [2| we report runtimes for the stabilizer compu-
tation applied to the example G = {(a, b, ¢) of Section Bl and some randomly chosen
elements of Z3. While this example is of rather small dimension, it is still interest-
ing, since almost all the features of our algorithm are used in the computations with
this example. In particular, the number theoretic method of Remark [3.5] is used
frequently. This part of the algorithm is performed by KANT, and we note that the
runtimes for the application of KANT are not incorporated in the timings of the
following table. However, these runtimes are negligible in all cases considered here.
The stabilizer is cyclic in all of the listed cases, and it is described by a generator.

In SectionH we introduced an action of the group G = (a, b, c¢) on Q3. Now we use
this action to define a new operation of G on Q*®Q? = Q? via (v®@w)g = vg @ wg.
Thus we obtain a new action G — GL(9,Z) for this group. As above, we choose
some random elements of Q°, and collect runtimes and stabilizers in Table Bl We
note that the computation of a homogeneous integral block flag for the 3-congruence

TABLE 2. Action on a 3-dimensional module

element stabilizer time
(1,4,-3) 24 p—47496 ,—76848 0.12
(3,3,1) 56 —64223866204 .—103916398407 0.7
(—1,4,—1) | @l20 p~279046542389632386371112 —451506790029563504521296 | () 15
(—1,-3,0) 24 p—18582 ,—30066 0.12
(-3,2,-1) 84 p—31422136657942756 ,—50842085111695408 0.7
(—1,-2,-2) @24 14776 ,—23908 0.12
(=2, -5,0) Q24 p—17247 —27906 0.11
(—2,0,—2) | q!20 p—1266389257918292554979502 —2049060862299554261218896 | () 14
(0,5,2) ab =7 710 0.27
(1,-5,2) 24 p—2316 ,—3748 0.13

TABLE 3. Action on a 9-dimensional module

element stabilizer | time
(-3,0,-3,3,1,0,2,0,4) 1 1.28

(— 2,1,1, 1,1,1,2 72, -5) 1 1.18
(0,-3,-1, ,1,1 ,—1,0) 1 1.13
(2,5,-3,-2,— 2, 5,5, -3) 1 1.19
(-1,-3,0, 4, 1,-4,3,4,1) 1 1.23
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TABLE 4. Action on a 16-dimensional module

element stabilizer | time
(1,2,-1,0,0,-4,-1,1,3,-2,0,-1,-2,3,0,0) c 6.47
(-1,0,1,-2,-3,2,-3,4,0,-1,-1,0,1,1,—4,—-2) c 5.65
(-1,2,1,2,1,2,0,—4,-2,2,1,-1,1,2,0,—1) c 6.46
(1,2,4,0,4,1,-2,1,5,-1,0,0,1,1,1,1) c 5.69
(—-2,1,-2,2,-2,4,3,2,1,-2,0,1,—-1,-2,-2,2) c 5.72

subgroup of G takes about 1.1 seconds for this action, and hence this forms the
major part of the computation.

Let G = (a,b,c| b* = be)y and consider the rationally irreducible action of G on
Q* via

_ o oo
_ o O =
o O = O
o~ OO

and

1 1 -1 0

This action induces a natural diagonal action on the tensor product Q* ® Q%, and
this yields an action of G as a subgroup of GL(16,Z). In Table @ we give runtimes
for the stabilizer algorithm applied to randomly chosen elements of Q6. We note
that the factors in a homogeneous series for the 3-congruence subgroup of G have
dimensions 4 and 12, and it takes about 5.5 seconds to compute such a homogeneous
series. Hence, again, the calculation of the series is the main time-consuming part
of the algorithm. The stabilizer is described by a generator in Table [

7. FINAL COMMENTS

Using the methods of Section [ we obtain a practical approach to solve the
orbit-stabilizer problem for elements of Q% under action of a polycyclic group G
which acts as a subgroup of GL(d,Z).

The methods introduced in Section [ heavily rely on the fact that a polycyclic
sequence for G is given. Such a sequence is known in many applications of our
methods, or otherwise it can be computed as described in Section Bl However, it
is possible to modify our algorithm to use an arbitrary generating set for G. In
this case it replaces a number of the methods outlined in Section Bl by algorithms
to compute with integral polycyclic matrix groups which have been introduced in
[12]. Tt would be interesting to investigate the practicality of this variation as well.

The methods presented here apply to integral polycyclic matrix groups only.
A particularly interesting extension of our methods would be the case of rational
matrix representations. Many of the approaches outlined in this paper extend to
rational representations as well. It seems that the primary limitation to integral
representations derives from the fact that we need to obtain an application of the
finite orbit-stabilizer algorithm for solving the problem in Case (3) of Theorem F4



11.

