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THE MINIMAL NUMBER OF SOLUTIONS TO ¢(n) = ¢(n + k)

JEFFREY J. HOLT

ABSTRACT. In 1958, A. Schinzel showed that for each fixed k < 8 - 1047 there
are at least two solutions to ¢(n) = ¢(n + k). Using the same method and
a computer search, Schinzel and A. Wakulicz extended the bound to all & <
2-10%8. Here we show that Schinzel’s method can be used to further extend
the bound when k is even, but not when k is odd.

Let k be a fixed positive integer. In this note, we consider the minimum number
of solutions to the equation

(1) ¢(n) = o(n+ k),

where n is a positive integer and ¢ denotes Euler’s totient function.

In 1956, W. Sierpinski [4] showed that there is always at least one solution to
() for each fixed k. He constructs a solution as follows: let p be the smallest prime
that does not divide k, and set n = (p — 1)k. Then n is a solution to ().

In 1958, A. Schinzel [2] showed that there are at least two solutions to (D) for all
k < 8-10*". His method of proof was to split the problem into two cases, one for
odd values of k and the other for even values of k. Of the two, the case for & odd
is the more interesting, and that is what we shall focus on first.

Lemma 1 given below is the key result for the case when k is odd. The notation
r|*s indicates that each prime factor of r is a prime factor of s.

Lemma 1. Suppose that the sequence of primes
3=p1<p2<--<pPm

satisfies the conditions

(i) (pi —2)|p1p2---pi—1 (2<i<m),

(@) (pi — 1)[*2p1p2---pi1 (2<i<m).
Suppose that k is odd and is not divisible by pip2 - - pm, and let p; be the smallest
prime in the sequence that does not divide k. Then n = p;k/(p; —2) is a solution

to ().

The details of the proof are left to the reader, or may be found in [2| Lemma 1].
It is easy to verify that the solution to (IJ) given in Lemma 1 is distinct from that
given by Sierpinski’s result, so that Lemma 1 assures two solutions for all odd
k < pip2---pm.
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To apply Lemma 1, Schinzel constructed the sequence of primes

3,5, 7,17, 19, 37, 97, 113, 257, 401, 487, 631,
971, 1297, 1801, 19457, 22051, 28817, 65537

that satisfies the required conditions. In a subsequent note, Schinzel and
A. Wakulicz [3] reported that a computer search found two additional primes in
the sequence, pgo = 157303 and py; = 160001, increasing the bound to k < 2-10%8.
They also noted that any additional primes in the sequence must be greater than
108.

Condition (i) of Lemma 1 implies that any new term in the sequence must be a
prime of the form p = ([ ], ; pj) +2, where J C {1,2,...,21}. Thus there are only
finitely many candidates for the next term. An exhaustive search was carried out
by the author using Mathematica software. The built-in function PrimeQ, which
tests primality using a combination of the Miller-Rabin and Lucas tests, stated
that there are 92426 primed] greater than 160001 that satisfy condition (i). Each
of these integers was then tested against condition (ii) and, somewhat surprisingly,
none satisfied this second condition. Among all the possibilities, the closest (as
measured by being minimized after dividing off the factors from Schinzel’s sequence)
was p = 2758897. In this case, we have p — 1 = 24.32.72.17.23, so that, save
for the prime factor of 23, this candidate would have been satisfactory. We note
that, prior to conducting the exhaustive search, the program was successful in
reproducing the sequence 3,5,7,17,...,160001, which implies that the program
functioned correctly. Thus the last term in the sequence satisfying the conditions
of Lemma 1 is p2; = 160001.

The case when k is even is easier. To address this case, Schinzel proved the
following result.

Lemma 2. Let q1,qo,...,qn be a sequence of odd primes such that
(1) 2¢; — 1 is prime (1 <i<m),
(ZZ) 2qi—17£q]‘ (1§17]§m)

Suppose that k is even and k < qiq2---qm. Then there exists a prime q; in the
sequence such that ¢; and 2q; — 1 both do not divide k, and n = (2¢; — 1)k is a
solution to ().

The proof is left to the reader. The conditions required on this sequence of
primes are much more easily met than those set out in Lemma 1. A sequence is
given in [2], and is supplemented in [3], that suffices to match the bound for &k odd.
Using Mathematica again, the author has generated a sequence of 3116446 primes
(restricting the search to primes less than 10°), which raises the bound for even
values of k to k < 1.38 - 1026595411 Ag Schinzel observed [2 p183], if one assumes
the prime k-tuples conjecture (see, for instance, [1]), then this sequence will have
infinitely many primes, and (J]) will have infinitely many solutions for each even k.

1 is possible for the algorithms implemented in PrimeQ to claim that a composite is prime,
but not vice-versa. Thus there is no danger of missing a potential term at this stage of the search.
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