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ON THE UNKNOTTING NUMBER OF MINIMAL DIAGRAMS

A. STOIMENOW

Abstract. Answering negatively a question of Bleiler, we give examples of
knots where the difference between minimal and maximal unknotting number
of minimal crossing number diagrams grows beyond any extent.

1. Introduction

It is known that a diagram D of a knot can be made into a diagram of the unknot
by crossing changes. The unknotting number u(D) of D is defined as the minimal
number of such crossing changes, and the unknotting number u(K) of a knot K is
given by

u(K) = min
D diagram of K

u(D) .

Taking the minimum over an infinite number of diagrams makes the unknotting
number of a knot often hard to calculate (see [KM, Tr]). Thus one is led to consider
modifications of this definition where only finitely many diagrams are considered.
The most appealing idea is to consider just diagrams D of crossing number c(D)
equal to the (minimal) crossing number c(K) for K. Thus define

umin(K) = min
D diagram of K

with c(D) = c(K)

u(D) and umax(K) = max
D diagram of K

with c(D) = c(K)

u(D) .

We have then for any knot K the obvious inequalities

u(K) ≤ umin(K) ≤ umax(K) .(1)

Suggestively, for many knots both inequalities are in fact equalities. The second
inequality holds for alternating knots by the proof of the Tait crossing number
[Ka, Mu, Th] and flyping conjectures [MT], and the first inequality is true for a large
class of positive braid knots (including the torus knots) by the work of Murasugi
[Mu2], Boileau-Weber [BW], and the proof of the (local) Thom conjecture [KMr].

It was surprising, when Bleiler [Bl] and Nakanishi [Na] (independently) found
an example, 108 in the tables of [Ro, appendix], for which the first inequality was
strict (u = 2, but umin = 3). Bleiler asked whether there are also examples of knots
for which the second inequality is strict. This was confirmed by two examples from
Thistlethwaite’s tabulations [HTW] given in [St] with u = umin = 1 but umax > 1.
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Bleiler asked furthermore whether there is some (upper) bound on the difference
of the hand-sides of both inequalities. While a negative answer to this question for
the first inequality follows directly from Bleiler’s example and the proof of the Tait
conjectures (see below), in this note we will mainly focus on finding examples, using
the program KnotScape [HT], answering the question negatively for the second
inequality. These examples come from computational results obtained by the tools
of Thistlethwaite and myself. More specifically, we have

Theorem 1.1. The number of fibered knots of crossing number at most 15n with
umax − umin ≥ n is asymptotically at least O(n587).

The easiest way to show, using Bleiler’s example, that umin − u can grow un-
boundedly is to consider the iterated connected sums of his knot with itself. It is
known from [Ka, Mu, Th] and [Me] that a minimal crossing number diagram of
a (possibly composite) alternating knot is the (possibly trivial) connected sum of
alternating prime knot diagrams. Thus consider Kn = #n108. (Here ‘#’ means
connected sum and ‘#nK’ means the connected sum of n copies of K.) While
u(Kn) = 2n follows from the signature, we have by the above fact umin(Kn) = 3n.

Such examples are rather easy to come by. To obtain a more interesting result,
for both inequalities in (1) we will construct prime examples of the desired types
(for which less computational and more mathematical arguments are needed).

Conventions and definitions.

Link polynomials. For an account on the various link polynomials we refer to the
papers [LM, Ka].

The skein polynomial P is a Laurent polynomial in two variables l and m of
oriented knots and links which is equal to 1 on the unknot, and is defined by the
(skein) relation

(2)

The Kauffman polynomial is usually defined via a regular isotopy invariant
Λ(a, z) of unoriented links with the properties

The Kauffman polynomial F (D) of a link represented by an oriented diagram D is
then defined as a−w(D)Λ(a, z), where w(D) is the writhe of D.

