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A NOTE ON NUCOMP

ALFRED J. VAN DER POORTEN

Abstract. This note is a detailed explanation of Shanks–Atkin NUCOMP—
composition and reduction carried out “simultaneously”—for all quadratic
fields, that is, including real quadratic fields. That explanation incidentally
deals with various “exercises” left for confirmation by the reader in standard
texts. Extensive testing in both the numerical and function field cases by
Michael J Jacobson, Jr, reported elsewhere, confirms that NUCOMP as here
described is in fact efficient for composition both of indefinite and of definite
forms once the parameters are large enough to compensate for NUCOMP’s ex-
tra overhead. In the numerical indefinite case that efficiency is a near doubling
in speed already exhibited for discriminants as small as 107.

1. Introduction

This note comprises an introduction to and gloss on the notorious Banff talks
[10] of Daniel Shanks on “Gauss and Composition”. In those lectures, Shanks
makes it plain that he has definite forms in mind. The same holds for the imple-
mentation [1] subsequently proposed by Oliver Atkin and detailed by Henri Cohen
[3], §5.4.2. However, the remarks were intended in general, and of course they do
hold in general. I notice that implementations intended for the definite case are
equally appropriate in the indefinite case, and emphasise the indefinite case in the
latter part of my remarks. An upshot is a detailed explanation of Shanks–Atkin
NUCOMP—composition and reduction carried out “simultaneously”—for all qua-
dratic fields. This explanation incidentally deals with various “exercises” left for
confirmation by the reader in [3], §5.

Extensive testing in both the numerical and function field cases by Michael J
Jacobson, Jr, reported elsewhere [7], confirms that NUCOMP as here described is
in fact efficient for composition both of indefinite and of definite forms once the
parameters are large enough to compensate for NUCOMP’s extra overhead. In
the numerical indefinite case that efficiency is a near doubling in speed already
exhibited for discriminants as small as 107.

2. Composition

As usual, denote the quadratic form uX2 + vXY + wY 2 by (u, v, w). Daniel
Shanks points out in his notorious lecture [9] that a computationally efficient rule for
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composing forms ϕ1 = (u1, v1, w1) and ϕ2 = (u2, v2, w2) of the same discriminant
D is provided by way of the “magic” matrix

(1) M =
[
Ax Bx Cx Dx

Ay By Cy Dy

]
given by

(2) G = gcd
(
u1, u2,

1
2 (v1 + v2)

)
,

M(ϕ1, ϕ2) =
[
Ax = G Bx Cx Dx

Ay = 0 By = u1/G Cy = u2/G Dy = s/G

]
,

and the conditions

∆B,C = BxCy −ByCx = m,(3a)

∆C,D = CxDy − CyDx = w1,(3b)

∆B,D = BxDy −ByDx = w2 .(3c)

For brevity, we write s = 1
2 (v1 +v2), and m = − 1

2 (v1−v2). Here, and in the sequel,
roman letters denote rational integers; the “M” above is an upper case µ.

3. The Plücker relation

It is not obvious that the three equations (3) can be solved for the three integer
unknowns Bx, Cx and Dx. However, a 2 × 4 array (1) naturally presents itself
as the linear subspace of three-dimensional projective space P3 defined by the two
planes given by the rows, dually—in this example, self-dually—as the line defined
by the two points given by those rows. The six Grassmann coordinates defining
the linear subspace are precisely the determinants ∆A,B = AxBy − AyBx = u1,
∆A,C = AxCy − AyCx = u2, ∆A,D = AxDy − AyDx = 1

2 (v1 + v2) = s, and the
three determinants of (3). More generally, an m by n array, with m ≤ n, defines a
linear subspace of Pn−1 via its

(
n
m

)
maximal minors.

Now, if two linear subspaces of Pn−1 have the same coordinates, then they co-
incide. But it is not the case that every vector of

(
n
m

)
coordinates defines a linear

subspace. Those coordinates must satisfy certain Plücker relations, to wit, those
generated by certain quadratic relations on the determinants.

A congenial reminder of those matters can be found in the relatively elementary
technical source [6]. For the basics, see Klein’s remarks [4]; one might even risk
Grassmann’s work directly [5]. Whatever, one can learn in particular that the six
determinants of our example (more to the point: of any 2 × 4 example) are not
independent. There is the one primitive Plücker relation

(4) 0 = ∆A,B∆C,D −∆A,C∆B,D + ∆A,D∆B,C .

