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SEPTIC FIELDS WITH DISCRIMINANT ±2a3b

JOHN W. JONES AND DAVID P. ROBERTS

Abstract. We classify septic number fields which are unramified outside of
{∞, 2, 3} by a targeted Hunter search; there are exactly 10 such fields, all
with Galois group S7. We also describe separate computations which strongly
suggest that none of these fields come from specializing septic genus zero three-
point covers.

1. Introduction

Let S ⊂ {∞, 2, 3, 5, . . .} be a finite set of primes and let n be a positive integer.
The set of isomorphism classes of extensions of Q of degree n which are unramified
outside of S has long been known to be finite by a classical theorem of Hermite
[Her], [Lan], yet little else is known about these sets in general. We are particularly
interested in the case where S is a small set of small primes. Number fields with
such sharply restricted ramification are extremely rare in lists of number fields with
absolute discriminant less than a given bound. On the other hand, they appear in
a variety of places in mathematics. For discussions of why fields ramified at only a
few small primes are interesting, see [JR1], [Har].

Here we consider the case S = {∞, 2, 3}, i.e., fields with discriminant ±2a3b.
In [JR1], we presented the previously known cases of degrees n ≤ 5 and worked
out the computationally much harder case n = 6. In this paper, we settle the
computationally yet harder case n = 7, thereby completing the following table,
giving the number of fields unramified away from ∞, 2 and 3 for small n:

n 1 2 3 4 5 6 7
Total number of fields 1 7 9 62 6 398 10

Number of nonsolvable fields 5 62 10.

It is fair to say that nonsolvable fields just barely exist for S = {∞, 2, 3} in these
degrees. Certainly for S = {∞, 2}, {∞, 3}, or {2, 3} in degrees ≤ 7, all fields
are solvable; indeed the nonsolvable fields in our case S = {∞, 2, 3} are all wildly
ramified at 2 and 3. On the other hand, for S = {∞, 2, 3, 5} there are 1, 415
nonsolvable quintic fields [Jon], and surely many nonsolvable sextic and septic fields
too.

Section 2 discusses how our search technique is an improvement on [JR1]. Sec-
tion 3 presents a defining polynomial for each of the ten fields. Also it discusses
quantitatively how the ten fields were found early in the search, and analyzes the
wild ramification at 2 and 3. It is natural to ask if our septic fields have conceptual
sources, like many of the fields in [JR1] do. Section 4 reports on our attempts to
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produce some of the ten fields by specializing 3-point covers of P1. We are able to
produce one field by specializing a nonic cover, and we present evidence that none
of the fields can be produced by specializing septic covers.

2. The computer search

The computer search was based on Hunter’s theorem, a method used extensively
for determining all number fields of a given degree with absolute discriminant less
than a prescribed bound. See [Coh, §9.3] for a full discussion of this approach.

For septic fields, a Hunter search with bound B enumerates a long but finite list
of polynomials guaranteed to contain the characteristic polynomial of at least one
primitive element for each septic field with absolute discriminant ≤ B. The number
of polynomials examined grows roughly in proportion to B9/4 for septic fields.

For this paper, we need to consider absolute discriminants up to 214311. A Hunter
search with this value for B would be prohibitively long. On the other hand, we
are only interested in a few isolated discriminant values, and for each candidate
discriminant value, the defining polynomials will satisfy p-adic conditions for p = 2
and 3. We refer to a Hunter search which incorporates these p-adic conditions as
targeted. The primary difference in methodology for this search as compared with
[JR1] is how we implemented the targeting.

Here, as in [JR1], we divide the search into smaller searches, each indexed by a
2-adic ramification structure and a 3-adic ramification structure. A p-adic ramifi-
cation structure (see [JR1, §2]) contains the information of ramification exponents
for the factorization of the ideal (p) in the ring of integers OK of a number field K,
along with corresponding contributions to the discriminant.

In each smaller search of [JR1], we searched for polynomials f(x) = xn+a1x
n−1+

· · ·+an ∈ Z[x] which could arise as characteristic polynomials fη of elements η ∈ I,
where I is a particular ideal of OK . The field K is unknown, but satisfies the
prescribed ramification properties which translate to congruences on the coefficients
ai of f . The attraction of working in I rather than OK is that one has strong
congruences having the very simple form pe | ai. The method of [JR1] uses only
linear congruences on individual coefficients of this sort. It therefore oversearches
substantially, as is explained via an example in [JR1, §2.5].

