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A NONCONFORMING COMBINATION
OF THE FINITE ELEMENT AND VOLUME METHODS

WITH AN ANISOTROPIC MESH REFINEMENT
FOR A SINGULARLY PERTURBED

CONVECTION-DIFFUSION EQUATION

SONG WANG AND ZI-CAI LI

Abstract. In this paper we formulate and analyze a discretization method for
a 2D linear singularly perturbed convection-diffusion problem with a singular

perturbation parameter ε. The method is based on a nonconforming combi-
nation of the conventional Galerkin piecewise linear triangular finite element
method and an exponentially fitted finite volume method, and on a mixture
of triangular and rectangular elements. It is shown that the method is stable
with respect to a semi-discrete energy norm and the approximation error in

the semi-discrete energy norm is bounded by Ch

√∣∣∣∣ ln εlnh

∣∣∣∣ with C independent

of the mesh parameter h, the diffusion coefficient ε and the exact solution of
the problem.

1. Introduction

Many phenomena in engineering, physics and finance are governed by a convec-
tion-diffusion equation with a diffusion coefficient 1 > ε > 0 which is much smaller
than the average magnitude of the convection coefficient function. These equations
are convection-dominated or singularly perturbed, and solutions to them normally
have sharp boundary or interior layers so that applications of conventional numer-
ical methods to these problems often yield solutions with nonphysical, spurious os-
cillations. To overcome this stability problem, many methods have been proposed.
These include upwind methods (cf., for example, [5, 11, 12, 4, 2]), streamline dif-
fusion methods (cf., for example, [13]) and exponentially fitted methods (cf., for
example, [14, 15, 18, 23, 24]). However, no method guarantees, in general, that a
numerical solution converges to the exact one uniformly in ε on an unstructured tri-
angular partition. Several uniformly convergent schemes (cf., for example, [18, 22])
have been proposed and analyzed based on the Shishkin mesh technique (cf. [16])
and on piecewise uniform, structured partitions. Thus, these schemes can hardly be
used for problems with nonrectangular geometries. Work on a least-squares finite
element using a Gartland-type mesh is reported in [21]. Recently, Feistauer et al.
([7, 8, 9]) proposed and analyzed some semi-implicit and explicit schemes based on

Received by the editor June 7, 2001 and, in revised form, December 28, 2001.
2000 Mathematics Subject Classification. Primary 65N30; Secondary 76M10.

c©2003 American Mathematical Society

1689



1690 SONG WANG AND ZI-CAI LI

combinations of the finite element and finite volume methods for nonlinear time-
dependent convection-diffusion problems. These methods have been successfully
used in solving practical problems. A combination of the finite element and volume
methods for a linear, stationary singularly perturbed convection-diffusion problem
was also proposed and analyzed in [19]. All these combined methods are based on
the idea that the convection and diffusion terms are discretized by a finite volume
method and a finite element method, respectively. Although these methods are
useful in practice, theoretically they do not guarantee that the errors in the ap-
proximate solutions do not deteriorate significantly as the diffusion coefficient goes
to zero.

Intuitively, a solution to a singularly perturbed problem is smooth outside the
boundary layers, as it is almost equal to the solution of the reduced problem (with
ε = 0). Therefore, any classic method should be able to resolve this part of the
solution satisfactorily. The solution shows sharp layers in a (small) subregion near
part of the boundary of the solution domain, and so a sophisticated method, such as
anisotropic mesh refinement, the Shishkin mesh technique, the exponential fitting
technique, or a combination of these, needs to be used so as to accurately resolve
that part of the solution. This suggests that a combination of classic and other
methods can solve a singularly perturbed problem efficiently.

In this paper, we investigate a combination of the conventional piecewise linear
triangular finite element method and the exponentially fitted finite element (or vol-
ume) method (cf. [14, 15]) with anisotropic meshes for a linear, time-dependent
singularly perturbed convection-diffusion problem. In this approach, a solution
region is divided into two subregions, of which one does not contain layers and
the other does. The equation is then discretized by conventional piecewise linear
finite elements on a regular triangulation of the first subregion and by exponen-
tially fitted finite elements on an anisotropic mesh for the second subregion. These
two discretizations are then coupled to each other by imposing continuity at the
mesh nodes along the intersection of the boundaries of the two subregions. Since
the finite element basis functions may not be continuous across the boundaries be-
tween the two subregions, the resulting finite element space is nonconforming. The
stability of the method is proved, and an O(h

√
| ln ε/ lnh|) upper bound for the

error in the approximate solution in a semi-discrete energy norm is established.
It is shown that the error bound is almost independent of ε. We comment that
our approach is completely different from the coupled method in [19]. The latter
is based on the discretization of the diffusion term by the finite element method
and the convection term by a finite volume method. Also, [19] does not take into
consideration the uniformity in ε, and thus the resulting error estimate depends
strongly on ε. Although the problem considered in this paper is linear, the idea can
be used for solving nonlinear convection-diffusion problems. This will be one of our
future research topics. Theoretically the method needs a priori knowledge of the
layer locations. When this information is not available a priori, a mesh adaption
technique can be used in conjunction with the method so that layers’ locations can
be identified approximately from the numerical solution of the previous step.

The rest of the paper is organized as follows.
The continuous problem and some preliminaries are described in the next section.

The finite element formulation is discussed in Section 3. This formulation is a
combination of those of the conventional Galerkin piecewise linear finite element
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and the Petrov-Galerkin exponentially fitted finite element proposed in [14]. The
finite element method is globally nonconforming. In Section 4, we will first show
that the finite element is uniformly stable by proving that the corresponding bilinear
form is coercive. Then, we will show that the approximation error in a semi-discrete
energy norm is bounded by O(h) almost uniformly in ε.

2. Preliminaries

Consider stationary, linear, convection-diffusion problems of the form

−∇ · fu +Gu = F in Ω := (0, 1)2,(1)

fu = ε∇u− au,(2)

u|∂Ω = 0,(3)

where ∂Ω denotes the boundary of Ω, ε > 0 is a positive parameter, a = (a1, a2) is
a known vector-valued function and F is a given function.

In what follows Lp(S) denotes the space of p-integrable functions on an open and
measurable set S with norm ‖ ·‖0,p,S, and Wm,p(Ω) is the usual Sobolev space with
norm ‖ ·‖m,p,S and the kth order seminorm | · |k,p,S for any 1 ≤ p <∞, nonnegative
integer m and 0 ≤ k ≤ m. Obviously W 0,p(S) = Lp(S). When S = Ω we omit
the subscript in the above notation. Furthermore, we let Hm(Ω) := Wm,2(Ω),
|| · ||m := || · ||m,2,Ω and | · |k := | · |k,2,Ω. The inner product on L2(Ω) or on
L2(Ω) := (L2(Ω))2 is denoted by (·, ·). We put H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0},
and the set of functions which together with their derivatives of order ≤ m are
continuous on Ω (or Ω̄) is denoted by Cm(Ω) (or Cm(Ω̄)).

For the coefficient functions we assume that a ∈ (C1(Ω̄))2, G ∈ C(Ω) ∩H1(Ω)
and F ∈ L∞(Ω). We also assume that a satisfies

(4)
1
2
∇ · a+G ≥ α > 0 in Ω

for some positive number α. This condition has been used in many papers and
books on uniform convergence analysis, such as [2, 17, 18, 21]. The existence and
uniqueness of the solutions to both the continuous and the finite element problem
do not need this condition, but it will be used in the proof of the error estimates in
Section 5. For simplicity, we assume that each of the components of a is bounded
below by a positive constant, i.e.,

(5) a1 ≥ α1 > 0, a2 ≥ α2 > 0 in Ω.