Happily, it asserts precisely that the two forms ϕ1 and ϕ2 must have the same
discriminant. They do, so a solution to two of the equations (3) must satisfy the
third equation.
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4. The composite form

Theorem 1. The form ϕ3 = (u3, v3, w3) obtained from M(ϕ1, ϕ2) by

u3 = ByCy −AyDy,

v3 = (AxDy +AyDx)− (BxCy +ByCx),
w3 = BxCx −AxDx

is a compound of ϕ1 and ϕ2.

Proof. For i = 1, 2, and 3, set ϕi(Xi, Yi) = uiX
2
i + viXiYi +wiY

2
i . To see that ϕ3

is a compound of the forms ϕ1 and ϕ2, it suffices to return to the first principles
definition of composition. First, note that

ϕ1(X1, Y1) = ∆A,BX
2
1 + (∆A,D −∆B,C)X1Y1 + ∆C,DY

2
1 ,

ϕ2(X2, Y2) = ∆A,CX
2
2 + (∆A,D + ∆B,C)X2Y2 + ∆B,DY

2
2 .

(5)

Next, set
X3 = AxX1X2 +BxX1Y2 + CxY1X2 +DxY1Y2,

Y3 = AyX1X2 +ByX1Y2 + CyY1X2 +DyY1Y2 .
(6)

Finally, by brute force, verify that, indeed,

�(7) ϕ3(X3, Y3) = ϕ1(X1, Y1)ϕ2(X2, Y2).

To see why these facts are so, and to obtain a significantly less brutal argument,
notice first that (6) is

X3 = (AxX2 +BxY2)X1 + (CxX2 +DxY2)Y1,

Y3 = (AyX2 +ByY2)X1 + (CyX2 +DyY2)Y1,
(8)

or, just so,

X3 = (AxX1 + CxY1)X2 + (BxX1 +DxY1)Y2,

Y3 = (AyX1 + CyY1)X2 + (ByX1 +DyY1)Y2 .
(9)

Thus the definition ϕ3(X3, Y3) = ϕ1(X1, Y1)ϕ2(X2, Y2), viewed as an identity in
the variables X1 and Y1, promptly reveals on comparing discriminants that

ϕ2(X2, Y2) =
∣∣∣∣AxX2 +BxY2 CxX2 +DxY2

AyX2 +ByY2 CyX2 +DyY2

∣∣∣∣
and, on similarly emphasising the other pair of variables,

ϕ1(X1, Y1) =
∣∣∣∣AxX1 + CxY1 AyX1 + CyY1

BxX1 +DxY1 ByX1 +DyY1

∣∣∣∣ .
These are the remark (5).

I am indebted to Renate Scheidler for being led to notice that one can now fairly
readily “discover” ϕ3 from

ϕ3(x, y)ϕ2(x′, y′)

= ϕ1 ((Cyx′ +Dyy
′)x− (Cxx′ +Dxy

′)y,−(Ayx′ +Byy
′)x+ (Axx′ +Bxy

′)y) ,

carefully evaluated as a determinant. For example, its coefficient of x2x′2 is∣∣∣∣AxCy − CxAy AyCy −AyCy
BxCy −AyDx ByCy −AyDy

∣∣∣∣ = (ByCy −AyDy)∆A,C .
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5. Computing the magic matrix

To see that the entries of M(ϕ1, ϕ2) can be chosen to be integers, consider the
choice

Bx = 1
2G(v2 − v3)/u2 , Cx = 1

2G(v1 − v3)/u1 , Dx = G(BxCx − w3) ,

noticing, because u3 = u1u2/G
2, and all three forms have discriminant D, that this

is a solution to (3). However, it is more constructive to compute the quantities.
In brief, we use ∆B,C = m and, if necessary, also ∆B,D = w2. On the way, we

explain the choice (2) of Ax = G. Namely, (a) use Euclid’s extended algorithm to
compute (b, c, F ) such that bu2 + cu1 = F = gcd(u1, u2) . It is mostly the case that
F = 1; in any case, if F

∣∣ s set Ax ← G = F , Bx ← mb.
However, if F 6

∣∣ s, (b) use Euclid’s extended algorithm again, to compute (x, y,G)
such that xF + ys = G = gcd(F, s). This is the interesting case, cf. [2], where
F/G = H > 1, so that ∆B,C = m only yields Bx ≡ bm/H (mod u1/GH), rather
than modulo u1/G. However, we do have the Plücker relation (4), confirming that

1
4 (v1 + v2)(v1 − v2) = −sm = u1w1 − u2w2.