The improvement suggested in [JR1, §2.5] is to use all congruences on the vector
(a1, . . . , an) of coefficients, not just linear congruences on individual coefficients ai.
Here we indeed use all such congruences. Having done this, there is no longer any
point in restricting η to lie in the search ideal I. Rather we let η be anywhere in
OK . Note that the timing analysis in [JR2] of each of these smaller searches applies
to our new method.

To illustrate how ramification properties of the fields sought translate to con-
gruences on coefficients, consider looking for fields K whose local form at 2 is
K ⊗ Q2

∼= Kt × Kw, where Kt is a cubic field of discriminant 22 while Kw is a
quartic field of discriminant 210. These invariants force the two fields to be totally
ramified, which simplifies our discussion. The cubic field Kt is necessarily tamely
ramified while the quartic field Kw must be wildly ramified, which explains our
notation. Let Ot ⊃ It and Ow ⊃ Iw be the corresponding local rings of integers
and maximal ideals.

Consider first Kt. An element of It has characteristic polynomial congruent
to x3 modulo 2. Every element of Ot either is in It, or is a translate by 1 from
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an element of the It. Hence every element of Ot has characteristic polynomial
congruent modulo 2 to (x+ a)3, where a ∈ {0, 1}.

Consider next Kw. Elements of Iw have characteristic polynomials of the form

x4 + 4Ax3 + 4Bx2 + 8Cx+ 2D,

where A,B,C,D ∈ Z2. The numerical coefficients 4, 4, and 8 correspond to what
we called Ore congruences in [JR1]; they come from the fact that totally ramified
quartics can have discriminant as low as 24 while here our quartic discriminant is
210. To get all elements of Ow, we again have to allow for a shift by 1. We get
polynomials of the form

(2.1) (x+ E)4 + 4A(x+ E)3 + 4B(x+ E)2 + 8C(x+ E) + 2D,

where A,B,C,D ∈ Z2 and E ∈ {0, 1}. Looking modulo 8, we have

(x+ E)4 + 4A(x+ E)3 + 4B(x+ E)2 + 2D,

where A,B,E ∈ {0, 1} and D ∈ {0, 1, 2, 3}.
So, septic polynomials for fields with the given ramification structure at 2 are

congruent modulo 8 to a polynomial of the form(
(x + a)3 + 2bx2 + 2cx+ 2d

) (
(x+ E)4 + 4A(x+ E)3 + 4B(x+ E)2 + 2D

)
,

where a,A,B,E ∈ {0, 1} and b, c, d,D ∈ {0, 1, 2, 3}. Enumerating all such polyno-
mials modulo 8, we find 2560 possibilities for the reduction of f modulo 8. However,
the coefficient a1 of x6 is constrained to be simply 0, 1, 2, or 3 for a Hunter search.
This cuts the list down to 1280 possibilities.

This number can be reduced a bit further by handling the wildly ramified ex-
tension more carefully. If D is odd and A is even in equation (2.1), then the
polynomial necessarily defines a quartic extension of Q2 with discriminant 211, not
210. Eliminating those cases and carrying through as above brings the list to 1024
possibilities, 256 for each allowed value of a1. This data is stored in one of our
many 2-adic input files. Similarly, we created a 3-adic input file for each possible
3-adic ramification structure.

When conducting the actual search for a given combination of ramification struc-
tures at 2 and 3, the computer program starts by reading the appropriate file of
2-adic bounds and the appropriate file of 3-adic bounds. We then conduct Hunter
searches using the method of [Poh] to deduce the archimedean bounds on coef-
ficients. Note that there is still a remaining issue of how to combine the p-adic
bounds with the archimedean ones.

Looking over all ramification structures, we have a total of 22, 782 congruence
vectors modulo powers of 2 and 101, 699 congruence vectors modulo powers of 3. If
we were to look directly at each possible combination and conduct a Hunter search
for f congruent to the resultant f̄ modulo 2j3k, we would have 2, 316, 906, 618 such
searches. The run time would then be dominated by setting up many searches
only to find that strong congruences on the coefficients of f were incompatible with
the archimedean inequalities. In other words, we would have spent most of the
computer time initializing searches which would end up looking at no polynomials.
To avoid this, we adopted the following strategy.