In this case, the solution to (1)–(3) has two exponential boundary layers of width
O(ε) at x = 1 and y = 1. The variational problem corresponding to (1), (2) and
(3) is

Problem 2.1. Find u ∈ H1
0 (Ω) such that for all v ∈ H1

0 (Ω)

(6) A(u, v) = (F, v),

where A(·, ·) is a bilinear form on (H1
0 (Ω))2 defined by

(7) A(u, v) = (ε∇u− au,∇v).

Let || · ||ε be a functional on H1
0 (Ω) defined by ||v||ε =

(
A(v, v))1/2. Then it is

easy to show that (cf., for example, [14])

||v||2ε = (ε∇v,∇v) + ((
1
2
∇ · a+G)v, v).



1692 SONG WANG AND ZI-CAI LI

  Ω

Ω

1

2
(2)

 Ω2
(1)

Ω 2
(3)

δ

δ

1

2

Γ

Γ

 1

2

Figure 1. Subdomains Ω1 and Ω2 = Ω(1)
2 ∪Ω(2)

2 ∪ Ω(3)
2 , Γ = Γ1 ∪ Γ2.

Thus, || · ||ε is a norm on H1
0 (Ω), because 1

2∇ · a+G ≥ 0 by (4) and (∇u,∇v) is a
norm on H1

0 (Ω) by the well-known Poincaré-Friedrichs inequality. Now, from the
definition of the norm we have

(8) A(u, u) = ||u||2ε, ∀u ∈ H1
0 (Ω).

This implies that A(·, ·) is coercive on H1
0 (Ω), and thus, by the well-known Lax-

Milgram lemma, Problem 2.1 has a unique solution in H1
0 (Ω).

Because of (5), the solution to Problem 2.1 has two boundary layers of width
O(ε) at x = 1 and y = 1 respectively. Thus we divide the solution region Ω into
two parts Ω1 and Ω2, given respectively by

Ω1 = (0, 1− δ1)× (0, 1− δ2), Ω2 = (1− δ1, 1)× (0, 1)∪ (0, 1− δ1)× (1− δ2, 1),

with δ1, δ2 ∈ (0, 1) (cf. Figure 1). Obviously Ω̄1 ∪ Ω̄2 = Ω̄. The region Ω2 consists
of the three subregions

Ω(1)
2 = (1− δ1, 1)× (0, 1− δ2),

Ω(2)
2 = (0, 1− δ1)× (1− δ2, 1),

Ω(3)
2 = (1− δ1, 1)× (1− δ2, 1).

The choice of the transition parameters δ1 and δ2 is rather arbitrary, but it is
required that Ω2 contains the boundary layers and δ1, δ2 = O(ε). One choice is

(9) δ1 =
β

α1
ε ln(1/ε) and δ2 =

β

α2
ε ln(1/ε),

where β ≥ 1 is a positive constant (cf., for example, [18]). We let Γ1 = Ω̄1 ∩ Ω̄(1)
2

and Γ2 = Ω̄1 ∩ Ω̄(2)
2 , and put Γ = Γ1 ∪ Γ2. In the rest of this paper Γ is sometimes

regarded as an oriented curve. If Γ is oriented counterclockwise, then it is denoted
as Γ+. Otherwise, we use Γ− to denote it.

Now we need to make the following assumption on the solution to Problem 2.1:
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Assumption 2.2. The solution u to Problem 2.1 has the representation

(10) u = U1 + U2 + U3 + U4,

where U1 satisfies

(11) ||U1||k,∞,Ω ≤ C for k = 0, 1, 2,

and U2, U3 and U4 satisfy∣∣∣∣∂i+jU2

∂xi∂yj

∣∣∣∣ ≤ Cε−i exp
(
−α1(1− x)

ε

)
,(12) ∣∣∣∣∂i+jU3

∂xi∂yj

∣∣∣∣ ≤ Cε−j exp
(
−α2(1− y)

ε

)
,(13) ∣∣∣∣∂i+jU4

∂xi∂yj

∣∣∣∣ ≤ Cε−(i+j) exp
(
−α1(1− x)

ε

)
exp

(
−α2(1 − y)

ε

)
,(14)

for 0 ≤ i+ j ≤ 2 and some positive constant C.

This assumption shows that the solution u is decomposed into 4 parts, Ui (i =
1, 2, 3, 4). The part U1 is globally smooth and uniformly bounded, while U2, U3 and
U4 contain layers in Ω(1)

2 ,Ω(2)
2 and Ω(3)

2 respectively. Sufficient conditions for the
existence of this decomposition have been discussed in various papers and books
such as [6], [16] and [22], but necessary and sufficient conditions are unknown. The
following theorem shows that u and all its first and second partial derivatives are
uniformly bounded in Ω1.

Theorem 2.3. If β ≥ 3/2, then the solution u to Problem 2.1 satisfies

(15) ||u||i,Ω1 ≤ C, i = 0, 1, 2,

for some positive constants C, independent of u. Furthermore, if β ≥ 2, then

(16) ||u||i,∞,Ω1 ≤ C, i = 0, 1, 2.

Proof. Let C be a generic positive constant independent of u and ε. We first
prove (15). We only show that ||u||2,Ω1 ≤ C. The other cases are similar to this
one. From (10) we see that u is decomposed into the sum of Ui (i = 1, 2, 3, 4).
Thus it suffices to show that ||Ui||2,Ω1 ≤ C for i = 1, 2, 3, 4. We now prove that
||∂2U2/∂x

2||0,Ω1 ≤ C.
From the definition of Ω1 and (12) we have

||∂2U2/∂x
2||20,Ω1

≤ Cε−4

∫
Ω1

exp
(
−2α1

ε
(1− x)

)
dx

=
C(1− δ2)

ε4
e−2α1/ε

e2α1x/ε

2α1/ε

∣∣∣1−δ1
0

=
C(1− δ2)

2α1ε3

(
e−2α1δ1/ε − e−2α1/ε

)
= C

1− δ2

2α1ε3

(
e−2β ln 1

ε − e−2α1/ε
)

=
C(1− δ2)

2α1

(
ε2β−3 − ε−3e−2α1/ε

)
.
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Note that ε−3e−2α1/ε is uniformly bounded above for all 0 < ε ≤ O(1), since
α1 > 0. Thus if β ≥ 3/2, we have from the above inequality

||∂2U2/∂x
2||20,Ω1

≤ C.
The proof of boundedness for the first and second seminorms of all other terms are
analogous. Therefore we have shown (15).

We now show (16). Again we take ∂2U2/∂x
2 for example. Proofs for other terms

are similar. For any fixed ε, the function in the right side of (12) is increasing in x.
Thus we have

||∂2U2/∂x
2||0,∞,Ω1 ≤ Cε−2e−α1δ1/ε = Cεβ−2.

The last term in the above is uniformly bounded for all β ≥ 2. This completes the
proof for (16). �

3. The finite element formulation

To formulate the finite element method, we first define a mesh for the solution
region Ω which is a combination of regular triangles in Ω1 and rectangles in Ω2. Let
T

(1)
h denote a triangular mesh on Ω1 with each triangle t having diameter ht ≤ h.