The Jones polynomial V , Brandt-Lickorish-Millett-Ho polynomial Q and (one
variable) Alexander polynomial ∆ are obtained from P and F by the substitutions

V (t) = P (−it, i(t−1/2 − t1/2)) = F (−t−3/4, t1/4 + t−1/4) ,

∆(t) = P (i, i(t1/2 − t−1/2)) ,
Q(z) = F (1, z) .

For P and F there are several other conventions of variables, differing from each
other by possible inversion and/or multiplication of some variable by some fourth
root of unity. However, our arguments apply regardless of the convention used. We
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Figure 1. Conway’s tangles and operations with them. (The des-
ignation ‘product’ is very unlucky, as this operation is neither com-
mutative, nor associative, nor is it distributive with ‘sum’.)

will only assume the invariants to be normalized so that the unknot has polynomial
1.

We will sometimes write VD, ∆D , . . . for V (D), ∆(D) , . . . , etc. Also, we
will not notationally distinguish arguments to the polynomials, which are vari-
ables/numbers, diagrams, or links, since the meaning of the expression will not be
ambiguous.

Let [Y ]ta = [Y ]a be the coefficient of ta in a polynomial Y ∈ Z[t±1]. Let the
minimal and maximal degree and span (or breadth) of Y 6= 0 be given by

min deg Y = min { a ∈ Z : [Y ]a 6= 0 } , max deg Y = max { a ∈ Z : [Y ]a 6= 0 } ,
spanY = max deg Y −min deg Y .

For Y ∈ Z[x1, . . . , xn] and some monomial X in the xi, we denote by [Y ]X the
coefficient of X in Y . max cf Y denotes the leading coefficient of Y , i.e., [Y ]max deg Y .

Knot notation. The knots of ≥ 11 crossings occurring below are always identified
according to their numbering in the tables of KnotScape [HT]. They can be loaded
and drawn by this program, if so desired. The knots of ≤ 10 crossings are identified
according to the tables of [Ro, appendix].

The obverse (mirror image) of K is denoted by !K.

Algebraic tangles and Conway notation. We briefly introduce the algebraic tangles
which will be applied in the subsequent constructions.

Algebraic tangles were introduced by Conway [Co]. These are the tangles that
can be built up from the primitive tangles 0, 1 and ∞ by iterated application of
tangle sum and product, as shown in Figure 1. See [Ad, §2.3] for example.

2. Examples of adequate knots

The most naive idea for dealing with the second inequality in (1) is to adapt the
argument used above for the first inequality: take iterated connected sums of an
appropriate knot K having umin < umax. The problem is, however, that we do not
know in general how to show that c(#nK) = nc(K). The arguments based on the
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Figure 2. The A- and B-corners of a crossing, and its both splic-
ings. The corner A (resp. B) is the one passed by the overcrossing
strand when rotated counterclockwise (resp. clockwise) towards
the undercrossing strand. A type A (resp. B) splicing is obtained
by connecting the A (resp. B) corners of the crossing.

span of the Jones [Ka, Mu, Th] and Q [Ki] polynomials work only for alternating
knots, for which, as remarked, the Tait conjectures imply umin = umax.

One possible way to circumvent this problem is to turn back to Thistlethwaite’s
inequalities for the Kauffman polynomial F [Th2]. He showed that, if Λ denotes
the (writhe) unnormalized version of F , the coefficient [Λ(D)]akzl of the monomial
akzl in Λ(D) for a given diagram D is nonzero only if |k| + l ≤ c(D). This fact
poses restrictions on the writhe of diagrams of given crossing number with given
F polynomial. We are interested in cases when these restrictions determine the
writhe uniquely.

In [Th3] these cases were described by a diagrammatic condition related to Kauff-
man’s state model [Ka2].

