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ON THE A POSTERIORI ERROR ANALYSIS
FOR EQUATIONS OF PRESCRIBED MEAN CURVATURE

FRANCESCA FIERRO AND ANDREAS VEESER

Abstract. We present two approaches to the a posteriori error analysis for
prescribed mean curvature equations. The main difference between them con-
cerns the estimation of the residual: without or with computable weights. In
the second case, the weights are related to the eigenvalues of the underly-
ing operator and thus provide local and computable information about the
conditioning. We analyze the two approaches from a theoretical viewpoint.
Moreover, we investigate and compare the performance of the derived indica-
tors in an adaptive procedure. Our theoretical and practical results show that
it is advantageous to estimate the residual in a weighted way.

1. Introduction

Adaptive finite element methods are an effective tool for computing approxi-
mate solutions of partial differential equations. An important theoretical basis
for these methods is a so-called a posteriori error analysis. In such analysis one
tries to determine computable quantities that can be used to guide an adaptive
procedure. For an overview of a posteriori error analyses and their applications,
we refer to the seminal papers of Babuška and Rheinboldt [BR78a, BR78b], the
books of Ainsworth and Oden [AO00] and Verfürth [Ver96], and the more recent
developments of Dörfler [Dör96] and Morin et al. [MNS00, MNS].

This paper concerns the a posteriori error analysis and its application to the
approximate solution of the following quasilinear, nonuniformly elliptic problem:
find a function u with boundary values g and whose graph has mean curvature
H/d, in formulae (see [GT83, (14.103)])

(1.1) − div

(
∇u√

1 + |∇u|2

)
= H in Ω ⊂ Rd, u = g on ∂Ω.

In order to survey our results concisely, we restrict ourselves for the rest of this
introduction to the case of d = 2, homogeneous boundary values g = 0, and the
existence of a classical solution to problem (1.1). Moreover, we focus on global upper
bounds. In what follows, we discuss also local lower bounds, that is, how efficiently
a certain kind of error is controlled. Let uh be the finite element approximation of
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u over some triangulation Th of Ω. We shall use ‘4’ to indicate inequalities that
hold up to multiplicative constants depending solely on the minimum angle of Th.

We present and analyze two approaches to the a posteriori error analysis of
problem (1.1). Both approaches yield an a posteriori control for a quantity eΩ(uh, u)
which measures in a geometric way the distance between ∇uh and ∇u; see §3 for
details. Moreover, it has the property (recall that gh = g = 0)

eΩ(uh, u) = 0 ⇐⇒ uh = u.

The first approach follows the spirit of the general framework for elliptic prob-
lems proposed by Verfürth [Ver94] (see also [AO00, Ver96] and Fierro [Fie98]): the
analysis is built around the exact solution u and measures the residual Rh of the
discrete solution uh with respect to the equation in (1.1) in an unweighted dual
norm. Triangle-indexed indicators ηh(T ), T ∈ Th, with the following property are
determined.

Result I. Let M > 0 be fixed. If

(1.2) supΩ |∇(uh − u)| ≤M,

then

(1.3) eΩ(uh, u) 4
[∑

T∈Th ηh(T )2

infΩ λM (∇u)

]1/2

with λM (p) :=
[
1 + (|p|+M)2

]−3/2 for p ∈ R2.

Similarly to [Ver94, Proposition 6.1], this result has the following two drawbacks:
• Condition (1.2) cannot be verified in practice, because it involves the un-

known exact solution u.
• In order to ensure with the help of (1.3) that eΩ(uh, u) is small, all indica-

tors have to be small with respect to infΩ λ
M (∇u)1/2. The latter quantity

is small, iff |∇u| is big somewhere. Besides, it is not computable. In other
words: information on the conditioning, i.e., the relationship between resid-
ual (estimated by the indicators ηh(T )) and error, enters (1.3) in a global
and noncomputable way.

The second approach tries to avoid these drawbacks. Its analysis is built around
the computed solution uh, and measures the residual Rh in weighted dual norms.
We determine triangle-indexed weights λh(T ) and Qh(T ), T ∈ Th, such that the
following result holds. We stress that both weigths λh(T ) andQh(T ) are computable
and local expressions. Moreover, they are related to the eigenvalues of the elliptic
operator in (1.1), and λh(T ), T ∈ Th, is a local discrete counterpart of supΩ λ

0(∇u);
see §5.2 for details. Denoting the diameter of a triangle T ∈ Th by hT , we have

Result II. There is a constant C > 0, depending solely on the minimum angle of
the triangulation Th, such that if

(1.4) max
T∈Th

Qh(T )h−1
T ηh(T ) ≤ C,

then

(1.5) eΩ(uh, u) 4
[∑

T∈Th
ηh(T )2

λh(T )

]1/2
.
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In comparison with the discussion of Result I, we point out that:
• Given the computed solution uh, condition (1.4) could be verified in princi-

ple. However, the realistic estimation of the constant C is an open problem.
• The bound (1.5) appears to hold only conditionally, and condition (1.4)

is related to closeness of uh to u. In particular, (1.2) with small M > 0
implies (1.4) provided the prescribed mean curvature H is resolved well.
(See §5.4 below.)
• To ensure with (1.5) that eΩ(uh, u) is small, each indicator ηh(T ), T ∈
Th, has to be small with respect to the computable λh(T )1/2. The latter
quantity is small, iff |∇uh| is big in a neighborhood of T . In other words:
the conditioning enters in (1.5) in a local and computable way and can be
incorporated in the indicators.
• If ∇uh ≈ ∇u in Ω, then (1.5) is sharper than (1.3) (apart from a mul-

tiplicative constant depending on the minimum angle of the triangulation
Th).

Our numerical results complement the above discussion by indicating that:
• Condition (1.4) is “asymptotically satisfied”, and the constants hidden in

“4” are of moderate size on meshes with reasonable minumum angle.
• Weighted indicators (see below) direct the adaptive procedure more effi-

ciently than unweighted ones.
The rest of this article is organized as follows. In §2 we state a weak formulation

of problem (1.1) and its finite element discretization. Moreover, we give a condition
that characterizes the unique solvability of the discrete problem. Then, in §3, we
introduce the error eΩ(uh, u), the residual Rh of uh, and give some interpolation
error estimates. In §§4-5 we present and analyze the two approaches illustrated
by Results I and II. In §6 we discuss the application of both approaches in an
adaptive algorithm. Furthermore, we comment on our implementation. Finally, we
investigate our theoretical results from the practical viewpoint in §7.

2. Continuous problem and its discretization

We begin by stating a weak form of the Dirichlet problem for the prescribed
mean curvature equation. Taking advantage of its divergence structure, we then
discretize with continuous linear finite elements.

Let Ω be a bounded domain with Lipschitz boundary in Rd, d ≥ 2. For k ∈ N0

and q ∈ [1,∞], W k
q (Ω) denotes the Banach space of functions whose distributional

derivatives up to order k are Lebesgue-measurable and q-integrable functions. The
norm in Lq(Ω) = W 0

q (Ω) is indicated by ‖·‖0,q;Ω. If q = 2, we write also Hk(Ω) for
W k

2 (Ω). Analogous notation is used for fractional order Sobolev spaces on ∂Ω.
It is convenient to introduce the functions A : Rd → R and a : Rd → Rd:

A(p) :=
√

1 + |p|2 and a(p) := ∇A(p) =
p√

1 + |p|2
.

Let g ∈ H1/2(∂Ω) = {ĝ|∂Ω | ĝ ∈ H1(Ω)}, see e.g., [Hac92, Section 6.2.5], and
H ∈ L2(Ω). In the sequel, we ignore the factor 1/d and call H the prescribed mean
curvature. We define the space of test functions as V := {w ∈ H1(Ω) | w|∂Ω = 0}
and associate with g the affine space U := {w ∈ H1(Ω) | w|∂Ω = g}. The following
problem is a weak form of (1.1), which is convenient for the following sections.
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Problem 2.1 (Weak form). Find u ∈ U such that

(2.1) ∀ v ∈ V
∫

Ω

a(∇u) · ∇v =
∫

Ω

Hv.

We proceed by stating some well-known facts about the classification and the
solvability of Problem 2.1.

