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FINITE ELEMENT ANALYSIS OF A CLASS
OF STRESS-FREE MARTENSITIC MICROSTRUCTURES

BO LI

Abstract. This work is concerned with the finite element approximation of
a class of stress-free martensitic microstructures modeled by multi-well en-
ergy minimization. Finite element energy-minimizing sequences are first con-
structed to obtain bounds on the minimum energy over all admissible finite
element deformations. A series of error estimates are then derived for finite
element energy minimizers.

1. Introduction

A martensitic microstructure is a fine-scale mixture of coherent phases or phase
variants of a martensitic crystal. Such a microstructure can often be modeled by
multi-well energy minimization. The total free energy does not in general attain its
infimum. Energy-minimizing sequences can, however, develop fine-scale oscillations
and define stress-free microstructures by the notion of Young measures, cf. [1, 2]
and the references therein.

There are several approaches to the numerical analysis of nonconvex variational
problems modeling martensitic microstructures. One of them is the direct finite
element approximation, in which sequences of finite element energy minimizers
indexed by the finite element mesh size are studied. Such an approach has been
used in the numerical analysis of a simply laminated microstructure that is uniquely
determined by the multi-well energy minimization with a boundary condition that
is consistent with the underlying microstructure, see [12] for a survey and [5, 9, 11]
for details.

In this work, we consider the direct finite element approximation for a more
general and physically important situation in which the underlying microstructure
can be nonunique but its macroscopic deformation is unique. Moreover, such a
microstructure is essentially a simple or high-order laminate. These properties of
microstructure are determined by our assumptions on the Dirichlet boundary data,
cf. F1–F3 in Section 2.

We shall first construct admissible finite element deformations for a laminate of
arbitrary order q ≥ 1, leading to a bound O

(
h1/(q+1)

)
on the minimum energy over

all admissible finite element deformations, where h is the finite element mesh size,
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cf. Theorem 3.1 and Corollary 3.1. We shall then derive a series of error estimates for
finite element energy minimizers on the possible reduction of martensitic variants,
the closeness of the deformation gradient to a fixed subset of the energy wells,
the strong convergence of deformations, and the weak convergence of deformation
gradients, cf. Corollary 4.1.

2. The multi-well energy minimization problem

and its finite element solutions

Let Ω ⊂ R3 be the reference configuration of a martensitic crystal in discussion.
We assume that Ω is a bounded domain with a Lipschitz continuous boundary ∂Ω.
For a deformation y : Ω → R3, we denote by ∇y : Ω → R3×3 its gradient, where
R3×3 denotes the set of all 3×3 real matrices. We also denote by φ : R3×3 → R the
free energy density per unit volume of the reference configuration of the crystal.
We consider the variational problem of infimizing the total free energy functional

(2.1) E(y) :=
∫

Ω

φ(∇y(x)) dx

over a set of admissible deformations A.
We assume that the free energy density φ : R3×3 → R is continuous and satisfies

the following properties.
φ1. Absolute minimizers:

(2.2)
φ(F ) ≥ 0 ∀F ∈ R3×3,

φ(F ) = 0 if and only if F ∈ U := U1 ∪ · · · ∪ UN ,
where

Ui := SO(3)Ui := {RUi : R ∈ SO(3)} , 1 ≤ i ≤ N,
SO(3) is the set of all real 3× 3 rotation matrices, and U1, . . . , UN ∈ R3×3

are distinct symmetric positive definite matrices.
φ2. Growth condition:

(2.3) φ(F ) ≥ κ [dist (F,U)]2 ∀F ∈ R3×3,

where κ > 0 is a constant and

dist(F,U) := inf
G∈U
‖F −G‖,

where ‖F‖ :=
√∑3

i,j=1 F
2
ij for F = (Fij) ∈ R3×3.

We define the set of admissible deformations to be

(2.4) A =
{
y ∈ W 1,∞(Ω;R3) : y(x) = y0(x), x ∈ ∂Ω

}
,

where y0 : Ω→ R3 is a homogeneous deformation defined for a given F0 ∈ R3×3 by

(2.5) y0(x) = F0x ∀x ∈ Ω.