Definition 2.1 (see [Th3]). A splicing of a crossing in an (unoriented) link diagram
D is a local move replacing the leftmost diagram in Figure 2 by the middle (A-
splicing) or rightmost (B-splicing) diagram. The choice of (one of the two) splicings
for each crossing in D is called a state of D. Performing the splicings chosen in S
reduces D to a collection of disjoint loops. The A-state of the diagram is the state
in which all crossings are A-spliced. Similarly the B-state is the state in which all
crossings are B-spliced. A diagram is called A-adequate, if changing the splicing
of any crossing (from A to B) in the A-state reduces (by 1) the resulting number
of loops. Analogously one defines B-adequacy, and calls D adequate, if it is both
A-adequate and B-adequate. A knot K is adequate, if it has an adequate diagram
D.

Theorem 2.1 ([Th3, Theorem 3(i)]). A knot diagram D is adequate if and only if

max
[F (D)]

akzl
6=0

k + l − c(D) = min
[F (D)]

akzl
6=0

k − l + c(D) .

The following consequences, noted in [Th3], are immediate from the above result.

Proposition 2.1. If a knot K has an adequate diagram D, then c(K) = c(D), and
moreover, all minimal crossing number diagrams of K have the same writhe as D.

Corollary 2.1. If K1,2 are adequate knots, then c(K1#K2) = c(K1) + c(K2).

It turns out that, for the purpose of evaluating knot tables, it is easier to test
adequacy by its defining property in Definition 2.1 than by the property given in
Theorem 2.1. Thus, using Definition 2.1, we have a convenient method for selecting
knots from the table, for some of which we need to show that umin < umax.

It turned out that there were no appropriate examples with umax > 1 = umin,
so we were led to consider the next simplest case umax > 2 ≥ umin. This means
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we seek knots for which there are minimal crossing number diagrams which are
unknotted by 2 crossing changes, and others that are not.

Using Thistlethwaite’s tools, one can generate many diagrams of the same knot
by applying a variety of moves on an input diagram. For these diagrams the un-
knotting number can be determined by switching crossings and testing the result
according to triviality of the Jones polynomial. (This gives a very effective knot-
tedness test at reasonable crossing numbers.)

This procedure, when given as input the about nineteen thousand (18,982) ad-
equate nonalternating prime knots of ≤ 15 crossings (in their diagrams included
in the table), gave a list of 57 knots1 with umax > 2 ≥ umin. Thus all possible
(including mixed) iterated connected sums of such knots give the desired examples.

There are 5 knots K among these 57 (1425034, 1425151, 1425154, 1425758 and
1425835) whose double (branched) cover DK has noncyclic (integral) homology
group H1(DK) (for the first three it is Z9⊕Z9, and for the last two Z45⊕Z3), and
hence by [We] we have u(#nK) = nu(K) = 2n.

For all the remaining 52 examples, for which H1(DK) is cyclic, I could not decide
whether u(#nK) = nu(K). None of them had signature ±4, and I could show
u(K) = 2 only for 12 further examples. First, for three of them, 15112110, 15113676

and 15113679, I could apply the (somewhat sophisticated) method of Traczyk [Tr]
(working for 1067 and involving a combination of the signature and the Lickorish-
Millett value V

(
eπi/3

)
). The other 9 knots I could deal with by the criterion of

Lickorish [Li].

3. Homogeneous braid examples

An alternative way to construct examples with umax > umin is to use Murasugi’s
results on homogeneous braid knots [Mu2, Proposition 7.4]. Homogeneous braids
were introduced by Stallings [S] and are braids in which each Artin generator σi
appears entirely with positive or entirely with negative powers. The quest for
such examples appeared to be the more difficult alternative compared to adequate
knots, when using Thistlethwaite’s tabulations. The property to be the closure of
a homogeneous braid of minimal strand number is not straightforward to test, and
even the (larger) set of knots obtained by testing the necessary conditions on the
HOMFLY polynomial from [MP] is relatively small.

Thus (closures of) homogeneous braids to which the Murasugi results apply
are much less common among ≤ 15 crossing prime knots than adequate knots.
Nonetheless, there were surprisingly more examples of this type, as it turns out
that the phenomenon umax > umin occurs much more frequently. (This outcome
may be partially explained by the extension of the flyping results for alternating
links to certain classes of adequate links, as shown in [Th4].) Here we describe how
we obtained these examples, giving a proof of Theorem 1.1.