Let λ(p) and Λ(p) be respectively the minimum and maximum eigenvalue of the
Hessian D2A(p), p ∈ Rd. Since

λ(p) =
(
1 + |p|2

)−3/2
> 0, Λ(p) = (1 + |p|2)−1/2,

Q(p) :=
Λ(p)
λ(p)

= 1 + |p|2 →∞ as |p| → ∞,

the operator associated with equation (2.1) is nonuniformly elliptic. Moreover, it
is quasilinear and variational (e.g., see the proof of Proposition 2.1 below).

Problem 2.1 has at most one solution (see e.g., Proposition 3.1 below). However,
its solvability is a delicate matter. For example, it may not be solvable classically
for smooth data; see Serrin [Ser69]. Here, we are interested in solvability in W 1

∞(Ω).
A necessary condition on the prescribed mean curvature H for that is

(2.2) ∃ ε0 > 0 ∀ v ∈ V
∫

Ω

Hv ≤ (1− ε0)
∫

Ω

|∇v|.

This follows from (2.1) and |a(∇u)| ≤ ‖∇u‖0,∞;Ω /
(
1 + ‖∇u‖20,∞;Ω

)1/2
< 1 for u in

W 1
∞(Ω). Sufficient conditions on data for the solvability in W 1

∞(Ω) (and better) can
be found in Giaquinta [Gia74] and Gilbarg and Trudinger [GT83, Theorem 16.10].

For the discretization, suppose that the domain Ω is polyhedral and let Th be a
conforming triangulation of Ω. Let T̂ denote the standard simplex in Rd. Given
a simplex T ∈ Th, we define T ∗ as the union of all simplices in Th that share at
least one side with T , and Bh(T ) as the union of all simplices in Th that have
nonempty intersection with T . Moreover, we write ρT for the maximal radius of a
ball that is contained in T , and hT for the diameter of T . The shape-regularity of
the triangulation Th is defined by

γh := max
T∈Th

hT
ρT
∈ ]1,∞[.

In dimension two it is related to the minimum angle of Th; see e.g., [Cia78, Exercise
3.1.3]. In the sequel, the same letter C will be used to denote different constants
depending on the shape-regularity γh. For example, the number of simplices in
Bh(T ) for any T ∈ Th is bounded by a constant depending on γh,

(2.3) #{T̃ ∈ Th | T̃ ⊂ Bh(T )} ≤ C.

We will also write 4 instead of ≤ C; e.g., |Bh(T )| 4 hdT . Let Nh be the set of
nodes and Sh the set of sides of Th. Both sets Nh and Sh consist of two parts: the
“boundary” parts N ∂

h := Nh ∩ ∂Ω and S∂h := {S ∈ Sh | S ⊂ ∂Ω} as well as the
“interior” parts N ◦h := Nh ∩ Ω and S◦h := Sh \ S∂h . Furthermore, we use the local
mesh size function h ∈ L∞(Ω) defined by h|T = hT for all T ∈ Th.

Let Wh denote the finite-dimensional space of continuous piecewise affine finite
elements over Th; that is,

Wh := {wh ∈ C0(Ω) | ∀ T ∈ Th wh|T ∈ P1(T )} ⊂ H1(Ω).
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Hereafter, Pm(T ) denotes the restriction to T of the space of all polynomials in Rd
with degree equal to or less than m ∈ N0. Let (φzh)z∈Nh be the hat functions that
are defined by φzh ∈ Wh, φzh(z) = 1 and φzh(z̄) = 0 for all z̄ ∈ Nh \ {z}. Moreover,
set

Vh := {wh ∈ Wh | wh = 0 on ∂Ω} ⊂ V, Uh := {wh ∈Wh | wh = gh on ∂Ω},
where gh ∈ Wh|∂Ω := {ĝh|∂Ω | ĝh ∈ Wh} is an approximation of the boundary
values g. Note that Uh is contained in U , iff g = gh.

We approximate solutions of Problem 2.1 by means of solutions of the following
finite-dimensional problem.

Problem 2.2 (Discrete problem). Find uh ∈ Uh such that

(2.4) ∀ vh ∈ Vh
∫

Ω

a(∇uh) · ∇vh =
∫

Ω

Hvh.

Problem 2.2 has a unique solution, if Problem 2.1 has one in W 1
∞(Ω). More

precisely, we have the following statement.

Proposition 2.1 (Discrete solvability). Problem 2.2 is uniquely solvable, iff the
discrete counterpart of condition (2.2) holds:

(2.5) ∃ ε0 > 0 ∀ vh ∈ Vh
∫

Ω

Hvh ≤ (1− ε0)
∫

Ω

|∇vh|.

Proof. Since Vh ⊂ W 1
∞(Ω), the necessity of condition (2.5) is clear. For its suffi-

ciency, we first observe that Problem 2.2 is equivalent to the minimization of the
convex and continuous functional

J(wh) :=
∫

Ω

A(∇wh)−Hwh

in Uh; see [Cia78, Section 5.2], where the case H = 0 is considered. It therefore
suffices to establish the unique existence of such a minimum. Let wh ∈ Uh, and let
ĝh ∈ Wh be an extension of gh. Using condition (2.5) with vh = wh − ĝh ∈ Vh, we
find that

J(wh) ≥ ε0 ‖∇wh‖0,1;Ω −
(
‖∇ĝh‖0,1;Ω +

∫
Ω

Hĝh

)
.

The functional J is thus coercive and has a minimum; see e.g., Theorem 8.2-1 in
[Cia88].

The uniqueness of the minimum follows from the strict convexity of A or from
Proposition 3.1 below. �

3. Error, residual, and interpolation

We introduce and motivate the error notion. Moreover, we introduce a funda-
mental quantity for the error control, the residual, and state some error estimates
for interpolation of nonsmooth functions.

3.1. The error. We begin with an identity concerning differences of the principal
terms in (2.1) and (2.4).

Lemma 3.1. Let p1, p2 ∈ Rd. Defining Pi := (pi,−1) ∈ Rd+1 for i = 1, 2, we have

(3.1)
[
a(p1)− a(p2)

]
· (p1 − p2) =

∣∣∣∣ P1

|P1|
− P2

|P2|

∣∣∣∣2 |P1|+ |P2|
2

.
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Proof. We calculate (note that all dots after the first equal sign denote the scalar
product in Rd+1)[

a(p1)− a(p2)
]
· (p1 − p2) =

(
P1

|P1|
− P2

|P2|

)
· (P1 − P2)

=
(
P1

|P1|
− P2

|P2|

)
· P1

|P1|
|P1| +

(
P2

|P2|
− P1

|P1|

)
· P2

|P2|
|P2|.

Since (N1 −N2) ·N1 = 1
2 |N1 −N2|2 for |N1| = |N2| = 1, we arrive at (3.1). �

In view of the geometric meaning of problem (1.1), it is worthwhile recognizing
the following interpretation of the right-hand side in (3.1): for p1 = ∇u(x), x ∈ Ω,
we have that |P1| is the area element and P1/|P1| is the downwards pointing normal
of u’s graph in (x, u(x)). By this and the weak equations (2.1) and (2.4), we are
led to the following definition.

Definition 3.1 (Error notion). Let ω be a subdomain of Ω and u, v ∈W 1
1 (Ω). Set

eω(u, v) :=
(∫

ω

|N(∇u)−N(∇v)|2 A(∇u) +A(∇v)
2

)1/2

,

where N(p) := (p,−1)/
√

1 + |p|2 ∈ Rd+1 for p ∈ Rd.

The quantity eΩ(uh, u), where uh and u are the solutions of Problems 2.2 and 2.1,
respectively, will be the error that is bounded from above and locally from below
in the subsequent analyses. The geometric interpretation preceding Definition 3.1
yields the following: eΩ(uh, u) measures the distance between the normals N(∇uh)
and N(∇u) in a weighted L2-sense, where the weight is the average of the area
elements of the graphs of uh and u. The control of eΩ(uh, u) is therefore interesting
in its own right. Moreover, as can be seen from the following remark, eΩ(uh, u)
is closely related to the approximation error of the minimum value of J in the set
U . This value is especially interesting in applications, where the prescribed mean
curvature vanishes, i.e., H = 0. The minimum value of J is then the minimal area
of the graphs with boundary values g.

