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MIXED LAGUERRE-LEGENDRE PSEUDOSPECTRAL METHOD
FOR INCOMPRESSIBLE FLUID FLOW
IN AN INFINITE STRIP

BEN-YU GUO AND CHENG-LONG XU

ABSTRACT. In this paper, we investigate the mixed Laguerre-Legendre inter-
polation approximation and its application. Some approximation results are
established. A mixed Laguerre-Legendre pseudospectral scheme is constructed
for incompressible fluid flow in an infinite strip. Its stability and convergence
are proved. Numerical results show the efficiency of this new approach.

1. INTRODUCTION

Recently, more and more attention is being paid to fluid flows in unbounded
domains and their numerical simulations: see, e.g., Guo and Xu [13], Kweon and
Kellogg [14], and Maday, Pernaud-Thomas and Vandeven [17]. In actual compu-
tations, we have to consider three things. The first one is the suitable choice of
alternative formulations of partial differential equations governing the movements
of fluid flows, which makes calculations simpler. As we know, the Navier-Stokes
equation plays an important role in studying incompressible fluid flows. Usually
we consider the primitive equation which is quite preferable in theoretical analysis;
see, e.g., Lions [15] and Témam [20]. But it is not easy to deal with the incom-
pressibility in computations by using the finite element method or the spectral
method. At the same time it is difficult to evaluate the pressure on the boundary,
if we use the finite difference method. So it is natural to consider other forms of
the Navier-Stokes equation. For instance, we may consider the vorticity-stream
function form. In this case, the incompressibility is included automatically, and
the pressure no longer appears. However, there is no physical boundary condition
on the vorticity. Some authors considered the stream function form of the Navier-
Stokes equation, which avoids all trouble mentioned in the above; see, e.g., Guo
and He [I0]. This form might be one of reasonable formulations for numerical simu-
lations of incompressible fluid flows. The second problem is the choice of numerical
methods for unbounded domains. The simplest way is to restrict calculations to
certain bounded domains and impose some artificial boundary conditions. However,
this treatment also causes additional errors. So it seems better to discretize the
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original problems in unbounded domains directly. For instance, Boyd [5], Coulaud,
Funaro and Kavian [6], Funaro and Kavian [8], Guo [9], Guo and Shen [IT], Guo
and Xu [12], Maday, Pernaud-Thomas and Vandeven [17], and Xu and Guo [21I]
provided various spectral methods for one-dimensional problems. But there are
very few works for multiple-dimensional problems. Indeed, the reasonable choice
of the spectral method depends on domains. For example, we can use the mixed
Laguerre-Legendre spectral method for fluid flows in an infinite strip; see, e.g., Xu
and Guo [22]. A more preferable method is the mixed Laguerre-Legendre pseu-
dospectral method, since it only needs to evaluate the values of unknown functions
on the interpolation points, avoids quadratures over unbounded domains, and can
deal with nonlinear terms easily in calculations. Furthermore, for the same domain,
the choice of interpolation approximations depends on the differential equations
considered, since different equations correspond to different consistent boundary
conditions which in turn correspond to different interpolations. The third problem
is how to estimate numerical errors. As usual, we first compare numerical solutions
with certain orthogonal projections of genuine solutions. For the stream function
form, we have to study some projections related to partial differential equations of
fourth order. However, there has been only one excellent result, in Bernardi and
Maday [4], on the Legendre pseudospectral approximation to fourth-order prob-
lems in bounded domains. So far, there is no work concerning the corresponding
approximation in unbounded domains.

This paper is devoted to the mixed Laguerre-Legendre pseudospectral method
for fluid flow in an infinite strip. Let Q = {(z,y)| 0 < z < o0, |y| < 1} with the
fixed, nonslip wall 9. Assume T > 0 and let p be the kinetic viscosity. W (z,y,t)
and Wy(z,y) are the stream function and its initial state, respectively. F'(z,y,t) is
the source term. For the sake of simplicity, let

G(u,v) = Oyudy Av — O udyAv.

The stream function form of the Navier-Stokes equation in an infinite strip takes
the following form,

AW + GW, W) — uA2W = F, in Q x (0,77,
(1.1) W= %—VZ =0, on 99 x [0,T],
W(z,y,0) = Wo(z,y), in Q.

Besides, the stream function W satisfies certain asymptotic boundary conditions as
x — oo. For simplicity, we assume that
(1.2) lim W = lim 0,W =0, ly| <1, t € (0,T].
r—00 r—00

We shall construct a scheme for (1.1)-(1.2) by using the Laguerre interpolation
approximation in the z-direction and the Legendre interpolation approximation in
the y-direction, give some numerical results, and analyze the numerical errors.

This paper is organized as follows. In the next section, we first recall and es-
tablish some results on the Laguerre interpolation and the Legendre interpolation
in one dimension, corresponding to pseudospectral methods for fourth-order prob-
lems. Then we investigate the mixed Laguerre-Legendre interpolation approxima-
tion, which plays an important role in numerical analysis of the related method. In
Section 3, we first construct the mixed Laguerre-Legendre pseudospectral scheme
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for solving problem (1.1)—(1.2). Then we give the results on its stability and con-
vergence and present some numerical results showing the efficiency of this new
approach. In Section 4, we prove the error estimates. The final section is for some
concluding remarks. The main idea and techniques used in this paper are also ap-
plicable to other nonlinear problems in multiple-dimensional unbounded domains.

2. THE MIXED LAGUERRE-LEGENDRE INTERPOLATION APPROXIMATION

This section is for the mixed Laguerre-Legendre interpolation approximation in
two dimensions.

We first consider the Laguerre interpolation. Let Ay = {2 | 0 < < oo} and let
X(x) be a certain weight function. For 1 < p < oo, let

LY (A1) = { v | v is measurable on Ay and |[v|zz(a,) < o0 },

where

(/ | Iv(x)l”x(w)dwf . l<pes,

ess sup |v(z)|, p = o0.
rEA

||U||L§(A1) =

The inner product and the norm of the space Li(Al) are given by
1
(o)ons = [ u@@@dz, ol = 0.0,
1

v
For simplicity, let d,v(x) = a—(m), etc. For any nonnegative integer m,
z

HM(A) ={v]|dveLi(A), 0<k<m},

equipped with the following inner product, seminorm and norm ,

m

(u, U)myXyAl = Z (ag]ccu’ aﬁv)ml\u

k=0
Wlmoxar = 197 00ars (vlmaca = 0 0)7, 44,
For any real r > 0, the space H (A1) and its norm |[|v[|,, are defined by space
interpolation as in Adams [1]. Furthermore, for any nonnegative integer m,
Hi (M) ={v|veH(Ar), 05v(0) =0, 0 <k <m-—1}.

In the following discussions, we shall take y(z) as w(zx) = e, wi(z) = w(qz),
q > 0, and w®(z) = %%, respectively. For y(z) = 1, we denote H7'(A1) and
Hg" (A1) by H™(A1) and H{*(Aq). The inner product, seminorm and norm of
H7" (A1) are denoted by (4, v)m Ay, |V|m,a, and |[v]/m,a,- In particular, (u,v)s, =
(070)071\1 and ||vHA1 = ”U”O,Ar

Assume « > —1. The generalized Laguerre polynomial of degree [ is defined by

a 1 -
:co‘e_”ﬁl( )(x) = ﬁai(xH'“e o).