Furthermore, GH = bu2 + cu1 and G = xGH + ys remind us that

1 = bu2/F + cu1/F and 1 ≡ ys/G (mod H) .

We determine Bx (mod By = u1/G) by also using (3c):

w2 = ∆B,D ≡ Bxs/G (mod u1/G) ,

and noticing that

−s · bm/F = w1bu1/F − w2bu2/F = −w2 + (bw1 + cw2) · u1/F .

Accordingly, if H = F/G 6= 1, (c) compute l ← y(bw1 + cw2) (mod H). Set
Ax ← G = F/H , Bx ← bm/H + l · u1/F , and note that one can now readily
backtrack also to obtain Cx and Dx as integers.

6. Notes

6.1. The matrix M(ϕ1, ϕ2) is just one of an equivalence class(
a b
c d

)[
Ax Bx Cx Dx

Ay By Cy Dy

]
, where a, b, c and d ∈ Z satisfy ad− bc = 1,

of 2 × 4 matrices with Grassmann coordinates defined by the pair of forms (5);
the corresponding compounds are ϕ3(dX − bY,−cX + aY ), where ϕ3 is detailed in
Theorem 1.

6.2. The choice of M recommended by (Gauss and) Shanks, and adopted here, is
not arbitrary. Indeed, M(ϕ1, ϕ2) “solves” the product

G(X1 − α1Y1)(X2 − α2Y2)
= GX1X2 −Gα2X1Y2 −Gα1Y1X2 +Gα1α2Y1Y2 = X3 − α3Y3

= (Ax−α3Ay)X1X2+(Bx−α3By)X1Y2 +(Cx−α3Cy)Y1X2 +(Dx−α3Dy)Y1Y2 ,

where, for i = 1, 2, and 3, we have set αi = (−vi +
√
D )/2ui.
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Because 4uiwi = v2
i −D, it follows that each Z-module 〈ui, 1

2 (−vi +
√
D )〉 is an

ideal in the ring of integers of Q(
√
D). Thus

(u1X1 − 1
2 (−v1 +

√
D )Y1)(u2X2 − 1

2 (−v2 +
√
D )Y2)

= G(u3X3 − 1
2 (−v3 +

√
D )Y3)

details multiplication of fractional ideals

(10) 〈u1,
1
2 (−v1 +

√
D )〉 · 〈u2,

1
2 (−v2 +

√
D )〉 = G〈u3,

1
2 (−v3 +

√
D )〉 .

6.3. Note that composition, as detailed by Theorem 1 and the construction of §5,
is defined up to u3, v3 (mod 2u3), and 4u3w3 = D − v2

3 ; and thus it well defines
multiplication of ideals.

6.4. We get a useful alternative emphasis as follows. Denote by δ a quadratic
irrational integer with norm n and trace t; so δ2−tδ+n = 0. Let P andQ be integers
and consider elements α = (δ+P )/Q, whereQ divides the norm n+tP+P 2 of δ+P .
Then the Z-module 〈Q, δ + P 〉 is an ideal in the order Z[δ] which corresponds in
the sense just hinted at to the quadratic form ϕ(X,Y ) = Q(X−αY )(X−αY ). We
have u = Q, v = −(t+ 2P ), w = (n+ tP +P 2)/Q. More to the point, perhaps, we
have D = t2−4n, − 1

2 (v1 +v2) = −s = P1 +P2 + t, and − 1
2 (v1−v2) = m = P1−P2.

6.5. It is now clear that our remarks generalise readily to quadratic forms defined
over function fields of arbitrary characteristic, including characteristic 2.

7. Reduction

The coefficients of a reduced form of discriminant D are of size O(|D|1/2). How-
ever, while the coefficients of a compound of two reduced forms generally are of size
O(|D|), the entries of the magic matrix are just of size O(|D|1/2). The essence of
NUCOMP [9] is to reduce M , indirectly reducing the composite ϕ3 by working with
four-tuples of half-sized integers. Atkin’s refinement [1] reduces the bit-complexity
of this computation.