A Hunter search program is built around nested loops, one for each ai. For the
outermost 3 loops, we simply loop through all values for (a1, a2, a7) of a Hunter
search for the targeted discriminant, skipping only those triples which are incompat-
ible with all of our congruence vectors for 2 or for 3. Then, we find the congruence
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vectors modulo 2 and 3 which are consistent with the current values of a1, a2, and
a7. This takes very little time, since the input files of p-adic bounds have been
appropriately presorted. Then, we step through the relatively few consistent pairs
of congruence vectors, running for each pair a search for the remaining coefficients
a3, a4, a5, a6.

The main program was written in C, making use of the Pari library. The searches
were conducted on a Sun workstation, inspected approximately 700 million polyno-
mials, and had a run time of approximately 13 hours. For comparison, we had our
new programs rerun the sextic searches of [JR1]. While the original sextic searches
took several months, the rerun searches took approximately 2 hours.

3. The ten fields

The ten fields are Q[x]/fi(x) with defining polynomials fi(x) as in Table 3.1.
We have chosen the defining polynomials to minimize the quantity r appearing in
equation (3.1) below.

The Galois group corresponding to each of the ten fields is the full symmetric
group S7. Another common feature shared by the ten fields is that they all have the
maximal possible number of complex places, namely three. Fields with no complex
places are unramified at∞, so in this sense all ten fields are maximally ramified at
∞. Table 3.2 presents more numeric invariants of the fields.

The column D of Table 3.2 gives the discriminant of each field. Because the
fields all have an odd number of complex places, all the discriminants are negative.
Somewhat surprisingly, the maximum locally allowed exponent at 2, namely 14,
does not arise.

All 10 fields were found near the very beginning of the search. Also, the coeffi-
cients of our defining polynomials are quite small. The next block of three columns
gives numerical quantities related to these two observations as follows. Given a
degree n polynomial, f(x) = xn + a1x

n−1 + · · · ∈ Z[x], associate to it the traceless
polynomial g(x) = f(x− a1/n) = xn + 0xn−1 + · · · ∈ Q[x]. Let α1, . . . , αn ∈ C be
the roots of f and let β1, . . . , βn ∈ C be the roots of g. Define the root-length

√
T2

Table 3.1. Defining polynomials

f1(x) = x7 + x6 + 3x5 + 5x4 + 2x3 + 12x2 + x+ 7
f2(x) = x7 − x6 − x4 − 2x3 + 4x+ 2
f3(x) = x7 − 2x6 + 6x5 − 10x4 + 14x3 − 12x2 + 4x+ 4
f4(x) = x7 + 2x6 + 27x3 + 54x2 + 42x+ 12
f5(x) = x7 − 3x6 + 9x5 − 3x4 + 12x− 36
f6(x) = x7 − 3x5 + x4 + 3x3 − 6x2 − x+ 9
f7(x) = x7 − 2x6 + 3x5 + x4 − 5x3 + 12x2 − 7x+ 5
f8(x) = x7 − 3x6 + 3x5 + 3x4 + 3x3 − 9x2 − 11x− 3
f9(x) = x7 − 3x6 + 3x5 + x4 − 3x3 − 3x2 − 5x− 3
f10(x) = x7 + 2x6 + 3x5 + 4x4 + 5x3 + 6x2 + 7x+ 8
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Table 3.2. Some invariants of the 10 fields