We assume that the boundary data F0 ∈ R3×3 satisfies the following conditions.
F1. Uniqueness of macroscopic deformation: There exist a permutation

(i1 · · · iN ) of (1 · · ·N), an integer s with 1 ≤ s ≤ N , and a unit vector
e0 ∈ R3 such that

(2.6) |F0e0| = |Ui1e0| = · · · = |Uise0|.
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F2. Variant reduction: If s < N , then for each j ∈ {s+ 1, . . . , N}, either there
exists a unit vector aj ∈ R3 such that

(2.7)
|F0aj | = |Ui1aj | = · · · = |Uisaj | ≥ max

s+1≤k≤N
|Uikaj |,

|F0aj | 6= |Uijaj |,
or there exists a unit vector bj ∈ R3 such that

(2.8)
|(Cof F0)bj | = |(Cof Ui1)bj| = · · · = |(Cof Uis)bj| ≥ max

s+1≤k≤N
|(Cof Uik)bj |,

|(Cof F0)bj | 6= |(Cof Uij )bj|,
where Cof F ∈ R3×3 is the cofactor matrix of F ∈ R3×3.

F3. Laminates of arbitrary order: F0 ∈ Slc :=
⋃∞
i=0 S(i), the lamination convex

hull of the set S := Ui1 ∪ · · · ∪ Uis , where S(0) := S, and for each integer
i ≥ 1

S(i) :=
{
λA+ (1− λ)B : A,B ∈ S(i−1), rank (A−B) ≤ 1, 0 ≤ λ ≤ 1

}
.

We shall denote by q the smallest nonnegative integer such that F0 ∈ S(q).
Our idea of identifying unified conditions on the boundary data stems from [6].

See similar conditions in [3], [4], [7]. Independently, we formulate such conditions,
slightly more general, based on our work [5] on the simply laminated microstructure
modeled by a six-well problem.

Examples of martensitic transformations and boundary data that satisfy our
assumptions φ1, φ2, and F1–F3 can be found in [2, 3, 4, 5].

We now define finite element spaces and admissible finite element deformations.
For simplicity of exposition, we assume that the reference configuration of the
crystal Ω ⊂ R3 is a polygonal domain. (For a treatment of a more general Lipschitz
domain, we refer to [10].) Let {τh : 0 < h ≤ h0} be a family of finite element
meshes of Ω, where h0 is a constant such that 0 < h0 < 1. We assume for each
h ∈ (0, h0] that τh is composed of polyhedra with the maximum diameter h, and
that Ω =

⋃
K∈τh K.

For each h ∈ (0, h0], let Vh be a conforming finite element space defined by

Vh =
{
vh ∈ W 1,∞(Ω) : vh|K ∈ P (K), ∀K ∈ τh

}
,

where P (K) is the restriction to K of a linear space of polynomials P fixed for all
K ∈ τh and all h ∈ (0, h0]. We assume that
H1. P1 ⊆ P , where P1 is the space of all polynomials of degree ≤ 1.

We also assume that there exists for each h ∈ (0, h0] an interpolation operator
Ih : W 1,∞(Ω)→ Vh with the following properties:
H2. If v ∈ W 1,∞(Ω) and K ∈ τh satisfy that v|K ∈ P1(K), then (Ihv)|K = v|K ;
H3. There exists a constant σ > 0 such that

(2.9) ‖∇Ihv‖L∞(Ω) ≤ σ‖∇v‖L∞(Ω) ∀v ∈ W 1,∞(Ω) ∀h ∈ (0, h0].

We define for each h ∈ (0, h0] the set of admissible finite element deformations
Ah := A ∩ Vh, where A is the set of admissible deformations defined in (2.4) and
Vh = Vh × Vh × Vh. Notice by the assumption H1 that y0 ∈ Ah, where y0 is
the homogeneous deformation defined in (2.5). Define for each h ∈ (0, h0] the
interpolation operator Ih : W 1,∞(Ω;R3)→ Ah by

Ihy = (Ihy1, Ihy2, Ihy3) ∀y = (y1, y2, y3) ∈W 1,∞(Ω;R3).

The operator Ih has properties similar to those of Ih, cf. H1–H3.
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Since Ah is finite dimensional for each h ∈ (0, h0], it follows from a usual argu-
ment of compactness and the growth condition (2.3) that there exists a yh ∈ Ah
such that

(2.10) E(yh) = min
zh∈Ah

E(zh).