Remark 3.1 (Error estimate for minimum of J). Suppose that we want to approx-
imate the value J(u), where u is a solution of Problem 2.1. Given a solution uh of
Problem 2.2, a natural choice for the approximation of J(u) is J(uh). Consequently,
we want to control the error J(uh)−J(u). For the sake of simplicity, let us suppose
that g = gh. Then Uh ⊆ U , and we do not have to take consistency errors into
account. Thus, on the one hand, J(uh)− J(u) ≥ 0. On the other hand, we have

J(u)− J(uh) ≥
∫

Ω

a(∇uh) · ∇(u− uh)−H(u− uh)

=
∫

Ω

[
a(∇uh)− a(∇u)

]
· ∇(u− uh) = −eΩ(uh, u)2

by the convexity of A (cf. [Cia88, Theorem 7.4-2]), a = ∇A, the weak equation (2.1),
Uh ⊆ U , and Lemma 3.1. Combining the two inequalities yields

0 ≤ J(uh)− J(u) ≤ eΩ(uh, u)2.

We point out that eΩ(uh, u) is more directly related to J(uh) − J(u) than, for
example, the norm ‖∇(uh − u)‖0,2;Ω; see also (4.11) below.
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We conclude this subsection with a uniqueness proof for solutions of Problem
2.1 (or Problem 2.2) which sheds some light on the ellipticity properties of eΩ.

Proposition 3.1 (Uniqueness). Problem 2.1 has at most one solution. The same
holds for Problem 2.2.

Proof. We verify only the uniqueness of Problem 2.1; Problem 2.2 goes along the
same lines. Let u1 and u2 be two solutions of Problem 2.1. Testing the equations
for u1 and u2 with v = u1 − u2 ∈ V yields eΩ(u1, u2) = 0, and thus

(3.2) N(∇u1) = N(∇u2) a.e. in Ω.

The last coordinate of (3.2) ensures A(∇u1) = A(∇u2) in Ω. Consequently, the
first d coordinates yield ∇u1 = ∇u2 in Ω. Since u1 − u2 ∈ V , we get u1 = u2. �

3.2. The residual. The following definition will provide a link between the error
and the computable quantities estimating the error.

As before, u denotes the solution of Problem 2.1 and uh is the corresponding
discrete solution of Problem 2.2. The residual Rh ∈ V ∗ of uh is defined by

∀ϕ ∈ V 〈Rh, ϕ〉 :=
∫

Ω

a(∇uh) · ∇ϕ −
∫

Ω

Hϕ.

The equation (2.4) for uh means

(3.3) ∀ϕh ∈ Vh 〈Rh, ϕh〉 = 0.

On the one hand, we have

(3.4) ∀ϕ ∈ V 〈Rh, ϕ〉 =
∫

Ω

[
a(∇uh)− a(∇u)

]
· ∇ϕ

thanks to (2.1), and, if gh = g and therefore Uh ⊂ U ,

(3.5) 〈Rh, uh − u〉 = eΩ(uh, u)2.

On the other hand, for any ϕ ∈ V , integrating by parts on each simplex yields

(3.6) 〈Rh, ϕ〉 = −
∑
T∈Th

[1
2

∫
∂T\∂Ω

[[a(∇uh) · n]]ϕ +
∫
T

Hϕ
]
,

where [[a(∇uh) · n]] denotes the function on
⋃
S∈S◦h

S defined as follows: for any
interelement side S ∈ S◦h let [[a(∇uh) · n]] |S =

[
a(∇uh|T1)−a(∇uh|T2)

]
·n2, where

T1, T2 ∈ Th are the two simplices containing S, n2 is the exterior normal of T2, and
the right-hand side is invariant if T1 and T2 are exchanged.

3.3. Interpolation error estimates. Let Πh : W 1
1 (Ω)→Wh be the interpolation

operator in Scott and Zhang [SZ90], which preserves homogeneous boundary values:

(3.7) ∀ϕ ∈W 1
1 (Ω) ϕ = 0 on ∂Ω =⇒ Πhϕ = 0 on ∂Ω.

The following local interpolation error estimates will be useful: for any r, q ∈ [1,∞[,
T ∈ Th, and S ∈ Sh,

‖Πhϕ− ϕ‖0,r;T 4 h1−d/q+d/r
T ‖∇ϕ‖0,q;Bh(T ), if − d/r ≤ 1− d/q,(3.8a)

‖Πhϕ− ϕ‖0,q;S 4 h1−1/q‖∇ϕ‖0,q;Bh(T ), if S ⊂ T.(3.8b)
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For convenience of the reader, we give a proof of (3.8a) that is a slight modification
of the proof for [SZ90, (4.3)], which covers the special case r = q. Using Πhc = c
for any constant function c [SZ90, (2.18)], we start with

‖Πhϕ− ϕ‖0,r;T ≤ ‖ϕ− c‖0,r;T + ‖Πh(ϕ− c)‖0,r;T .

The first term on the right-hand side is estimated by using scaling arguments (see
e.g., [Cia78, Th. 3.1.2 and 3.1.3]) and, exploiting −d/r ≤ 1 − d/q, the Sobolev
imbedding W 1

q (T̂ ) ↪→ Lr(T̂ ) (see e.g., [Cia78, (3.1.3)]) over the reference simplex
T̂ :

‖ϕ− c‖0,r;T 4 h
−d/q+d/r
T ‖ϕ− c‖0,q;T + h

1−d/q+d/r
T ‖∇ϕ‖0,q;T .

For the second one, the stability of Πh, [SZ90, Theorem 3.1], yields similar terms:

‖Πh(ϕ− c)‖0,r;T 4 h
−d/q+d/r
T ‖ϕ− c‖0,q;Bh(T ) + h

1−d/q+d/r
T ‖∇ϕ‖0,q;Bh(T ) .

We obtain (3.8a) with the help of the following variant of the Bramble-Hilbert
lemma, see [SZ90, (4.2)]:

inf
c∈R
‖ϕ− c‖0,q;Bh(T ) 4 hT ‖∇ϕ‖0,q;Bh(T ) .

Inequality (3.8b) follows from the “scaled” trace theorem

(3.9) ‖ϕ‖0,q;S 4 h−1/q
T ‖ϕ‖0,q;T + h

1−1/q
T ‖∇ϕ‖0,q;T for S ⊂ T

(use scaling arguments and e.g., [Hac92, Theorems 6.2.40 and 6.2.25]), (3.8a) with
r = q, and a local estimate for the gradient of the interpolation error [SZ90, (4.3)].

4. Approach I

We present and analyze the first approach, which was illustrated by Result I in
the introduction §1.

We start by introducing some notation. For any simplex T ∈ Th, we define the
local indicator ηh(T ) ≥ 0 by

(4.1) ηh(T )2 = hT ‖[[a(∇uh) · n]]‖20,2;∂T\∂Ω + h2
T ‖H‖

2
0,2;T .

Apart from the indicators, we shall use the L2-oscillation of the prescribed mean
curvature H in a subdomain ω of Ω. This is the quantity ‖h(H̄ −H)‖0,2;ω, where
H̄ ∈ L∞(Ω) is the piecewise constant function such that H̄|T = |T |−1

∫
T H for all

simplices T ∈ Th. The following theorem relies on measuring the residual Rh by

(4.2) ‖Rh‖−1,2;ω := sup
{
〈Rh, ϕ〉 | ϕ ∈ V, suppϕ ⊆ ω̄, ‖∇ϕ‖0,2;ω ≤ 1

}
in a nonempty subdomain ω of Ω.

Theorem 4.1 (Approach I). Let u be a solution of Problem 2.1 with u ∈ W 1
∞(Ω),

and let uh be the solution of Problem 2.2. Then

(i) (Local lower bounds) for any simplex T ∈ Th, we have

ηh(T )

supT∗ Λ
(
∇u
)1/2 4 eT∗(uh, u) +

∥∥h (H̄ −H)
∥∥

0,2;T∗

supT∗ Λ
(
∇u
)1/2 ,
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(ii) (Conditional global upper bound) if

(4.3) ‖∇(uh − u)‖0,∞;Ω ≤M
for some fixed M > 0, then

eΩ(uh, u) 4
(∑

T∈Th ηh(T )2

infΩ λM (∇u) + sup
Ω

Λ(∇u) ‖∇(ĝh − ĝ)‖20,2;Ω

)1/2

.