Proof of Theorem 1.1. Murasugi’s idea to estimate c(D) for a diagram D of a knot
K is to write

c(D) =
(
c(D)− s(D) + 1

)
+
(
s(D)− 1

)
,

1Although Thistlethwaite’s tools use a rich variety of moves, for some few special knots not
all minimal crossing number diagrams are interconvertible by these moves, so there may be some
(but really very few, if any) more knots we could have missed.



2048 A. STOIMENOW

with s(D) being the number of Seifert circles of D, and to estimate both parts from
the HOMFLY polynomial separately. For the first part we have from [Mo]

c(D)− s(D) + 1 ≥ max degm P (K) .

For a homogeneous braid diagram D this inequality is sharp (see the genus results
in [Cr]), and s(D) is the number of strands of the braid. Thus the homogeneous
braid diagram D is of minimal crossing number if the braid representation is of
minimal strand number. (Beware that the converse is not true; see [St3].)

The handiest way to replace the (strand number) minimality condition of the
homogeneous braid is to use the (sharpness of the) MWF inequality [Mo, FW]:

s(D) ≥ 1
2

spanl P (K) + 1 .

(Other methods to exhibit this minimality are rather elaborate and available only
for small strand number, see, e.g., [K, MS].)

Thus we are interested in knots K for which spanl PK +2 max degm PK = 2c(K)
and max cfmPK = lk for some k ∈ 2Z, where for P we use the convention of [LM].
The second property comes from [MP], as (closures of) homogeneous braids are
∗-products (Murasugi sums) of (2, n)-torus links.

The resulting conditions were satisfied by (the P polynomials of) 10,507 of the
nonalternating ≤ 15 crossing prime knots. 371 of them passed the test for umax >
2 ≥ umin. From these knots, 160 could be exhibited to have homogeneous braid
diagrams (by testing the property on the diagrams generated by Thistlethwaite’s
tools).

Calculating the symmetry group of the 160 knots with the tool provided in
KnotScape (a version of Jeff Weeks’s hyperbolic symmetry program), I found that
all except 28 had no symmetries, while these 28 knots had symmetry group Z2.
For 25 of the knots the nontrivial symmetry is an inversion, for one other knot,
1436031, a simultaneous in- and obversion (i.e., the knot is −achiral), while for the
remaining two knots, 1434103 and 15201628, it preserves longitude and meridian (and
so all the four in- and obverted versions are distinct). Thus, together with their in-
and obversed versions, the 160 examples give 4 · 160 − 2 · 26 = 588 knots, which
can be used to build connected sums. This way we arrive at the statement given
in Theorem 1.1. �

Figure 3.
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Furthermore, 89 among these 160 knots have signature ±4, so that their iterated
(mixed) connected sums (with properly obversed factors) can be shown to have u =
umin. Among these 89 knots are also the two simplest examples in the list of 160,
the mutants 11408 and 11414, see Figure 3. (They have the 4-braid representations
σ1σ

3
2σ
−1
3 σ1σ

2
2σ
−1
3 σ2σ

−1
3 and (σ1σ

2
2σ
−1
3 )2σ2σ1σ

−1
3 respectively.)

4. Prime examples

More interestingly, it is possible to construct a series of prime knots with the
previous properties. This can be achieved by modifying the connected sums of the
above examples and trying to preserve the necessary conditions. The arguments for
the proof this time are mathematical rather than computational, albeit they make
decisive use of the specific examples found above. It is most appropriate to focus
on a single such example in the proof.

Theorem 4.1. For any n ∈ N, there exist prime knots Kn with u(Kn) = umin(Kn)
and umax(Kn)− umin(Kn)→∞.

Proof. Consider the tangle T given by the 2 diagrams in Figure 4. (It is an easy
exercise to see that both diagrams represent the same tangle.)
D1 and D2 were obtained by cutting off two diagrams D′1 and D′2 of one of the

knots mentioned above, 1425034. Thus D′i is the closure of Di, i = 1, 2. D′1 can be
unknotted by two crossing changes, but D′2 cannot. (This was tested by switching
crossings and calculation of the Jones polynomial.)