3. Construction of energy-minimizing sequences

of admissible finite element deformations

Recall from the condition F3 that the boundary data F0 ∈ S(q), where S is the
subset of energy wells defined in F3.

Theorem 3.1. For each h ∈ (0, h0], there exists a yh ∈ Ah such that

(3.1) sup
0<h≤h0

‖∇yh‖L∞(Ω;R3×3) ≤ C

and

(3.2) meas {x ∈ Ω : ∇yh(x) /∈ L} ≤ Ch1/(q+1)

for a fixed finite subset L ⊂ S.

The following result is a direct consequence of (2.10), Theorem 3.1, and the
assumptions φ1 and φ2. It provides a bound on the minimum energy over all the
admissible finite element deformations.

Corollary 3.1. For each h ∈ (0, h0],

min
zh∈Ah

E(zh) ≤ Ch1/(q+1).

Proof of Theorem 3.1. The case that q = 0 is trivial. So, assume q ≥ 1. Since
F0 ∈ S(q), there exist matrices Fij ∈ S (i = 0, . . . , q, j = 1, . . . , 2i) with F01 := F0

such that

(3.3) Fi−1,j = λijFi,2j−1 + (1− λij)Fi,2j
for some λij ∈ [0, 1] and

(3.4) Fi,2j−1 − Fi,2j = aij ⊗ nij
for some aij , nij ∈ R3 with |nij | = 1 (i = 1, . . . , q, j = 1, . . . , 2i−1). See Figure 3.1
for a (q + 1)-level binary tree of these matrices.

We construct the desired yh ∈ Ah (0 < h ≤ h0) in five steps and refer to Figure
3.2 for the geometry:

(1) For each i ∈ {1, . . . , q}, decompose Ω into subdomains that represent a
laminate of order i;

(2) Define piecewise affine mappings ỹ(i) (1 ≤ i ≤ q) on these domains for such
laminates;

(3) Define the transition regions for all laminates, and estimate their volumes;
(4) Define admissible deformations y(i) ∈ A (1 ≤ i ≤ q) by interpolation on

transition regions;
(5) Optimize the thickness of layers and size of transition regions, and define

yh ∈ Ah (0 < h ≤ h0] to be the finite element interpolation of y(q) : Ω→ R3.
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Figure 3.1. A (q + 1)-level binary tree of matrices Fij (i =
0, . . . , q, j = 1, . . . , 2i) with q = 3. Each parent matrix Fi−1,j

is an average with volume fractions λij and 1−λij of its two child
matrices Fi,2j−1 and Fi,2j that are rank-one connected with normal
nij .

Figure 3.2. The geometry of a laminate of order q = 3.
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Step 1. Let (ε0, . . . , εq) ∈ Rq+1 be such that

(3.5) 0 < εq < · · · < ε1 < ε0 = 1.

Each εi (1 ≤ i ≤ q) will denote the thickness of layers in a laminate of order i
under construction. Thus, all εi (i = 1, . . . , q) will be small. Their values are to be
specified later. Set

D
(k)
i,2j−1 :=

{
x ∈ R3 : kεi < x · nij < (k + λij)εi

}
,

D
(k)
i,2j :=

{
x ∈ R3 : (k + λij)εi < x · nij < (k + 1)εi

}
,

i = 1, . . . , q, j = 1, . . . , 2i−1, k = 0,±1, . . . .

Notice that
∞⋃

k=−∞
D

(k)
i,2j−1 ∪D

(k)
i,2j = R3, i = 1, . . . , q, j = 1, . . . , 2i−1.

Set also Ω01 := Ω, and define recursively

Ωi,2j−1 := Ωi−1,j ∩
( ∞⋃
k=−∞

D
(k)
i,2j−1

)
,

Ωi,2j := Ωi−1,j ∩
( ∞⋃
k=−∞

D
(k)
i,2j

)
,

i = 1, . . . , q, j = 1, . . . , 2i−1.

Obviously,

Ωi,2j−1 ∩Ωi,2j = ∅ and Ωi−1,j = Ωi,2j−1 ∪ Ωi,2j ,

i = 1, . . . , q, j = 1, . . . , 2i−1.