Here, λM (p) :=
[
1 + (|p|+M)2

]−3/2
, and ĝh, and ĝ are H1(Ω)-extensions

of gh and g.

Remark 4.1 (On the choice of ĝ and ĝh). One may choose ĝ and ĝh as the harmonic
extensions of g and gh. Then ‖∇(ĝh − ĝ)‖0,2;Ω ≤ CΩ ‖ĝh − ĝ‖H1/2(∂Ω), where CΩ

depends on the geometry of ∂Ω. For practical estimates of the latter term, we refer
to Dörfler [Dör96, Section 5] and Morin et al. [MNS, inequality (3.3)]. Another
practical choice of ĝ and ĝh is given in Dörfler and Rumpf [DR98, Section 7].

Proof of Theorem 4.1. 1. We first investigate the relationship between error and
residual that is relevant for statement (i). Let ω be a nonempty subdomain of Ω
and ϕ ∈ V with suppϕ ⊆ ω̄. Using (3.4) and Schwarz inequalities, we see that

〈Rh, ϕ〉 =
∫

Ω

[
a(∇uh)− a(∇u)

]
· ∇ϕ ≤

∫
ω

|N(∇uh)−N(∇u)| |∇ϕ|

≤
√

2 eω(uh, u)
(∫

ω

|∇ϕ|2
A(∇u) +A(∇uh)

)1/2

.

Since u ∈W 1
∞(Ω) and

(4.4)
1

A(∇u) +A(∇uh)
≤ 1

A(∇u) = Λ(∇u),

we obtain

(4.5) ‖Rh‖−1,2;ω ≤
√

2 sup
ω

Λ(∇u)1/2 eω(uh, u).

2. To finish the proof of statement (i), we combine inequality (4.5) with the
following “lower” bound for the residual:

(4.6) ηh(T ) 4 ‖Rh‖−1,2;T∗ +
∥∥h(H̄ −H)

∥∥
0,2;T∗

.

This bound is proved by a constructive argument due to Verfürth, which is now quite
standard: see e.g., [Ver96, Section 1.2]. Let T ∈ Th and set ψT :=

∏
z∈Nh∩T φ

z
h ∈

Pd+1(T ). Since |T | 4
∫
T ψT (see e.g., [Cia78, Exercise 4.1.1]), we obtain

(4.7)
∥∥H̄∥∥2

0,2;T
4
∫
T

H̄ϕT

for ϕT := H̄ψT ∈ Pd+1(T ). Using (3.6) with ϕ = −ϕT and suppϕT = T , we derive

(4.8)
∫
T

H̄ϕT = 〈Rh,−ϕT 〉 +
∫
T

(H̄ −H)ϕT .

We estimate the right-hand side with the help of (see [Ver96, Lemma 3.3])

‖∇ϕT ‖0,2;T 4 h−1
T ‖ϕT ‖0,2;T 4 h−1

T

∥∥H̄∥∥
0,2;T

and (4.2), insert the resulting inequality in (4.7), and obtain∥∥H̄∥∥
0,2;T

4 h−1
T ‖Rh‖−1,2;T +

∥∥H̄ −H∥∥
0,2;T

.
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The triangle inequality then yields the following partial version of (4.6):

hT ‖H‖0,2;T 4 ‖Rh‖−1,2;T +
∥∥h (H̄ −H)

∥∥
0,2;T

.

In a similar manner (use ϕS := [[a(∇uh) · n]]|S ψS with ψS :=
∏
z∈Nh∩S φ

z
h instead

of ϕT for every side S ∈ S◦h; cf. [Ver96, (1.26)]), we derive

(4.9) h
1/2
T ‖[[a(∇uh) · n]]‖0,2;∂T\∂Ω 4 ‖Rh‖−1,2;T∗ + ‖hH‖0,2;T∗ .

The last two inequalities prove (4.6) and thus statement (i).
3. Next, we investigate the relationship of error and residual that is relevant for

statement (ii). Generalizing (3.5), we test (3.4) with ϕ = (uh − ĝh) − (u − ĝ) ∈ V
so as to obtain

(4.10) eΩ(uh, u)2 =
〈
Rh, (uh − ĝh)− (u− ĝ)

〉
+
∫

Ω

[
a(∇uh)− a(∇u)

]
· ∇(ĝh − ĝ).

We continue with the first term on the right-hand side, which is the crucial one:〈
Rh, (uh − ĝh)− (u− ĝ)

〉
≤ ‖Rh‖−1,2;Ω

(
‖∇(uh − u)‖0,2;Ω + ‖∇(ĝh − ĝ)‖0,2;Ω

)
.

Suppose that (4.3) holds. Using |s∇uh + (1− s)∇u| ≤ |∇u|+M for s ∈ [0, 1] in

eΩ(uh, u)2 =
∫

Ω

∫ 1

0

D2A
(
s∇uh + (1− s)∇u

)
∇(uh − u) · ∇(uh − u) ds,

we get

(4.11) inf
Ω
λM (∇u) ‖∇(uh − u)‖20,2;Ω ≤ eΩ(uh, u)2.

This, the preceding inequality for
〈
Rh, (uh − ĝh)− (u − ĝ)

〉
, and the inequality

(4.12) ∀ r, s ≥ 0, ε > 0 rs ≤ ε

2
r2 +

1
2ε
s2

imply〈
Rh, (uh − ĝh)− (u− ĝ)

〉
≤ 1

4
eΩ(uh, u)2 +

1
2

inf
Ω
λM (∇u) ‖∇(ĝh − ĝ)‖20,2;Ω

+
3
2
[
inf
Ω
λM (∇u)

]−1 ‖Rh‖2−1,2;Ω .

For the second term in the right-hand side of (4.10), we derive (cf. step 1)∫
Ω

[
a(∇uh)− a(∇u)

]
· ∇(ĝh − ĝ) ≤

1
4
eΩ(uh, u)2 + 2 sup

Ω
Λ(∇u) ‖∇(ĝh − ĝ)‖20,2;Ω .

Consequently, (4.10) and λM (p) ≤ Λ(p) for all p ∈ Rd yield the inequality

(4.13) eΩ(uh, u) ≤
(
3
‖Rh‖2−1,2;Ω

infΩ λM (∇u) + 5 sup
Ω

Λ(∇u) ‖∇(ĝh − ĝ)‖20,2;Ω

)1/2

,

provided (4.3) holds.
4. We finish the proof of statement (ii) by showing the upper bound

(4.14) ‖Rh‖−1,2;Ω 4
[∑

T∈Th ηh(T )2
]1/2
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for the residual. This is done along standard lines; see e.g., [Ver96, Section 1.2].
Let ϕ ∈ V , and let Πhϕ be its interpolant from §3.3. Using (3.7), (3.3), (3.6), (3.8)
with q = r = 2, and (2.3), we derive

〈Rh, ϕ〉 = 〈Rh, ϕ−Πhϕ〉 4
∑
T∈Th

ηh(T ) ‖∇ϕ‖0,2;Bh(T )(4.15)

4
[ ∑
T∈Th

ηh(T )2
]1/2

‖∇ϕ‖0,2;Ω ,

that is, (4.14). Inserting (4.14) into (4.13), we conclude statement (ii). �

The following remarks on Theorem 4.1 continue the discussion of the introduction
§1 and prepare for the second approach.

• Neglecting the oscillation of H and multiplicative constants depending on
the shape-regularity γh, the local lower bound means that the indicator
ηh(T ) underestimates the local error eT∗(uh, u) by a factor greater than

inf
T∗

Λ(∇u)−1/2 ≥ 1.

• Assuming that gh = g and that the upper bound holds, and again neglecting
multiplicative constants depending on γh, one expects that, typically, ηh(T )
underestimates the local error by a factor less than

sup
T∗

λM (∇u)−1/2 ≥ 1.

• In contrast to linear elliptic problems, there is a (possibly considerable) gap
between upper and lower bounds depending on the unknown exact solution
u.