By (5.1.7) and (5.1.14) of Szegd [19], we have that
1) foo= (1),

(2.2) 0.L4" (2) = —L*TV ().
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The set of the generalized Laguerre polynomials is the Li(a) (Aq)-orthogonal system,
namely,

(2.3) £ ()£ (2)w®) (z)de = T(a +1) < “;0‘ > Stms  L,m >0,
Ay
where 8;,,,, is the Kronecker function. In particular, £)(z) = £;(x) is the usual

Laguerre polynomial of degree [. By (2.1) and (2.2),

(2.4) @me:;a—u
By (2.2) and (2.3),
(2.5) 2L (2)02 L (2) e dx = I(1 — 1)8) 1, I,m>0.

Ay
For any v € L2 (A1),

oo
v(x) = Z 0Ly (x)
1=0
with the Laguerre coeflicients
0 = / v(x) Ly (z)w(z)de, 1=0,1,2,...
Ay

Now let N be any positive integer and let Py(A1) be the set of restrictions
to Ay of all algebraic polynomials of degree at most N. Furthermore, P% (A1) =
PrY(A1) = Py (A)NH (A1) and Py°(A1) = Pa (A1) N HZ(A;). We denote by ¢ or
¢; certain generic positive constants independent of any function and V.

Lemma 2.1 (see Maday, Pernaud-Thomas and Vandeven [I7]). For any ¢ €
Pn(A1) and r >0,
[¢llrw,ar < eN"(|@]lw,a, -

The L2 (Aq)-orthogonal projection Py : L2(A1) — Py (A1) is a mapping such
that for any v € L2 (A1),

(PNU_vad))w,Al :07 v¢€ PN(AI)
For technical reasons, Bernardi and Maday [4] introduced the space

7 s(A1) = { v | v,aTve Hi(An},

2|

equipped with the norm ||v||,w 8,4, = [[v(14+2)
integer.

Lemma 2.2 (see Bernardi and Maday [4]). For any v € H[ 5(A1),r > 0 and
O<p<r,

rw,A, Where 3 is any nonnegative

1PN = 0llpw,a0 < N5 0]l w8005
where 3 is the largest integer for which § <1+ 1.

We next turn to a Gauss-quadrature which induces a suitable interpolation for
fourth-order problems. Let ajv be the zeros of the polynomial 92Ly1(x). By

(2.2), they are also the zeros of ﬁg\?ll(x) Let (IJJN be the corresponding Christoffel
numbers. According to (2.2) and to (3.6.6) of Davis and Rabinowitz [7],

~_ NIV+1)of
7 (Do)
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Moreover, by (3.6.5) of Davis and Rabinowitz [7], for any ¢ € Pan_3(A1),

N-1
(2.6) (z)2e"dr = > ¢(o ).
A1 ]_1
Set
N_ 9
= 1<j<N-1.
T e =

In addition, we take X (z) = 12, (2 — o) and choose the weights &Y and & in
such a way that

N-1
X(z)ze %dr = (—1)N 1N ajv,
A1 ]:1
N-1 N-1 . /N-1
X(@)e de = (-D)N Y [ o + (DN 2N D> — (H a,§V> .
A j=1 =1 % \i=1

Then a calculation shows that (see Appendix A of this paper),

9 24N —1)
(2.7) & = NV E1) &' = AN(N 1)

Lemma 2.3. For any ¢ € Pan_1(A1) and N > 2,
N—1
(2:8) | d@)e"de = > oo el + 6008 + o(0)Er
1 j=1

Proof. For any ¢ € Pay_1(A1), we can rewrite it as
o(z) = 2°Y(x) + n(x) X (x),

where ¢ € Pay_3(A1) and n € P1(A1). So it suffices to prove that (2.8) is valid for
#1(x) = 229 (z), ¢2(z) = 2 X (x) and ¢3(z) = X (z). By virtue of (2.6), (2.8) is true
for ¢1(z). Next, ¢2(0) = ¢2(U§V) =0,1<j<N-=1and 9,¢2(0) = X(0). Thus
by the definition of &V, (2.8) is also true for ¢o(z). Similarly, a direct calculation
shows that (2.8) is valid for ¢s(z). This completes the proof.

We now introduce the discrete inner product and the discrete norm as follows,

N—1
(U,U)W,N,Al = Z u(o_é\/)v(o_é\/)wj\/" ||’U| w,N,A1 = (vav)fj,N,Al'
j=1
By (2.8), for any ¢ € Py (A1),
(29) (¢7 w)u-%NJ\l = (¢a ¢)w,A1 .
In particular, for any ¢ € P, (Ay),
(2.10) [&llw. a1 = |llw,a, -

Lemma 2.4. For any ¢ € PJQ\;O(Al),

< llo,v.a1 < [ Dllw,as-

1
ﬁH(wa,Al
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Proof. By (2.5), the set {x02L;41(z) | l=1,2,---,N} forms an orthogonal basis
of PY (A1) with the weight w(z) = e~2. So for any ¢ € PY (A1),

N
= CNad2Li(x).

=1
Consequently we obtain from (2.5) that
N

N
11)  [4l2,, =S (C)? / (02L0s1 () e dr = 311+ 1)(CV)?.

=1 M =1
Due to 82LN+1(U§V) = 0, we have from (2.5) and (2.9) that

W = 3 / CNON O Loy (2)02Lign (2)e* d

(2.12) it
= > 1+ 1)(CcN)
=1
If ¢ € P5°(A1), then we deduce from (2.4) that
N 1
3 _ N 52 _ 1 neN —o.
02¢(0) ;Cz 0z L141(0) = 3 ;l(l +1CT =0
Hence
N-1
I(l+1)
N _ _ N
(2.13) Cy = 2 N(N+1)Cl ,
and so by the Cauchy inequality,
=i+ ’
Ny2 _ _cN
N(N +1)(CN)? = N(N +1) <; NN T 1)cl )

(2.14)

The combination of (2.11), (2.12) and (2. 14) eads to the desired result.
Remark 2.1. The first inequality in Lemma 2.4 cannot be improved.

Remark 2.2. We can see from (2.11) and (2.12) that for any ¢ € P (A1),

[6llw,n.a, <

Remark 2.3. We also have that for any ¢ € Py_1(A1),

[¢llw,n.a; <
Indeed, (2.8) implies

(2.16) e Tdx = Z * (o )w + ¢*(0)&) + 2¢(0)9,6(0)&7 .

By the Trace Theorem (see, e.g., Theorem 3.2 of Lions and Magenes [16]),
O] = l(e™2 ) O) < elle™2¢ll 3 4 -
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According to Proposmon 3.1 of Maday, Pernaud-Thomas and Vandeven [I7], the
mapping v — e~ 2v is an isomorphism from H"(A;) to H',(A;). So

(2.17) GO <clll,y, < eN?

(2.18) 0:6(0)] < clle”%0x¢]l ;1 < N (|6,

whan 9l g,
The combination of (2.7) and (2.16)—(2.18) leads to the desired result.

We now study the Laguerre interpolation. Let Ay = {0§V |1 <j<N-1}. For
any v € C1(A;), the interpolant Ixv € Py (A;) such that

Inv(z) = v(x), x € Ay,
OFInv(0) = 0Fv(0), k=0,1.