For all 0 < h < dim(Ω1), {T (1)
h } forms a family of triangular meshes on Ω1. For

any t ∈ T (1)
h , let ρt denote the diameter of the incircle of t. Then, we assume that

this family satisfies

max
t∈T (1)

h

ht
ρh
≤ γ ∀h ∈ (0, dim(Ω1))

for some positive constant γ. In this case, {T (1)
h } is said to be a regular family of

triangular meshes. Now, the set of vertices of T (1)
h not on ∂Ω is denoted {xi}N1

1 . We
assume that the number of vertices on Γ not on ∂Ω is NΓ. Note that Ω2 contains two
thin overlapped stripes Ω(1)

2 ∪Ω(3)
2 and Ω(2)

2 ∪Ω(3)
2 with widths δ1 and δ2 respectively.

Thus we divide these two strips into rectangles so that the resulting mesh is uniform
along the x-axis with M1 subintervals in the former subregion and along the y-axis
with M2 subintervals in the latter (cf. Figure 2). We also require that the mesh
points on Γ match those from T

(1)
h . This mesh is denoted by T (2)

h . Without loss of
generality, we assume that the vertices in T (2)

h not on ∂Ω are numbered from N1 +1
to N1 + N2. The set of edges of T (2)

h not on ∂Ω is denoted by E(2)
h . Obviously all

rectangles in Ω(1)
2 and Ω(2)

2 have lengths O(h) and widths either δ1/M1 or δ2/M2,
and rectangles in Ω(3)

2 have length δ1/M1 and width δ2/M2. The meshes T (1)
h and

T
(2)
h form a conforming mesh on Ω, and we denote it by Th. A typical case is

depicted in Figure 2.
Along with T

(2)
h , we define two meshes dual to it. The first dual mesh, denoted

by D
(2)
h , is the Dirichlet tessellation associated with the mesh nodes in T

(2)
h , i.e.,

the element di ∈ D(2)
h associated with the node xi of T (2)

h is given by

(17) di = {x ∈ Ω2 : |x− xi| < |x− xj |, i 6= j}

for any other node xj of the mesh T
(2)
h . For each edge in T

(2)
h not on ∂Ω, we

construct a quadrilateral element by connecting the two end-points of the edge and
the mid-points of the rectangles (or rectangle, if the edge is on Γ) sharing the edge
(see Figure 2). All these quadrilaterals form the second dual mesh, denoted by
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B
(2)
h . An example of these nested meshes is depicted in Figure 3. For a detailed

description of the constructions of the dual meshes, we refer to [14], Section 3.
Using the meshes defined above, we now construct finite element trial and test

spaces. Let U (1)
h denote the conventional piecewise linear finite element space of

dimension N1 constructed on the partition T (1)
h . In our formulation below, we will

use U (1)
h as both trial and test spaces in Ω1. Corresponding to T (2)

h , we construct a
test space and a trial space in the same way as in Section 3 of [14]. The test space
is chosen to be V (2)

h = span{ξi}, where ξi is piecewise constant, given by

ξi =
{

1 on di,
0 otherwise.

To construct the trial space U (2)
h , we follow the discussion in [14] based on the idea

of exponential fitting proposed independently in [1] and [20]. For each ei,j ∈ E(2)
h

connecting the two neighbouring nodes xi and xj , we define an exponential function
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φi,j on ei,j by
d

dei,j
(ε
dφi,j
dei,j

− āi,jφi,j) = 0,(18)

φi,j(xi) = 1, φi,j(xj) = 0,

where ei,j denotes the unit vector from xi to xj and āi,j is a constant approxima-
tion to a · ei,j on ei,j such that the mapping a · ei,j 7→ āi,j from C(ei,j) 7→ P0(ei,j)
preserves constants (e.g., āi,j = (a(xi) +a(xj)) · ei,j/2), where C(ei,j) and P0(ei,j)
denote respectively the spaces of all continuous functions and all 0th order poly-
nomials on ei,j . The above linear, constant coefficient two-point boundary value
problem can be solved exactly, yielding the local 1D basis function φi,j on the edge
ei,j. We then extend φi,j to bi,j by defining it to be constant along perpendiculars
to ei,j . Using this exponential function, we define a global basis function for U (2)

h

on Ω as follows:

φi =
{
φi,j on bi,j if j ∈ Ii,
0 otherwise,

where bi,j denotes the element of Bh containing ei,j and

(19) Ii = {j : ei,j ∈ Eh}
denotes the index set of all neighbour nodes of xi. The support of φi is star-shaped.
We put U (2)

h = span{φi}N
′

1 . Obviously we have U (2)
h ⊂ L2(Ω), and thus the trial

space is nonconforming. This finite element space has the property that for any
sufficiently smooth function u, the projection of the flux of the U (2)

h -interpolant uI
of u on ei,j satisfies

(20) fi,j := ε
duI
dei,j

− āi,juI =
ε

|ei,j |
(
B(

āi,j |ei,j |
ε

)uj −B(− āi,j |ei,j |
ε

)ui
)

on the edge ei,j , where B denotes the Bernoulli function defined by

(21) B(x) =
{
x/(ex − 1), x 6= 0,
1, x = 1.

Also, the approximation error in fi,j satisfies

(22) ||fu · ei,j − fi,j ||∞,ei,j ≤ C
(
|fu|1,∞,ei,j + |a|1,∞,ei,j ||u||∞,ei,j

)
,

where C is a positive constant independent of h, u and ε. For a detailed discussion,
we refer to [14].

Now we choose the global trial and test spaces to be Uh = U
(1)
h ⊕ U

(2)
h and

Vh = U
(1)
h ⊕ V (2)

h respectively. Obviously both Uh and Vh are nonconforming, as
they are not continuous across Γ. To define the discrete problem using Uh and
Vh, it is convenient to introduce some notation. Let li,j = ∂di ∩ ∂dj denote the
intersection of the boundaries of di and dj (cf. Figure 3). Clearly |li,j | = 2|bi,j |

|ei,j | if
j ∈ Ii, and |li,j | = 0 otherwise. Corresponding to each li,j , we introduce a unit
vector li,j directed so that arg(li,j) = arg(ei,j) + π/2. For convenience we let â be
the approximation of a defined on Ω̄2 such that, for all bi,j ∈ Bh,

(23) â|bi,j = āi,jei,j + ā⊥i,jli,j ,

where āi,j is the constant used in (18) and ā⊥i,j = supx∈ei,j a(x) ·li,j . Obviously, â is
a piecewise constant approximation to a on Ω2. Note that the component ā⊥i,j will
make a contribution to the finite element formulation only on the integrals along
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Γ− that appear in the bilinear form a2(·, ·) defined below. This contribution will
be used in the proof of coercivity of the bilinear form in the next section. Before
defining the finite element problem, we first introduce the mass lumping operator
P : C(Ω̄2) 7→ V

(2)
h such that

(24) P (w)(x) =
N2∑

i=N1+1

w(xi)ξi(x), x ∈ Ω̄2,

for all w ∈ C(Ω̄2). When restricted to U (2)
h , it is easy to show that the mapping P

is one-to-one from U
(2)
h to V (2)

h . Using this mapping, we define the following finite
element problem:

Problem 3.1. Find uh ∈ Uh such that

(25) a(uh, vh) := a1(uh, vh) + a2(uh, vh) = (F, vh), ∀vh ∈ Vh,
where a1(·, ·) and a2(·, ·) are bilinear forms on Ω1 and Ω2 defined by

a1(uh, vh) =
∫

Ω1

(ε∇uh − auh) · ∇vhdx + (Guh, vh)Ω1 ,(26)

a2(uh, vh) = −
∑

d∈D(2)
h

∫
∂d\∂Ω2

(ε∇uh − âuh) · nvh|dds+ (P (Guh), vh)Ω2 .(27)

Here vh|d denotes the restriction of vh to d.