root-length p-adic p-adic
information factors slope content

# D r R Earliness 2 3 2 3 GRD

1 −29 311 3.70 5.05 4, 580 32
9 16

11 3220 5
2
210 51.41

2 −29 311 3.16 5.05 321, 000 14
9 31

0 16
11

7
2
320 5

2
210 72.71

3 −21339 3.71 5.30 15, 100 14
1113

2 16
9 4310 2 3

2
1 50.09

4 −213311 4.58 6.37 7, 420 14
1012

3 16
11

7
2
320 5

2
210 72.71

5 −212311 4.89 6.01 318 14
1012

2 16
11

7
2
320 5

2
21 72.71

6 −21138 3.63 4.31 105 14
1131

0 23
8 4300 2210 47.43

7 −210310 3.49 4.88 9, 010 14
1031

0 23
10

7
2
320 5

2
3
2

10 64.35

8 −210310 3.99 4.88 251 16
10 23

10
8
3

8
3
210 5

2
3
2

10 48.21

9 −212310 3.48 5.48 206, 000 14
1013

2 16
10

7
2
3210 9

4
9
4

110 70.29

10 −212310 3.56 5.48 115, 000 14
9 12

3 16
10

7
2
32 9

4
9
4

110 66.35

and the reduced root-length r of f by

(3.1)
√
T2 =

√√√√ n∑
j=1

|αj |2 and r =

√√√√ n∑
j=1

|βj |2.

These two quantities are related by

T2 =
a2

1

n
+ r2.

In Hunter searches one normally restricts attention to polynomials with 0 ≤ a1 ≤
n/2. Thus, the difference between the quantities

√
T2 and r is rather small. It

is standard in the literature to work with T2. We will work instead with r, as it
figures directly into (3.2) and (3.3) below.

Hunter’s theorem, which is the theoretical foundation for archimedean bounds
we use, asserts that any septic field with discriminant D has a defining polynomial
f(x) ∈ Z[x] satisfying

(3.2) r ≤ R :=
(

64|D|
7

)1/12

.

Let Vr be the volume in traceless coefficient space of the image of the ball in
traceless root space of radius r, notions being as in [JR2]. Then Vr grows as a
constant times r27. The exponent 27 comes from multiplying the 2n− 2 appearing
in the first displayed equation of [JR2, §4] by the (n+ 2)/4 in [JR2, Prop 5.1] and
specializing to the case n = 7; see also [Coh, p. 448] for a similar statement in
terms of T2. The table prints r and R to two decimal places, and

(3.3) Earliness := (R/r)27

to three significant figures. Note that if we had we decreased our cutoffs so as
to decrease search volumes by a factor of say 100, we would have still found all
10 fields, as 100 < 105. The discussion of this paragraph emphasizes that the
main mathematical result of this paper is not that we have found 10 septic fields
with discriminant ±2a3b, but rather that we have proved there are no more. Also
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our discussion suggests that in other situations where complete searches would be
prohibitively long, very much shorter searches have a good chance of finding most
of the fields sought.

For exactly two of the ten fields, the polynomial in Table 3.1 which minimizes
r2 does not minimize T2. In these cases, polynomials minimizing T2 are

f∗5 (x) = x7 − x6 + 18x3 − 18x2 − 24x− 48,
f∗8 (x) = x7 − 3x5 + 2x4 + 3x3 − 12x2 + 19x− 6.

Numerical quantities compare as follows.

T2 |a1| r2 Earliness
f∗5 24.10 1 23.96 253
f5 24.84 3 23.56 318
f∗8 15.89 0 15.89 241
f8 17.13 3 15.84 251

Thus the true earliness of fields 5 and 8 is not captured by what would be traditional
defining polynomials, f∗5 and f∗8 .

Returning to our description of Table 3.2, we consider next the two columns
under “p-adic factors,” which give some basic 2-adic and 3-adic information about
each field K. The p-adic algebra K ⊗ Qp factors as a product of p-adic fields.
Each of the factor fields has an inertial degree f , a ramification degree e, and a
discriminantal exponent c. We represent such a factor field by fec . For example,
a 11

0 would represent a factor isomorphic to Qp itself, but we omit printing these
degree one factors. Note that, rather remarkably, all ten fields factor 3-adically as
a sextic field times Q3.

The next two columns give the slope content of the local algebras Kp, following
the conventions of [JR1]. For example, the decomposition group of field 8 at 2 has
the form D2 = S4×S2 while the decomposition group D3 has the form C2

3 .C4. The
slope-filtrations of these groups are

(3.4)
{e} = I∞

22

⊂ I8/3
2
⊂ I2

3
⊂ I1

2
⊂ I0 = D2,

{e} = I∞
32

⊂ I9/4
2
⊂ I1

2
⊂ I0 = D3.