The afore-mentioned drawbacks of Approach I arise from the way in which we
relate the error eΩ(uh, u) and the residual Rh. Our choice to measure the residual
Rh in the dual norm ‖·‖−1,2;Ω forces us to use a nonlocal concept of ellipticity of the
underlying operator− div

(
a(∇·)

)
in (4.11). Moreover, relying on the exact solution

u entails that the ellipticity and continuity properties linking error and residual are
not computable. Finally, Approach I does not really face a main difficulty of the
operator − div

(
a(∇·)

)
, namely its nonuniform ellipticity: the assumptions (4.3)

and u ∈W 1
∞(Ω) yield a situation as for uniform elliptic operators.

5. Approach II

We present and analyze the second approach, which constitutes the core of this
article. The main result is Theorem 5.1, which contains Result II as a special case.

5.1. Controlling with local ellipticity. The final remarks of §4 indicate that
it may be convenient to measure the residual Rh in a weighted way involving the
computed solution uh. While the suitable way for the lower bound is immediate,
the one for the upper bound is more involved. We now turn to it.

As mentioned before, a key issue is the application of inequality (4.11). An
alternative for this step arises from the following observation (suppose for a moment
ĝh = ĝ = 0). The test function in (4.15), which is relevant for the preceding step 3,
is ϕ = uh−u, and one may already switch to the local error eBh(T )(uh, u) before the
last step in (4.15). This requires a local counterpart of (4.11). But this is only useful
if we are able to compute the ellipticity properties (because otherwise we will end
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up with the same local indicators). We thus need an estimate of ∇(uh−u)|Bh(T ) in
terms of eBh(T )(uh, u) and some additional computable quantities. Unfortunately,
for any p1 ∈ Rd, we have (using the notation in Lemma 3.1)

(5.1)
|p1 − p2|2

1
2 |N(p1)−N(p2)|2

(
A(p1) +A(p2)

) −→ ∞ as |p2| → ∞.

Therefore, such an estimate with additional quantities depending solely on ∇uh
does not appear to be possible without further assumptions; see also §5.4. Instead of
allowing some dependence on ∇u (which would entail drawbacks as in Approach I),
we propose to rely on the following estimate.

Lemma 5.1. Let p1, p2 ∈ Rd and set Pi := (pi,−1) for i = 1, 2. We have

|p1 − p2|
1
|P1|2

≤ 2
∣∣∣∣ P1

|P1|
− P2

|P2|

∣∣∣∣ √|P1|
1√
|P1|

+
∣∣∣∣ P1

|P1|
− P2

|P2|

∣∣∣∣2 |P2|.

Proof. We first observe that

|p1 − p2| = |P1 − P2| ≤
∣∣∣∣ P1

|P1|
− P2

|P2|

∣∣∣∣ |P1| +
∣∣|P1| − |P2|

∣∣.
Moreover, we estimate∣∣|P1| − |P2|

∣∣ 1
|P1|2

≤
∣∣∣∣ |P1| − |P2|
|P1| |P2|

∣∣∣∣ +
∣∣∣∣ |P1| − |P2|
|P1|

(
1
|P1|
− 1
|P2|

)∣∣∣∣
≤
∣∣∣∣ 1
|P1|
− 1
|P2|

∣∣∣∣ +
∣∣∣∣ 1
|P1|
− 1
|P2|

∣∣∣∣2 |P2|.

We insert the last inequality in the first one multiplied by 1/|P1|2, and establish the
claim by observing that |P1| ≥ 1 and

∣∣1/|P1| − 1/|P2|
∣∣ ≤ ∣∣P1/|P1| − P2/|P2|

∣∣. �
The following fact will be important: the weight of the estimated term |p1 − p2|

is |P1|−2 and the weight of the leading order term
∣∣P1/|P1| −P2/|P2|

∣∣√|P1| on the
right-hand side is |P1|−1/2, so the squared quotient of these weights is |P1|−3 =
λ(p1).

5.2. Weighted indicators. We introduce the indicators for the second approach.
Their main building block is quite similar to the indicators (4.1) of the first ap-
proach: for any simplex T ∈ Th, we define η̃h(T ) ≥ 0 by

(5.2) η̃h(T )2 = hT ‖[[a(∇uh) · n]]‖20,2;∂T\∂Ω + hdT ‖H‖
2
0,d;T .

Note that in the setting of the introduction, that is d = 2, we have η(T ) = η̃(T ) for
all T ∈ Th.

Remark 5.1 (Scaling of the interior residual). At first glance, the interior residual
hdT ‖H‖

2
0,d;T seems to be rather unusual. However, we have (recall that d ≥ 2)

(5.3) h2
T ‖H‖

2
0,2;T 4 hdT ‖H‖

2
0,d;T

thanks to a Hölder inequality; and, if H is piecewise polynomial, in addition,

hdT ‖H‖
2
0,d;T 4 h2

T ‖H‖
2
0,2;T

thanks to an inverse estimate (see e.g., [Cia78, (3.2.33)]); the hidden constant in
the last inequality depends not only on the shape-regularity γh but also on the
maximal polynomial degree of H .
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Moreover, we need quantities that are used as local weights. Set

Λh(T ) := sup
T∗

Λ(∇uh), Qh(T ) := sup
Bh(T )

Q(∇uh),

λh(T ) := Qh(T )−2

(
inf
Bh(T )

√
1 + |∇uh|2

)
,

for any T ∈ Th. These quantities are strongly related to the “continuous” quantities
λ, Λ and Q: for example, if ∇uh = p on Bh(T ), then λh(T ) = λ(p).

5.3. Lower and upper bounds. With the help of the computable quantities in
the previous subsection, eΩ(uh, u) can be controlled in the following way.

Theorem 5.1 (Approach II). Let u be a solution of Problem 2.1, and suppose that
H ∈ Ld(Ω) and (2.2) holds. Moreover, let uh be the solution of Problem 2.2. Then:

(i) (Local lower bounds) For any T ∈ Th, we have

η̃h(T )
Λh(T )1/2

4 eT∗(uh, u) +

∥∥hd/2(H̄ −H)
∥∥

0,d;T∗

Λh(T )1/2
.

(ii) (Conditional global upper bound) There exists a constant C, depending
only on the shape-regularity γh, such that if

(5.4) Mh := max
T∈Th

Qh(T )h−d/2T η̃h(T ) ≤ C,

then

eΩ(uh, u) 4
(∑
T∈Th

η̃h(T )2

λh(T )
+
∫

Ω

|∇(ĝh − ĝ)|2 Λ(∇uh)
)1/2

.

Here, ĝh and ĝ are H1(Ω)-extensions of gh and g.

Remark 5.2 (On the choice of ĝ and ĝh). Since Λ(∇uh) ≤ 1, we can treat the term(∫
Ω
|∇(ĝh − ĝ)|2Λ(∇uh)

)1/2 as in Remark 4.1.

Proof of Theorem 5.1. 1. As before, we first investigate the relationship between
error and residual that is relevant for statement (i). Proceeding as in step 1 of the
proof of Theorem 4.1 but using

1
A(∇u) +A(∇uh)

≤ 1
A(∇uh)

instead of (4.4), we obtain

(5.5) ‖Rh‖−1,2;ω ≤
√

2 sup
ω

Λ(∇uh)1/2 eω(uh, u).

2. To conclude the proof of statement (i), we establish the variant

(5.6) η̃h(T ) 4 ‖Rh‖−1,2;T∗ +
∥∥hd/2(H̄ −H)

∥∥
0,d;T∗

of (4.6) by modifying the argument. Since |T | 4
∫
T
ψT , we have∥∥H̄∥∥d

0,d;T
4
∫
T

H̄ϕT

for ϕT := H̄ |H̄ |d−2 ψT . Let d∗ := d/(d− 1) be the dual exponent of d. This time
we estimate the right-hand side of formula (4.8) with the help of

‖∇ϕT ‖0,2;T 4 h
−d/2
T ‖ϕT ‖0,d∗;T 4 h

−d/2
T

∥∥H̄∥∥d−1

0,d;T



1624 FRANCESCA FIERRO AND ANDREAS VEESER

(cf. [Ver96, Lemma 3.3]) and obtain

h
d/2
T ‖H‖0,d;T 4 ‖Rh‖−1,2;T +

∥∥hd/2(H̄ −H)
∥∥

0,d;T
.