We assume all εi (i = 1, . . . , q) are small enough so that

∅ 6= Ωi,2j−1 ∪ Ωi,2j ( Ωi−1,j , i = 1, . . . , q, j = 1, . . . , 2i−1.

Set finally

(3.6) Ωi :=
2i⋃
j=1

Ωij , i = 0, . . . , q.

Here and below, when no confusion arises, we use ij to denote the double index
i, j. It is easy to see that

(3.7) Ω = Ω0 = Ω1 % · · · % Ωq and Ω = Ω0 = Ω1 = · · · = Ωq.

The difference Ωi\Ωi−1 for 1 ≤ i ≤ q consists of planar boundaries of layers with
normals nij (j = 1, . . . , 2i−1) and layer thickness εi. See Figure 3.3 for a binary tree
of these subdomains Ωij (i = 0, . . . , q, j = 1, . . . , 2i). The structure of this domain
tree is identical to that of the matrix tree in Figure 3.1.

Step 2. For any λ ∈ (0, 1), let χλ : R→ R be the 1-periodic function defined by

χλ(t) =
{

1 if t ∈ [0, λ),
0 if t ∈ [λ, 1).
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Figure 3.3. A (q + 1)-level binary tree of subdomains Ωij (i =
0, . . . , q, j = 1, . . . , 2i) with q = 3. Any pair of child matrices
Ωi,2j−1 and Ωi,2j constitute a decomposition of their parent do-
main Ωi−1,j . All subdomains at the same level constitute a de-
composition of Ω.

For convenience, let also χ0 : R→ R and χ1 : R→ R be defined by χ0(x) = 0 and
χ1(x) = 1 for all x ∈ R. Set Ω−1 := Ω and define ỹ(0) : Ω−1 → R3 by ỹ(0)(x) = F0x
for all x ∈ Ω−1. For i = 1, . . . , q, we recursively define ỹ(i) : Ωi−1 → R3 by

ỹ(i)(x) =Fi,2jx+
[∫ x·nij

0

χλij

(
t

εi

)
dt

]
aij + ỹ(i−1)(x)− Fi−1,jx

∀x ∈ Ωi−1,j , j = 1, . . . , 2i−1, i = 1, . . . , q.

We claim the following.

1. For each i ∈ {1, . . . , q}, ỹ(i)(x) is well defined for any x ∈ Ωi−1. Moreover,

(3.8) ỹ(i) ∈W 1,∞(Ωi−1;R3), i = 1, . . . , q.

2. Each ỹ(i) : Ωi−1 → R3 is piecewise affine,

(3.9) ∇ỹ(i)(x) = Fij ∀x ∈ Ωij , i = 1, . . . , q, j = 1, . . . , 2i.

3. If Ωi,j ∩D(k)
i,l 6= ∅ (1 ≤ i ≤ q, 1 ≤ j ≤ 2i−1, l = 2j − 1 or 2j, k ∈ Z), then

(3.10) ỹ(i)(x) − Fi,jx = constant on Ωi,j ∩D(k)
i,l .

4. The difference of ỹ(i) and ỹ(i−1) is small on Ωi−1,

(3.11)
∣∣∣ỹ(i)(x)− ỹ(i−1)(x)

∣∣∣ ≤ 1
4
εi |aij | ∀x ∈ Ωi−1, i = 1, . . . , q.
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The fact that ỹ(i)(x) is well defined for all x ∈ Ωi−1 (1 ≤ i ≤ q) and the relation
(3.8) follow by induction using (3.6) and (3.7). For 1 ≤ i ≤ q and 1 ≤ j ≤ 2i−1, we
have by a simple calculation using (3.4) that

∇
{
Fi,2jx+

[∫ x·nij

0

χλij

(
t

εi

)
dt

]
aij

}
= Fi,2j + χλij

(
x · nij
εi

)
aij ⊗ nij

=
{
Fi,2j−1 if x ∈ Ωi,2j−1,
Fi,2j if x ∈ Ωi,2j .