Atkin tells of computing just G and Bx. He then does an extended partial
Euclidean algorithm on Bx and By until the smaller1 is at most L = b |D/4|1/4 c.
He now, in effect, has the first two columns of

µ =
[
ax bx cx dx
ay by cy dy

]
,

and then finds the other two columns, say by noting that each of the 4-tuples[
m −u2 u1 0

]
and

[
w2 −s 0 u1

]
is orthogonal to both rows of M . Specifically, the equations

cxu1/G = bxu2/G−max/G,
cybx = bycx +m,

dxu1/G = bxs/G− w2ax/G,

dyax = dxay + s

(11)

sequentially provide the unknowns from exact division of integers not likely to be
larger than O(|D|3/4) by integers of expected size O(|D|1/2). In case bx = 0 it helps
to notice also that

[
w1 0 −s u2

]
is orthogonal to both rows of M .

1We remark in [7] that it is more efficient to take one more step so that both are at most L.
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“ ‘Conceptually’, we reduce M to µ by row = row− constant · other row, alter-
nately, least absolute remainders. We get a form ‘very close’ to reduced.” [1].

8. Distance

8.1. The continued fraction expansion β = [ a0 , a1 , a2 , . . . ] of a real irrational
is defined by appropriate conditions on the “remainders” ρh, say −1 < ρh < 0, and

β0 = β ; βh = ah − ρh ; βh+1 = −1/ρh .

The expansion yields the convergents xh/yh to β by the rule(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ah 1
1 0

)
=
(
xh xh−1

yh yh−1

)
, h = −1, 0, 1, 2, . . . ,

and for those h it entails

(12) ρ0ρ1ρ2 · · · ρh = xh − yhβ .

These formulas are formal. They do not depend on the rules selecting the remain-
ders and, hence, do not depend on the “choice” of partial quotients ah.

8.2. If two ideals, a and a′, are in the same class (of ideals modulo principal ideals),
then there is a principal fractional ideal (λ) so that a′ = (λ)a. Suppose D > 0.
One calls δ(a, a′) = log |λ| the Shanks distance from a to a′. Because λ is only
defined up to units of Q(

√
D ), it follows that the distance is defined only modulo

the regulator R of Q(
√
D ) and should be viewed as lying in R/RZ. It will be

convenient to speak of the element λ as giving the Distance from a to a′.

8.3. If two elements γ and γ′ are equivalent (that is, there are integers a, b, c, and
d satisfying ad− bc = ±1 so that γ = (aγ′ + b)/(cγ′ + d)), then there are integers
a0, a1, . . . , an, say, so that γ = [ a0 , a1 , . . . , an , γ

′ ] relates γ to γ′ by a continued
fraction expansion. In the notation of §8.1 we have a = xn, b = xn−1, c = yn,
d = yn−1; and γ′ = γn+1.

8.4. Moreover, elements, forms, and ideals correspond one to the other, though not
in altogether an obviously well-defined manner. Specifically, each triple (u, v, w) of
integers satisfying v2−4uw = D variously provides an element γ = (v−

√
D )/2u, a

form uX2 +vXY +wY 2, and a Z-module, thus a fractional ideal, 〈u, 1
2 (−v+

√
D )〉.

However, if the ideal is deemed to have a sign attached, to wit the sign of u, this is
a well-defined correspondence, up to v only being given modulo 2u.

Theorem 2. Suppose γ = (v −
√
D )/2u = [a0, a1, . . . , an, (v′ −

√
D )/2u′]. Set(

a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an 1
1 0

)
=
(
xn xn−1

yn yn−1

)
.

Then xn−γyn provides the Distance from the form uX2 + vXY +wY 2 to the form
u′X2 + v′XY +w′Y 2, or equivalently from the signed ideal 〈u, 1

2 (−v+
√
D )〉 to the

signed ideal 〈u′, 1
2 (−v′ +

√
D )〉.
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Remark. It is easy to see that xn−γyn is a suitable candidate for Distance, in that it
is a unit if γ′ = γ, but the point of the claim is that it alleges that xn−γyn is indeed
a value of λ as given in §8.2. We explain that below in §9.2 in the context of our
example. Note here also my use of the capitalised word “Distance” to distinguish
it from its logarithm, distance proper (compare the near universal use of H for
näıve height as contrasted to more sophisticated, invariably logarithmic, versions
of height denoted by h).