Combining this with

h
1/2
T ‖[[a(∇uh) · n]]‖0,2;∂T\∂Ω 4 ‖Rh‖−1,2;T∗ +

∥∥hd/2H∥∥
0,d;T∗

,

which follows from (4.9) and (5.3), yields (5.6), and thus statement (i) is proved.
3. In order to prepare the proof of statement (ii), we first establish the counter-

part of step 4 in the proof of Theorem 4.1. More precisely, taking into account the
discussion of §5.1, we show that

(5.7) 〈Rh, ϕ〉 4
∑
T∈Th

h
−d/2
T η̃h(T ) ‖∇ϕ‖0,1;Bh(T )

for all ϕ ∈ V . Let ϕ ∈ V , and let Πhϕ be its interpolant from §3.3. Using (3.7),
(3.3), and (3.6), we get

(5.8) 〈Rh, ϕ〉 =
∑
T∈Th

[
1
2

∫
∂T\∂Ω

[[a(∇uh) · n]] (Πhϕ− ϕ) +
∫
T

H (Πhϕ− ϕ)

]
.

For the terms involving the prescribed mean curvature H , we obtain∫
T

H (Πhϕ− ϕ) 4 ‖H‖0,d;T ‖∇ϕ‖0,1;Bh(T )

by (3.8a) with r = d∗ and q = 1, and for those involving the jump,∫
∂T\∂Ω

[[a(∇uh) · n]] (Πhϕ− ϕ) 4 ‖[[a(∇uh) · n]]‖0,∞;∂T\∂Ω ‖∇ϕ‖0,1;Bh(T )

by (3.8b) with q = 1. We insert the last two inequalities in (5.8) and use

‖[[a(∇uh) · n]]‖0,∞;∂T\∂Ω + ‖H‖0,d;T 4 h
−d/2
T η̃h(T )

to arrive at inequality (5.7).
4. We finish the proof of statement (ii) by establishing the counterpart of step 3

in the proof of Theorem 4.1. Using (4.10) and choosing ϕ = (uh− ĝh)− (u− ĝ) ∈ V
in inequality (5.7), we obtain

(5.9)

eΩ(uh, u)2 ≤
∫

Ω

[
a(∇uh)− a(∇u)

]
· ∇(ĝh − ĝ)

+ C
∑
T∈Th

h
−d/2
T η̃h(T ) ‖∇(ĝh − ĝ)‖0,1;Bh(T )

+ C
∑
T∈Th

h
−d/2
T η̃h(T ) ‖∇(uh − u)‖0,1;Bh(T ) =: I + II + III.

We have to estimate the three terms I, II, III appropriately. Term I is estimated
by proceeding similarly to step 1 and using (4.12) with ε = 1/3:

(5.10)
I ≤

√
2 eΩ(uh, u)

(∫
Ω

|∇(ĝh − ĝ)|2 Λ(∇uh)
)1/2

≤ 1
6
eΩ(uh, u)2 + 3

∫
Ω

|∇(ĝh − ĝ)|2 Λ(∇uh).
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Estimating term II with the help of

‖∇(ĝh − ĝ)‖0,1;Bh(T ) 4 h
d/2
T ‖∇(ĝh − ĝ)‖0,2;Bh(T )

4 h
d/2
T

(
sup
Bh(T )

Λ(∇uh)−1/2

) (∫
Bh(T )

|∇(ĝh − ĝ)|2 Λ(∇uh)
)1/2

,

we obtain again the second term of the right-hand side in (5.10):

(5.11) II 4
∫

Ω

|∇(ĝh − ĝ)|2 Λ(∇uh) +
∑
T∈Th

(
sup
Bh(T )

Λ(∇uh)−1
)
η̃h(T )2.

It remains to estimate the crucial term III. Thanks to Lemma 5.1, we have

|∇(uh − u)|Qh(T )−1 ≤ 2 |N(∇uh)−N(∇u)|
+ |N(∇uh)−N(∇u)|2A(∇u) on Bh(T ),

whence

(5.12)

III ≤ C
∑
T∈Th

Qh(T )h−d/2T η̃h(T )
∫
Bh(T )

|N(∇uh)−N(∇u)|

+ C
∑
T∈Th

Qh(T )h−d/2T η̃h(T )
∫
Bh(T )

|N(∇uh)−N(∇u)|2A(∇u)

=: IIIa + IIIb.

We first consider term IIIa. The inequality∫
Bh(T )

|N(∇uh)−N(∇u)| 4 h
d/2
T

(
sup
Bh(T )

Λ(∇uh)1/2
)
eBh(T )(uh, u)

and the equality Qh(T )2 supBh(T ) Λ(∇uh) = λh(T )−1 yield

(5.13) IIIa ≤ 1
6 eΩ(uh, u)2 + C

∑
T∈Th

λh(T )−1 η̃h(T )2.

It remains to bound term IIIb. Let C in (5.4) be the inverse of 6 times the constant
hidden in

IIIb 4
(

max
T∈Th

Qh(T )h−d/2T η̃h(T )
)
eΩ(uh, u)2.

Then condition (5.4) implies

(5.14) IIIb ≤ 1
6 eΩ(uh, u)2.

To conclude the claimed upper bound for eΩ(uh, u), we insert (5.10)–(5.14) in (5.9),
and observe that supBh(T ) Λ(∇uh)−1 ≤ λh(T )−1. �

We complement the discussion of the introduction and §4 with the following
remarks on Theorem 5.1:

• Neglecting the oscillation of H and multiplicative constants depending on
the shape-regularity γh, the local lower bound means that the weighted
indicator Λh(T )−1/2η̃h(T ) does not overestimate the local error eT∗(uh, u).

• Neglecting constants depending on γh and assuming (5.4) and gh = g, one
expects that, typically, λh(T )−1/2η̃h(T ) does not underestimate the local
error.
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• The gap between lower and upper bound may be measured locally by the
quantity Λh(T )1/2/λh(T )1/2 ≈ Qh(T )1/2.

5.4. On the condition for the upper bound. We discuss some issues that are
related to condition (5.4). We first show that (5.1) is relevant, which suggests that
the upper bound in Theorem 5.1 cannot hold unconditionally. To this end, let us
consider the following example.

Example 5.1 (Part of a catenoid). For A > 1/
√

2, we consider problem (1.1) with
data corresponding to the exact solution uA(x) = − ln

(
|x| −

√
|x|2 − 1

)
over the

domain ΩA = ]A,A+ 5[2.

The graph of uA is a part of a minimal surface, namely the catenoid that is
centered at the origin of R3 and has the symmetry plane x3 = 0, see e.g., [DHKW92,
Section 3.5]. The gradient ∇uA is big near the corner point (A,A), and

(5.15) lim
A↓1/

√
2
‖∇uA‖0,∞;ΩA

= ∞.

However, a straightforward computation yields

(5.16) J(uA) ≤ L

with a constant L not depending on A. Let uh,A denote the discrete solution of
Problem 2.2, where gh is the interpolant from §3.3 of uA|∂Ω. Then, using |p| ≤ A(p)
for all p ∈ Rd, H = 0, and ‖∇ΠhuA‖0,1;T 4 ‖∇uA‖0,1;Bh(T ) for any T ∈ Th implies

‖∇uh,A‖0,1;ΩA
≤ J(uh,A) ≤ J(ΠhuA) 4 J(uA).

An inverse estimate (see e.g., [Cia78, Theorem 3.2.6]) and (5.16) therefore yield

(5.17) ‖∇uh,A‖0,∞;ΩA
4 Lh−1

min,

where hmin = minT∈Th hT . In view of (5.15) and (5.17),

|∇uh,A| � |∇uA| close to (A,A),

if A is close to 1/
√

2 and uh,A is a discrete solution over a coarse (i.e., hmin is big)
triangulation. Moreover, if A ↓ 1/

√
2, the situation considered in (5.1) occurs for

p1 = ∇uh,A(A,A) and p2 = ∇uA(A,A).
The condition used in Theorem 4.1 is different from (5.4). So the question arises

whether condition (5.4) might be stronger than condition (4.3). However, as can
be seen from the following lemma, (4.3) with a small M essentially implies (5.4).