It is clear that the bilinear form a(·, ·) is a combination of two terms. The former
is the standard bilinear form on Ω1, and the latter is a nonstandard Petrov-Galerkin
form on Ω2 originally defined in [14]. It has been shown in [14] that, using the mass
lumping operator P defined in (24), the second bilinear form a2(uh, vh) can be
transformed into a Bubnov-Galerkin formulation, yielding the following Bubnov-
Galerkin problem corresponding to Problem 3.1:

Problem 3.2. Find uh ∈ Uh such that

(28) b(uh, vh) = (F, vh)Ω1 + (F, P (vh))Ω2 , ∀vh ∈ Uh,
where (·, ·)Ωk denotes the inner product on L2(Ωk) for k = 1, 2 and b(·, ·) is a
bilinear form on Uh × Uh defined by

(29) b(uh, vh) := a1(uh, vh) + a2(uh, P (vh)).

4. Coercivity of the bilinear form b(·, ·)

In this section we show that the bilinear form on the right side of (29) is coercive.
This implies that Problem 3.2 is uniquely solvable and the finite element formulation
is stable, irrespectively of ε. The coercivity result is also the foundation for the proof
of convergence of the solutions to Problem 3.2. We now consider the two parts of
a(·, ·) separately.

Before further discussion, we make the following assumption:

Assumption 4.1. Let the mesh T (2)
h be sufficiently fine such that the inequality

(30)
1
2

∫
∂di

â · nds+G(xi)|di| ≥ α0 > 0
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holds for all di ∈ D(2)
h , where â is the approximation of a defined in (23) and xi

denotes the mesh node contained in di.

We comment that (30) is essentially a discrete analogue of (4). In fact, it can be
obtained by integrating (4) over di ∈ D(2)

h , integrating the first term by parts, and
then approximating a and G by â and G(xi). Since the errors in the quadrature
approximations are of order O(h) and α in (4) is a positive constant, (30) will
always be satisfied when h is sufficiently small.

Furthermore, since all the mesh lines in T
(2)
h are parallel to one of the axes and

a satisfies (5), it is obvious that

(31) min
ei,j∈E(2)

h

|â · ei,j | = min
ei,j∈E(2)

h

|ai,j | ≥ min{α1, α2}.

Note that, when restricted to Ω1, the test and trial spaces are equal to each
other, and thus from (26) we have

a1(u, u) =
∫

Ω1

(ε∇u− au) · ∇uds+
∫

Ω1

Gu2dx

= ε||∇u||20,Ω1
−
∫

Ω1

au · ∇uds+ (Gu, u)Ω1

(32)

for any u ∈ Uh. Observing that u∇u = 1
2∇(u2), a direct application of the Gauss-

Green-Stokes formula then yields

−1
2

∫
Ω1

a · ∇(u2)dx = −1
2

∫
∂Ω1

u2a · nds+
1
2
u2∇ · adx.

Substituting the above into (32), we obtain, using (4),

a1(u, u) = ε||∇u||20,Ω1
+

1
2

(∇ · au, u)Ω1 −
1
2

∫
∂Ω1

u2a · nds

= ε||∇u||20,Ω1
+ ((

1
2
∇ · a+G)u, u)Ω1 −

1
2

∫
Γ+
u2a · nds

≥ ε||∇u||20,Ω1
+ α||u||20,Ω1

− 1
2

∫
Γ+
u2a · nds,

(33)

since u = 0 on ∂Ω1 \ Γ+.
Now, for any u ∈ Uh it is shown in Section 4 of [14] that

a2(u, P (u)) = −
∑

di∈D(2)
h

∫
∂di\∂ΩN

(ε∇uh − âuh) · nP (uh)ds+
∑

di∈D(2)
h

G(xi)u2
i |di|

=
∑

ei,j∈E(2)
h

σi,jB(ρi,j)(1 + eρi,j )(uj − ui)2 |bi,j |
|ei,j |

+
∑

ei,j∈E(2)
h

āi,j
2

(u2
i − u2

j)|li,j |+
∑

di∈D(2)
h

G(xi)u2
i |di|,

(34)

where li,j = ∂di ∩ ∂dj , σi,j = ε/|ei,j |, ρi,j = āi,j/σi,j and B(·) is the Bernoulli
function defined in (21). Transforming from a summation over the edges to a
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summation over the nodes of T (2)
h , the last two terms in the right-hand side of (34)

can be written as∑
ei,j∈E(2)

h

āi,j
2

(u2
i − u2

j)|li,j |+
∑

di∈D(2)
h

G(xi)u2
i |di|

=
1
2

∑
di∈D(2)

h

u2
i

∑
j∈Ii

āi,j |li,j |+
∑

di∈D(2)
h

G(xi)u2
i |di|

=
1
2

∑
di∈D(2)

h

u2
i

∫
∂di\Γ

â · nds+
∑

di∈D(2)
h

G(xi)u2
i |di|

=
∑

di∈D(2)
h

u2
i

(
1
2

∫
∂di

â · nds+G(xi)|di|
)

− 1
2

∑
di∈D(2)

h

u2
i

∫
∂di∩Γ−

â · nds

≥ α0

∑
di∈D(2)

h

u2
i −

1
2

∑
di∈D(2)

h

u2
i

∫
∂di∩Γ−

â · nds,

(35)

because of (30).
Using the definition of the Bernoulli function B(·) in (21), we have

σi,jB(ρi,j)(1 + eρi,j ) = āi,j
eρi,j + 1
eρi,j − 1

≥ |āi,j |.

Using this inequality, (35), and (34), we obtain

a2(u, P (u)) ≥ C

 ∑
ei,j∈E(2)

h

|ei,j |
(
uj − ui
|ei,j |

)2

|bi,j |+
∑

di∈D(2)
h

u2
i


− 1

2

∑
di∈D(2)

h

u2
i

∫
∂di∩Γ−

a · nds.