For deriving the approximation accuracy, we follow Mastroianni and Monegato [L§]
to introduce another space. For 0 < g < 1 and r > 0,

Hu () = { v v € L20(A0), [ollag, a < 0}

where

N)\"‘

o0
ollaz, . an = Q1+ 1)
1=0

and 1y is the coefficients of the expansion of v in terms of the generalized Laguerre
polynomials which are mutually orthogonal with the weight w?(x). Next, for r > 2,

Hy(A) = { v | v € B2, (M), [Iolag, a,) < o0}
where
ol 7, a0y = 102015772 ()

Lemma 2.5. For anyv € H,(A1), 0<g<1landr>2,

[ < eNTTE 0w as -

Proof. We first suppose that v € Hg’wq (A1). Take g < g1 <1, 0 <a<1-—q and
0 < € < %. The orthogonal projection P]%,’SH : HE o (A1) — Px°(Ay) is a mapping
such that for any v € H o (A1),

02(v— Py0 0)02¢ w™ (z)dz =0, Vo€ P’ (A1).
Aq

By Theorem 2.1 of Xu and Guo [22], we have that for any v € HJo, (A)NHG a1 (A1),

2,0 —z
(2.19) lo = Py g, <aN"2vllar,, ()

Furthermore, it is shown in Appendix B of this paper that for any v € Hjj_ S (Ay),
0<a<landO<e<1,

(2.20) [0llw, A1 = (N0l n a0 < CHUII2 1 loll? 4,
ol—a (A1) H21 (A1)
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Since Inv — P]%,’Shv c ’PJQ\;O(Al), we have from Lemma 2.4 that

2,0 1 2,0
[ Inv = Py g Vllw,ay < eN2|[In(v = Py 0)]lw,n,a,

1 2,0 3 2,0 3
< _ s 2 _ s 3
(2.21) <eNzlo =Py g,oll? (Al)llv PN,qlvllH%_e )

ol—a Ll—a

< eN'E|lollge, (o)
Thus we deduce from (2.19) and (2.21) that

2,0 2,0

(2.22) [v—=Invllwa, <llv=Pygvlwa + [Ivv— Py vllwa,

S CNl_% ||’U||Hrq1 (A1) S CNl_% ||’U||7'awqu1'
w

Next, for any v € HJ, (A1), we take v* € Py(A;) such that v —v* € H§ q(A1).
Then by the definition of the space H'q, (A1) and Lemma 2.3 of Mastroianni and
Monegato [18],

o= 0"l a0y = 120052 a0y < 020l —n00p, < el
This fact with (2.22) implies that

lo = Invll = o = v* = In(0 = o) < eN""5 o= 0"l s, (ay) < N5 [[0]lpnns.

Theorem 2.1. For anyv € H 4(A1), 0<qg<1, r>2and0< pu<r,
[0 = INV]lpw,ps < ENFFETE (0|,
Proof. By Lemma 2.1,
[Pno = INv[lpwa, < eNF([Jo = Prollwa, + [[v = Invllw,a,) -
Hence we obtain from Lemmas 2.2 and 2.5 that
o= Inolpns < 10— Prolluws + 1Pyo = Invl i,
< cNH™z HU”r,wﬂ,M + cN* (N_% HU”r,wﬂ,M + N2 HU”r,uﬂ,Al)
< NFHE o],

We next consider the Legendre interpolation in the y-direction. Let Ag = (—1,1).
For any r > 0, we define the spaces H"(A3) and Hj(A2) as usual. The inner
product, the seminorm and the norm of H"(Ag) are denoted by (u,v)ra,, |V]rA,
and ”vHT’,Az' In particular, (u,’l))A2 = (uvv)(),/\z and ”vHAz = HU||O,A2~

Let L;(y) be the Legendre polynomial of degree {. The set of the Legendre

polynomials is the L?(Ay)-orthogonal system. Moreover, by (3.7) of Bernardi and
Maday [3],

95 (1 =90y Luy)) = 11 +2)(1* = 1) L(y).
Multiplying the above formula by L,,(y) and integrating by parts, we get that

1
(2.23) / (1=y*)?0; Li(y) 0 L (y)dy = 1(142) (1 1) <l+%> Stms  1,m > 0.
Az

For any v € L?(As),

oo

v(y) = BilLi(y)

=0
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with the Legendre coefficients
N 1
=+ g) [ o)Ly 1=0.1 .
Az

Let M be any positive integer and let Pps(A2) be the set of restrictions to Ay of all
algebraic polynomials of degree at most M. P9, (A2) = P;° (A2) = Par(A2)NHE (Ag)
and P (Ag) = Par(Ao) N HE(Az).

Lemma 2.6 (see Bernardi and Maday [4]). For any ¢ € Pyr(A2) and r > 0,
I9]lr.00 < M"[[6]1a,-

Now we follow the idea of Bernardi and Maday (see page 319 of []) to consider
an interpolation which is suitable for numerical solutions of fourth-order problems.
Let TJM, 1 <j < M — 3, be the zeros of the polynomial 92Ly;_1(y), while the ﬁ;‘/[
are the corresponding Christoffel numbers, as in (4.9) of Bernardi and Maday [,
with m = 2 and N replaced by N — 1. Let

pit =1 — (")) 2, 1<j<M-3.
In addition,
(2.24)
P =—ptl, = ° . =l = SQM? —2M —1)
’ ' M(M —2)(M? -1) ’ ' 3M(M —2)(M?-1)
By virtue of (4.3) and (4.29) of Bernardi and Maday [4], for any ¢ € Papr—3(A2),

M—-3 1
(2.25) oy)dy =Y o(r})p}" + > (B5o(=Dpr +ye(1)pr) -
Az j=1 k=0
We next introduce the discrete inner product and the discrete norm as follows,
M-3 .
(wo)ans = Y w(m o) ol = (,0) 34,
j=1
We get from (2.25) that for any ¢ € 7722}\3_3(/&2),
(2.26) (6, V) m,ns = (B, Y)A,-
In particular, for any ¢ € PV, ,(A2),
(2.:27) léllar,a. = 9]l a,-

Lemma 2.7 (Bernardi and Maday [4] (16.10) and (16.13)]). For any ¢, ¢ €
P (A2),
(6, V) a0, ] < clllla, [P 4
aM IR, < 0l3s,a, < c2ll8lI3,-
Remark 2.4. It can be verified that for any ¢ € PY, ;(A2),
ollar,0: < (|6l As-

Indeed, by (2.23), the set {(1 — Y2 Li(y) | 2<1< M — 1} is an orthogonal basis
of PY;_1(As), and so for any ¢ € P, _;(As2),
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where the qgl are the corresponding coefficients in the expansions in terms of
(1 — 497 Li(y). Thus by (2.26) and the fact that 82Ly—1(7;) = 0, we obtain

that
M—2

1613, = 3 (@0)? / (1— )2 (2L(w)) dy
—2 Az
M—1

<3 (&) /A (1= 4?2 (B2Lu(y))* dy = | 6]31.n,.