8.5. Suppose now that a magic matrix M yields a not necessarily reduced form ϕ,
whereas

(
a b
c d

)
M provides the near reduced form ϕ′(x, y) = ϕ(dx−by,−cx+ay). If

ϕ corresponds, in the sense of §8.4, to the element γ, then ϕ′ similarly corresponds
to the element γ′, where γ = (dγ′ + b))/(cγ′ + a). Among other things, it follows
that the Distance from ϕ to ϕ′ is d − cγ. However, the point of NUCOMP is not
to have to compute the unreduced form ϕ, nor therefore the element γ. So we note
that

γ′ = (aγ − b)/(−cγ + d)

and that the Distance from ϕ to ϕ′ is (a+ cγ′)−1

8.6. Set d = bDc. Suppose γ = 1
2 (d−

√
D ) (that is, u = 1 and v ≡ d (mod 2)), so

that the ideal 〈+1, 1
2 (−d+

√
D )〉, or, more precisely, the form 1 =

(
1, d, 1

4 (d2 −D)
)
,

is the identity with respect to composition. Then R′ = log |xn− ynγ| is the Shanks
distance δ(1, ϕ′) of the form ϕ′ =

(
u′, v′, 1

4 (v′2 −D)/u′
)

.

8.7. Shanks distance as just now described is computationally congenial but un-
natural philosophically. Thus (10) providesR1 +R2 = R3 +logG. Hendrik Lenstra
[8] proposes

∂(1, ϕ′) =
1
2

log |(xn − ynγ)/(xn − ynγ)|

as the preferred definition. Then, more decently, ∂(1, ϕ1) + ∂(1, ϕ2) = ∂(1, ϕ3).

8.8. In the function field case, where the xn and yn will be polynomials in some
variable z, say, and γ is a formal Laurent series in z−1, the logarithm of the absolute
value becomes the degree in z of the series. Thus, in the function field case, distance
takes discrete values.

9. A toy example

9.1. It is convenient to take ω = 1
2

√
D if D ≡ 0 (mod 4) and ω = 1

2 (1 +
√
D)

if D ≡ 1 (mod 4); also set ωω = n and ω + ω = t. Then a typical step in the
continued fraction expansion of ω is

(ω + Ph)/Qh = ah − (ω + Ph+1)/Qh,

so
Ph + Ph+1 + t = Qhah;

and
−QhQh+1 = (ω + Ph+1)(ω + Ph+1) = n+ tPh+1 + P 2

h+1.
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Take D = 10209. Then ω = 1
2 (1 +

√
10209 ), where 51 < ω < 52, ωω = −2552,

ω + ω = 1. We have
0 (ω + 50)/1 = 101− (ω + 50)/1 14 (ω + 22)/33 = 2− (ω + 43)/33
1 (ω + 50)/2 = 50− (ω + 49)/2 15 (ω + 43)/20 = 4− (ω + 36)/20
2 (ω + 49)/51 = 1− (ω + 1)/51 16 (ω + 36)/61 = 1− (ω + 24)/61
3 (ω + 1)/50 = 1− (ω + 48)/50 17 (ω + 24)/32 = 2− (ω + 39)/32
4 (ω + 48)/4 = 24− (ω + 47)/4 18 (ω + 39)/31 = 2− (ω + 22)/31
5 (ω + 47)/74 = 1− (ω + 26)/74 19 (ω + 22)/66 = 1− (ω + 43)/66
6 (ω + 26)/25 = 3− (ω + 48)/25 20 (ω + 43)/10 = 9− (ω + 46)/10
7 (ω + 48)/8 = 12− (ω + 47)/8 21 (ω + 46)/39 = 2− (ω + 31)/39
8 (ω + 47)/37 = 2− (ω + 26)/37 22 (ω + 31)/40 = 2− (ω + 48)/40
9 (ω + 26)/50 = 1− (ω + 23)/50 23 (ω + 48)/5 = 19− (ω + 46)/5
10 (ω + 23)/40 = 1− (ω + 16)/40 24 (ω + 46)/78 = 1− (ω + 31)/78
11 (ω + 16)/57 = 1− (ω + 40)/57 25 (ω + 31)/20 = 4− (ω + 48)/20
12 (ω + 40)/16 = 5− (ω + 39)/16 26 (ω + 48)/10 = 9− (ω + 41)/10
13 (ω + 39)/62 = 1− (ω + 22)/62 27 (ω + 41)/83 = 1− (ω + 41)/83