This, together with (3.6), (3.7), and the definition of ỹ(i) : Ωi−1 → R3 (1 ≤ i ≤ q),
implies (3.9) by induction. If Ωi,j ∩ D(k)

i,l 6= ∅ (l = 2j − 1 or 2j), then (3.10)
follows from (3.9). Notice that ỹ(i)(x) − Fi−1,jx is not necessary a constant on
Ωi−1,j , since Ωi−1,j is in general not connected. Finally, in view of the definition
of ỹ(i) : Ωi−1 → R3, (3.3), (3.4), and the definition of χλ : R → R, we have for
1 ≤ i ≤ q that∣∣∣ỹ(i)(x) − ỹ(i−1)(x)

∣∣∣
=
∣∣∣∣Fi,2jx+

[∫ x·nij

0

χij

(
t

εi

)
dt

]
aij − [λijFi,2j−1 + (1 − λi,2j)Fi,2jx]

∣∣∣∣
=
∣∣∣∣{∫ x·nij

0

[
χλij

(
t

εi

)
− λij

]
dt

}
aij

∣∣∣∣
= εi

∣∣∣∣∣
∫ x·nij

εi

0

[
χλij (t̃)− λij

]
dt̃

∣∣∣∣∣ |aij |
≤ εiλij (1− λij) |aij |

≤ 1
4
εi|aij | ∀x ∈ Ωi,2j−1 ∪ Ωi,2j , j = 1, . . . , 2i.

Now, (3.11) follows from the definition of Ωi−1 (1 ≤ i ≤ q), cf. (3.6).
With what has been proved we see on each subdomain Ωi−1,j (1 ≤ i ≤ q, 1 ≤

j ≤ 2i−1) that ỹ(i) : Ωi−1 → R3 is a continuous, piecewise affine mapping whose
gradient takes alternatively the values Fi,2j−1 and Fi,2j with volume factions λij
and 1− λij on parallel layers that have normal nij and layer thickness εi.

Step 3. Let (η0, . . . , ηq) ∈ Rq+1 be such that

(3.12) 0 < ηq < · · · < η0 < 1 and ηi < εi, i = 0, . . . , q.

Each ηi (1 ≤ i ≤ q) shall denote the size of a transition region in a laminate of
order i. All ηi (i = 0, . . . , q) shall be small, and their values are to be specified
later. Denote

ω(η) := {x ∈ ω : dist (x, ∂ω) > η}
for any ω ⊆ Ω and η > 0. Set Ω̃−1 := Ω, and define recursively

Ω̃i :=
(

Ωi ∩ Ω̃i−1

)
(ηi), i = 0, . . . , q.

We assume all ηi > 0 are small enough so that Ω̃i 6= ∅ (i = 0, . . . , q). Obviously,

(3.13) Ω̃q ( · · · ( Ω̃0 ( Ω̃−1 = Ω.
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Denoting by CT > 0 a generic constant which can only depend on Ω, q, and all
the unit normals nij (i = 1, . . . , q, j = 1, . . . , 2i−1), we claim that

(3.14) meas
(

Ω\Ω̃i
)
≤ CT

(
η0

ε0
+
η1

ε1
+ · · ·+ ηi

εi

)
, i = 0, . . . , q.

Since by (3.13)

meas
(

Ω\Ω̃i
)

=
i∑
l=0

meas
(

Ω̃l−1\Ω̃l
)
, i = 0, . . . , q,

and by the definition of Ω̃i (1 ≤ i ≤ q)

meas
(

Ω̃i−1\Ω̃i
)
≤ CT

2i−1∑
j=1

meas (Ωij\Ωij(ηi)) , i = 0, . . . , q,

we need only to prove that

(3.15) meas (Ωij\Ωij(ηi)) ≤ CT
ηi
εi
, i = 0, . . . , q, j = 1, . . . , 2i−1.

The inequality in (3.15) is trivially true for i = 0. Consider now 1 ≤ i ≤ q. We
only show that the inequality in (3.15) holds true for j = 1, since the same argument
can be used for all j (1 ≤ j ≤ 2i−1). Notice that each connected component of
Ωi1 is a small band or thin plate. If its closure is in the interior of Ω, then it
is a parallelepiped. Otherwise, it is part of a parallelepiped. In fact, all these
parallelepipeds at the level i have the same face normals and face areas: they
are translations of a single parallelepiped, say Pi1. Denoting the number of these
parallelepipeds by Ni1 and setting Vi1 := meas (Pi1\Pi1(ηi)), we easily see that
meas (Ωi1\Ωi1(ηi)) is bounded by CTNi1Vi1. To estimate Ni1 and Vi1, we let ε−2 =
ε−1 = ε0 = 1 and nl := nl1 for l = 1, . . . , i. We also let n−2 = n1 and n−1, n0 ∈ R3

be unit vectors such that n−2, n−1, and n0 form an orthonormal basis for R3. We
claim that there exist a permutation (t−2t−1 · · · ti−1) of (−2,−1, . . . , i − 1) such
that the face normals of Pi1 are nti−2 , nti−1 , ni, and