=2
Remark 2.5. We also have that for any ¢ € Par—2(A2),

[6llaz,4, < cllglla,-
In fact, ¢* € Porr—4(A2) and so by (2.25),

~

N

M-3
Fly)dy =Y o(r)p} + & (=D + 6" (Vagls
(2.28) ) =
+20(=1)0:0(=1)pi + 26(1)0:6(1)p1", .
Thanks to the Trace Theorem and Lemma 2.6,

60 < cllél 3., < MIlaa,

0:6(0)] < ellOadll ) < Ml

Then the conclusion comes from (2.24), (2.28) and the above statements.
Lemma 2.8 (Bernardi, Coppoletta and Maday [2, Lemma 3.2]). For any ¢ €
Pir (A2),
10,0113, < =50, 9)mn, < cll0y0l3,-
We now study the Legendre interpolation. Let Ay, = {TJM |[1<j< M- 3}.
For any C'(A3), the interpolant Ipsv € Pps(Az) such that

{ Ino(y) = v(y), y € A,
OF Inpo(£1) = Ofv(£1), k=0,1.
Lemma 2.9 (Bernardi and Maday [3, (13.30)]). For any v € H"(Ag2), r > GTT”
and 0 < p < min(r, 2),
[0 = Tarvllua, < M0l A,

Now we are in a position of investigating the mixed Laguerre-Legendre inter-
polation. Let © = Ay x Ay. For any weight function x(z) and r > 0, the space
H ;(Q) is defined in a similar way as in the previous paragraphs. The seminorm
and the norm of HJ () are denoted by [v]., and [[v]|y, respectively. For any non-
negative integer m, (u, v)m,, stands for the inner product of H;”(Q) In particular,
(. 0)x = (t, )0,y and [[o]lx = [[o]lo. For x = 1, we denote (u,v)y, [o]y and vl
by (u,v), |v| and |Jv]|, for simplicity. Furthermore let

H&wq(Q) = { vl v e H(Q),v(0,y) = v(x, —1) = v(z,1) = 0}7

Hg,wq (Q) = { ’U| (S Hf)’l (Q)a U(Oa y) = axv(oa y) = U({E, _1)
=v(x,1) = dyv(z,—1) = dyv(x, 1) = 0}.
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Let Vivr = Pn(A1) ® Par(As) and Vi, = Py (A1) ® Py (Az), i = 1,2. The
H&wq (Q)-orthogonal projection PJ%/’S\/LQ : H&wq Q) — ]\2,(1)\4 is a mapping such that
for any Hg (),
(A(U — P2 ) A¢) =0, Ve V20 ().
N,M,qY)> i ’ N,M

For technical reasons, we introduce a nonisotropic space. For any 0 < ¢ < 1 and
r,s > 2, let

Mp*(Q) = L*(Ag, Hy (A1) [V H* (A2, L2, (A1) () H' (A2, HL7 (A1)
(VH* (Ao, Hb (A1) () H? (Ao, HE (M) [V H 2 (A, H24 (A1),
equipped with the norm
||’U||M<;b = (H’U”%Q(AQ,H;Q(AQ) + ||U||§{S(A2,Liq(/\1)) + HU”?—Il(Az,H:;l(Al))

2 2 2 %
ol et a0, 2, a0y FI0l 20, 7752000 T 10052000, 12, (A1)

Lemma 2.10 (Xu and Guo [22, Remark 2.4])). For any v € M75(Q) (" H§ .4 (),
0<g<l, rns>2and0 < pu<2,

2,0 _r _ _ oL
[0 = Py gvlliw < e(NTT2 + MP7*)(NTH 4+ M) 3 o]l e

Next, let wN M — = w; pM The discrete inner products are given by
N—1M-3
(UU)WNM—(UUOwNM—ZZ 17] UZV,TJM)WJYJM,
=1 j=1
N—1M-3
(U7’U)1,w,N,M = (&Cu(ai )8 U( sz ]M)
i=1 j=1
N,M
+0yu( o, ]M)ﬁ v(o ZN,T]M))WJ ,
N—1M-3
(’LL'UQWN 'fvv ]M)aQ ( Zva]M)
=1 j=1
+288u( o, T; )881}( fV, ]M)
N,M
+ Oulo TR 7)) Wi,
Obviously,
(2.29) |(w, V) ko, 11| < Ntllkwo, v ar 0]k N2, O <K< 2.
Thanks to Remark 2.2 and Lemma 2.7, for any ¢, ¢ € P (A1) x PI%/}O(AQ),
(2.30) (@, ). nm < cl|dl|wllP]]w-
By Lemmas 2.4 and 2.7, for any ¢ € V]\Z,:%,
1
(2.31) a(MN)2||9llo < [|0llw,nm < 2|l

Remark 2.6. If ¢ € Vn_1, am—2, then by Remarks 2.3 and 2.5,

9llw, v < cll@lw-
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Finally we study the mixed Laguerre-Legendre interpolation. Let Qn v = Ay ¥
Apr. For any v € C1(Q), the interpolant In pv € Vi, ar such that

IN,M’U((E,y) = v(x,y), V((E,y) S QN,M;
8£IN7MU(J,‘,i1) zagv(m,il), reA, k=0,1,
8;8[]\[71\/[1)(0,:(]) :Qﬁv(ovy)a y €My k=0,1.

It is easy to see that for any u,v € C*(Q),
(2.32) In mv = InIyv = IyInv, (IN7MU, — U,U)W7N7M =0.

+

6
Theorem 2.2. Let0 < a<r, 0 <~y <min(s,2), r>2, s>
Then for any v € H(Ag, Hy(Ar)) N H* (A, HE, (A1),

and0 < g < 1.

[0 =In 200 1 (s, g (A1) < EN P20l g, 17 (A0)) HEMY 0] s (0, 2, (1) -
Proof. Let T be the identity operator. Then
v—Inmv=(v—Inv)+ (v—Inv) — (T —IN)(T — In)v.
Hence
v = In M| v (g, HE (M) < D1+ Do,
where

D1 = [Jv = INV| v (ag, 18 (A1) + 10 = Dna 0l v (A0, 112 (A1)

Dy = (Z — IN)(Z = In)vll 5 (nn, H2 (A1) -
By Theorem 2.1 and Lemma 2.9,

Dy < NP3 [0l g,y (ar)) + M2 0]l s (ag, 12, (A1)

Dy < c|(Z = In)vll v (s, e (A1) < M 730 e (g, 12, (A1) -

This completes the proof.

In the numerical analysis of the mixed Laguerre-Legendre pseudospectral
method, we need the following result.

Lemma 2.11. For any v € CY(Q) and ¢ € V]\Q,:(J)w,
(v, @) = (v @), nv.m| < el = In—1,m-3]lw + ([ = In.molw) |-
Proof. Since In_1,pm—3v € VN_1,m—3, we have from (2.9), (2.26) and (2.32) that
(v, 0)0 — (V,P)wnmw =V —IN-1,M-30,0)0w + (IN—1,0M—3V — IN MV, ®)us, N, M-
Furthermore,
(v = In—1,m-30,0)u| < [0 = INn—1,m-3V|w |-

On the other hand, In_1 p—3v—In pv € 77]2\,’0(/\1) X P]%/}O(Ag). Finally, using (2.30)
yields that

|(IN-1,0-3v = IN M0, @), N M| < e[ IN-1,m-3V — IN mV||w]|@]]w-

This completes the proof.
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3. THE MIXED LAGUERRE-LEGENDRE PSEUDOSPECTRAL SCHEME

In this section, we construct the mixed Laguerre-Legendre pseudospectral scheme
for problem (1.1), (1.2). As we know, the solution of (1.1), (1.2) possesses some
conservations which come essentially from the skew-symmetricity of the nonlinear
term G (u,v), namely, for any u,v € HZ(Q),

(3.1) //Q G(u,v)udzdy = 0.