Consider the knot
Kn = (T, T, . . . , T )︸ ︷︷ ︸

n copies

, 3,−3

in its diagrams
D̂1,n = (D1, . . . , D1)︸ ︷︷ ︸

n copies

, 3,−3

and
D̂2,n = (D2, . . . , D2)︸ ︷︷ ︸

n copies

, 3,−3.

Figure 4.
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(Here ‘,’ is the Conway tangle sum operator, and ‘±3’ denote the primitive Conway
tangles, see Figure 1.)
Kn is arborescent, and hence prime. This can also be shown by first showing

that T is prime by repeated application of the result of [Va], classifying primeness
of Conway sum of tangles, and then using the argument of [KL].

Now, the A and B splicings D2 both yield a collection of loops and an ∞-tangle
(rather than a 0-tangle). Switching the splicing of one of the crossings either joins
two of these loops, or it joins one loop to one of the components of the ∞-tangle.
From this one can see that the diagram D̂2,n is adequate, hence of minimal crossing
number, and that hence so is D̂1,n.
D̂1,n differs from #nD1 just by 2 crossing changes, and hence u(D̂1,n) ≤ 2n+ 2.

In fact, we show that D̂1,n realizes the unknotting number of Kn.
By 3-moves

and isotopies, T can be transformed into the 0-tangle with 2 additional loops. Thus
Kn can be transformed by 3-moves into 2n + 3 loops. As this number of loops is
known to be dimZ3 H1(DKn ,Z3) + 1, and by [We] u(Kn) ≥ dimZ3 H1(DKn ,Z3),
we obtain u(Kn) ≥ 2n+ 2 (see [St2]).

Contrarily, we must show u(D̂2,n)−2n→∞. We make a computer calculation of
what combinations of determinants and signatures σ occur for diagrams, obtained
by switching at most 2 crossings in D′2, in case the determinant is not divisible by
3. The list is as follows:

det 11 13 17 19 23 53

σ 2 −4 0 −2 −2 0

Now assume that u(D̂2,n) − 2n is bounded when n → ∞. Fix in each diagram
D̂2,n a minimal set Sn of crossings unknotting the diagram. Denote by Fn the
(unknot) diagram obtained from D̂2,n after switching the crossings in Sn. Let cn,i
be the number of crossings in Sn which lie in the i-th copy of D2 in D̂2,n, and let
En,i be the diagram obtained by closing up this i-th copy, with those cn,i crossings
switched.

We have that the (un)knot on Fn differs by at most two crossing changes from
the knot Ln represented by the diagram #n

i=1 En,i; thus this knot has unknotting
number ≤ 2 for all n.

Now, ∣∣∣ n∑
i=1

cn,i − u(D̂2,n)
∣∣∣ ≤ 6

follows directly from the definition of cn,i, so that∣∣∣ n∑
i=1

cn,i − 2n
∣∣∣

must be bounded. This means that

kn := # { 1 ≤ i ≤ n : cn,i < 3 }
grows unboundedly for n→∞.
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Consider the diagrams En,i with cn,i < 3, and number them En,i1 , . . . , En,ikn .
For any prime

p ∈ P := {3, 11, 13, 17, 19, 23, 53} ,
let ln,p be the number of occurrences of p as divisor of the determinant of the
(knots represented by the) kn diagrams En,i1 , . . . , En,ikn , with multiple divisors p
of a single determinant counted as only one occurrence. That is,

ln,p := # { 1 ≤ j ≤ kn : p | det(En,ij ) } .
Then ∑

p∈P
ln,p ≥ kn .