(3.16) Ni1 ≤ CT
εt−2εt−1 · · · εti−3

ε1ε2 · · · εi
and Vi1 ≤ CT ηiεti−2εti−1 .

This is obviously true for the case i = 1. Suppose it is true for a general i
with 1 ≤ i ≤ q − 1. Denoting εti := εi and nti := ni, we see that there ex-
ists m ∈ {i− 2, i− 1, i} such that the set of face normals of Pi+1,1 is ni+1 ∪{
nti−2 , nti−1 , nti

}
\{ntm}, the number of bands at the level i+ 1 is

Ni+1,1 ≤ CTNi1
εtm
εi+1

,

and the volume is
Vi+1,1 ≤ CT ηi+1

εti−2εti−1εti
εtm

,

since 0 < εi+1 < min
{
εti−2 , εti−1 , εti

}
. Therefore, setting sl := tl for −2 ≤ l ≤ i−1,

si−2 := tm, and {si−1, si} ; = {ti−2, ti−1, ti} \ {tm}, we see that (s−2s−1 · · · si) is a
permutation of (−2,−1, . . . , i) such that the face normals of Pi+1,1 are nsi−1 , nsi ,
and ni+1, and such that

Ni+1,1 ≤ CT
εs−2εs−1 · · · εsi−2

ε1ε2 · · · εi+1
and Vi+1,1 ≤ CT ηi+1εsi−1εsi .
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This proves (3.16) for any i (1 ≤ i ≤ q). By (3.16), we have that

meas (Ωi1\Ωi1(ηi)) ≤ CTNi1Vi1 ≤ CT
ηi
εi
,

proving (3.15).
Step 4. For each i ∈ {0, . . . , q − 1}, let ρi ∈ C∞0 (R3) be such that

0 ≤ ρi(x) ≤ 1 ∀x ∈ R3,

ρi(x) = 1 ∀x ∈ Ω̃i,

ρi(x) = 0 ∀x ∈ R3\(Ωi ∩ Ω̃i−1),

|∇ρi(x)| ≤ 2
ηi

∀x ∈ R3.

Let y(0) : Ω→ R3 be defined by y(0)(x) := F0x for all x ∈ Ω. Define y(i) : Ω→ R3

(i = 1, . . . , q) recursively by

(3.17) y(i)(x) = ρi−1(x)ỹ(i)(x) + [1− ρi−1(x)] y(i−1)(x) ∀x ∈ Ω.

We claim the following.
1. For each i (1 ≤ i ≤ q), y(i) ∈W 1,∞(Ω;R3) and

(3.18) y(i)(x) =

{
ỹ(i)(x) ∀x ∈ Ω̃i−1,

y(i−1)(x) ∀x ∈ Ω\
(

Ωi ∩ Ω̃i−1

)
.

2. We have

(3.19) y(k)(x) = Fi−1,jx ∀x ∈ ∂Ω̃i−1, k = i, . . . , q.

3. We have

∇y(i)(x) ∈
{
Fij : j = 1, . . . , 2i−1

}
(3.20)

a.e. x ∈ Ω̃i−1, i = 1, . . . , q,∣∣∣∇y(i)(x)
∣∣∣ ≤ Caεi

2ηi−1
+ CF(3.21)

a.e. x ∈ Ω\Ω̃i−1, i = 1, . . . , q,

where

Ca := max
1≤i≤q, 1≤j≤2i−2

|aij | > 0 and CF := max
1≤i≤q, 1≤j≤2i

‖Fij‖ > 0.