(36)

Let || · || be a functional on the finite element space Uh defined by

(37) ||v|| =
(
||v||2ε,Ω1

+ ||v||2h,Ω2

)1/2
,

where

||v||2ε,Ω1
= ε||∇v||20,Ω1

+ ||v||20,Ω1
,(38)

||v||2h,Ω2
=

∑
ei,j∈E(2)

h

|ei,j |
(
vj − vi
|ei,j|

)2

|bi,j |+
∑

di∈D(2)
h

v2
i .(39)

It is easy to see that || · || is a semi-discrete energy norm on Uh consisting of a
continuous H1-norm on Ω1 and a discrete H1-norm on Ω2. Using this norm, we
have the following theorem:

Theorem 4.2. Let Assumption 4.1 be fulfilled. Then, for all u ∈ Uh,

(40) b(u, u) ≥ C||u||2,
where C denotes a generic positive constant independent of ε, h and u.
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Proof. For any u ∈ Uh, using (33) and (36) we have

b(u, u) = a1(u, u) + a2(u, P (u))

≥ ε||∇u||20,Ω1
+ ||u||20,Ω1

− 1
2

∫
Γ+
u2a · nds

+C

 ∑
ei,j∈E(2)

h

|ei,j|
(
uj − ui
|ei,j|

)2

|bi,j |+
∑

di∈D(2)
h

u2
i


−1

2

∑
di∈D(2)

h

u2
i

∫
∂di∩Γ−

â · nds

≥ C||u||2 − 1
2

∫
Γ+
u2a · nds− 1

2

∑
di∈D(2)

h

u2
i

∫
∂di∩Γ−

â · nds

=: C||u||2 +
1
2
J,

where J denotes the sum of the two line integrals. It remains to show that J
is nonnegative. Let ū(x) denote the piecewise constant function on Γ defined by
ū(x) = ui if x ∈ ∂di ∩ Γ, i.e., ū is the restriction of P (u|Ω2) to Γ. Using ū and
transforming the second term of J from the summation over the boundaries of
Dirichlet tiles to a summation over the edges of triangles, we have

J =
NΓ∑
k=1

∫
Γ+
k

(âū2 − au2) · nds,

where Γ+
k denotes an edge of the mesh on Γ+ and NΓ is the number of edges on

Γ defined in the previous section. Note that Γ+ is the positive side of Γ, and
its normal direction n is the same as the outward normal direction of Ω1. Thus,
a · n ≥ α1 or α2 on Γ. Let us now consider the integral along a typical edge
Γk := ei,j on Γ+ connecting the two mesh vertices xi and xj . On Γk we have
â · n = ā⊥i,j = supx∈ei,j a · n by (23), and u and ū are defined by

u = ui +
|x− xi|
|xj − xi|

(uj − ui)(41)

and

ū =
{
ui, xi ≤ x < (xi + xj)/2,
uj , (xi + xj)/2 < x ≤ xj .

(42)

Parametrizing ei,j as {s : 0 ≤ s ≤ |ei,j |}, we have

Ji,j :=
∫ |ei,j |

0

(ā⊥i,j ū
2 − au2 · n)ds

= ā⊥i,j

∫ |ei,j |
0

(ū2 − u2)ds+
∫ |ei,j |

0

(a⊥i,j − a · n)u2ds

≥ ā⊥i,j
∫ |ei,j |

0

(ū2 − u2)ds,

(43)
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since a⊥i,j ≥ a · n > 0 on ei,j . Using (41) and (42), it is easily seen that
∫ |ei,j |

0
ū2 =

(u2
i + u2

j)
|ei,j |

2 is equal to the numerical integral of
∫ |ei,j |

0
u2ds by the trapezoidal

quadrature rule. Therefore, by a standard argument for the trapezoidal rule there
exists ξ ∈ (0, |ei,j |) such that∫ |ei,j |

0

(ū2 − u2)ds =
1
12
d2(u2)
ds2

∣∣∣
s=ξ
|ei,j |3 =

|ei,j |
6

(uj − uj)2 ≥ 0,

since d2(u2)/ds2 = 2(uj − ui)2/|ei,j|2 by (41). Combining the above bound with
(43), we obtain Ji,j ≥ 0, and so

J =
∑

ei,j⊂Γ+

Ji,j ≥ 0.

This completes the proof. �

5. Convergence

In this section we establish an upper bound for ||uI − uh||, where uI and uh
denote respectively the Uh-interpolant of the solution u to Problem 2.1 and the
solution to Problem 3.1. We start this discussion by proving the following lemma,
which will be used in the proof of the main result of this section.

Lemma 5.1. Let Assumptions 2.2 be fulfilled. If β ≥ 3 in (9) and M1 = M2 = M ,
a positive integer, then, for any element edge ei,j ∈ E

(2)
h , there exists a positive

integer C, independent of h, u and ε, such that∫
li,j

|fu · ei,j − fi,j |ds ≤
{

C|li,j |hK1, ei,j ⊂ Ω̄(1)
2 ∪ Ω̄(2)

2 ,

C|li,j |M−1 ln(1/ε), ei,j ⊂ Ω(3)
2 ,

(44)

where fu and fi,j are defined in (2) and (20) respectively and

(45) K1 = max{1, h−1εβ/2M , h−1ε ln
1
ε
}.

Proof. From the construction of the mesh on Ω2 we see that the mesh lines are
parallel to either the x-axis or the y-axis. We now discuss these two cases separately.

Case 1: ei,j = (1, 0). In this case ei,j and li,j are parallel to the x-axis and
y-axis respectively, and have lengths either M−1ε ln 1

ε and O(h) respectively (if
ei,j ⊂ Ω(1)

2 ∪Ω(3)
2 ), or O(h) and M−1ε ln 1

ε respectively (if ei,j ⊂ Ω(2)
2 ).∫

li,j

|fu · ei,j − fi,j |ds

≤
∫
li,j

[|(fu − fu(xi,j)) · ei,j |+ |fu(xi,j) · ei,j − fi,j |] ds

≤ C
(
|li,j |

∫
li,j

|∂fu · ei,j
∂y

|ds+ |li,j ||ei,j | · ||
∂fu · ei,j

∂x
||0,bi,j ,∞

)

≤ C|li,j |
[∫

li,j

|ε ∂
2u

∂x∂y
− a1

∂u

∂y
|ds+ |ei,j| · ||ε

∂2u

∂x2
− a1

∂u

∂x
||0,bi,j ,∞

]
=: C|li,j |(I1 + I2),

(46)
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where xi,j := (xi + xj)/2. We discuss the two terms I1 and I2 in (46). From (1)
and (2) we have

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+ a1

∂u

∂x
+ a2

∂u

∂y
+ (∇ · a+G)u = F.

Using this, Assumption 2.2 and the regularity assumptions on a, G and F , we get

||ε∂
2u

∂x2
− a1

∂u

∂x
||0,bi,j ,∞

≤ ||ε∂
2u

∂y2
− a2

∂u

∂y
||0,bi,j ,∞ + ||(∇ · a+G)u||0,bi,j ,∞ + ||F ||0,bi,j ,∞ ≤ C,

if ei,j ⊂ Ω(1)
2 . By Theorem 2.3, ||ε∂2u

∂x2 − a1
∂u
∂x ||0,bi,j ,∞ is also bounded above by C

when ei,j ⊂ Ω(2)
2 , because bi,j is away from the layer in which the partial derivatives

of u with respect to x are bounded. When ei,j ⊂ Ω(3)
2 , from Assumption 2.2 we

have

||ε∂
2u

∂x2
− a1

∂u

∂x
||0,bi,j ,∞ ≤ C(εε−2 + ε−1) = Cε−1.

Therefore, combining all the above estimates for ||ε∂2u
∂x2 −a1

∂u
∂x ||0,bi,j ,∞ on Ω(k)

2 , k =
1, 2, 3, and noticing that |ei,j | = O(M−1ε ln(1/ε)) in Ω(1)

2 and Ω(3)
2 and O(h) in

Ω(2)
2 , we obtain

(47) I2 = |ei,j | · ||ε
∂2u

∂x2
− a1

∂u

∂x
||0,bi,j ,∞ ≤


CM−1ε ln(1/ε), ei,j ⊂ Ω(1)

2 ,

Ch, ei,j ⊂ Ω(2)
2 ,

CM−1 ln(1/ε), ei,j ⊂ Ω(3)
2 .