For fixed n, choose p ∈ P such that ln,p is maximal, and set pn = p and ln = ln,pn .
Then ln ≥ kn/7. But then by [We] we have

u(Ln) ≥ dimZpn H1(DLn ,Zpn) = ln ≥ kn/7 −→ ∞ ,

a contradiction to the above condition that u(Ln) ≤ 2.
This contradiction shows that {sn} := {u(D̂2,n) − 2n} has an unbounded sub-

sequence, but arguing with any subsequence of {sn} instead shows that {sn} is
itself unbounded. (Of course, one can also give an explicit estimate for u(D̂2,n), for
which one would more economically consider just pn ∈ {3 , 17, 53} and use σ.) �

Similar methods should be applicable to some of the other computer examples
given above. First one needs to find adequate diagrams D1,2 of the knot of different
unknotting numbers u1 < u2, such that D2 cannot be made by ≤ u1 crossing
changes into a diagram of a knot with σ = 0 and det = 1. Then one needs to
exhibit D1,2 to be closures of different diagrams of the same tangle T , whose A-
and B-states both connect its endpoints as in the tangle ∞ (i.e., not as in the
0-tangle), and then to argue why Kn is prime (e.g., by arborescence, or because
T is prime). In order to distinguish the examples, one should pick up diagrams
D1,2 of knots K with different values of VK(t)VK(1/t) and choose p odd so that the
values of VK

(
eπi/p

)
are also all of different norm on these diagrams. Then to build

D̂1,2, instead of the (3,−3)-tangle one uses the (p,−p)-tangle, as this preserves∣∣V (eπi/p) ∣∣.
The method of the last proof can be used to show an analogous statement for

the first inequality in (1).

Theorem 4.2. For any n ∈ N, there exist prime knots Kn with umax(Kn) =
umin(Kn) and umin(Kn)− u(Kn)→∞.

Proof. Since the argument is a modification of the one in the last proof, we just
indicate how to alter the details.

As T take the rational tangle of Bleiler’s knot, 29/6, in its two diagrams consid-
ered by Bleiler, D1 = 2 − 2 2 − 2 2 4 and D2 = 5 1 4. Take

Kn = (T, T, . . . , T )︸ ︷︷ ︸
n copies

, 3, 3

(i.e., replace the terminal ‘−3’ in the last proof by a ‘3’). Then Kn is alternating.
Its primeness follows by the same arguments as above, or more directly from [Me].
As before, D̂1,n (defined as above, but again with ‘−3’ replaced by ‘3’) shows
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that u(Kn) ≤ 2n + 3. By [MT], alternation implies also umin(Kn) = umax(Kn),
and all minimal diagrams of Kn have the same unknotting number. Therefore, to
estimate umin(Kn) (and to show that umin(Kn)− 2n→ ∞), it suffices to consider
a particular alternating diagram of Kn. Consider D̂2,n. Again use that all ways
of switching two crossings in D2 give tangles, which close to knots with nonunit
determinants. (All possibilities have been explicitly listed up by Bleiler in [Bl], but
we can argue more directly because all these tangles are rational and nontrivial.)
Then the argument in the previous proof gives the same contradiction under the
assumption that umin(Kn)− 2n is bounded. �

5. Related results and questions

The method applied above also yields the following statements.

Theorem 5.1. For any n ≥ 11 there is a knot of n crossings with unit Alexander
polynomial, except possibly for n ∈ {17, 18, 19, 20, 21, 23}.

Theorem 5.2. For any n ≥ 10 there is a fibered knot of n crossings with unit
determinant, except possibly for n ∈ {17, 18, 19, 21, 23}.

(The exceptions for n in both theorems are unlikely, albeit I cannot definitely
exclude them.)

Proof. For both assertions one takes connected sums of adequate (Theorem 5.1) or
homogeneous braid knots of Murasugi type (Theorem 5.2). For n = 11 in Theorem
5.2 we have no such knots, but the two determinant one knots 11416 and 11483 are
fibered (and of genus two), which can be shown by Gabai’s method [Ga]. (The
other two knots with unit determinant are those with unit Alexander polynomial,
which are clearly not fibered.) �

Again, with more effort one can try to construct prime knots. We present the
construction for Theorem 5.1 (I do not know how to do this for Theorem 5.2), in a
slightly weaker version, again using more specific examples.