Lemma 5.2. There are constants M∗, H∗ > 0 depending on the exact solution u
and the shape-regularity γh such that condition (4.3) with M ≤M∗ and

(5.18) max
T∈Th

∥∥H̄ −H∥∥
0,d;T∗

≤ H∗

imply condition (5.4).

Proof. Let T ∈ Th. Similarly to step 2 in the proof of Theorem 5.1, we derive

h
−d/2
T η̃h(T ) 4 ‖Rh‖−1,∞;T∗ +

∥∥H̄ −H∥∥
0,d;T∗

with

‖Rh‖−1,∞;T∗ := sup{〈Rh, ϕ〉 | ϕ ∈ W 1
1 (Ω), suppϕ ⊂ T ∗, ‖∇ϕ‖0,1;T∗ ≤ 1}.
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Equation (3.4) and |a(p1)− a(p2)| ≤ 2Λ(p1)|p1 − p2| for all p1, p2 ∈ R2 imply

‖Rh‖−1,∞;T∗ ≤ 2 Λ
(
inf
T∗
|∇u|

)
‖∇(uh − u)‖0,∞;Ω .

Let M∗, H∗ > 0 (to be chosen in a moment). Using the last two inequalities and
supposing that (4.3) with M ≤M∗ and (5.18) hold, we obtain

max
T∈Th

Qh(T )h−d/2T η̃h(T ) 4 Q
(
sup

Ω
|∇u|+M∗

) [
M∗ Λ

(
inf
Ω
|∇u|

)
+ H∗

]
.

We thus reach our desired conclusion by choosing M∗, H∗ > 0 so small that the
right-hand side times the hidden constant is less than C in (5.4). �

We end this section with an interpretation of condition (5.4). The local indica-
tor h−d/2η̃h(T ) is related to the local residual measured in W−1

∞ (Ω), the dual of
W̊ 1

1 (Ω). The quantity Qh(T ) estimates the local Q(∇u), which can be understood
as quantitative measure for the gap between minimum and maximum eigenvalues
of D2A(∇u). Thus, condition (5.4) is satisfied, if the local residual is small with
respect to the estimated local gap between minimum and maximum eigenvalues.

6. Adaptivity and implementation

We discuss the application of approaches I and II in an adaptive algorithm. We
suppose gh = g for simplicity and focus on the two issues affected by the a posteriori
error analysis: stopping test and marking for refinement. In addition, we make some
remarks on the implementation that we used for the numerical experiments in §7.

6.1. Adaptive algorithms. Let us first present and discuss the main steps of
an adaptive algorithm. To this end, we replace the subscript h in the preceding
sections by an iteration counter l.

Algorithm 6.1. Let a tolerance tol > 0, stopping indicators ξl(T ), T ∈ Tl, a
marking parameter θ ∈ (0, 1], and marking indicators ζl(T ), T ∈ Tl, be given.

1. Construct an initial triangulation T0 and set l := 0.
2. Solve Problem 2.2 on Tl for ul and compute ξl(T ) for T ∈ Tl.
3. If

∑
T∈Tl ξl(T )2 ≤ tol2, then STOP.

4. Compute ζl(T ) for T ∈ Tl.
5. Choose (mark) the smallest subset T̂l ⊆ Tl with∑

T∈T̂l
ζl(T )2 ≥ θ

∑
T∈Tl

ζl(T )2.

6. Refine the simplices in T̂l to obtain a new triangulation Tl+1 in such a way
that the shape-regularity is bounded independently of l.

7. Increment l and go to 2.

We refer to this algorithm as Algorithm I, if ξl(T ) = ζl(T ) = ηl(T ), as Al-
gorithm II, if ξl(T ) = λl(T )−1/2η̃l(T ) and ζl(T ) = Λl(T )−1/2η̃l(T ), and as Algo-
rithm IIb, if ξl(T ) = ζl(T ) = λl(T )−1/2η̃l(T ) for all T ∈ Tl.

The stopping test in Step 3 is motivated by the conditional upper bounds of the
two approaches in §§4 and 5. However, if Algorithm I has stopped, Theorem 4.1
does not allow us to conclude that eΩ(ul, u) 4 tol, due to the presence of the
noncomputable and problem-dependent term infΩ λ

M (∇u), and because condition
(4.3) cannot be verified. If Algorithm II (or IIb) has stopped, then Theorem 5.1
implies eΩ(ul, u) 4 tol provided (5.4) holds. However, the latter condition cannot
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be verified, as the realistic estimation of C in (5.4) is an open problem. Nevertheless,
one could include in Algorithm II the computation ofMl; its behaviour as l increases
may indicate the validity of (5.4) and thus the reliability of the stopping test; see
also §7.1.

Typically, the iterated application of Step 5 (Dörfler’s fixed fraction strategy
[Dör96]) leads to an almost equidistribution of the marking indicators ζl(T ), T ∈ Tl.
But this does not necessarily imply the desired (see [BR78b, Sect. 5]) almost equidis-
tribution of the local errors eT (uh, u), T ∈ Th, because ηl(T ) and Λl(T )−1/2η̃l(T )
underestimate and λl(T )−1/2η̃l(T ) typically overestimates the local error (see §§4
and 5). The performances of these marking indicators are investigated in §§7.2 and
7.3.

6.2. Some implementation issues. We discuss several aspects of our two-dimen-
sional implementations of Algorithms I, II, and IIb.

Problem 2.2 yields a nonlinear discrete system, which is assembled in a standard
way. Note that an insufficiently precise approximation of

∫
ΩHφ

z
h, z ∈ N ◦h , may pro-

duce an unsolvable discrete problem for coarse triangulations; see Proposition 2.1.
In our computations, it was sufficient to use a quadrature formula of order 5 for∫
THφ

z
h, z ∈ N ◦h , T ∈ Th. We solve the discrete system by using a Newton-like al-

gorithm. The descent direction in each step is computed by means of the conjugate
gradient method, which is preconditioned by incomplete Cholesky factorization.

In Step 5 of all three algorithms, we do not actually determine the smallest set.
This would require a sort with complexity #Tl| log #Tl|, where #Tl denotes the
number of triangles in Tl. Instead we construct an approximation of the smallest
set according to Dörfler [Dör96]. This construction has complexity #Tl. In all
experiments we choose θ = 0.25.

Each marked triangle is refined once with the help of the bisection algorithm
that is described in Bänsch [Bän91a, Bän91b]. In this way the shape-regularities
of refined triangulations depend only on the shape-regularity of the initial triangu-
lation.

Finally, since Ω = B(0; 1) := {x ∈ R2 | |x| < 1} in all numerical examples of §7,
we adapted all three algorithms to this situation. To this end, we modified both
approaches in the spirit of Dörfler and Rumpf [DR98] so as to take into account
the error due to the approximation of B(0; 1); additional terms appear only in the
indicators of boundary triangles. Moreover, the coordinates x = (x1, x2) of new
nodes on boundary sides are replaced by x/|x|.

7. Numerical experiments

Our numerical investigations address the following issues of the algorithms in §6:
• The behavior of Ml in condition (5.4) as the number l of iterations in

Algorithm II increases.
• A comparison of using Λl(T )−1/2η̃l(T ) or λl(T )−1/2η̃l(T ) as marking indi-

cators ζl(T ) in Step 5 of Algorithm II or IIb, respectively.
• A comparison of the performances of Algorithms I and II.

7.1. The behavior of Ml. We study the behavior of Ml for the following example:

Example 7.1 (Boundary layer). Let B > 0 and consider problem (1.1) with data
that corresponds to the exact solution uB(x) := arctan

[
B(|x|2− 1

4 )
]

on the domain
Ω := {y ∈ R2 | |y| < 1}.
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Figure 1. Example 7.1: the behavior of Ml versus Nl as l in-
creases for B = 1 (solid), 10 (dashed), 100 (dotted).