We now consider I1. When ei,j ⊂ Ω(1)
2 we have |li,j | = O(h) and so, from

Assumption 2.2,

I1 ≤ C|li,j |(εε−1 + 1) ≤ Ch.

If ei,j ⊂ Ω(2)
2 , then li,j is perpendicular to the boundary segment y = 1 and has

length β
α2
M−1ε ln(1/ε). So after a proper parametrization and using Assumption

2.2 we have

I1 ≤ Cε−1

∫ y∗+|li,j |

y∗

e−α2(1−y)/εdy

= Cε−1e−α2/ε
eα2y/ε

α2/ε

∣∣∣y∗+|li,j |
y∗

≤ Ce−α(1−y∗)/ε
(
eα|li,j |/ε − 1

)
,

(48)

where y∗ denotes the lower end point of li,j . From the construction of the mesh we
see that 1− y∗ ≥ 3|li,j|/2, i.e., the y-coordinate of the segment li,j closest to y = 1
ranges from 1 − 3|li,j|/2 to 1 − |li,j |/2, where |li,j | = δ2/M . Therefore, from (48)
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we have

I1 ≤ Ce−3α|li,j |/(2ε)
(
eα|li,j|/ε − 1

)
≤ C

(
e−α|li,j|/(2ε) − e−3α|li,j |/(2ε)

)
≤ C

(
εβ/2M − ε3β/2M

)
≤ Cεβ/2M .

When ei,j ⊂ Ω(3)
2 , from Assumption 2.2 we have

I1 ≤ C(εε−2 + ε−1)|li,j | ≤ Cε−1|li,j | ≤ CM−1 ln(1/ε).

Combining the three cases, we obtain

(49) I1 ≤


Ch, ei,j ⊂ Ω(1)

2 ,

Cεβ/2M , ei,j ⊂ Ω(2)
2 ,

CM−1 ln(1/ε), ei,j ⊂ Ω(3)
2 .

Finally, substituting (49) and (47) into (46), we obtain

∫
li,j

|fu · ei,j − fi,j |ds ≤


C|li,j |(h+M−1ε ln(1/ε)), ei,j ⊂ Ω̄(1)

2 ,

C|li,j |(εβ/2M + h), ei,j ⊂ Ω̄(2)
2 ,

C|li,j |M−1 ln(1/ε), ei,j ⊂ Ω(3)
2 ,

≤
{

C|li,j |hK1, ei,j ⊂ Ω̄(1)
2 ∪ Ω̄(2)

2 ,

C|li,j |M−1 ln(1/ε), ei,j ⊂ Ω(3)
2 ,

(50)

where K1 is defined in (45).

Case 2: ei,j = (0, 1). From the symmetry of the problem it is easily seen that, by
the same argument as in Case 1, the estimate (44) is also satisfied. This completes
the proof. �

The error estimate for the method is established in the following theorem.

Theorem 5.2. Let Assumptions 2.2 and 4.1 be fulfilled. If β ≥ 3 in (9) and M1 =
M2 = M , a positive integer, then there exists a positive integer C, independent of
h, u and ε, such that

(51) ||uI − uh|| ≤ Ch
(
K

1/2
1 +K2

)
,

where uI and uh denote respectively the Uh-interpolation of the solution u to Prob-
lem 2.1 and the solution to Problem 3.1, K1 is defined in (45) and K2 is defined
as

(52) K2 = max{M1/2K1,M
−1/2
√
ε ln

1
ε
}.
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Proof. Note that Problems 3.1 and 3.2 are equivalent to each other. For any vh ∈
Vh, subtracting a(uI , vh) from both sides of (25), we have

(53) a(uh − uI , vh) = (F, vh)− a(uI , vh).

For k = 1, 2, let v(k)
h = vh|Ωk . Clearly, v(1)

h and v(2)
h are in V (1)

h and V (2)
h respectively.

Multiplying (1) by vh and integrating by parts, we get

(F, vh) = (fu,∇v
(1)
h )Ω1 + (Gu, v(1)

h )Ω1 −
∑

d∈D(2)
h

∫
∂d\Γ−

v
(2)
h fu · nds

+ (Gu, v(2)
h )Ω2 −

∫
Γ−
fu · n(v(2)

h − v
(1)
h )ds

= a(u, vh) + (Gu− P (Gu), v(2)
h )Ω2 −

∫
Γ−
fu · n(v(2)

h − v
(1)
h )ds,

where P is the mapping defined in (24). Substituting the above into (53) gives

a(uh − uI , vh)

= a(u− uI , vh) + (Gu− P (Gu), v(2)
h )Ω2 −

∫
Γ−
fu · n(v(2)

h − v
(1)
h )ds

≤
∣∣∣∣∫

Ω1

(fu − fuI ) · ∇v
(1)
h dx+ (Gu −GuI , v(1)

h )Ω1

∣∣∣∣
+
∣∣∣∣∫

Γ−
fu · n(v(2)

h − v
(1)
h )ds

∣∣∣∣
+

∣∣∣∣∣∣∣
∑

d∈D(2)
h

v
(2)
h (fu − fuI ) · nds

∣∣∣∣∣∣∣+ |(Gu− P (Gu), v(2)
h )Ω2 |

=: R1 +R2 +R3 +R4.

(54)

We now consider the error terms R1, R2, R3 and R4 separately. Notice that uI |Ω1

is the piecewise linear interpolant of u on the triangular mesh T
(1)
h . Using the

standard argument, we have

R1 =
∣∣∣∣∫

Ω1

(ε∇(u− uI)− a(u− uI)) · ∇v(1)
h dx+ (Gu −GuI , v(1)

h )Ω1

∣∣∣∣
≤ C

(
hε+ h2

)
||u||2,Ω1 ||∇v

(1)
h ||0,Ω1 + Ch2||u||2,Ω1 ||v

(1)
h ||0,Ω1

≤ Ch
(
ε||∇v(1)

h ||0,Ω1 + ||v(1)
h ||0,Ω1

)
||u||2,Ω1

≤ Ch
(√

ε||∇v(1)
h ||0,Ω1 + ||v(1)

h ||0,Ω1

)
= Ch||v(1)

h ||ε,Ω1 .

(55)

In the above we used the inequality h||∇v(1)
h ||0,Ω1 ≤ C||v

(1)
h ||0,Ω1 and (15).
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Let us consider R2. This term is due to the discontinuity or nonconformity of
the test space across Γ. For this term we have

R2 =
∣∣∣∣∫

Γ−
fu · n(v(2)

h − v
(1)
h )ds

∣∣∣∣
=

∣∣∣∣∣∣
∑
ei,j⊂Γ

∫
ei,j

fu · n(v(2)
h − v

(1)
h )ds

∣∣∣∣∣∣ ,
(56)

where ei,j ∈ Eh denotes the edge connecting xi and xj . On ei,j , v
(1)
h is linear and v(2)

h

is piecewise constant. They are in the form of (41) and (42) respectively. For clarity,
we let g(x) = fu · n and G(x) =

∫
gdx. We also put vi := v

(1)
h (xi) = v

(2)
h (xi) and

vj := v
(1)
h (xj) = v

(2)
h (xj). Parametrizing ei,j as {s : 0 ≤ s ≤ |ei,j |} and integrating

by parts, we have

∫
ei,j

fu · n(v(2)
h − v

(1)
h )ds =

∫ |ei,j |
2

0

g(v(2)
h − v

(1)
h )ds+

∫ |ei,j |
|ei,j |

2

g(v(2)
h − v

(1)
h )ds

= G(
|ei,j |

2
)(
vi + vj

2
− vi)−

vj − vi
|ei,j |

∫ |ei,j |
2

0

Gds

−G(
|ei,j |

2
)(
vi + vj

2
− vj)−

vj − vi
|ei,j|

∫ |ei,j |
|ei,j |

2

Gds

=
vj − vi
|ei,j |

[∫ |ei,j |
0

G(s)ds− |ei,j |G(
|ei,j |

2
)

]
.