Since the domain € is an infinite strip, we shall approximation problem (1.1), (1.2)
by the Laguerre interpolation in the z-direction. It means that we multiply (1.1)
by the weight w(z) additionally. However,

//Q G(u, v)uwdxdy # 0.

This fact destroys the conservations. To remedy this deficiency, let W = e~ 2 U, W,
=e 32Uy and F = —e~% f. Then problem (1.1), (1.2) becomes
(3.2)

ONe 2U)+Ge 2U,e 2U) — pA2(e”2U) = —e 2 f, in Q x (0,71,
UZZ—ZZO, on 092 x [0,T7,
lim e 2U = lim e 28,U =0, y € [-1,1],
o o te[0,T],
U(z,y,0) = e2Wy(x,y) = Up(,y). in Q.

To derive a reasonable weak formulation of (3.2), let

J(u,v,w) = (Av, Oyud,w — Oyudyw), B(u,v,w) = J(e" 2u,e 2v,e” 2w).
Clearly for any u,v,w € HZ (),
(3.3) B(u,v,w) = —(G(e"2u, e 2v),e” 2w), B(u,v,u) = 0.
A weak formulation of (3.2) is to find U € L*(0,T; Hg ,(Q)) N L>°(0,T; HL())
such that

(3.4)
(0:V(e2U), V(e 2v)) + B(U,U,v) + p (A(e"2U), Ale™2v)) = (f,v)w,
t

<
4
m
&
€
e
m
=
e

U(0) = Uy, in Q.

Due to (3.3), the solution of (3.4) keeps the related conservations.
We now construct the mixed Laguerre-Legendre pseudospectral scheme. To do
this, let . ’
anm(u,v) = — (A(eiéu),efv)
by (u,v) = (Az(e_%u),e%v)w N

In v (u,v,w) = (e°Av, Oyudyw — Opulyw) , n as >

w,N,M "’

By (u,v,w) = Iy (e 2u, e 2v, e 2w).
It is clear that for any u,v,w € H2(Q),
(3.5) By p(u,v,w) + By (w,v,u) = 0.
In particular,

(3.6) By a(u,v,u) = 0.
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Obviously (3.6) simulates (3.3) properly. Thus we approximate the nonlinear
term B(u,v,w) by By m(u,v,w). The pseudospectral scheme for (3.3) is to find
un,m(t) € V]\Z,(J)W(Q) for all 0 <t < T, such that

@n
m(Orun a(t), d) + By v (un ar(t), un ar (1), @) + pbn ar(un a(t), @)
=(f(t), Puny,  VOEVRY, tE€(0,T],
un,m(0) = wo,n.m = In,mUo, in Qn .

We now consider the stability of scheme (3.7). Assume that ug n a and f have
the error 4oy, and f , respectively. They cause the error of uy as, denoted by
un,m- In order to describe the numerical errors, we introduce the following inner
products,

an,m(u,v) / e (0pu, Opv) M, Ade—l—/ (Oyu, OyV)w, N,A, AY,
A1 A2

bNM (u,v) / e~ 82u 8 V)M, A, dT + 2/ €0, 0yu0, 0yvdzdy
Ay A

+ / (0§u, 8§v)w7N7Aldy.
Az

Accordingly
ol onptm = @2 0 (0,0),  [Vlow vt = BB (1, 0).
Also let
¢ = (un ) = sup |unmlf o noar N arlS o noar o+ 1
0<t<T
and

T
p(to,Nnr, frt) = an v (to,N,nr, o, N ) + / £ (12w, ardn.
0
We have the following result.
Theorem 3.1. For any 0 <t <T,

t * ~
|’&'N7M(t)|iw,N,M,~ + M/ |7:‘N7M(77)|3,W,N,M,~d77 < cem 'plionu fit).
0

We next deal with the convergence of scheme (3.7). For simplicity, let
M*(Q) = L (Ao, Hjq (A1) N H* (A, L4 (A1)
NH' (g, H7 ' (M) N H (Mg, Hlo (A1)
NH?(A2, Ho:? (M) N H*72(A2, HZ4 (A1), ¢ >0, rs > 2.

Its norm |[v[| 7.« is defined in the same way as for [|v]|pz;+ in Section 2. Clearly
for any 0 < ¢1 < g,

(3.8) lollagge < ellell -
Also for ¢ >0, r, s >0and § > 0,
1
Y@ = HEFE Q) 0 HUF I @) 0 £, HEA (M)
NH"*(Ag, L24 (A1) N H? (Ao, HLo (A1) N H® (Ao, Hou (A1)

with the norm [[v[|yr.s.
q,
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Theorem 3.2. Assume that for 0 < ¢ < 1, r > 4, s > 2,7,§ > 0,711,817 >
2,710,890 > 2,\,y >0 and § > 0,
U € L*(0,T; My*(2)) N L}0, T3 Y, 5 (2))
NL>®(0,T; MP2(Q) N H¥(Q)) N H (0, T; ML (Q)),
Uy € L*(0,T; M (),

f e L*0,T; H (A, L2, (A1) N L2 (Ao, H), (A1))).
Then for all0 <t <T,

t
00) = o (R var + 10 [ 1UG) = s )
< (N2 + M?*%)2 max(N, M)
( -5 4 M2 9) +(N_§+M_§)2+(N1_%—|—M2_31)2(N_1+M_2)
F(NPE M) (NP MP2(NTL A M)+ (N2 + M),

with ¢* being a positive constant depending on the norms of the spaces mentioned
of U, Uy and f.

Remark 3.1. If N = O(M?), #,\ > r — 4,5,y > s — 3,790 > r,r; > r — 3 and
S0, 81 > § — 2, then

|U(t) —un,m(t )|1wNM~+:U/ |U(n) —unm(n )|2wNM _dn < cNmax(t= ni-%

UN=OM), 7, A\>r—4,5,v>s=2,rg >r,r1 >r—3,8 > s—1 and s1 > s—%,
then the power of N in the above estimate becomes max(4 — r,5 — 25,4 — £ — s).
Clearly we get a better convergence rate when N = O(M?). This feature comes
from the fact that the convergence rate of the Laguerre approximation is only half

of that for the Legendre approximation.

-1 T T T T T T T T T

Zol

FIGURE 1. Convergence rate for N = M?
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FiGURE 2. Convergence rate for N = M

We shall prove Theorems 3.1 and 3.2 in the next section.
In the end of this section, we give some numerical results. We take the test
function

22(1 — y?)? sin(kat + kyt)
24z+yh

Uz,y,t) =

with £ = 0.2,h = 5.0. In actual computation, we use the standard fourth-order
Runge-Kutta method in time ¢ with the step 7. Let

Enm(t) = U®) —un,m(b)]lw,n,m

and

= _NU#) —un,m ()], N0
) =) '

w,N,M

The errors En am(t) and EMM(t) at t = 1 are listed in Tables 0l and [, which
indicate the convergence of scheme (3.7) as N, M increase and 7 decreases. The
errors En ar(t) and Ey p(t) with M = 16, N = 64 and 7 = 0.001 listed in Table[3
show the stability of calculation. For checking the spectral accuracy in the space,
we list the errors En p(1) with N = M? and 7 = 0.001 in Figure [I, while we list
errors En a(1) with N = M and 7 = 0.001 in Figure Bl Both show the spectral
accuracy. But the the errors with N = M? are smaller than those with N = M.
This coincides with the theoretical analysis.
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TABLE 1. The errors En pr(1).

