
MATHEMATICS OF COMPUTATION
Volume 72, Number 244, Pages 1635–1653
S 0025-5718(03)01508-4
Article electronically published on March 4, 2003

ANALYSIS OF A BILINEAR FINITE ELEMENT
FOR SHALLOW SHELLS. II: CONSISTENCY ERROR

VILLE HAVU AND JUHANI PITKÄRANTA

Abstract. We consider a bilinear reduced-strain finite element of the MITC
family for a shallow Reissner-Naghdi type shell. We estimate the consistency
error of the element in both membrane- and bending-dominated states of de-
formation. We prove that in the membrane-dominated case, under severe
assumptions on the domain, the finite element mesh and the regularity of the
solution, an error bound O(h + t−1h1+s) can be obtained if the contribution
of transverse shear is neglected. Here t is the thickness of the shell, h the mesh
spacing, and s a smoothness parameter. In the bending-dominated case, the
uniformly optimal bound O(h) is achievable but requires that membrane and
transverse shear strains are of order O(t2) as t→ 0. In this case we also show
that under sufficient regularity assumptions the asymptotic consistency error
has the bound O(h).

1. Introduction

Approximation of deformation states arising in thin shells by low-order finite
element methods is known to be a nontrivial task. Different locking modes degrade
the convergence rate of the most basic formulations when approximating bending-
dominated or inextensional deformations. However, it is equally well-known by now
that a suitable variational crime can be used to retain the convergence properties
in such cases. This can even be done up to an optimal order and smoothness
requirements for certain shell geometries, as was shown in Part I of this paper [3],
see also [7]. The real challenge begins when one aims to find a formulation that has
a satisfactory behavior also in the membrane-dominated states of deformation. In
this case one is inevitably led to consider the questions of consistency and stability
of the formulation, since the approximation properties will rarely be a problem
in such a case, but lack of consistency or stability can yield a very large error
component.

Probably most low-order shell elements that aim to be general in nature contain
the basic ideas of MITC4 by Bathe and Dvorkin [1]. In [4] it was shown that this
formulation is in fact equivalent to a certain variational crime already considered
in [7]. In this paper we extend our analysis of the MITC-type elements and address
their consistency and stability properties. We show that, at least under favorable
circumstances, this kind of an element can indeed also approximate membrane-
dominated deformation well. However, due to the lack of stability in the membrane-
dominated case, we can bound the consistency error in this case only non-uniformly
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with respect to the thickness t of the shell. We also need strong assumptions on the
problem setup and on the finite element mesh, as in the previous part [3]. Under
such hypotheses and under certain additional hypotheses on the solution, we show
that the consistency error is at most of order O(h+ t−1h1+s), where h is the mesh
spacing and s ≥ 0 is a parameter depending on the degree of smoothness of the
exact solution. As s can be arbitrarily large in principle, one can have t−1hs = O(1)
for reasonable sequences of (t, h) if the solution is very smooth. In such a case the
consistency error is O(h), which is the optimal order for bilinear elements.

Another topic to be considered in this paper is the asymptotic behavior of the
consistency error in the case of an inextensional deformation. In [3] we considered
the problem of finding a best finite element approximation of a given inextensional
deformation. At that point the question of consistency was deliberately left aside.
However, in real computations one is inevitably faced with the fact that since
the reduced inextensional space is not a subspace of the corresponding continuous
space, the consistency error does not tend to zero when the thickness t → 0, but
to some finite value depending on h. Here we show that this error term is of
the optimal order O(h). However, to obtain this result we need much stronger
regularity assumptions on the exact solution than in the previous Part I [3], where
we bounded the approximation error. Whether our analysis here is sharp is not
clear at the moment.

The plan of this paper is as follows. In section 2 we describe the problems to be
considered and in section 3 we consider two slightly different FEM approximations
to these. Section 4 is devoted to the consistency error in the non-asymptotic case
(t > 0), whereas section 5 deals with the asymptotic consistency error in the inex-
tensional deformation state. In section 6 we draw the conclusions of Parts I and II
of the paper.

In the following we denote by C a generic constant that may take a different value
each time. The constants may depend on the geometry parameters of the problem
but are otherwise independent of the parameters, unless indicated explicitly. The
Sobolev norm and seminorm are denoted by || · ||k and | · |k respectively on the
assumed rectangular domain. Further, || · ||L2 = || · ||0, and (·, ·) denotes the L2-
inner product.

2. The shell problem

We use basically the same shell model of Reissner-Naghdi type as in [3], but
with two different scalings. Denoting by u = (u, v, w, θ, ψ) the vector of three
translations and two rotations, we let the (scaled) total energy of the shell be given
either by

FM (u) =
1
2
(
t2Ab(u, u) +Am(u, u)

)
−Q(u)

or by

FB(u) =
1
2
(
Ab(u, u) + t−2Am(u, u)

)
−Q(u),

where t is the thickness of the shell and Q represents the load potential. Here the
subscripts M and B refer to the natural scalings of the total energy in membrane-
and bending-dominated deformations, respectively. We assume that in both cases
Q(u) defines a bounded linear functional on the corresponding energy space to be
defined later. The bilinear forms Ab(u, v) and Am(u, v) arising from the bending
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and membrane energies are given by

Ab(u, v) =
∫

Ω

{
ν(κ11 + κ22)(u)(κ11 + κ22)(v)+(1− ν)

2∑
i,j=1

κij(u)κij(v)
}
dxdy

and

Am(u, v) = 6γ(1− ν)
∫

Ω

{ρ1(u)ρ1(v) + ρ2(u)ρ2(v)}dxdy

+12
∫

Ω

{ν(β11 + β22)(u)(β11 + β22)(v)

+ (1 − ν)
2∑

i,j=1

βij(u)βij(v)}dxdy,

where overbars denote complex conjugation. Here ν is the Poisson ratio of the
material, γ is a shear correction factor and κij , βij and ρi represent the bending,
membrane and transverse shear strains respectively, depending on u as

(2.1)

β11 =
∂u

∂x
+ aw, κ11 =

∂θ

∂x
,

β22 =
∂v

∂y
+ bw, κ22 =

∂ψ

∂y
,

β12 =
1
2

(
∂u

∂y
+
∂v

∂x
) + cw = β21 κ12 =

1
2

(
∂θ

∂y
+
∂ψ

∂x
) = κ21

and

(2.2) ρ1 = θ − ∂w

∂x
, ρ2 = ψ − ∂w

∂y
.