(57)

The last term of (57) is essentially the error in the numerical integration of G by
the mid-point quadrature rule. Using Taylor expansion, it is easy to show that∣∣∣∣∣

∫ |ei,j |
0

G(s)ds − |ei,j |G(
|ei,j |

2
)

∣∣∣∣∣ ≤ C||G||2,∞|ei,j |3 ≤ C||fu||1,∞|ei,j |3.
Substituting the above into (57) and then the result into (56), we obtain

(58) R2 ≤ C
∑
ei,j⊂Γ

|vj − vi||ei,j |3||fu||1,∞ ≤ Ch2||vh||∞,

since ||fu||1,∞ ≤ C on Γ.
We now consider R3. Analogously to the derivation of (35), transforming from

a summation over the edges to a summation over the nodes of T (2)
h gives

R3 =

∣∣∣∣∣∣∣
∑

ei,j∈E(2)
h

(vi − vj)
∫
li,j

(fu − fuI ) · nds

∣∣∣∣∣∣∣
≤

∑
ei,j∈E(2)

h

|vi − vj |
∫
li,j

|fu · n− fi,j |ds.

(59)
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Combining (44) and (59) and noting that |li,j | = 2|bi,j|/|ei,j |, we have

R3 ≤
∑

ei,j∈E(2)
h

|vi − vj |
∫
li,j

|fu · ei,j − fi,j |ds

≤ ChK1

∑
ei,j⊂Ω̄

(1)
2 ∪Ω̄

(2)
2

|vi − vj |
|bi,j |
|ei,j |

+
C

M
ln

1
ε

∑
ei,j⊂Ω̄

(3)
2

|vi − vj |
|bi,j |
|ei,j |

≤ ChK1

 ∑
ei,j∈Ω̄

(1)
2 ∪Ω̄

(2)
2

(
vi − vj
|ei,j |

)2

|bi,j |


1/2 ∑

ei,j⊂Ω̄
(1)
2 ∪Ω̄

(2)
2

|bi,j |


1/2

+
C

M
ln

1
ε

 ∑
ei,j⊂Ω̄

(3)
2

(
vi − vj
|ei,j|

)2

|bi,j|


1/2 ∑

ei,j⊂Ω̄
(3)
2

|bi,j |


1/2

≤ ChK1

√
ε ln1/2 1

ε

 ∑
ei,j⊂Ω̄

(1)
2 ∪Ω̄

(2)
2

(
vi − vj
|ei,j |

)2

|bi,j |


1/2

+
C

M
ε ln3/2 1

ε

 ∑
ei,j⊂Ω

(3)
2

(
vi − vj
|ei,j |

)2

|bi,j|


1/2

≤ ChK2

 ∑
ei,j∈E(2)

h

|ei,j |
(
vi − vj
|ei,j |

)2

|bi,j |


1/2

= ChK2||v||h,Ω2 ,

(60)

where || · ||h,Ω2 is the discrete norm defined by (39) and K2 is defined in (52). In

(60) we used the facts that |ei,j | ≥ C
M ε ln 1

ε , (
∑
ei,j⊂Ω̄

(1)
2 ∪Ω̄

(2)
2
|bi,j |)1/2 = O(

√
ε ln 1

ε )

and (
∑

ei,j⊂Ω
(3)
2
|bi,j |)1/2 = O(ε ln 1

ε ).
Now, we consider R4 in (46). Let Gi = G(xi). Since vh = 0 on ∂Ω2 ∩ ∂Ω, the

term R4 can be estimated as

R4 =
∑

di∈D(2)
h

∫
di

|(Gu− P (Gu))vh|dx

≤
∑

di∈D(2)
h

|Givi|
∫
di

|u− ui||vh|dx

+
∑

di∈D(2)
h

|vi|||u||0,∞,di
∫
di

|G−Gi|dx

≤ ||G||∞||vh||∞
∑

di∈D(2)
h

∫
di

|u− ui|dx + Ch|G|1,∞||vh||∞ε ln
1
ε
,

(61)
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since
∑

di∈D(2)
h
|di| = O(ε ln 1

ε ). Similarly to the discussion of R3, using Assumption
2.2, the sum of the integrals in (61) can be estimated as∑

di∈D(2)
h

∫
di

|u− ui|dx ≤ Ch
∑

di∈D(2)
h

∫
di

(∣∣∣∣∂u∂x
∣∣∣∣+
∣∣∣∣∂u∂y

∣∣∣∣) dxdy
≤ Ch

∫ 1−δ2/M

0

∫ 1−δ1/2M

1−δ1

(∣∣∣∣∂u∂x
∣∣∣∣+
∣∣∣∣∂u∂y

∣∣∣∣) dxdy
+ Ch

∫ 1−δ1

0

∫ 1−δ2/2M

1−δ2

(∣∣∣∣∂u∂x
∣∣∣∣+
∣∣∣∣∂u∂y

∣∣∣∣) dydx
≤ Ch(ε ln

1
ε

+ εβ/2M ),

where δ1 and δ2 are defined in (9). Substituting the above estimate into (61), we
obtain

R4 ≤ C||G||∞||vh||∞(ε ln
1
ε

+ εβ/2M ) + Ch|G|1,∞||vh||0,∞ε ln
1
ε

≤ Ch||vh||∞(ε ln
1
ε

+ εβ/2M ).
(62)

Finally, substituting (55), (58), (60) and (62) into (54), we have

a(uh − uI , vh) ≤ Ch||v||ε,Ω1 + ChK2||v||h,Ω2

+ C
[
h2 + h(ε ln

1
ε

+ eβ/2M )
]
||vh||∞

≤ C
[
hK2||v||+ h2K1||vh||∞

]
,

where K1 and K2 are defined in (45) and (52). Choosing vh = P (uh − uI) and
using (40), we obtain

||uh − uI ||2 ≤ C
[
hK2||uh − uI ||+ h2K1

]
.

This is of the form

y2 ≤ CK2hy + CK1h
2 or (y − 1

2
CK2h)2 ≤ CK1h

2 +
(CK2)2

4
h2,

which reduces to

y ≤ h
√
CK1 +

(CK2)2

4
+
CK2

2
h ≤ Ch(K2 +K

1/2
1 ).

Replacing y with ||uh − uI ||, we obtain

||uh − uI || ≤ Ch(K1/2
1 +K2).

This completes the proof of the theorem. �
Theorem 5.2 yields the following corollary.