7 |IN=4M—-2|N=16,M=4|N=36,M=6]|N—=064M=28
0.1 4.921E-02 3.255E-03 2.836E-03 1.785E-04
0.01 2.219E-02 2.785E-03 2.644E-04 1.859E-05

0.001 7.005E-03 4.953E-04 4.741E-05 6.023E-06
TABLE 2. The errors Ex ar(1).

T [N=4,M=2|N=16M—=4 | N=36, M =6 N =064, M =8
0.1 6.195E-01 1.014E-01 8.298E-02 5.604E-02
0.01 2.729E-01 8.681E-02 8.318E-03 5.835E-03

0.001 2.466E-01 1.686E-02 1.629E-03 2.036E-04

TABLE 3. The errors En a(t) and E'N7M(t).

4. THE PROOF OF ERROR ESTIMATES

3 En (1)

EN,]\/I (t)

1.0 | 6.023E-06

2.036E-04

2.0 | 6.128E-06

2.614E-04

3.0 | 9.839E-06

6.968E-04

4.0 | 1.060E-05

1.047E-03

5.0 | 1.459E-05

1.370E-03

We need some preparations stated in the following six lemmas.

Lemma 4.1. Let ¢ € Vﬁ,ﬁw. We have that

(1) exmin( 5, 37)|0[F o Seal@l? v s~ San (@, 6) <csld|

(ii) ¢1 min(

(iid) cll#lI2

%, ﬁ)léliw < |¢|§,w,N,J\1,~ < C2|¢|§,w
<

3lelie <

|¢|§,w,N,J\1,~'

Proof. By (2.9), Lemma 2.8 and integration by parts, we deduce that
an (9, ¢) = —(02¢+ 020 — 0+ 56, )N

(4.1)

>
Ay

By the Poincaré inequality, for any v € HE(Az),

lollR, < 209,013,

(4.2)

So by Lemma 2.7,

/ 19

1
i,N,Aldy > 2—c||¢|

2
w,N,M*

Y 1
0s R nude+ [ 10,01 xn,dy = 71012
2

%W,N,M,N < C4|¢|%,w7
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By Xu and Guo [22], for any v € Hj (A1),
(4.3) [01Za, < 41020113 A, -

So by Lemma 2.4,

2
w,N,M*

. 1
| e 100l e = 116l
Ay

2
Take ¢ = 5

o Then the previous statements lead to
c

. 1
e ([ e 1ouolnde [ 10,601 ) = {10 o

Thus (4.1) reads

an,m (9, ¢) > 02/ e_gc||8:zc¢||?\4,A2dJU + 02/ ||8y¢||i,N,A1dy = CQ|¢|%,QJ,N,M,N'
A1 A2
Next, by virtue of Lemmas 2.4 and 2.7,
o101
CQ|¢|%,w,N,M,~ Z C1 mln(ﬁa M”(ﬁﬁ,w

Furthermore, we obtain from (4.1) and Lemmas 2.4, 2.7 and 2.8 that

an (6, 6) < / 100l a,d + / 10,112 . dy

1 A2
< c3|¢|%,w,N,M,~ < c4|¢|%,w'

The previous statements imply result (i). Result (ii) comes from Lemmas 2.4 and
2.7. Finally, result (iii) comes from (4.2), (4.3) and the definition of |¢|2 . N M~

~—

7

Lemma 4.2. For any ¢ € C1(0,T; V]%,’g\/[

an,m (0, ¢) =
Proof. A direct calculation gives that

(4.4) an, v (0ch, ) = A1 + Ay
with

a/N,M(¢7 (b)

N =
S

Ay = — (82016, B n 11 + (DDsby Bt — i(a@, )N

Ay = —(07010, ) N M-
By (2.9) and integration by parts,
1d ﬂ, 1
(4.5) A = S (//\1 e ||8x¢||?\4,/x2dx - 1||¢| E;,N,M) .

On the other hand, as pointed out on page 92 of Bernardi and Maday [3], for any
U, 2 € Py (A2),

(0701, ¥2) mny = (Y1, 051b2) M1, n, -
Thus
1d
(4.6) Az = =57 (0,0, 9)w.N -

The combination of (4.1) and (4.4)—(4.6) implies the desired result.



MIXED LAGUERRE-LEGENDRE PSEUDOSPECTRAL METHOD 113

Lemma 4.3. For any ¢ € V]\Q,:?w,

bN7M(¢7 ¢) > |¢|§,w,N,M,N - C|¢|%,w,N,M,N'
Proof. We have
byt (6.9) = (9 56).e39) \, +2(0202(c 2 0).e0)
+ (8;(e*%¢),e%¢)w’N’M.

So it remains to estimate the terms at the right side of (4.7). First, integration by
parts gives that for any v € Hj (A1),

(4.8) /A1 (0x(e”20))%dx = /A1 e ” <(5‘xv)2 — iv2> dzx,

and for any v € H&w(/\l),

(4.9) /A (@R ) = /A o ((aﬁv) - —(a )2+ 116 2) da.

Now let
¥lwy) = Oe F (1)) — 1oe Fo(ey),
Since e3 ¢np € Pon_, X Parr(Az), (2.9) and integration by parts lead to
et = [ @ TP - o [ ot
Therefore by (4.9),

(Oz(e™20),e20) v o

= 1

@10) = @eo), vt 15
_ 1 _ 1

- / 0263 0 dr — / ¢ 0p |2y pydr +

Ay 2 Ay 16

Next, by (2.9), Lemma 2.8 and integration by parts,
(0202 20).%0)

= [ e (ode o) - fetotoncio) et {000
Ay M,A2

@iy == [ @i o 10),,, do- g [ @0 o

A1 ’ Al
1
+1(a§¢7 B)w, N M
—z c
> [ e @0,0Pdudy 5 [ 10,012 5.0
Q 4 Ja,
By (2.26) and integration by parts, we have
@12 (O E00e30), = [ Ol 0nnds= [ 10501 xn v

By substituting (4.10)—(4.12) into (4.7), we reach the desired result.
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Lemma 4.4. For any ¢ € Vo
4. Yy N

N-1

S

-3
Ol (CHCE DICAR A AR CHCEDICAR AN
j=1

@
I

—
<
IAN

C|¢|1,W7N7M,N|¢|§,w,N,M,~'

Proof. We first derive some inequalities. By (4.8), (4.9) and integration by parts,
we have that for any v € Hg (A1),

(113) 10 5 0)I3, < 19201,

and for any v € H§ (A1),

(114) 02 F0)|3, = 1020020, — 710 F IR, — 710003, < 102012 5,
Next, if 9,v € HE(A2) for all z € Ay, then by (4.2),