Theorem 5.3. For almost all numbers c ∈ N there is a prime knot K with crossing
number c and unit Alexander polynomial.

Before we start with the proof, we make two definitions.

Definition 5.1. From the 2 splicings of a crossing in a knot diagram, we call the
one giving a two component link the skein splicing and the other one, giving a knot,
the Kauffman splicing.

Definition 5.2. For a tangle

we call
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the numerator closure of T and

the denominator closure of T .

Proof of Theorem 5.3. As before, we have to modify the connected sums into a
prime knot preserving the Alexander polynomial. How to do this was shown by
Bleiler [Bl2], but we need to refine his method so as to keep track of adequacy.

Consider a knot diagram of the type

We can produce such a picture (with appropriate tangle K) each time we are given a
knot diagram D and a distinguished crossing p. In this case we write K = K(D, p)
to indicate from which diagram D and crossing p we obtained K. (The choice
of sign of p here is irrelevant; the argument goes through also with the mirrored
diagrams.) Note that K has the homotopy type

Define T to be the tangle

(3)

We again write T (D, p) to indicate from which D and p the tangle T originates, if
needed. By T ′ we denote either T with the orientation of both components reversed
or T flipped by 180◦ around the horizontal axis of the projection plane. (These two
operations give in general different results, but our arguments apply to both in the
same way.)
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We will consider a diagram of the type

(4)

and would like to choose the tangles Ti and K so that (4) becomes a minimal
crossing number diagram of a prime knot with ∆ = 1.

First we choose the Ti so that they are prime and their denominator closure is
a ∆ = 1 knot. By the proof of Lemma 2.1 of [Bl2], to ensure primeness it suffices
that both strands of Ti be unknotted and the numerator closure of T not be a
rational knot. If Ti was obtained in the above way from a knot diagram Di with
a distinguished crossing pi, then these conditions mean that the skein splicing of
pi in Di gives a two-component link with both components unknotted, and the
Kauffman splicing of pi gives a nonrational knot. The same conditions also ensure
the primeness of K(Di, pi).

By an argument analogous to that of Bleiler with the “KT-grabber” (looking at
the Alexander polynomials of both closures of the tangle) we see that a replacement

preserves ∆, if both

have ∆ = 1. Thus to find an appropriate tangle K as K(D, p) for proper D and p
we need, additionally to the above two primeness conditions and the condition that
∆(D) = 1, the condition that switching p in D preserves ∆ = 1. T is then defined
as in (3).

Consider the following two diagrams with distinguished crossings, found with
partial computer help and shown in Figure 5.

Both diagrams depict minimal crossing number diagrams of adequate ∆ = 1
knots. In both cases the skein splicing of the distinguished crossing gives a link of
2 unknots and the Kauffman splicing gives a nonrational (in fact, nonalternating)
knot. (On the left it is 138775, which also has ∆ = 1, and on the right 944.) More-
over, switching p1 in D1 gives the knot 11401 on the right, so ∆ = 1 is preserved.
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Figure 5.

Thus for any choice of Ti ∈ {T̂1, T̂2} with T̂j = T (Dj, pj), j = 1, 2, and K =
K(D1, p1) we have that (4) is a diagram of a ∆ = 1 knot, which is prime by [KL].
It remains to prove that the diagram is adequate, and hence of minimal crossing
number.

First we note that the T̂i are adequate, i.e., in their A- and B-state any switch of
the state of a crossing reduces the number of free loops or switches the connection
of the four tangle ends between the 0- and ∞-tangle.

Moreover, in the A- and B-states of both T̂1 and T̂2 the four endpoints are
connected differently (i.e., once by a 0- and once by an ∞-tangle). Without loss of
generality, obvert (mirror) T̂i so that the B-states have an ∞-tangle. (This spoils
neither primeness, nor ∆ = 1.)