The integration is taken over the midsurface Ω of the shell, which we assume to
occupy the rectangular region (0, L) × (0, H) in the xy-coordinate space. We are
considering the shell to be shallow and assume that the parameters a, b and c
defining the geometry can be taken to be constants. We further note that if ab−c2 >
0 the shell is elliptic, if ab − c2 = 0 it is parabolic, and if ab − c2 < 0 we have a
hyperbolic shell.

The above two energy formulations lead naturally to two differently scaled vari-
ational formulations, the membrane (M) and bending (B) cases:

(M) Find u ∈ UM such that

(2.3) AM (u, v) = t2Ab(u, v) +Am(u, v) = Q(v) ∀v ∈ UM .

(B) Find u ∈ UB such that

(2.4) AB(u, v) = Ab(u, v) + t−2Am(u, v) = Q(v) ∀v ∈ UB.

Here UM and UB are the membrane and bending energy spaces, respectively, which
we take to be subspaces of [H1

p (Ω)]5, where H1
p (Ω) is the usual Sobolev space

with periodic boundary conditions imposed at y = 0, H . In UB no constraints are
imposed at x = 0, L, whereas in UM we assume the constraints u = v = w = θ =
ψ = 0 at x = 0, L. In case (B) we must also remove the rigid displacements from
UB so as to make (2.4) uniquely solvable. For the convenience of our error analysis,
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we make somewhat stronger assumptions than are needed for the well-posedness of
(2.4): We introduce the set of pseudo-rigid displacements as

Z = {v ∈ [H1
p (Ω)]5 | v =

5∑
i=1

Ciei},

where ei is the ith pseudo-rigid body mode coinciding with the ith Euclidean unit
vector in our model, we assume that Q(v) = 0 for every v ∈ Z, and we let UB = Z⊥
in [H1

p (Ω)]5. Finally we denote the energy norms on UM and on UB, respectively,
by ||| · |||M =

√
AM (·, ·) and ||| · |||B =

√
AB(·, ·) = t−1||| · |||M .

Letting t → 0 in (2.4), we obtain the inextensional formulation of the problem
(B): Find u0 ∈ U0 such that

(2.5) Ab(u0, v) = Q(v) ∀v ∈ U0,

where U0 = {v ∈ UB | Am(v, v) = 0} ⊂ UB is the space of inextensional deforma-
tions.

3. The reduced-strain FE scheme

We consider the bilinear MITC4 finite element formulation of the problems (2.3)
– (2.5). As in [3], we make strong assumptions on the finite element mesh so as to
allow the use of Fourier methods in the error analysis.

Assume that Ω is divided into rectangular elements with node points (xk, yn),
k = 0, . . . , Nx, n = 0, . . . , Ny, and a constant mesh spacing hy in the y-direction,
and that the aspect ratios of the elements satisfy d−1 ≤ hkx/hy ≤ d for some d > 0,
where hkx = xk+1 − xk. To this mesh we associate the standard space Vh ⊂ H1

p (Ω)
of continuous piecewise bilinear functions. We then define the FE spaces UM,h

and UB,h, respectively, as subspaces of V5
h where the boundary or orthogonality

conditions of problems (M) and (B) are enforced. The finite element formulation
of problems (2.3) – (2.5) are then obtained by replacing UM , UB by UM,h, UB,h and
by modifying the bilinear form Am numerically as

Ahm(u, v) = 6γ(1− ν)
∫

Ω

{ρ̃1(u)ρ̃1(v) + ρ̃2(u)ρ̃2(v)}dxdy

+12
∫

Ω

{ν(β̃11 + β̃22)(u)(β̃11 + β̃22)(v)

+ (1 − ν)
2∑

i,j=1

β̃ij(u)β̃ij(v)}dxdy,

where β̃ij = Rijβij , ρ̃i = Riρi with suitable reduction operators Rij and Ri. As in
[3], we choose these operators for βii and ρi to be

(3.1) β̃11 = Πx
hβ11, β̃22 = Πy

hβ22, ρ̃1 = Πx
hρ1 ρ̃2 = Πy

hρ2,

where Πx
h and Πy

h are orthogonal L2-projections onto spacesWx
h andWy

h consisting
of functions that are constant in x and piecewise linear in y or constant in y and
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piecewise linear in x, respectively. For the term β12 we consider two different
alternatives:

(E1) β̃12 = Πxy
h β12,

(E2) β̃12 = β12 + S12,
where Πxy

h = Πx
hΠy

h is the orthogonal L2-projection onto elementwise constant
functions, and, for every element K,

S12|K = a
∂

∂y
(Πx

hw)(x − hkx/2) + b
∂

∂x
(Πy

hw)(y − hy/2) + (Πxy
h cw − cw)

is essentially the term introduced in [4].

Remark 3.1. The formulation (E1) was assumed in [3], [7]. This is a straightforward
interpretation of the MITC4 finite element formulation, but, as shown recently in
[4], (E2) is actually a closer interpretation of MITC4. The two formulations are
practically equivalent when approximating inextensional deformations, but may
differ in other deformation states, as noted in [4]. Our error analysis here can
only detect a small difference when approximating smooth membrane-dominated
deformations, see Theorem 4.4, below.

The above definitions give rise to two different FE-schemes for solving (2.3) and
(2.4):

(Mh) Find uh ∈ UM,h such that

(3.2) AhM (uh, v) = t2Ab(uh, v) +Ahm(uh, v) = Q(v) ∀v ∈ UM,h.

(Bh) Find uh ∈ UB,h such that

(3.3) AhB(uh, v) = Ab(uh, v) + t−2Ahm(uh, v) = Q(v) ∀v ∈ UB,h.
Upon passing to the limit t → 0 in (3.3) we obtain a finite element formulation of
the asymptotic problem (2.5): Find uh ∈ U0,h such that

(3.4) Ab(uh, v) = Q(v) ∀v ∈ U0,h,

where U0,h = {v ∈ UB,h | Ahm(v, v) = 0}.
To analyze the discretization errors eM = |||u−uh|||M,h and eB = |||u−uh|||B,h

as originating from (3.2) and (3.3) when t > 0, we split eM and eB into two
orthogonal components in both cases, namely the approximation errors

ea,M (u) = min
v∈UM,h

|||u− v|||M,h,

ea,B(u) = min
v∈UB,h

|||u− v|||B,h,

and the consistency errors

ec,M (u) = sup
v∈UM,h

(AM −AhM )(u, v)
|||v|||M,h

,(3.5)

ec,B(u) = sup
v∈UB,h

(AB −AhB)(u, v)
|||v|||B,h

,(3.6)

where ||| · |||M,h =
√
AhM (·, ·), ||| · |||B,h =

√
AhB(·, ·). These definitions imply that

e2
M = e2

a,M + e2
c,M ,

e2
B = e2

a,B + e2
c,B.
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(For detailed reasoning, see [6].) We note that standard finite element theory gives
the bound ea,M ≤ Ch||u||2, and for ea,B we refer to [3]. Hence, the main task of
this paper is to bound ec,M and ec,B. We aim to analyze these error terms with
both proposed strain-reductions (E1) and (E2).