(4.15) 10:0]13, < 2[1020,v]3,-

Furthermore, we have from (2.9), Lemma 2.4 and integration by parts that for any
¥ € PR (A1)

N—-1
3 wNer (Bu(eEY)(o))?
=1

4.16 -
(4.16) _ / RO / eyPdr+ 7 Y v (ol)
Ay Ay i=1

< (|0,

2
w,A1*

Also by the Cauchy inequality, (4.3), Lemma 2.4 and Remarks 2.2 and 2.3,

N-1 N 9
Y W (@2t 0)io)
4.17 Nl
- <3 Y o ((@20e))? + (o) + 15uel))
i=1

—
&
£
|
N
&
5
=
2
g
=
[ V)
IN
[\]

/A 0a(e™ 5 ), 7M)| 102(e~F ), T ),

—
&
£
|
|
&
)
=
2
\5
VM
IN
[\]

/A 10a(e 2 9) (0N 9] 1020, (e~ E )0 ,)\dy.
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Thus by (4.15)—(4.17) and Remark 2.4, we obtain that

s4/A1 M0, (7% ) (. 7M)| 02(e~ % ) (z, M) dx

/A wN e 0,(e 2 6) (o )| 10:0, (e E @) (ol y)ldy

<4 (/ ;! (Ox(e” 2 ) (w, 7)) da
(4.18) M

2

N— N -
' (/A W' e (3x(6_5¢)(<ffv?y))2dy>

1
2

N _=z
: (/ WzNea"' (020 (e 2¢)(va,y))2dy>
Ao
< |l w N M~ B2, N 1~ )02y D112 < €l dl1 N 2~ B3 s

Next we have that

Oy 2) 0N, 7)) <2 [ [0,(e 5 ) (@, TM)] 020y (e % ¢) (2, 7M)|d,

Ay

By D)oY, 72 <2 [ 19,(e 2 4) (N, )| 102(e ) (o, y)dy.

As

By an argument similar to that used in the derivation of (4.18), we use Remark 2.4
and (4.2) to deduce that

N—-1M-3

N,M oN _z 4
419) > D> wip e (9y(e E) (ol M) < eldhwNa LB v ar
i=1 j=1

Finally the desired result follows from (4.18) and (4.19).

Lemma 4.5. For any ¢ € V1\2/’(1)\/p

N—-1M-3

N,M N _z 2
Z w;; e (Ae 2¢)(UzNaTJM)) §C|¢|g,w,N,M,~'
=1 j=1
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Proof. We have from (4.16) and Remark 2.5 that

N—-1M-3
wiy e (Al Fg)(@) 7))
i=1 j=1
M-3 N—1
<Y pM / e (D2p(a, M )2dr + ¢ 3w [ (@020(0Y, y))2dy
j=1 1 i=1 2

= C|¢|2,w,N,M,N-

Lemma 4.6. For any ¢, ¢ € VJ\Q,:?\/I,

1 1 z 3
| BN, (95 0, 9)| < C|¢|f,w,N,M,~|7/’|f,w,N,M,~|¢|24,w,N,M,~|1/)|§,W,N,M,~'

Proof. The conclusion comes from the Holder inequality and Lemmas 4.4 and 4.5.
We now prove Theorem 3.1. By (3.7), the error @y s satisfies

an,m(Ortun ar(t), @) + By (an ar(t), un v (t) + an o (t), @)
+Bn, v (un e (t), in e (t), @) + pbn,a (G e, @)

= (f(t), Q)onas VO EVYY,, teE(0,T].
an,m(0) = do N M-

(4.20)

Letting ¢ = 2ty ar in (4.20), we get from (3.5), (3.6) and Lemma 4.2 that

d

(4.21) EanM(aN,M(t)vaN,M(t)) + 2ubn v (Un M (t), N, 0 (t))

= 2Bn, (G, ar (8), v ar (8), un,nr () + 20F(8), v, ar (£) oo, v 01
By Lemma 4.6 and the Hoélder inequality,
12BN ar (U, ar (1), an (1), un,ar(t))]

3
1
2

1 1
< clun (O] n s lun ()]s, 1

o N MO M O] o N v~

s VL,

7
(4.22) un v (O30, 8 01,~
< MWN,M(t)@,w,N,M,N
c .
+ ;|uN,M(t)|%,w,N,M,~|uN,M(t)|g,w,N,M,~|uN,M(t)|%,w,N,M,~'
Thanks to Lemma 2.7 and (4.2),
(4.23) 120/ (1), @n e (8))wonvont ] < clanar (O o nar + IFOIZ v oar-
Using (4.22), (4.23) and Lemma 4.3, we get from (4.21) that
d - ~ 2
70N N (N (), an v (t) + plan v () [2,0, 8,01~

< - (|UN m()[? N M | uN (¢ )|g,w,N,M,~ +1) |ﬁN,M(t)|%,w,N,M,N

= |

+IFOI v
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Integrating the above inequality with respect to ¢, we get from Lemma 4.1 that

t
|aN7M(t)|%,w,N,M,N + N/O |aN,M(77)|§,w,N,M,~d77

cc*
I

Finally we use the Gronwall inequality to reach Theorem 3.1.

Next we prove Theorem 3.2. For the sake of simplicity, we first compare the
numerical solution ux, )s with the orthogonal projection Uy, = P]%,’QLM%’(IU, 0<
g < 1. Using (2.9) and (2.26), we obtain from (3.4) that

anm(Un (1), @) + B(UN (1), Unar(t), @) + pbn v (Un s (1), @)

t
< / it ()2 a1+ (it ar, 1),

4.24 !
( ) :ZGk(¢)+(f7¢)w,N,Ma v(be‘/]\Q/',?\/[a te (OaT]7
k=1

where
Gi(¢) = (&Y (e 2 (Un —U)), V(e 29)),
G2(¢) = Bnm(Un ot Unou, ¢) — B(U, UL ),
G3(¢) = p (A (e 2 (Un —U)),Ale"2¢)),
G4(¢) = (fa P — (fa ¢)w,N,M-
Furthermore, let Un ar = un,m — Un,m. Then we get from (3.7) and (4.3) that

an (U (t), ) + By (Unone (), Unoae (t) + Unoae (), )

(4.25) + Byar(Un.ar(8), Un o (1), 6) + pbnar (Unoar (1), 6) = = > G5(9),

<.
Il
—

Vo € Vg, t€ (0,77,

In addition Un,ar(0) = InUo — Py°, 45 ,Uo. Comparing (4.25) with (4.20),
we find that it suffices to estimate the up-bounds of |G;(Un as(t))| for determining
the accuracy of the numerical solution un, az.