Corollary 5.3. Let the assumptions in Theorem 5.2 be fulfilled. If ε, h,M and β
are such that h−1εβ/2M ≤ O(1) and h−1ε ln(1/ε) ≤ O(1), then

(63) ||uI − uh|| ≤ ChM1/2.

Furthermore, if we choose h−1εβ/2M = O(1), then

(64) ||uI − uh|| ≤ Ch

√∣∣∣∣ ln εlnh

∣∣∣∣.
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Proof. Since h−1εβ/2M ≤ O(1) and h−1ε ln(1/ε) ≤ O(1), it follows that K1 = 1
and K2 ≤M1/2. Substituting these estimates into (51) yields (63).

We now prove (64). Consider h−1εβ/2M = 1. Solving this equation for M , we
get M = β

2 | ln ε/ lnh|, from which we see that if h−1εβ/2M = O(1), then M =
O(| ln ε/ lnh|). Substituting this into (63), we obtain (64). �

We comment that obviously the above corollary implies that if ε << h, then
||uI−uh|| converges to zero at the rate of h almost uniformly in ε. This improves the
results O(h ln1/2 1

ε ) in [3] and [10]. Unlike most of the previous results, the present
method uses a mixture of triangular and rectangular elements. Thus, the results can
be easily extended to singularly perturbed problems with nonrectangular, polygonal
regions, if the a priori estimates corresponding to those in Assumption 2.2 can be
established on those regions. Moreover, unlike most of the previous cases, the
discrete part of the energy norm || · || is weighted by the local mesh size |ei,j |,
though some of them are of length O(ε ln 1

ε ).
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solution of compressible flow”, J. Comp. Appl. Math., 63 (1995) 179–199. MR 96k:76071

[8] M. Feistauer and J. Felcman, “On the convergence of a combined finite volume-finite element
method for nonlinear convection-diffusion problems”, Num. Methods PDEs, 13 (1997) 163–
190. MR 98a:65123

[9] M. Feistauer, J. Slavik and P. Stupka, “On the convergence of a combined finite volume-
finite element method for nonlinear convection-diffusion problems. Explicit schemes”, Num.
Methods PDEs, 13 (1999) 215–235. MR 2000a:65107

[10] R. Hangleiter and G. Lube, “Boundary layer-adapted grids and domain decomposition in
stabilized Galerkin methods for elliptic problems”, CWI Quarterly, 10, No.3&4 (1998) 1–24.
MR 95d:65346

[11] J.C. Heinrich, P.S. Huyakorn, A.R. Mitchell, and O.C. Zienkiewicz, “An upwind finite ele-
ment scheme for two-dimensional convective transport equations”, Internat. J. Num. Meth.

Engng. 11 (1977) 131-143.
[12] J.T.R. Hughes and A.N. Brooks, “A Multidimensional Upwind Scheme with no Crosswind

Diffusion”, Finite element methods for convection dominated flows, (ed. T.J.R. Hughes)
AMD Vol. 34, Amer. Soc. of Mech. Eng., New York (1979), 19-35. MR 81f:76040

http://www.ams.org/mathscinet-getitem?mr=16:1171a
http://www.ams.org/mathscinet-getitem?mr=96c:65177
http://www.ams.org/mathscinet-getitem?mr=95a:65158
http://www.ams.org/mathscinet-getitem?mr=91i:65175
http://www.ams.org/mathscinet-getitem?mr=56:4178
http://www.ams.org/mathscinet-getitem?mr=99e:65154
http://www.ams.org/mathscinet-getitem?mr=96k:76071
http://www.ams.org/mathscinet-getitem?mr=98a:65123
http://www.ams.org/mathscinet-getitem?mr=2000a:65107
http://www.ams.org/mathscinet-getitem?mr=95d:65346
http://www.ams.org/mathscinet-getitem?mr=81f:76040


SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS 1709

[13] C. Johnson “Streamline diffusion methods for problems in fluids” in Finite elements in
fluids, vol. VI, R.H. Gallagher et al. (eds.) John Wiley and Sons, London (1986) 251-261.

[14] J.J.H. Miller, S. Wang, “A new nonconforming Petrov-Galerkin finite element method with
triangular element for a singularly perturbed advection-diffusion problem”, IMA J. Numer.
Anal., 14 (1994) 257–276. MR 95a:65190

[15] J.J.H. Miller, S. Wang, “An exponentially fitted finite element volume method for the nu-
merical solution of 2D unsteady incompressible flow problems”, J. Comput. Phys., 115,
No.1 (1994) 56–64. MR 95f:76081

[16] J.J.H. Miller, E. O’Riordan, G.I. Shishkin, Fitted numerical methods for singular perturba-
tion problems, World Scientific, Singapore (1996). MR 98c:65002

[17] H.-G. Roos, M. Stynes, L. Tobiska, Numerical Methods for Singularly Perturbed Differential
Equations, Springer-Verlag, Berlin-Heidelberg (1996). MR 99a:65134

[18] H.-G. Roos, D. Adam, A. Felgenhauer, “A novel nonconforming uniformly convergent fi-
nite element method in two dimensions”, J. Math. Anal. Appl., 201 (1996) 711–755. MR
97k:65260

[19] M. Sardella, “On a coupled finite element-finite volume method for convection-diffusion
problems”, IMA J. Numer. Anal., 20 (2000) 281–301. MR 2001b:65108

[20] D. Scharfetter, H.K. Gummel, Large-signal analysis of a silicon read diode oscillator, IEEE
Trans. Elec. Dev., ED-16, 64–77 (1969) 64–77.

[21] T. Skalický, H.-G. Roos, D., “Galerkin/least-squared finite element method for convection-
diffusion problems on Gartland meshes”, Report MATH-NM-12-98, Technical University of
Dresden (1998).

[22] M. Stynes, E. O’Riordan “A uniform convergent Galerkin method on a Shishkin mesh for a
convection-diffusion problem”, J. Math. Anal. Appl, 214 (1997) 34–54. MR 99f:65177

[23] S. Wang, “A novel exponentially fitted triangular finite element method for an advection-
diffusion problem with boundary layers”, J. Comp. Phys., 134 (1997) 253–260. MR
98d:76111

[24] J. Xu and L. Zikatanov, “A monotone finite element scheme for convection-diffusion equa-
tions”, Math. Comp., 68, No.228 (1999) 1429–1446. MR 99m:65228

Department of Mathematics & Statistics, The University of Western Australia, 35

Stirling Highway, Crawley, Western Australia 6009, Australia

E-mail address: swang@maths.uwa.edu.au

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung,

Taiwan 80424

E-mail address: zcli@math.nsysu.edu.tw

http://www.ams.org/mathscinet-getitem?mr=95a:65190
http://www.ams.org/mathscinet-getitem?mr=95f:76081
http://www.ams.org/mathscinet-getitem?mr=98c:65002
http://www.ams.org/mathscinet-getitem?mr=99a:65134
http://www.ams.org/mathscinet-getitem?mr=97k:65260
http://www.ams.org/mathscinet-getitem?mr=2001b:65108
http://www.ams.org/mathscinet-getitem?mr=99f:65177
http://www.ams.org/mathscinet-getitem?mr=98d:76111
http://www.ams.org/mathscinet-getitem?mr=99m:65228

	1. Introduction
	2. Preliminaries
	3. The finite element formulation
	4. Coercivity of the bilinear form b(,)
	5. Convergence
	Acknowledgments
	References