The fact that y(i) ∈ W 1,∞(Ω;R3) and (3.18) follow from the definition of y(i)

(1 ≤ i ≤ q), and (3.19) follows from (3.18). A simple calculation leads to

∇y(i)(x) =
[
ỹ(i)(x)− y(i−1)(x)

]
⊗∇ρi−1(x) + ρi−1(x)∇ỹ(i)(x)(3.22)

+ [1− ρi−1(x)]∇y(i−1)(x) a.e. x ∈ Ω, i = 1, . . . , q.

This, together with (3.9) and (3.11), leads to (3.20) and (3.21).
Step 5. Set εi := hαi and ηi := hβi for i = 0, . . . , q, where all αi and βi are real

numbers such that

(3.23) 0 = α0 < β0 ≤ α1 < β1 ≤ α2 < · · · < βq−1 ≤ αq < βq = 1.

It is easy to see that the assumptions (3.5) and (3.12) are satisfied with this choice
of αi and βi (i = 0, . . . , q). Define yh ∈ Ah by yh := Ihy(q) ∈ Ah for h ∈ (0, h0].
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The uniform boundedness (3.1) follows from (3.20), (3.21), (3.23), and (2.9). By
the property H2, (3.20), the definition of Ω̃q, and the fact that ηq = h, we have
that ∇y(x) ∈ L for all x ∈ Ω̃q, where

L :=
{
Fqj : j = 1, . . . , 2q−1

}
.

Thus,
{x ∈ Ω : ∇y(x) /∈ L} ⊆ Ω\Ω̃q.

It remains now to choose all the parameters αi and βi that satisfy (3.23) and that
minimize meas

(
Ω\Ω̃q

)
.

It follows from (3.14) and (3.23) that

meas
(

Ω\Ω̃q
)
≤ C

(
hβ0 + hβ1−α1 + · · ·+ hβq−1−αq−1 + h1−αq) .

This is minimized if we choose, according to (3.23), all αi = βi−1 for i = 1, . . . , q.
With such a choice, we have

(3.24) meas
(

Ω\Ω̃q
)
≤ C

(
hβ0 + hβ1−β0 + · · ·+ hβq−1−βq−2 + h1−βq−1

)
,

where
0 < β0 < · · · < βq−1 < βq = 1.

The sum in the inequality (3.24) attains its minimum value h1/(q+1), leading to
(3.2), if

β0 = β1 − β0 = · · · = βq−1 − βq−2 = 1− βq−1,

i.e.,

βi =
i+ 1
q + 1

, i = 0, . . . , q − 1.

The proof is complete. �

4. Error estimates for finite element energy minimizers

We define a projection π : R3×3 → U by

(4.1) ‖F − π(F )‖ = dist(F,U), F ∈ R3×3.

It is shown in [8] that, with a possible modification of its definition on a subset of
R3×3 of Lebesgue measure zero, this projection is well defined and Borel measur-
able. We denote by C a generic, positive constant that is always assumed to be
independent of the finite element mesh size h.

Theorem 4.1. The following estimates hold true for all yh ∈ Ah.
(1) Estimate on the variant reduction in measure:

(4.2) meas {x ∈ Ω : π(∇yh(x)) /∈ S} ≤ C
[
E(yh)1/2 + E(yh)

]
,

where S is the subset of energy wells defined in the condition F3.
(2) Estimate on directional derivatives in the L2 norm:

(4.3)
∫

Ω

|[∇yh(x) − F0] e0|2 dx ≤ C
[
E(yh)1/2 + E(yh)

]
,

where e0 is the unit vector defined in F1.
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(3) Estimate on deformations in the L2 norm:

(4.4)
∫

Ω

|yh(x)− y0(x)|2 dx ≤ C
[
E(yh)1/2 + E(yh)

]
,

where y0 is the deformation in the boundary condition, cf. (2.4) and (2.5).
(4) Estimate on deformation gradients in a weak topology:

(4.5)
∥∥∥∥∫

ω

[∇yh(x) − F0] dx
∥∥∥∥ ≤ C(ω)

[
E(yh)1/8 + E(yh)1/2

]
,

where ω ⊆ Ω is a Lipschitz domain and F0 = ∇y0 is the gradient of the homogeneous
deformation y0 in the boundary condition, cf. (2.4) and (2.5).

Replacing a general yh in the theorem by any finite element energy minimizer
and using the energy bound established in Corollary 3.1, we immediately obtain
the following error estimates for all the finite element energy minimizers defined by
(2.10).