A minimal subquotient Is/It is associated with the slope s, and its order is given
above the corresponding inclusion in (3.4). For all ten fields, the orders |D2| and
|D3| are a power of 2 times a power of 3. If the slope s contributes 2A3B to |D2|, we
print it A times in roman and B times in italics. If s contributes 2A3B to |D3|, then
we print it A times in italics and B times in roman. So s > 1, which corresponds
to wild ramification, can be printed only in roman; s = 1, which corresponds to
tame ramification, can be printed only in italics; s = 0, corresponding to unramified
extensions of Qp, can be printed in either.

Finally, the entry under GRD is the Galois root discriminant, i.e., ∆1/7!, where
∆ is the discriminant of a Galois closure of the given septic field, the 7! arising as
the order of the Galois group S7. The GRD is a numerical invariant of ramification
which lets one meaningfully compare fields with different Galois groups. It is of the
form 2α3β with α and β weighted averages of the slopes just examined. Slope s
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appears with weight
1
|It| −

1
|Is| =

|Is| − |It|
|Is||It| ,

with t being the next greater appearing slope. In the case of field 8,

α =
3
4
· 8

3
+

1
8
· 2 +

1
24
· 1 = 2

1
3
,

β =
8
9
· 9

4
+

1
18
· 1 = 2

1
18
.

So for field 8, the GRD is 2α3β ≈ 48.21. For a more detailed discussion of slope con-
tent and Galois root discriminants, see [JR1, §1.2]. Some more p-adic information
on our ten fields is available in the format of [JR1] at [Jon].

Our main result can be compared with the main result of [Bru], which says
that there are no nonsolvable septic fields with discriminant of the form ±7a. The
maximal locally-allowed GRD in our situation is 237/12313/6 ≈ 91.61, while the
maximal locally-allowed GRD in the situation of [Bru] is 783/42 ≈ 46.78. In the
light of the fields found by our search and their GRD’s, the fact that [Bru] found
no nonsolvable fields is not too surprising. In fact, the lowest GRD found here is
47.43 from field 6, and the smallest GRD we are aware of for any S7 field is 45.39.

4. Comparison with three-point covers

We investigated the question of whether any of the 10 septic fields with dis-
criminant ±2a3b can be obtained from a family of fields arising from a three-point
cover of P1. Interestingly, the only field which we able to produce in this way came
from a degeneration of a degree 9 cover. After discussing this example, we consider
degree 7 covers and explain in some detail why the most promising cover did not
produce any of our 10 fields.

As a technical note, all the covers considered here have genus zero, and in fact
correspond to maps from a projective line P1

x with coordinate x to a projective line
P1
t with coordinate t, with ramification only above t = 0, 1, ∞, everything being

defined over Q. We restricted to genus zero because one cannot yet systematically
compute covers in higher genus. However, moduli algebras as in [Mal2] tend to have
large degrees in higher genus cases, and no higher genus cover looks particularly
promising as a source for septic fields with discriminant ±2a3b.

Consider the two-variable polynomial

(4.1) ft(x) = x9 − 9tx+ 8t.

Its discriminant with respect to x is

(4.2) Dt = −224318t8(t− 1).

Since D1 = 0, the polynomial f1(x) has a repeated root; in fact, its factorization
into irreducibles is

f1(x) = (x− 1)2(x7 + 2x6 + 3x5 + 4x4 + 5x3 + 6x2 + 7x+ 8).

The septic factor has polynomial discriminant −216312, and the septic field that
it defines is field 10 from the previous section. One couldn’t ask for more simply-
behaved coefficients, and this septic polynomial is an example of an abc-polynomial,
in the sense of [Bor].

The polynomial ft(x) in (4.1) can be regarded as a family of separable nonic
polynomials in Q[x], indexed by t ∈ Q− {0, 1}. One sees from (4.2) that for some
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of these t, the discriminant of ft(x) has the form ±2a3b. For other t, the polyno-
mial discriminant will have an extra square factor but the algebra discriminant of
Q[x]/ft(x) will be of the form ±2a3b. We report on this example in [Rob]: from
21 specialization points of the first type and 14 specialization points of the second
type, one gets 25 S9 fields and 10 A9 fields with discriminant ±2a3b, all distinct.