The asymptotic formulations (2.5), (3.4) lead to a similar error decomposition.
We have for u0 ∈ U0 the asymptotic approximation error

e0
a(u0) = min

v∈U0,h
|||u0 − v|||B,h,

which was under consideration in [3]. On the other hand, at t = 0 we have that

Ab(u0, v) = Q(v) ∀v ∈ U0

for the inextensional solution u0 ∈ U0, and that

(3.7) Ab(uh, v) = Q(v) ∀v ∈ U0,h

for the corresponding finite element solution uh. Let ũh be the best finite element
approximation to u0 in U0,h, i.e.

(3.8) Ab(ũh, v) = Ab(u0, v) ∀v ∈ U0,h.

By (3.7), (3.8) the asymptotic consistency error uh − ũh ∈ U0,h satisfies

(3.9) Ab(uh − ũh, v) = Q(v)−Ab(u0, v) ∀v ∈ U0,h,

and thus we can define

(3.10) e0
c(u0) + |||uh − ũh|||h = sup

v∈U0,h

Q(v)−Ab(u0, v)
|||v|||B,h

.

As in [3], the main tool of our analysis will be the Fourier transform, where we
write

u(x, y) =
∑
λ∈Λ

ϕλ(y)φ
λ
(x) =

∑
λ∈Λ

ϑλ(x, y),

ϕλ(y) = eiλy , Λ = {λ =
2πν
H

, ν ∈ Z},

making use of the periodic boundary conditions at y = 0, H . For functions in the
FE space we write analogously

v(x, y) =
∑
λ∈ΛN

ϕ̃λ(y)φ̃
λ
(x) =

∑
λ∈ΛN

ϑ̃λ(x, y),

where

ΛN = {λ ∈ Λ | − π ≤ λhy ≤ π when Ny is odd,

or − π < λhy ≤ π when Ny is even}.

Here ϕ̃λ(y) is the interpolant of ϕλ(y), so that we are in fact considering a discrete
Fourier transform of v ∈ Uh.

In our forthcoming analysis the following results are also needed.
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Proposition 3.1 (Korn’s inequality). Let V = {v = (v1, v2) ∈ [H1
p (Ω)]2 | v(0, ·) =

v(L, ·) = 0} or let V = {v = (v1, v2) ∈ [H1
p (Ω)]2 |

∫
Ω v1dxdy =

∫
Ω v2dxdy = 0}.

Then there exists a constant c > 0 such that

(3.11) ||v||1 ≤ c
(
||∂v1

∂x
||2L2 + ||∂v2

∂y
||2L2 + 2||1

2
(
∂v1

∂y
+
∂v2

∂x
)||2L2

)1/2 ∀v ∈ V .

Proof. See [2]. �

Proposition 3.2. Assume that v = (v1, v2) ∈ [Vh]2. Then

(3.12) ||∂v1

∂y
+
∂v2

∂x
||L2 ≤ C

(
||Πxy

h (
∂v1

∂y
+
∂v2

∂x
)||L2 + ||∂v1

∂x
||L2 + ||∂v2

∂y
||L2

)
.

Proof. See Theorem 6.1 in [6]. �

4. The consistency error at t > 0

We start by giving a stability result for UM,h.

Lemma 4.1. Let v ∈ UM,h. Then

||v||1 ≤ Ct−1|||v|||M,h.

Proof. Assume (E1) first. By (3.2) we have that for v = (u, v, w, θ, ψ) ∈ UM,h

||∂θ
∂x
||L2 + ||∂ψ

∂y
||L2 + ||∂θ

∂y
+
∂ψ

∂x
||L2 ≤ Ct−1|||v|||M,h,

and thus, by the Korn inequality (3.11),

(4.1) ||θ||1 + ||ψ||1 ≤ Ct−1|||v|||M,h.

Also the definitions (2.1) of the membrane strains βij imply

||∂u
∂x
||L2 + ||∂v

∂y
||L2 + ||Πxy

h (
∂u

∂y
+
∂v

∂x
)||L2 ≤ C(|||v|||M,h + ||w||L2),

and by (3.12) we have

||∂u
∂y

+
∂v

∂x
||L2 ≤ C(||Πxy

h (
∂u

∂y
+
∂v

∂x
)||L2 + ||∂u

∂x
||L2 + ||∂v

∂y
||L2),

resulting in

||∂u
∂x
||L2 + ||∂v

∂y
||L2 + ||∂u

∂y
+
∂v

∂x
||L2 ≤ C(|||v|||M,h + ||w||L2),

where, again from by the Korn inequality (3.11),

(4.2) ||u||1 + ||v||1 ≤ C(|||v|||M,h + ||w||L2).
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By (2.2), (3.1) we have that ∂w
∂x = ρ̃1 −Πx

hθ and ∂w
∂y = ρ̃2 −Πy

hψ, so that

(4.3) ||∂w
∂x
||L2 + ||∂w

∂y
||L2 ≤ C(|||v|||M,h + ||θ||L2 + ||ψ||L2) ≤ Ct−1|||v|||M,h

by (4.1). The claim follows from (4.1) – (4.3) together with Poincaré’s inequality.
Similar calculations imply the result also for the modification (E2). �

Lemma 4.2. Let v ∈ UB,h. Then

||v||1 ≤ C|||v|||B,h.

Proof. By the definition of UB,h the Korn inequality (3.11) holds for the pairs (θ, ψ)
and (u, v), as well as Poincaré’s inequality for w. The result follows as in Lemma
4.1. �

Next we derive more specific stability results for the low-order discrete Fourier
modes in the FE space.