The symmetry at line 27 signals the midpoint of the period. The remaining 26
lines of the period are the conjugates of lines 26 to 1. Notice that Q27 = 83
in the symmetric line entails that 83 divides the discriminant of Z[ω]. Indeed,
10209 = 83 · 3 · 41, displaying a nontrivial composite, 3403.

9.2. Line h of the array, namely (ω+Ph)/Qh = ah− (ω+Ph+1)/Qh , corresponds
to the form (−1)hQhx2 + (2Ph+1 + t)xy + (−1)h+1Qh+1y

2, to the signed ideal
〈(−1)h+1Qh ,−(ω+Ph+1)〉, and to the element (−1)h+1(ω+Ph+1)/Qh. Note that
〈(−1)h+1Qh , (ω + Ph)〉 is the same ideal.

Proof of Theorem 2. It suffices to notice the evident identity
(ω + Ph+1)/Qh · 〈Qh,−(ω + Ph+1)〉 = 〈(ω + Ph+1), Qh+1〉

= 〈Qh+1,−(ω + Ph+2)〉 ,
the fact that (ω + Ph+1)/Qh is a remainder in the sense of §8.1, and (12). �

9.3. With D = 10209 take f = (−2, 99, 51). We obtain the duplicate f ∗ f =: f2

from the magic matrix[
1 −1 −1 75
0 −2 −2 99

]
−→ (4, 95,−74) = g4 .

Next, f4 := f2 ∗ f2 comes from[
1 2 2 66
0 4 4 95

]
−→ (16, 79,−62) = g12 ,

and f8 := f4 ∗ f4 from [
1 −2 −2 −6
0 16 16 79

]
−→ (256, 143, 10)

and(
12 1
−1 0

)[
1 −2 −2 −6
0 16 16 79

]
=
[

12 −8 −8 7
−1 2 2 6

]
−→ (10, 97,−20) = g28 .

The remarks “ = gh” refer to the line h of the continued fraction expansion of §9.1
on which the form appears.
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9.4. In practice one computes the Distance as a real number τ × 2Ne with τ of
appropriately limited accuracy. Here, of course, and in fact in general, we can
readily keep track of the precise distance. The form f1 has Distance ω + 50, so up
to the adjustment corresponding to the reduction step, f8 has Distance (ω + 50)8.
The reduction has matrix

(
12 1
−1 0

)
, so one multiplies by (ω + 71)/256, or by the

reciprocal of 12− 1(ω + 48)/10 = (ω + 71)/10, to make the adjustment.
We obtain f6 = f2 ∗ f4 from

[
1 −2 −6 −28
0 4 16 87

]
−→ (64, 143, 40) and(

3 1
−1 0

)[
1 −2 −6 −28
0 4 16 87

]
=
[

3 −2 −2 3
−1 2 6 28

]
−→ (40, 97,−5) = g22,

so its Distance (ω + 50)6 is to be adjusted by (ω + 71)/64, or the reciprocal of
3− (ω + 48)/40 = (ω + 71)/40. Similarly, we obtain f14 = f6 ∗ f8 from(
−2 1
−1 0

)[
1 20 5 49
0 40 10 97

]
=
[
−2 0 0 −1
−1 −20 −5 −49

]
−→ (51, 99,−2) = g52 ,

its Distance requiring adjustment by (−2− (ω + 49)/51)−1 = ((ω − 152)/51)−1.
That checks with the unreduced composite being (400,−303, 51). It follows that
the Distance to f14 is

(ω + 50)14 (12− 1(ω + 48)/10)−1 (3− (ω + 48)/40)−1 (−2− (ω + 49)/51)−1
.