Now we use the fact that

(5)

is an adequate diagram.
Consider the B-state of (4) and choose a crossing q whose splicing is switched

(from B to A).
Assume first q belongs to one of the Ti (or T ′i ). Since Ti is adequate, switching

q’s splicing either joins (a) two loops in the B-state of Ti, or (b) one loop with one
of the two arcs of the 0-tangle (remaining from Ti in its B-state), or (c) the two
arcs of this 0-tangle (thereby giving an∞-tangle). In cases (a) and (b), the number
of components is clearly reduced, and this also happens in case (c), because this
corresponds to switching the state of p in the B-state of the diagram (5), which is
adequate.

If q belongs to K, then switching q’s state reduces the number of loops again
because of the adequacy of (5), and because the B-state of the Ti’s has connected
the endpoints of K in the same way as the B-splicing of p in (5) would have done.

The same argument applies for the A-splicings. Thus (4) is adequate for any
choice of Ti ∈ {T̂1, T̂2} and any n ∈ N. To show that almost all crossing numbers
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can be realized by (4) this way becomes equivalent to showing that all sufficiently
large numbers can be written as the sum of an odd number of summands 11 and
14. This is easy to see. (For example, represent x− 154 for x large enough as sum
of summands 11 and 14 and add a representation of 154 by 11 copies of 14 or 14
copies of 11 to get the total number of summands to be odd.) �

We finally conclude by a question.

Question 5.1. Are there (sequences of) knots for which
1) both inequalities in (1) are simultaneously strict, or where stronger
2) the difference of the two sides of both inequalities grows simultaneously

beyond any extent, or
3) for some of the inequalities one side is bounded, while the other grows

unboundedly?
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[Va] Quach thi Câm Vân, On a theorem on partially summing tangles by Lickorish, Math.
Proc. Cambridge Philos. Soc. 93(1) (1983), 63–66. MR 84c:57003

[We] H. Wendt, Die Gordische Auflösung von Knoten, Math. Z. 42 (1937), 680–696.

Department of Mathematics, University of Toronto, Ontario Canada M5S 3G3

E-mail address: stoimeno@math.toronto.edu

URL: http://www.math.toronto.edu/stoimeno/

http://www.ams.org/mathscinet-getitem?mr=88f:57006
http://www.ams.org/mathscinet-getitem?mr=89b:57003
http://www.ams.org/mathscinet-getitem?mr=80k:57011
http://www.ams.org/mathscinet-getitem?mr=96a:57073
http://www.ams.org/mathscinet-getitem?mr=87a:57012
http://www.ams.org/mathscinet-getitem?mr=88b:57012
http://www.ams.org/mathscinet-getitem?mr=86b:57004
http://www.ams.org/mathscinet-getitem?mr=92b:57017
http://www.ams.org/mathscinet-getitem?mr=87c:57006
http://www.ams.org/mathscinet-getitem?mr=88f:57009
http://www.ams.org/mathscinet-getitem?mr=88m:57010
http://www.ams.org/mathscinet-getitem?mr=91j:57009
http://www.ams.org/mathscinet-getitem?mr=90f:57008
http://www.ams.org/mathscinet-getitem?mr=85h:57008
http://www.ams.org/mathscinet-getitem?mr=58:24236
http://www.ams.org/mathscinet-getitem?mr=80e:57004
http://www.ams.org/mathscinet-getitem?mr=2002c:57011
http://www.ams.org/mathscinet-getitem?mr=88h:57007
http://www.ams.org/mathscinet-getitem?mr=90c:57005
http://www.ams.org/mathscinet-getitem?mr=89g:57009
http://www.ams.org/mathscinet-getitem?mr=99k:57031
http://www.ams.org/mathscinet-getitem?mr=2000e:57016
http://www.ams.org/mathscinet-getitem?mr=84c:57003

	1. Introduction
	Conventions and definitions.

	2. Examples of adequate knots
	3. Homogeneous braid examples
	4. Prime examples
	5. Related results and questions
	Acknowledgments
	References