Lemma 4.3. Let ϑ̃λ = ϕ̃λφ̃λ = ϕ̃λ(ũλ, ṽλ, w̃λ, θ̃λ, ψ̃λ) ∈ UM,h. Then, if b 6= 0, we
have, for λ 6= 0 such that |λ|h ≤ c < π,

(4.4) ||ϕ̃λũλ||1 + ||ϕ̃λṽλ||1 + ||ϕ̃λw̃λ||L2 ≤ C|λ|1−m|||ϑ̃λ|||M,h,

where m = 1 in the elliptic case and m = 0 in the parabolic and hyperbolic cases,
and for λ = 0

(4.5) ||ϕ̃0ũ0||1 + ||ϕ̃0ṽ0||1 + ||ϕ̃0w̃0||L2 ≤ C|||ϑ̃0|||M,h

in any geometry.

Proof. Consider first the case (E1). The translation components ũλ and ṽλ of ϑ̃λ
satisfy the difference equation (cf. [3])

(4.6)
(
ṽλ
ũλ

)
(xk+1)−

(
ṽλ
ũλ

)
(xk) =

1
2
τkM

[(
ṽλ
ũλ

)
(xk+1) +

(
ṽλ
ũλ

)
(xk)

]
+ hkxF̃

k
λ ,

where τk = 2h
k
x

hy
tan (1

2λhy),

(4.7) M = i

(
2c
b −1
a
b 0

)
,

and

(4.8) F̃ kλ =
1

cos (1
2λhy)

(
2f̃λ12(xk+1/2)− c

b (f̃
λ
22(xk+1) + f̃λ22(xk))

cos (1
2λhy)f̃λ11(xk+1/2)− a

2b (f̃
λ
22(xk+1) + f̃λ22(xk))

)
.

Here

f̃λ11(xk+1/2) = e−inλhy(β̃11(ϑ̃λ))|
(xk+1/2,yn)

,

f̃λ22(xk) = e−i(n+1/2)λhy(β̃22(ϑ̃λ))|
(xk,yn+1/2)

,

f̃λ12(xk+1/2) = e−i(n+1/2)λhy(β̃12(ϑ̃λ))|
(xk+1/2,yn+1/2)

.
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Due to the constraints at x = 0, L, we may without loss of generality consider
only the exponentially decreasing solution of (4.6) starting from x = 0. Then if
|λ|hy ≤ c < π, the standard theory for A-stable difference schemes (see also [3])
gives us the bound

(4.9)

||
(
ṽλ
ũλ

)
(xk+1)|| ≤ e−α|λ|xk+1||

(
ṽλ
ũλ

)
(0)||

+
∫ xk+1

0

e−β|λ|(x
k+1−t)||F̃λ(t)||e−α|λ|tdt,

where || · || is the Euclidean norm of vectors in R2 and

F̃λ =
(

2f̃λ12 − 2c
b f̃

λ
22

f̃λ11 − a
b f̃

λ
22

)
.

Here α > β > 0 in the elliptic case and α = β = 0 in the parabolic and hyperbolic
cases. Since ũλ(0) = ṽλ(0) = 0, we obtain, when λ 6= 0,∥∥∥∥(ṽλũλ

)
(xk+1)

∥∥∥∥2

≤
{
C|λ|−1e−2β|λ|xk+1 ∫ xk+1

0 ||F̃λ(t)||2dt in the elliptic case,

C
∫ xk+1

0
||F̃λ(t)||2dt in the parabolic and hyperbolic cases,

and consequently

(4.10) ||ṽλ||2L2(0,L) + ||ũλ||2L2(0,L) ≤ C|λ|−2m||F̃λ||2L2(0,L).

Also, (4.6) gives the relation(
ṽλ
ũλ

)′
(xk+1/2) =

1
hy

tan (
1
2
λhy)M

[(
ṽλ
ũλ

)
(xk+1) +

(
ṽλ
ũλ

)
(xk)

]
+ F̃ kλ ,

from which it follows that
||ṽ′λ||2L2(0,L) + ||ũ′λ||2L2(0,L)

≤ C|λ|2(||ṽλ||2L2(0,L) + ||ũλ||2L2(0,L)) + ||F̃λ||2L2(0,L)

≤ C|λ|2(1−m)||F̃λ||2L2(0,L).

(4.11)

Combining (4.10) and (4.11) gives

(4.12) ||ϕ̃λũλ||1 + ||ϕ̃λṽλ||1 ≤ C|λ|1−m|||ϑ̃λ|||M,h,

since ||F̃λ||L2 ≤ C|||ϑ̃λ|||M,h.
To consider w̃λ, we note that (cf. [3])

w̃λ(xk) =
−2i
bhy

tan (
1
2
λhy)ṽλ(xk) +

1
b cos (1

2λhy)
f̃λ22(xk),

and thus
||w̃λ||2L(0,L) ≤ C(|λ|2||ṽλ||2L2(0,L) + ||f̃λ22||2L2(0,L)),

leading to

(4.13) ||ϕ̃λw̃λ||L2(0,L) ≤ C|λ|1−m|||ϑ̃λ|||M,h.

The claim for λ 6= 0 follows from (4.12) together with (4.13).
When λ = 0 we have from (4.9) and from w̃0(xk) = 1

b f̃22(xk) that

||ϕ̃0ũ0||1 + ||ϕ̃0ṽ0||1 + ||ϕ̃0w̃0||L2 ≤ C|||ϑ̃0|||M,h
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regardless of geometry. Similar calculations show that the claim holds also for the
case (E2). �
Remark 4.1. The assumption b 6= 0 is not superfluous. This can be seen by taking
b = 0, λ = 0, a = −1, c = 1/2 and choosing φ̃

0
(x1) = (0, 0, 2, 4/h, 0), then repeating

the sequence φ̃
0
(xj) = (h,−h, 0,−8/h, 0), φ̃

0
(xj+1) = (0, 0,−2, 4/h, 0), φ̃

0
(xj+2) =

(−h, h, 0, 0, 0), φ̃
0
(xj+3) = (0, 0, 2, 4/h, 0) for j = 2, 6, 10, . . . , and finally letting

φ̃
0
(xNx−2) = (h,−h, 0,−8/h, 0), φ̃

0
(xNx−1) = (0, 0,−2, 4/h, 0). For this particular

choice we have that ||∂ũ0
∂x ||L2 ∼ min { 1

h ,
h2

t }|||ϑ̃0|||M,h, so the stability is weaker
when b = 0.