Similarly, many of the fields of degree≤ 6 in [JR1] come from specializing families
degenerating only at t = 0, 1, and ∞. For example, x4 − 4tx+ 3t has discriminant
−2833t3(t−1). The 22 S4 fields listed in [JR1], except the totally real one, come from
specializing this family. For degree six examples with more complicated defining
equations, see [Rob].

We expected to similarly find some of the 10 fields by septic covers. Using the
computations in [Mal2] to eliminate many cases, we found that there are ten septic
genus zero covers such that any septic genus zero cover which could possibly lead
to a field of the sort we seek is a base change [Mal1] of one of these ten covers. We
will describe the details of our investigation for only one of these covers, the one
that came the closest to producing a septic field of discriminant ±2a3b.

This cover is defined by the partition data

λ0 = 331,
λ1 = 2221,(4.3)
λ∞ = 43.

To find a corresponding polynomial, one looks for relatively prime polynomials
g0(x), g1(x), g∞(x) satisfying

g0(x) + g1(x) + g∞(x) = 0,

with the multiplicities of the roots of gc being given by λc. The unique solution,
up to a fractional linear change in the x-variable and a constant scale factor, is

g0(x) = (256x2 − 448x+ 189)3x,

g1(x) = −(4096x3 − 8704x2 + 5400x− 729)2(x − 1),
g∞(x) = 27(28x− 27)3.

The cover F : P1
x → P1

t is given by F (x) = −g0(x)/g∞(x). Our x-variable is
normalized by the requirement that F (c) = c for c = 0, 1, ∞. The corresponding
family of septic polynomials is

(4.4) ft(x) = g0(x) + tg∞(x),

which has discriminant

(4.5) Dt = −211836077t4(t− 1)3.

The problem is that one has to choose t ∈ Q − {0, 1} such that 7 is not a factor
of the discriminant of Q[x]/ft(x) and no extraneous primes are introduced. This
problem with 7 is present in all nine other covers as well. For seven of the other
nine covers, one has to get rid of 5 too.

Table 4.1 summarizes our p-adic analysis of the family (4.4). Consider first
t ∈ Q2 − {0, 1}, defining a 2-adic algebra Q2[x]/ft(x). The specialization point t
is 2-adically closest to one of three cusps c = 0, 1, ∞. Suppose it is m-close to 0,
meaning it has the form 2mu with u a unit and m ≥ 1. Then the first data line of
Table 4.1 gives d with disc(Q2[x]/ft(x)) = 2d. The parentheses indicate repetition,
e.g., m = 9, 10, 11 gives d = 8, 8, 6, etc. Suppose next that t is m-close to ∞,
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Table 4.1. p-adic variation of the discriminantal exponents of
Qp[x]/ft(x) with ft(x) = (256x2− 448x+ 189)3x+ 27t(28x− 27)3

gen c 1 2 3 4 5 6 7 8 9 10

p = 2 0 12 6 10 8 4 (8 8 6)
1 13 (8 9, 11)
∞ 13 (0 2 2)

(8, 4, 2 11 6, 4 11)

p = 3 0 (10 10 6, 4)
1 7 6 (3 4)

6 ∞ (3, 1 5 5)
(0 3 2 3)

p = 7 0 11 9 7 (5 3 5)
1 10 7 (4 5)

5 , 3 ∞ 12 11 10 9 8 7 (0 2 2)
(0 3 2 3)

p 6= 2, 3, 7 0 (4 4 0)
1 (3 0)

0 ∞ (2 2 0)
(3 2 3 0)

meaning t = u2−m, with m ≥ 1. If m = 1, the table says disc(Q2[x]/ft(x)) = 213. If
m > 1, then Q2[x]/ft(x) splits naturally into a cubic and a quartic. This splitting
is reflected in the table by the use of two lines for ∞. The presence of several
numbers in a slot on Table 4.1 indicates an ambiguity. For example, if m ≡ 2 (4),
then the quartic algebra has discriminant 2d with d = 8, 4 or 2. Finally, t may be a
2-adic unit, in which case t = 1 + 2mu for some m ≥ 1. For the remaining primes,
conventions are similar; however here t ∈ Zp may reduce to an element of Fp−{0, 1},
in which case we say that t is generic. Ramification at primes p 6= 2, 3, 7 is always
tame, and the last block on Table 4.1 follows from general considerations of tame
ramification. The blocks for primes p = 2, 3, and 7 reflect wild ramification, and
needed to be computed directly from (4.4). We should add that we have not written
out a proof of the correctness of these blocks. However, we are convinced that the
information given is correct because of a number of theoretical consistencies, and
because the data agrees with numerical computation of discriminants for a great
many t ∈ Q− {0, 1}.