The radial symmetric function uB is close to −1 at 0 and close to 1 on the
boundary ∂Ω. The transition from −1 to 1 takes place near the circle {y ∈ R2 |
|y| = 1

2} and gets sharper as B increases: limB↑∞ ‖∇uB‖0,∞;Ω =∞.
We are interested in the relationship ofMl and the number Nl of unknows, which

measures the size of the discrete Problem 2.2 and increases with l. To this end, we
execute the loop in Algorithm II as long as Nl ≤ 50 000. In Figure 1 the possible
behavior of Ml is illustrated by three parameter values: for B = 1, the quantity Ml

decreases from the start; for B = 10, it decreases after some increasing; finally, for
B = 100, no decreasing takes place up to Nl ≈ 50 000.

This behavior is consistent with the discussion in §5.4: if the exact solution is
sufficiently regular, refining will reduce the residual measured in W−1

∞ (Ω) and thus
the indicators h−d/2T η̃l(T ), T ∈ Tl, but ‖∇ul‖0,∞;Ω and thus the weights Ql(T ),
T ∈ Tl, may increase for a certain number of iterations; compare with Example 5.1.

These numerical results and their discussion indicate:
• Condition (5.4) is asymptotically (i.e., for sufficiently large l) satisfied, if

the exact solution is in W 1
∞(Ω).

• If the exact solution has a steep gradient somewhere, small values of Ml,
and thus the achievement of (5.4), may require discrete problems with (too)
many unknowns.

In view of the first item, one expects that the stopping test in Algorithm II is reliable
for sufficiently small tolerances tol. We stress that monitoring the computable
quantity Ml can indicate whether or not (5.4) holds for a reachable number of
unknows.

7.2. Local indicators, local error, and marking. It is instructive to compare
the relationship between the local error eT (ul, u) and the indicators Λl(T )−1/2η̃l(T )
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Ul(T ),
Ol(T )

Figure 2. Example 7.1 (B = 100): local underestimation Ul(T )
(solid) by 1

9Λl(T )−1/2 η̃l(T ) and overestimation Ol(T ) (dashed) by
1
9λl(T )−1/2 η̃l(T ).

and λl(T )−1/2η̃l(T ). We investigate these relationships for Example 7.1 and the
following one.

Example 7.2 (Segment of R-sphere). Let R > 1 and consider problem (1.1) with
data that corresponds to the exact solution uR(x) =

√
R2 − |x|2 on the domain

Ω = {y ∈ R2 | |y| < 1}.

The graph of the function uR is an upper segment of the sphere with radius
R > 1 and center at the origin of R3. The modulus |∇uR| of the gradient increases
as |x| tends to 1. Moreover, limR↓1 ‖∇uR‖∞;Ω =∞.

For the investigation of the local indicators and local error, we define the local
under- and overestimation indexes

(7.1) Ul(T ) :=
eT (ul, u)

1
9Λl(T )−1/2η̃l(T )

and Ol(T ) :=
1
9λl(T )−1/2η̃l(T )

eT (ul, u)

for any T ∈ Tl; the fraction 1
9 guarantees that Ul(T ) ≥ 1 and Ol(T ) ≥ 1 for

“nonboundary” triangles. The behavior of these indexes along the straight line
from (0, 0) to (1, 1)/

√
2 are depicted in Figure 2 for a discrete solution to Ex-

ample 7.1 with B = 100. We observe that 1
9Λl(T )−1/2 η̃l(T ) underestimates and

1
9λl(T )−1/2 η̃l(T ) overestimates the error eT (ul, u) in regions where |∇ul| (and |∇u|)
is big (we disregard boundary triangles, since they incorporate an additional term
in the indicator). Quantitatively, the local overestimation of 1

9λl(T )−1/2 η̃l(T ) is
bigger than the local underestimation of 1

9Λl(T )−1/2 η̃l(T ) in Figure 2. Correspond-
ing curves for a discrete solution to Example 7.2 with R = 1 + 10−5 are depicted
in Figure 3. Here, the local overestimation of 1

9λl(T )−1/2 η̃l(T ) is smaller than the
local underestimation of 1

9Λl(T )−1/2 η̃l(T ).
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Figure 3. Example 7.2 (R = 1 + 10−5): local underestima-
tion Ul(T ) (solid) by 1

9Λl(T )−1/2 η̃l(T ) and overestimation Ol(T )
(dashed) by 1

9λl(T )−1/2 η̃l(T ).

These numerical results and definitions (7.1) indicate the following:
• The constants in Theorem 5.1 which are hidden in 4 are of moderate size

on meshes with reasonable shape-regularity.
• Typically, the local error eT (ul, u) is in the interval from Λl(T )−1/2 η̃l(T )

to λl(T )−1/2 η̃l(T ) (up to multiplicative constants depending on the initial
shape-regularity).

The second item is in accordance with the discussion of §5.3. Moreover, it suggests
that the estimates in Theorem 5.1 are sharp in the sense that they constitute
possible worst cases corresponding to certain directions of the unknown error.

We conclude this subsection with a comparison of Algorithms II and IIb. We
applied both algorithms to Examples 7.1 and 7.2. The relationships between global
error eΩ(ul, u) and number of unknows Nl are depicted in Figures 4 and 5, re-
spectively. We observe that Algorithm II performs better for Example 7.1, while
Algorithm IIb performs better for Example 7.2. Moreover, the following expecta-
tion is confirmed by comparing with Figures 2 and 3: the approach whose marking
indicators are closer to the local errors performs better.

Finally, notice the slowdown in the convergence of eΩ(ul, u) for Algorithm IIb in
Figure 4 for Example 7.1 (which is different from the “waves” in Figure 5 due to the
domain approximation). In view of the discussion of Example 5.1 and Figure 2, this
may be explained as follows: as long as |∇ul| increases, the typical overestimation of
λl(T )−1/2 η̃l(T ) and thereby the deviation of the local errors from equidistribution
becomes more severe. Algorithm II does not exhibit such a slowdown: typically, as
long as |∇ul| increases, the underestimation of Λl(T )−1/2 η̃l(T ) becomes less severe.

We summarize:
• Depending on the example, Algorithm II or IIb performs better.
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Figure 4. Example 7.1 (B = 100): eΩ(ul, u) versus Nl for Algo-
rithms II (solid) and IIb (dashed). The optimal decay is indicated
by the dotted line with slope −1/2.

0.01

0.1

1

10

10 100 1000 10000

Nl

eΩ(ul, u)

Figure 5. Example 7.2 (R = 1 + 10−5): eΩ(ul, u) versus Nl for
Algorithms II (solid) and IIb (dashed). The optimal decay is indi-
cated by the dotted line with slope −1/2.
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Figure 6. Example 7.1 (B = 500): eΩ(ul, u) versus Nl for Al-
gorithms I (dashed-dotted), II (solid) and uniform refinement
(dashed). The optimal decay and the value 0.125 are indicated
by dotted lines with slope −1/2 and 0, respectively.

• In contrast to Algorithm II, Algorithm IIb has the potential risk of a (prob-
ably transitory) convergence slowdown.

We prefer Algorithm II to IIb due to the second item and the considerations in §7.3
below.

7.3. Algorithm I versus Algorithm II. We finally compare Algorithm I based
on approach I with Algorithm II based on approach II.

Inequality (5.3) and Λ−1/2
l (T ) ≥ 1 imply ηl(T ) 4 Λl(T )−1/2η̃l(T ) for all T ∈ Tl,

so ηl(T ) always underestimates the local error more strongly than Λl(T )−1/2η̃l(T ).
One thus expects that Algorithm II performs better than Algorithm I, especially
if Λ(∇u), i.e., |∇u|, is a strongly varying function. In fact, for Example 7.1 with
B = 500, Algorithm I needs 39683 unknowns to get eΩ(uh, u) ≤ 0.125, while
Algorithm II needs only 22752 for the same goal. See also Figure 6, where the
behavior of eΩ(ul, u) versus Nl is depicted for Algorithms I and II.

Also the case of uniform refinement is shown in Figure 6: as expected, both
adaptive algorithms perform better than nonadaptive uniform refinement.
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[Bän91b] Eberhard Bänsch, An adaptive finite-element strategy for the three-dimensional time-
dependent Navier-Stokes equations, J. Comp. Appl. Math. 36 (1991), no. 1, 3–28. MR
92f:76066
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