With the help of the stability estimates given in Lemmas 4.1 – 4.3 we can now
bound the consistency error.

Theorem 4.4. Assume that b 6= 0, and let m = 1 in the elliptic case and m = 0
in the parabolic and hyperbolic cases. The consistency error ec,M defined in (3.5)
satisfies

ec,M ≤ C1(u)h+ C2(t, u)h2 + C3(t, s, u)h1+s + C4(t, u)h2, s ≥ 0,

provided that

C1(u) = C
∑
ij

|βij(u)|2−m,

C2(u, t) =

{
0 for the case (E1),
Ct−1|w|1 for the case (E2),

C3(t, s, u) = Ct−1
∑
i

|βii(u)|1+s +

{
Ct−1|β12(u)|1+s for the case (E1),
Ct−1(|β12(u)|s + |w|1+s) for the case (E2),

C4(t, u) = Ct−1(
∑
i

|ρi(u)|1)

are all finite. The consistency error ec,B defined in (3.6) satisfies

ec,B ≤ C1(t, u)h+ C2(t, u)h2,

provided that

C1(t, u) = Ct−2
∑
ij

|βij(u)|1

and

C2(t, u) = Ct−2
∑
i

|ρi(u)|1

are both finite.

Remark 4.2. The transverse shear strains ρi are typically very small at small t in
smooth deformation states (see, e.g., [5]), so the error term of ec,M is very likely
negligible in practice. In the bending-dominated case, ec,B depends strongly on βij
and ρi. For smooth deformations one could assume realistically that |βij(u)|1 ∼
|ρi(u)|1 ∼ t2 as t → 0, in which case ec,B = O(h) uniformly in t. In practice,
however, boundary layer effects probably cause the growth of ec,B, via constant
C1(u) in particular.
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Proof. We consider first the membrane case, and write u =
∑
λ∈Λ ϑλ ∈ UM and

v =
∑
λ∈ΛN

ϑ̃λ ∈ UM,h. Then by the orthogonality of the discrete and continuous
modes (cf. [3])

(AM −AhM )(u, v) = (Am −Ahm)(u, v) = (Am −Ahm)(
∑
λ∈Λ

ϑλ
∑
λ∈ΛN

ϑ̃λ)

= (Am −Ahm)(
∑
|λ|≤λ0

ϑλ,
∑
λ∈ΛN

ϑ̃λ) + (Am −Ahm)(
∑
|λ|>λ0

ϑλ,
∑
λ∈ΛN

ϑ̃λ)

=
∑
|λ|≤λ0

(Am −Ahm)(ϑλ, ϑ̃λ) +
∑
|λ|>λ0

(Am −Ahm)(ϑλ, v)

≤ C
∑
ij

∑
|λ|≤λ0

[
(βij(ϑλ), βij(ϑ̃λ))− (β̃ij(ϑλ), β̃ij(ϑ̃λ))

]
+

∑
ij,i6=j

∑
|λ|≤λ0

[
(βii(ϑλ), βjj(ϑ̃λ))− (β̃ii(ϑλ), β̃jj(ϑ̃λ))

]
+ C|λ0|−s1

∑
i

∑
|λ|>λ0

|λ|s1 |(βii(ϑλ)− β̃ii(ϑλ), βii(v)− β̃ii(v))|

+ C|λ0|−s2
∑
i6=j

∑
|λ|>λ0

|λ|s2 |(βii(ϑλ)−Πxy
h βii(ϑλ), βjj(v))|

+ C|λ0|−s3
∑
|λ|>λ0

|λ|s3 |
∫

Ω

(β12(ϑλ)β12(v)− β̃12(ϑλ)β̃12(v))dxdy|

+ C
∑
i

∑
λ∈Λ

(ρi(ϑλ)− ρ̃i(ϑλ), ρi(v)− ρ̃i(v))

= I + II + III + IV + V + V I,

(4.14)

where we have chosen λ0 such that λ0h ≤ c < π. We note first that in I

(4.15)
(βij(ϑλ), βij(ϑ̃λ)) − (β̃ij(ϑλ), β̃ij(ϑ̃λ))

= (βij(ϑλ)− β̃ij(ϑλ), βij(ϑ̃λ)) + (β̃ij(ϑλ), βij(ϑ̃λ)− β̃ij(ϑ̃λ)).

Here the first term can be bounded as

(βij(ϑλ)− β̃ij(ϑλ), βij(ϑ̃λ)) ≤ ||βij(ϑλ)− β̃ij(ϑλ)||L2 ||βij(ϑ̃λ)||L2

≤ Ch|βij(ϑλ)|1(||ϕ̃λũλ||1 + ||ϕ̃λṽλ||1 + ||ϕ̃λw̃λ||L2)

≤ Ch|βij(ϑλ)|1|λ|1−m|||ϑ̃λ|||M,h(4.16)

≤ Ch|βij(ϑλ)|2−m|||ϑ̃λ|||M,h,

where the third inequality follows from Lemma 4.3 and the last inequality from the
fact that

∂

∂y
βij(ϑλ) = iλβij(ϑλ).
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The second term in (4.15) is zero in the case of the modification (E1), since Rij is
an orthogonal L2-projection. For the modification (E2) the second term gives

(β̃ij(ϑλ), βij(ϑ̃λ)− β̃ij(ϑ̃λ))

= (β̃12(ϑλ),−S12(ϑ̃λ))

= (β12(ϑλ),−S12(ϑ̃λ))− (S12(ϑλ), S12(ϑ̃λ))

≤ ||a ∂
∂y
β12(ϑλ) + b

∂

∂x
β12(ϑλ)||L2h||ϕ̃λw̃λ||L2

+ ||c(I −Πxy
h )β12(ϑλ)||L2 ||ϕ̃λw̃λ||L2(4.17)

+ Ch|ϕλwλ|1h|ϕ̃λw̃λ|1
≤ Ch|β12(ϑλ)|1||ϕ̃λw̃λ||L2

+ Ch2|ϕλwλ|1|ϕ̃λw̃λ|1
≤ Ch|β12(ϑλ)|1|λ|m−1|||ϑ̃λ|||M,h

+ Ch2t−1|ϕλwλ|1|||ϑ̃λ|||M,h

≤ Ch|β12(ϑλ)|2−m|||ϑ̃λ|||M,h + Ch2t−1|ϕλwλ|1|||ϑ̃λ|||M,h,

where the next to last inequality follows from Lemmas 4.1 and 4.3. For the term
II we can write