Finally, f14 ∗ f1 is given by(
100 1
−1 0

)[
1 0 0 −1
0 51 −2 99

]
=
[
100 51 −2 −1
−1 0 0 1

]
−→ (1, 101,−2) ≡ g0 ,

multiplying the Distance to f14 by (ω + 50) × (100− (ω + 50)/1)−1. Thus the
fundamental unit of Z[ω] is given by

(ω + 50)15 × (12− 1(ω + 48)/10)−1

× (3− (ω + 48)/40)−1 (−2− (ω + 49)/51)−1 (100− (ω + 50))−1

= 129673276731767045001467236819+ 2592439027326436315951883912ω.

Note that the suffixes h on the fh have no well-defined meaning and depend on
the reduction steps performed at each composition. For example, we might have
computed “f8” as(

1 0
3 1

)[
1 −2 −2 −6
0 16 16 79

]
=
[
1 −2 −2 −6
3 10 10 61

]
−→ (−83, 83, 10) = g27 ,

with Distance (ω + 50)8 adjusted by the reciprocal of 1 + 3(ω + 41)/(−83), thus
by ((3ω + 40)/83)−1. Obviously, the duplicate of the ambiguous form (−83, 83, 10)
yields the identity; indeed, with G = 83,[

83 9 9 1
0 −1 −1 1

]
−→ (1, 101,−2) = g54 ,

so the fundamental unit is also given by

(ω + 50)16 · ((3ω + 40)/83)−2 · 1/83 .

Compare also Henri Cohen’s computation with this example in [3], §5.8.3. Note
that this truly is a toy example in that the magic matrices M produced already are
near reduced; the subsequent reductions, when necessary, are quite artificial.
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10. NUCOMP for indefinite forms

The following algorithm in effect combines the content of algorithms 5.8.6 and
5.4.9 of [3] in using NUCOMP to compose quadratic forms while retaining a record
of their Distance. NUCOMP supposes that the forms to be composed are distinct;
if not, use NUDUPL, below.

Algorithm 3 (NUCOMP with Distance). For quadratic forms ϕ1 = (u1, v1, w1)
and ϕ2 = (u2, v2, w2) with the same discriminant D and at Distances τ1 × 2Ne1
and τ2×2Ne2 respectively, this algorithm computes a near reduced composite ϕ3 =
(u3, v3, w3) of ϕ1 and ϕ2 and obtains its Distance τ3 × 2Ne3 . It is supposed that
L = b |D/4|1/4 c has been precomputed. The first four steps construct the following
part of the magic matrix:

M =
[
Ax = G Bx — —

0 By = u1/G Cy = u2/G Dy = s/G

]
.

The “near reduction” of step 5 yields

µ =
(
x . . .
y . . .

)
M =

[
ax = Gx bx — —
ay = Gy by — —

]
,

and the remainder of the algorithm reports the evaluation of the missing entries of
µ and the consequent evaluation of the near reduced composite and its Distance.

(1) [Initialisation] Set s← 1
2 (v1 + v2); then m← v2 − s.

(2) Use Euclid’s extended algorithm to compute (b, c, F ) such that bu2 + cu1 =
F = gcd(u1, u2) . It is mostly the case that F = 1. In any case, if F

∣∣ s, so
in particular if F = 1, set Ax ← G = F , Bx ← (mb mod By), By ← u1/F ,
Cy ← u2/F , Dy = s/F , and go to step 5.

(3) [If F 6
∣∣ s] However, if F 6

∣∣ s, use Euclid’s extended algorithm again to
compute (x, y,G) so that xF + ys = G = gcd(F, s), and set H ← F/G.
Also set By ← u1/G, Cy ← u2/G, Dy ← s/G.

(4) Compute l ← y(bw1 + cw2) mod H by first reducing w1 and w2 (which are
large) modulo H (which is small), doing the operation, and reducing again.
Set Bx ← bm/H + l · By/H (mod By).

(5) [A Subalgorithm] Set bx ← (Bx mod By) and by ← By. Then execute a
partial Euclidean algorithm on bx, by :
(a) Set x← 1, y ← 0; and set z ← 0.
(b) If |bx| > L go to substep 5c. Otherwise, if z is odd set by ← −by,

y ← −y. Then set ax ← Gx, ay ← Gy. Terminate this subalgorithm.
(c) Let q ← bby/bxc and simultaneously t← by mod bx. Now set by ← bx

and bx ← t. Then set t ← y − qx, followed by y ← x and x ← t.
Finally let z ← z + 1 and go back to substep 5b.