Corollary 4.1. For any finite element minimizers yh ∈ Ah,

meas {x ∈ Ω : π(∇yh(x)) /∈ S} ≤ Ch1/2(q+1),∫
Ω

|[∇yh(x) − F0] e0|2 dx ≤ Ch1/2(q+1),∫
Ω

|yh(x)− y0(x)|2 dx ≤ Ch1/2(q+1),∥∥∥∥∫
ω

[∇yh(x) − F0] dx
∥∥∥∥ ≤ C(ω)h1/(8q+8),

where ω ⊆ Ω is a Lipschitz domain.

Proof of Theorem 4.1. Let yh ∈ Ah.
(1) Let w ∈ R3 with |w| = 1. By the minors relations and the growth condition

(2.3), using arguments similar to those in [5, 8], we obtain

(4.6)
∫

Ω

|[π(∇yh(x)) − F0]w|2 dx−
∫

Ω

[
|π(∇yh(x))w|2 − |F0w|2

]
dx ≤ CE(yh)1/2

and ∫
Ω

|[Cof π(∇yh(x)) − Cof F0]w|2 dx

−
∫

Ω

{
| [Cof π(∇yh(x))]w|2 − |(Cof F0)w|2

}
dx(4.7)

≤ C
[
E(yh)1/2 + E(yh)

]
.

Denote

Ωi(yh) := {x ∈ Ω : π(∇yh(x)) ∈ Ui} , i = 1, . . . , N.

Notice that all Ωi(yh) (i = 1, . . . , N) are pairwise disjoint. Fix j ∈ {s+ 1, . . . , N},
cf. the conditions F1–F3. If (2.7) holds true for some aj ∈ R3, then by (4.6) with
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w = aj we have

CE(yh)1/2 ≥
∫

Ω

[
|F0aj |2 − |π(∇yh(x))aj |2

]
dx

=
N∑
i=1

∫
Ωi(yh)

[
||F0aj |2 − π(∇yh(x))aj |2

]
dx

=
N∑
i=1

meas Ωi(yh)
[
|F0aj |2 − |Uiaj |2

]
≥ meas Ωij (yh)

[
|F0aj |2 − |Uijaj |2

]
,

which, together with (2.7), leads to

(4.8) meas Ωij (yh) ≤ CE(yh)1/2.

If instead (2.8) holds true for some bj ∈ R3, then a similar argument using (4.7)
with w = bj leads to

(4.9) meas Ωij (yh) ≤ C
[
E(yh)1/2 + E(yh)

]
.

Now, the estimates (4.8) and (4.9), together with the fact that

(4.10) {x ∈ Ω : π(∇yh(x)) /∈ S} =
N⋃

j=s+1

Ωij (yh),

lead to (4.2).
(2) Since |e0| = 1, we have, by the growth condition (2.3)

(4.11)∫
Ω

|[∇yh(x)− π(∇yh(x))] e0|2 dx ≤
∫

Ω

‖∇yh(x)− π(∇yh(x))‖2dx ≤ κ−1E(yh).

In view of (4.6) with w = e0, (2.6), (4.10), and (4.2), we have∫
Ω

|[π(∇yh(x)) − F0] e0|2 dx

≤ CE(yh)1/2 +
∫

Ω

[
|π(∇yh(x))e0|2 − |F0e0|2

]
dx

= CE(yh)1/2 +
∫
{x∈Ω:π(∇yh(x))∈S}

[
|π(∇yh(x))e0|2 − |F0e0|2

]
dx

+
∫
{x∈Ω:π(∇yh(x))/∈S}

[
|π(∇yh(x))e0|2 − |F0e0|2

]
dx(4.12)

≤ CE(yh)1/2 +
s∑
j=1

meas Ωij
[
|Uije0|2 − |F0e0|2

]
+ Cmeas {x ∈ Ω : π(∇yh(x)) /∈ S}

≤ C
[
E(yh)1/2 + E(yh)

]
.

Now, (4.11), (4.12), and an application of the triangle inequality imply (4.3).
(3) This follows from the Poincaré inequality and (4.3), cf. [5, 11].
(4) We obtain (4.5) from (4.4) by using the same argument as in [5, 11]. �
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