(4.18)
(βii(ϑλ), βjj(ϑ̃λ)) − (β̃ii(ϑλ), β̃jj(ϑ̃λ))

= (βii(ϑλ)− β̃ii(ϑλ), βjj(ϑ̃λ)) + (β̃ii(ϑλ), βjj(ϑ̃λ)− β̃jj(ϑ̃λ)),

where the first term can be treated as in case of the term I. The second term in
(4.18) can be written as

(β̃ii(ϑλ), βjj(ϑ̃λ)− β̃jj(ϑ̃λ)) = (Riiβii(ϑλ), (I −Rjj)βjj(ϑ̃λ))

= ((I −Rjj)Riiβii(ϑλ), βjj(ϑ̃λ))

≤ Ch|βii(ϑλ)|1(||ϕ̃λũλ||1 + ||ϕ̃λṽλ||1 + ||ϕ̃λw̃λ||L2)(4.19)

≤ Ch|βii(ϑλ)|1|λ|1−m|||ϑ̃λ|||M,h

≤ Ch|βii(ϑλ)|2−m|||ϑ̃λ|||M,h,

where the next to last inequality is again a direct application of Lemma 4.3. By
(4.15) – (4.19) we have the bounds

(4.20)

I + II ≤ C1h
∑
ij

∑
|λ|≤λ0

|βij(ϑλ)|2−m|||ϑ̃λ|||M,h

+ C2h
2t−1

∑
|λ|≤λ0

|ϕλwλ|1|||ϑ̃λ|||M,h

≤ C1h
∑
ij

|βij(u)|2−m|||v|||M,h + C2h
2t−1|w|1|||v|||M,h,
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where C2 = 0 for the modification (E1). For the rest of the terms in (4.14), standard
approximation theory gives

(4.21)

III ≤ Ch2+s1t−1
∑
i

|βii(u)|1+s1 |||v|||M,h,

IV ≤ Ch1+s2t−1
∑
i

|βii(u)|1+s2 |||v|||M,h,

V ≤
{
Ch1+s3t−1|β12(u)|1+s3 |||v|||M,h for the case (E1),
Ch1+s3t−1(|β12(u)|s3 + |w|1+s3 )|||v|||M,h for the case (E2),

V I ≤ Ch2t−1
∑
i

|ρi(u)|1|||v|||M,h,

by Lemmas 4.1 and 4.3. The claim for ec,M follows form (4.14), (4.20) and (4.21)
when we take s1 = s2 = s3 = s.

For the case ec,B the claim follows by the same arguments when we note that

(AB −AhB)(u, v) = t−2(Am −Ahm)(u, v)

and use the stability result given in Lemma 4.2. �

5. The asymptotic consistency error

In this section we bound the asymptotic consistency error in an inextensional
deformation state, as defined by (3.10). In [3] we showed that the approximation
error in the inextensional state is of order O(h) under nearly optimal regularity
assumptions on u0. Here we find that the consistency error is likewise of order
O(h) at t = 0, but we need a very strong regularity assumption on u0.

We also make the additional assumption that the load is given by

Q(v) =
∫

Ω

(q1u+ q2v + q3w)dxdy

for some suitable qi ∈ L2
p(Ω), i = 1, 2, 3, where L2

p(Ω) denotes the usual L2-space
with periodic boundary conditions imposed at y = 0, H , and we define the Fourier
components of the load by

Qλ(v) =
∫

Ω

(qλ1u+ qλ2 v + qλ3w)dxdy,

where for each qi we write qi(x, y) =
∑
λ∈Λ q

λ
i (x, y) =

∑
λ∈Λ q̂

λ
i (x)ϕλ(y). We define

the (semi-)norms

|Q|s =
(∑
λ∈Λ

|Qλ|2s
)1/2

,

where
|Qλ|s = |λ|s(||qλ1 ||2L2 + ||qλ2 ||2L2 + ||qλ3 ||2L2)1/2.

Frequently we write |Q|0 = ||Q||L2 , |Qλ|0 = ||Qλ||L2 and ||Q||k = (
∑k

j=0 |Q|2j)1/2.

Theorem 5.1. Assume that b 6= 0, u0 ∈ [H5
p (Ω)]5. Then the asymptotic consis-

tency error e0
c,B(u0), as defined by (3.10), satisfies

e0
c,B(u0) ≤ C(||u0||5 + ||Q||1)h.
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Proof. Let v ∈ U0,h and write

v =
∑
λ∈ΛN

ϑ̃λ(x, y) =
∑
λ∈ΛN

Aλϕ̃λ(y)ζ̃
λ
(x)

=
∑
λ∈ΛN

Aλϕ̃λ(y)(ũλ(x), ṽλ(x), w̃λ(x), θ̃λ(x), ψ̃λ(x)),

u0 =
∑
λ∈Λ

uλ0 =
∑
λ∈Λ

(uλ0 , v
λ
0 , w

λ
0 , θ

λ
0 , ψ

λ
0 )

and Q(v) =
∑

λ∈ΛQ
λ(v). Then by the orthogonality of the Fourier modes [3] we

have that

Ab(u0, v)−Q(v) = Ab(
∑
λ∈Λ

uλ0 ,
∑
λ∈ΛN

ϑ̃λ)−
∑
λ∈Λ

Qλ(
∑
λ∈ΛN

ϑ̃λ)

= Ab(
∑
|λ|≤λ0

uλ0 ,
∑
λ∈ΛN

ϑ̃λ)−
∑
|λ|≤λ0

Qλ(
∑
λ∈ΛN

ϑ̃λ)

+Ab(
∑
|λ|>λ0

uλ0 ,
∑
λ∈ΛN

ϑ̃λ)−
∑
|λ|>λ0

Qλ(
∑
λ∈ΛN

ϑ̃λ)

=
∑
|λ|≤λ0

(Ab(uλ0 , ϑ̃λ)−Qλ(ϑ̃λ)) +
∑
|λ|>λ0

(Ab(uλ0 , v)−Qλ(v))

= I + II

for any λ0 such that λ0hy ≤ c < π.
Let us first bound the term II. Here we have

(5.1)
∑
|λ|>λ0

Ab(uλ0 , v) ≤ λ−1
0

∑
|λ|>λ0

Ab(|λ|uλ0 , v) ≤ Ch||u0||2|||v|||B,h

for λ0 = c
h , c sufficiently small, and similarly

(5.2)
∑
|λ|>λ0

Qλ(v) ≤ λ−1
0

∑
|λ|>λ0

|λ|Qλ(v) ≤ Ch|Q|1|||v|||B,h.