(6) [Computation of Near Reduced Composite] Set cx ← (bxCy − mx)/By,
and compute cy ← (bycx + m)/bx. If bx = 0 , set cy ← (u2by − ym)/u1.
Similarly set dx ← (bxDy − w2x)/By and dy ← (dxy + Dy)/x. Then the
near reduced composite form ϕ3 is given by u3 ← bycy − aydy, w3 ←
bxcx−axdx and u3 ← (axdy +aydx)− (bxcy + bycx). Its Distance τ3×2Ne3

is (τ1τ2/G) ×
(
x+ y(v3 +

√
D )/2u3

)−1

× 2N(e1+e2). Sequentially adjust

when τ3 > 2N by setting τ3 ← τ3/2N and e3 ← e3 + 1.
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Notes. (i) The divisions in step 6 are exact and can therefore be done at the
prevailing precision O(|D|1/2). Specifically, make these floating point rather than
integer computations, at that precision.

(ii) If done näıvely, certain of the steps, for example Bx ← mb (mod By), will
involve quantities greater than the “prevailing” precision. One should either not
do them näıvely or treat them as multiprecision steps.

(iii) Notice that the quantities making up v3 will usually have been computed
in the just preceding calculations.

(iv) Cohen [3], §5.4.9, singles out the case z = 0—thus x = 1, y = 0—for special
mention. He has the equivalent of

[Special Case: z = 0] Set cx ← (bxCy −m)/By, and cy ← (bycx + m)/bx.
If bx = 0, set cy = (bya2)/a1. Similarly set dx ← (bxDy − w2)/By and
dy ← Dy. Then ϕ3 is given by u3 ← bycy and w3 ← bxcx − Gdx, while
v3 ← Gdy − (bxcy + bycx). Its Distance τ3 × 2Ne3 is (τ1τ2/G) × 2N(e1+e2).
Sequentially adjust when τ3 > 2N by setting τ3 ← τ3/2N and e3 ← e3 + 1.

as intermediate step between step 5 and step 6.
(v) Moreover, it is desirable to single out the case ϕ1 = ϕ2, and we do that

below.

Algorithm 4 (NUDUPL with Distance). Given a quadratic form ϕ = (u, v, w) of
discriminant D and at Distance τ × 2Ne, this algorithm computes a near reduced
duplicate ϕ3 = (u3, v3, w3) of ϕ and obtains its Distance τ3 × 2Ne3 . It is supposed
that L = b |D/4|1/4 c has been precomputed.

(1) Use Euclid’s extended algorithm to compute (x, y,G) so that xu + yv =
G = gcd(u, v), and set Ax ← G, By ← u/G, Dy ← v/G.

(2) Compute Bx ← (yw mod By).
(3) [A Subalgorithm] Set bx ← Bx, by ← By. Then execute a partial Euclidean

algorithm on bx, by :
(a) Set x← 1, y ← 0; and set z ← 0.
(b) If |bx| > L go to substep 3c. Otherwise, if z is odd set by ← −by,

y ← −y. Then set ax ← Gx, ay ← Gy. Terminate this subalgorithm.
(c) Let q ← bby/bxc and simultaneously t← by mod bx. Now set by ← bx

and bx ← t. Then set t ← y − qx, followed by y ← x and x ← t.
Finally let z ← z + 1 and go back to substep 3b.

(4) [Computation of Near Reduced Composite] Set dx ← (bxDy −wx)/By and
dy ← (dxy +Dy)/x. Then the near reduced composite form ϕ3 is given by
u3 ← b2y−aydy, w3 ← b2x−axdx and v3 ← (axdy+aydx)−2bxby. Its Distance

τ3×2Ne3 is (τ2/G)×
(
x+ y(v3 +

√
D )/2u3

)−1

×22Ne. Sequentially adjust

when τ3 > 2N by setting τ3 ← τ3/2N and e3 ← e3 + 1.

Note. Our previous notes apply, mutatis mutandis.

One now reduces the composite ϕ3 by a standard algorithm, a process that
should not take more than a step or two, and adjusts the Distance appropriately.
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