Table 4.1 says that 7 does not divide the discriminant of Q[x]/ft(x) iff t is m-
close to∞ for m ≡ 7 (12). We actually do not need the 2- and 3-blocks of Table 4.1
at the moment, because we are not trying to get rid of 2 or 3. Note, however, that
they say that 2 and 3 cannot be eliminated. Similar analysis of the other nine
covers says that one cannot eliminate 7 in one of them and cannot eliminate 5 in
two others. So, besides the cover we are treating in detail, there are now only six
more to consider.

Next, there is a global component to our analysis. Let t 6= 0, 1 be a rational
number, and write it in lowest terms as −au3/cw12 with a, u, c, and w being
integers with a cube-free and c twelfth-power-free. Define integers b and v by

(4.6) au3 + bv2 + cw12 = 0
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and the requirement that b be square-free. Impose the normalization condition that
u, v, and w are all positive and exactly one of a, b, and c is negative. Then the
integers a, b, c, u, v, and w are all uniquely determined by t. The previous local
analysis using the last block of Table 4.1 says that Q[x]/ft(x) is ramified within
{2, 3, 7} iff

(4.7) all primes dividing abc are in {2, 3, 7}.

The local analysis using the 7-block says that 7 does not divide disc(Q[x]/ft(x)) iff

(4.8) 77 exactly divides c in (4.6).

We carried out a computer search which found four t-values corresponding to the
following solutions of (4.6) satisfying (4.7) and (4.8):

(4.9)

3 1393 − 24 7452 + 77 = 0,
1973 − 2 22492 + 3 77 = 0,

2 1133 − 32092 + 3277 = 0,
23513 + 467452 − 2113277 = 0.

The six other covers have, their analogs of (4.6)–(4.8). However, the form of these
analogs makes global solutions seem much less likely than solutions to (4.6)–(4.8).
For while 7 behaves similarly, in four cases one has to kill 5 also. Also the smaller
two exponents in the analogs of (4.6) are always larger than the 2 and 3 in (4.6).
The importance of having small exponents is clear from the solutions (4.9) found
for our cover. At any rate, computer searches did not find any global solutions for
these other six systems.

We know that for the t-values corresponding to (4.9), the algebra Q[x]/ft(x)
is ramified exactly at 2 and 3. However, unfortunately from the point of view of
constructing septic fields, all four ft(x) are reducible over Q, factoring into a linear
factor and a sextic factor! Our experience with specializing three-point covers tells
us these factorizations constitute extremely unusual behavior. Much more typical
is the nonic case (4.1), where the 35 specialization points behave generically, as we
discussed at the beginning of this section.

Note that the analysis just completed did not make use of our list of ten fields.
Nor did it make use of of the 2- and 3-blocks on Table 4.1. But now let’s compare
Table 3.2 with Table 4.1. We will consider only the 3-adic information, because the
situation is remarkably simple here. Note that fields 1–5 on Table 3.2 have discrim-
inant of the form −2a3b with b either 9 or 11. But, by Table 4.1, specializations
of our cover can have 3-adic discriminantal exponent only 1, 3, 4, 5, 6, 7, 8, or 10.
More subtly, field 6 has b = 8, but 3-adically factors into a sextic field and Q3.
But by Table 4.1, specializations of our cover with 3-adic discriminantal exponent
8 factor into a wild cubic field and a tame quartic field. Finally, fields 7–10 all have
3-adic discriminantal exponent b = 10 and factor into a sextic field and Q3. But
one can check by a 3-adic Newton polygon calculation that any specialization of
our cover with b = 10 factors 3-adically as a cubic field times a cubic field times Q3.
In short, no specialization of our cover matches one of our 10 fields even 3-adically.
So, while we were unable to produce any of the 10 fields by septic 3-point covers,
the local analysis of the cover examined above combined with our classification of
septic fields unramified outside {∞, 2, 3} explains why this cover unexpectedly split
at our four specialization points.
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