To bound the term I when b 6= 0, we note that for any ϑλ = Aλϕλζλ ∈ U0 we
can write

(5.3)
Ab(uλ0 , ϑ̃λ)−Qλ(ϑ̃λ) = Ab(uλ0 , ϑ̃λ − ϑλ)−Qλ(ϑ̃λ − ϑλ)

= Aλ(Ab(uλ0 , ϕ̃λζ̃λ − ϕλζλ)−Qλ(ϕ̃λ ζ̃λ − ϕλζλ)).

Integration by parts in the first term in (5.3) gives

Ab(uλ0 , ϕ̃λζ̃ − ϕλζλ) =
∫ H

0

∣∣∣∣L
0

αλ1 (ϕ̃λθ̃λ − ϕλθλ) + αλ2 (ϕ̃λψ̃λ − ϕλψλ)dy

+
∫

Ω

δ
λ

1 (ϕ̃λθ̃λ − ϕλθλ) + δ
λ

2 (ϕ̃λψ̃λ − ϕλψλ)dxdy,

where 
αλ1 = ∂2wλ0

∂x2 + ν
∂2wλ0
∂y2 ,

αλ2 = (1− ν)∂
2wλ0
∂x∂y ,

δλ1 = − ∂
∂x∆wλ0 ,

δλ2 = − ∂
∂y∆wλ0 ,
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so that

Ab(uλ0 , ϕ̃λζ̃ − ϕλζλ) ≤ ||αλ1 (L, ·)||L2(0,H)||ϕ̃λθ̃λ(L, ·)− ϕλθλ(L, ·)||L2(0,H)

+ ||δλ1 (L, ·)||L2(0,H)||ϕ̃λψ̃λ(L, ·)− ϕλψλ(L, ·)||L2(0,H)

+ ||αλ1 (0, ·)||L2(0,H)||ϕ̃λθ̃λ(0, ·)− ϕλθλ(0, ·)||L2(0,H)

+ ||δλ1 (0, ·)||L2(0,H)||ϕ̃λψ̃λ(0, ·)− ϕλψλ(0, ·)||L2(0,H)

+ ||αλ2 ||L2 ||ϕ̃λθ̃λ − ϕλθλ||L2 + ||δλ2 ||L2 ||ϕ̃λψ̃λ − ϕλψλ||L2

≤ C||uλ0 ||3
(
||ϕ̃λθ̃λ(L, ·)− ϕλθλ(L, ·)||L2(0,H)

+ ||ϕ̃λψ̃λ(L, ·)− ϕλψλ(L, ·)||L2(0,H)

+ ||ϕ̃λθ̃λ(0, ·)− ϕλθλ(0, ·)||L2(0,H)

+ ||ϕ̃λψ̃λ(0, ·)− ϕλψλ(0, ·)||L2(0,H)

+ ||ϕ̃λθ̃λ − ϕλθλ||L2 + ||ϕ̃λψ̃λ − ϕλψλ||L2

)
.

(5.4)

Also for Qλ in (5.3) we have the bound

(5.5)
Qλ(ϕ̃λζ̃λ − ϕλζλ) ≤ C||Qλ||L2

(
||ϕ̃λũλ − ϕλuλ||L2

+ ||ϕ̃λṽλ − ϕλvλ||L2 + ||ϕ̃λw̃λ − ϕλwλ||L2
)
.

To continue we need the following approximation results. The proof will be post-
poned to the end of this section.

Lemma 5.2. For every λ such that |λ|hy ≤ c < π there exists a ϕλζλ ∈ U0 such
that
(5.6)
||ϕ̃λθ̃λ(L, ·)− ϕλθλ(L, ·)||L2(0,H) + ||ϕ̃λψ̃λ(L, ·)− ϕλψλ(L, ·)||L2(0,H)

+ ||ϕ̃λθ̃λ(0, ·)− ϕλθλ(0, ·)||L2(0,H) + ||ϕ̃λψ̃λ(0, ·)− ϕλψλ(0, ·)||L2(0,H)

+ ||ϕ̃λθ̃λ − ϕλθλ||L2 + ||ϕ̃λψ̃λ − ϕλψλ||L2

≤ C(h2|λ|5−m + h2λ4) + Chλ2|||ϕ̃λζ̃λ|||B,h

and

(5.7) ||ϕ̃λũλ−ϕλuλ||L2 + ||ϕ̃λṽλ−ϕλvλ||L2 + ||ϕ̃λw̃λ−ϕλwλ||L2 ≤ Ch2|λ|4−3m/2,

where m = 1 in the elliptic case and m = 0 in the hyperbolic and parabolic cases.

To complete the proof of Theorem 5.1 we note that by virtue of the inequalities
|λ|3−m/2 ≤ C|||ϕ̃λζ̃λ|||B,h and |λ|h ≤ λ0h ≤ c < π we obtain from (5.4) with the
help of Lemma 5.2

(5.8) Ab(uλ0 , ϕ̃λζ̃ − ϕλζλ) ≤ Ch||λ2uλ0 ||3|||ϕ̃λζ̃λ|||B,h,

and from (5.5)

(5.9) Qλ(ϕ̃λζ̃λ − ϕλζλ) ≤ Ch||Qλ||L2 |||ϕ̃λζ̃λ|||B,h,
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so that by (5.3), (5.8) and (5.9)∑
|λ|≤λ0

(Ab(uλ0 , ϑ̃λ)−Qλ(ϑ̃λ)) =
∑
|λ|≤λ0

Aλ(Ab(uλ0 , ϕ̃λζ̃λ)−Qλ(ϕ̃λζ̃λ))