12.

13.

14.

15.

THE ORBIT-STABILIZER PROBLEM FOR POLYCYCLIC GROUPS 1529

REFERENCES

. Gilbert Baumslag, Frank B. Cannonito, Derek J. S. Robinson, and Dan Segal, The algorithmic

theory of polycyclic-by-finite groups, J. Algebra 142 (1991), 118-149. MR 92i:20036

. Gregory Butler, Fundamental algorithms for permutation groups, Lecture Notes in Comput.

Sci., vol. 559, Springer-Verlag, New York, Heidelberg, Berlin, 1991. MR 94d:68049

. Henri Cohen, A course in computational algebraic number theory, Graduate texts in mathe-

matics, vol. 138, Springer-Verlag, New York, 1995. MR 94i:11105

. M. Daberkow, C.Fieker, J. Kliiners, M. Pohst, K.Roegner, and K. Wildanger, Kant V4, J.

Symb. Comput. 24 (1997), 267-283. MR [99g:11150

. Karel Dekimpe, Almost-bieberbach groups: Affine and polynomial structures, Lecture notes

in Math., vol. 1639, Springer, 1996. MR 2000b:20066

. Karel Dekimpe and Bettina Eick, Aclib, 2000, A GAP share package, see [15].
. John D. Dixon, The orbit-stabilizer problem for linear groups, Can. J. Math. 37 (1985), 238—

259. MR |86m:20039

. Bettina Eick, Algorithms for polycyclic groups, Habilitationsschrift, Universitat Kassel, 2001.
. Bettina Eick and Werner Nickel, Polycyclic, 2000, A GAP share package, see [15].
. R. Laue, J. Neubiiser, and U. Schoenwaelder, Algorithms for finite soluble groups and the SO-

GOS system, Computational Group Theory, Durham, 1982, Academic Press, 1984, pp. 105~
135. MR 86h:20023

Eddie H. Lo, A polycyclic quotient algorithm, J. Symbolic Computation 25 (1998), 61-97.
MR 99¢:20040

Gretchen Ostheimer, Practical algorithms for polycyclic matriz groups, J. Symbolic Compu-
tation 28 (1999), 361-379. MR 2000h:20004

Michael E. Pohst, Computational algebraic number theory, DMV Seminar, vol. 21, Birk&user,
1993. MR 94j:11132

Charles C. Sims, Computation with finitely presented groups, Encyclopedia of mathematics
and its applications, Cambridge University Press, New York, 1994. MR 95%:20053

The GAP Group, GAP—Groups, Algorithms and Programming, www.gap-system.org, 2000.

INSTITUT FUR GEOMETRIE, UNIVERSITAT BRAUNSCHWEIG, 38106 BRAUNSCHWEIG, GERMANY
E-mail address: beick@tu-bs.de

DEPARTMENT OF COMPUTER SCIENCE, 103 HOFSTRA UNIVERSITY, HEMPSTEAD, NEW YORK

E-mail address: cscgzo@husun3.Hofstra.edu


http://www.ams.org/mathscinet-getitem?mr=92i:20036
http://www.ams.org/mathscinet-getitem?mr=94d:68049
http://www.ams.org/mathscinet-getitem?mr=94i:11105
http://www.ams.org/mathscinet-getitem?mr=99g:11150
http://www.ams.org/mathscinet-getitem?mr=2000b:20066
http://www.ams.org/mathscinet-getitem?mr=86m:20039
http://www.ams.org/mathscinet-getitem?mr=86h:20023
http://www.ams.org/mathscinet-getitem?mr=99c:20040
http://www.ams.org/mathscinet-getitem?mr=2000h:20004
http://www.ams.org/mathscinet-getitem?mr=94j:11132
http://www.ams.org/mathscinet-getitem?mr=95f:20053

	1. Introduction
	2. Preliminaries on matrix actions
	3. Basic algorithms for polycyclic groups
	3.1. Orbits and blocks
	3.2.  Determining finite orbits and their stabilizers
	3.3. Computing p-congruence subgroups
	3.4. Calculating homogeneous and irreducible block flags
	3.5. Determining centralizers of abelian actions

	4. Solving the orbit and stabilizer problems
	4.1. Reduction to p-congruence subgroups
	4.2. Optimizing the reduction
	4.3. Vector stabilizer for p-congruence subgroups
	4.4. Vector orbit for p-congruence subgroups

	5. An example application
	6. Implementation and experiments
	6.1. Almost crystallographic groups
	6.2. Further examples

	7. Final comments
	References