≤ Ch
∑
|λ|≤λ0

(||λ2uλ0 ||3 + ||Qλ||L2)|||Aλϕ̃λζ̃λ|||B,h

≤ Ch(||u0||5 + ||Q||L2)|||v|||B,h,

(5.10)

and Theorem 5.1 follows from the estimates (5.1), (5.2) and (5.10). �

Proof of Lemma 5.2. In [3] it was shown that for every discrete mode ϕ̃λζ̃λ ∈ U0,h

with |λ|hy ≤ c < π there corresponds a continuous mode

ϕλζλ = ϕλ(y)(uλ(x), vλ(x), wλ(x), θλ(x), ψλ(x)) ∈ U0

satisfying uλ(0) = ũλ(0) and vλ(0) = ṽλ(0) and such that

|uλ(xk)− ũλ(xk)| ≤ Ch2|λ|3−me−β|λ|xk ,

|vλ(xk)− ṽλ(xk)| ≤ Ch2|λ|3−me−β|λ|x
k

,

|wλ(xk)− w̃λ(xk)| ≤ Ch2|λ|4−me−β|λ|xk ,

|ψλ(xk)− ψ̃λ(xk)| ≤ Ch2|λ|5−me−β|λ|xk ,

with β > 0 in the elliptic case and β = 0 in the hyperbolic and parabolic cases, so
that

(5.11)

||ϕ̃λψ̃λ(0, ·)− ϕλψλ(0, ·)||L2(0,H) ≤ Ch2|λ|5−m,
||ϕ̃λψ̃λ(L, ·)− ϕλψλ(L, ·)||L2(0,H) ≤ Ch2|λ|5−m,

||ϕ̃λψ̃λ − ϕλψλ||L2 ≤ Ch2|λ|5−3m/2,

and

(5.12)

||ϕ̃λũλ − ϕλuλ||L2 ≤ Ch2|λ|3−3m/2,

||ϕ̃λṽλ − ϕλvλ||L2 ≤ Ch2|λ|3−3m/2,

||ϕ̃λw̃λ − ϕλwλ||L2 ≤ Ch2|λ|4−3m/2.

Also, by [3] we have that

1
2

(θ̃λ(xk+1) + θ̃λ(xk)) =
2
bh2
y

tan2 (
1
2
λhy)

(
2c
b

(ṽλ(xk+1) + ṽλ(xk))

− (ũλ(xk+1) + ũλ(xk))
)

=
1
2

(g̃(xk+1) + g̃(xk)),

so that

(5.13) θ̃λ(xk+1) = g̃(xk+1) + (−1)k(θ̃λ(x0)− g̃(x0))
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and

(5.14)

∂θ̃λ
∂x

(xk+1/2) =
θ̃λ(xk+1)− θ̃λ(xk)

hkx

=
g̃(xk+1)− g̃(xk)

hkx
+

2
hkx

(−1)k(θ̃λ(x0)− g̃(x0)).

Since

(5.15) θλ(xk) =
λ2

b
(
2c
b
vλ(xk)− uλ(xk)) = g(xk),

it follows from (5.13) – (5.15) that

θ̃λ(xk+1)− θλ(xk+1) = g̃(xk+1)− g(xk+1)

+
hkx
2
∂θλ
∂x

(xk+1/2)− hkx
2
g̃(xk+1)− g̃(xk)

hkx
,

and finally that

|θ̃λ(xk+1)− θλ(xk+1)| ≤ C
(
h2|λ|5−me−β|λ|x

k+1
+ h|∂θ̃λ

∂x
(xk+1/2)|

+ hλ2(|∂ṽλ
∂x

(xk+1/2)|+ |∂ũλ
∂x

(xk+1/2)|
)
.

For the values at the end-points we get similarly

θ̃λ(x0)− θλ(x0) = (−1)k(θ̃λ(xk+1)− θλ(xk+1) + g(xk+1)− g̃(xk+1))

+ g̃(x0)− g(x0)

and

θ̃λ(xNx)− θλ(xNx) = (−1)Nx(θ̃λ(x0)− θλ(x0) + g(x0)− g̃(x0))

+ g̃(xNx)− g(xNx).

Thus, we have the following bounds:

(5.16)

||ϕ̃λθ̃λ(0, ·)− ϕλθλ(0, ·)||L2(0,H) ≤ C(h2λ4 + h2|λ|5−3m/2)

+ C(h+ hλ2)|||ϕ̃λζ̃λ|||B,h,
||ϕ̃λθ̃λ(L, ·)− ϕλθλ(L, ·)||L2(0,H) ≤ C(h2λ4 + h2|λ|5−3m/2)

+ C(h+ hλ2)|||ϕ̃λζ̃λ|||B,h
+ C(h2|λ|5−m + h2λ4),

||ϕ̃λθ̃λ − ϕλθλ||L2 ≤ Ch2|λ|5−3m/2

+ C(h+ hλ2)|||ϕ̃λζ̃λ|||B,h.

Lemma 5.2 follows from (5.11), (5.12) and (5.16), since |λ|hy ≤ c < π. �
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6. Conclusions

The general conclusion from Parts I and II of the paper is that, at least under ex-
tremely favorable circumstances, both bending- and membrane-dominated smooth
deformations can be approximated with nearly optimal accuracy by the bilinear
MITC4 element. To be more precise, under the conditions presented above and in
[3] the approximation errors are bounded by

ea,M ≤ Ch||u||2,
ea,B ≤ C1h||u||6 + C2h

s−2t−1||u||s, s ≥ 6,

and if u is an inextensional deformation the bound

ẽa = min
v∈U0,h

|||u − v|||B,h ≤ C1h|u|1 + C2h
2
3 (s−1)|u|s, 2 ≤ s ≤ 3,

holds. Here C2 = 0 in the elliptic case and in the degenerate parabolic and hyper-
bolic cases.

For the consistency errors, only the case when the geometric parameter b is
nonzero is considered. In this case, again under very restrictive conditions, the
results are as in Theorem 4.4. Finally, the asymptotic consistency error is bounded
in Theorem 5.1.

From the results quoted above, one can conclude that the MITC-type elements
manage well in approximating the inextensional deformations and thus in reliev-
ing the locking effects. This is probably just the task they were designed for. On
the other hand, the modifications bring along consistency error components, and
it is necessary to impose several assumptions on the smoothness of the solution to
obtain reasonable convergence rates. Judging from these results, it appears as if
the design of the element was oriented more towards the bending-dominated defor-
mation states than membrane-dominated ones. However, it should be remembered
that attempts to design a general low-order shell element have so far inevitably lead
to compromises.

Open questions still remain. First of all, to what extent do the results obtained
so far hold for more general geometries, deformation states, and finite element
meshes? Second, the ability of the MITC4 element to capture the boundary layers,
virtually always present in thin shells, is unknown.
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