First, we know from (4.13), Lemma 2.10 and result (iii) of Lemma 4.1 that for
1,81 > 2,

G1(Un )|
<V (e 2 (B:Un,mr = ) || V(e 2 Un )
0. UN v — 04U 10| Unar |1
%|U'N,M|§7w7N7M7N + ﬁ(Nl’T71 + M*S)2(NTL ¢ M’2)||3tU||?\/1;1v51~

(4.26)

IN

A

Next we have that
\Go(Un,ar)| < |B(U, U, Un,ar) — By (U, U, Unoar)|
+ BN (U, U, Uy ar) — Byt (Unars Unoars Unoar)|

5
< ZAJ';
j=1

(4.27)
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where
Ay =] (F a9, (e 2, Fou (e F 0w )
— (F Al E )0, (e 2D), cFau(e E Ty M))wNM :
Ay = (e%A(e—%m(e—%U),e% e H )
_(e%A(e*%U)a (e 5U),e50,(e 50 ))wNM‘

Ag = (B A (€W = Unan))  ,Un n0s(e ™ Ox )

— 8m(e*%UN,M)8yUN,M)

w,N,M|’

z z -~

Ay = (e% Ale5U),0,(U — Un.a1)0a(e” 5 Unap) :

)w,N,M

z ~

As = (e%A(e_%U),e%(‘)x(U — Unar)0y (e~ 5 Una1)

s )

)w,N,M‘ ’

We now estimate A;. We have from imbedding theory that for any v € H1t(Q)
and 0 > 0,

(4.28) le™ % vl Loy < clle™Fvllies < eflvflisse
Obviously
r
o (02 FU)0,U) = <3 )aﬁ?( U)ar=90,U.
=0
Hence by (4.28),
107(e™ 20, Ul| 12 (As, 17, (A1)
SOt ys216.0l U L2ag, 573200 nE (Mg, B 70 (A1)
Similarly
|I3§(6*%U)a U||L2(A2 ra (A1)
||U||H2(A2, o(A)NH (Ag,HT g (A1)
||3§(e 2U)9, U||H5<A2,L2q(A1))
S UM etr 140451 U ms (2,12, (A E+1 (22,22, (A1)
102(e"2 U)o, U||H *(A2,L24 (A1)

||U||Hb+2(A2, 2 (M) H= 1 (A2,L2, (A1)

Therefore we use Lemma 2.11, Theorem 2.2 and result (iii) of Lemma 4.1 to obtain
that

Ar < oNTE|UNSr. +M™ g||U||2qrv; UN.mw)

(4.29) H -z —5)2
< Uy a3 . ~+—N z + M™*)
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We can derive an up-bound of As, which is exactly the same as (4.29). Clearly by
(2.29),

Az <le2A(e™2 (U = Un,m)) llww,ne

NOyUnN102(e™ 2 Unar) — Oule™ 2 Unar) Oy (e 2 Uniona) o, v,

Next we estimate |2 A(e™2 (U — Un.mr))||lw.v.m- By (2.32), we have that
le® A(e™ % (U — Un,a))llwv,na

(4.30) < | Inar(e2A(e™2U)) — In—1m—2(e2 A(e™2U))||w.N.s

x

+ 1 In—1,m2(e2 Ale™2U)) — e2 Ale™ 2 Un,ar) ||, v 0
It is easy to see that
Ina(e? A(e™2U)) — In_1m—2(e? Ale™2U)) € Vi,
and
In i m—2(e2A(e™2U)) —e2 Ale 2Unr) € V1.0 -2
Thus by (2.31), Remark 2.6 and (4.30), we obtain that
le® A(e™ % (U — Un,a))llwv,na
< cle2 A(e™3U) — In (e Ale™2U))|u
+clle?A(e™2U) — In—1.m—a(e2 Ale™2U))]|w
+elle2A(e™2U) —e2 Ale™ 2Un 1) -
By Theorem 2.2,
e A~ 20) — Inar(eE Al U)o
< (103U = Inm 03Ul + 10U — In 102Ul
U = InmUllw + 10U = In U ||)
<c (N27%”U”L2(A2,H:q(A1)) + M275”U”H5(A2,Liq(A1))) :
By Lemma 2.10,
le*A(e™2U) —eFAe™ 2Un,m) o < (N2 + M?7°)|[U || asge-
The above statements lead to that for any 0 < ¢1 < ¢ <1,
le® Ale™2 (U = Un,a) lw,n,mr < e(N?72 4+ MP7%)|[U]| e
Since Un, ar, U NM € V]\Q,:%(Q), we obtain from the Schwartz inequality and Lemma
4.4 that

10,Un 1102 (e 2Un 1) — D€ 2Un 21) 0y Un |l v s

NI

<c <|UN,M|1,w,N,M,~|UN,M|1,w,N,M,~) ’ <|UN,M|2,w,N,M,~|UN,M|2,w,N,M,~)
By Lemma 4.1 and Lemma 2.10, we have
UnM1w,nm~ < clUnmliw < U202,

[UNM20,8,M~ < lUnMl2.0 < U 22
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The above statements lead to

A3 < o(N*75 4 MP70)|U]) gy

U||M§'2
1 3
~ 1 ~ 1
' (|UN,M|1,w,N,M,~) (|UN,M|2,w,N,M,~)

(4.31 .
) < e(N2E 4 MU 2 U

C 7 2 a7 2
+;|UN,M|1,W,N,M,N+4_0|UN,M|2,w,N,M,~-

We now estimate A4. By the Schwartz inequality,
Ay <0y (U = Unar)llo, v me | A€ 20| oo oy lle Du(e™ 2 Unaa) o, v,

Since In v (0y,U) = Inar-1(0,U) € Vig'hyys Inar—1(0,U) — 8,Unar € Vi, we
obtain from (2.31), Lemma 2.4, Remark 2.4, Theorem 2.2 and Lemma 2.10 that

10y (U — Un at) ||, N1
<N (0yU) = INar-1(0yU)lw. v + 10yUn ar — IN v —1(0yU) ||, N0
< CHayU - IN,M—l(ayU)Hw + CHayU - IN,M(ayU)Hw

+clloyU = 0y Py a5 Ul
<c (NS_TT 10uU | L2 (ag,mr75 (1)) + MY2|0,U || o1 (Ag22,4 (A1)
T NE LMW 4 M) U )
By Lemma 2.4 and Remark 2.2,
le20x (e 2Un ) lw.nmr < [UN 2|1 o, N 0 o
By imbedding theory, for § > 0,
1A 2U) || Loy < clle2 Ale™2U)|| girs ) < cllU | sts(g)-

The above statements lead to

A <o (N5 4 M2 4 (N7 4 M2T(N T 4 M) U
(4.32)

Ullhs+s (o

+ |ﬁN7M|%,w,N,M,~'

By the same procedure as in the derivation of (4.31), we can get the same error as
(4.31) for As.
According to (4.14) and Lemmas 2.10 and 4.1, we assert that for 0 < ¢ < 1 and
r? S Z 27
GO )l < pllAe 3 (U = Unan) |l A2 Un,u)
(4.33) < plU = Un,wrl2.0|Un a2,
< ENON A B vt N D) (N, M) U3
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We know from Lemmas 2.11 and 4.1 and Theorem 3.2 that for 0 < ¢ < 1 and
A>1, v > %,

IGa(Unn)| < el|If — In—1 -3 lw + 1 f = Inar fll) 0N 2]l

/J’ ~
(4.34) < 510N M3 v e

Cc _2A - ’
T (N2l + MW iz 00)

We now estimate the initial error. By Lemma 4.1, Lemma 2.10 and Theorem 2.2,
we get that

an,a (Un,ar(0), Un,ar(0))
< Uy — P32y py_5.,Uol} 0 + clUo — InarUol3
(4.35) < c(N'TF £ MO (N 4 M)Vl rovso
+ (N7 NUol| 2 ag, 17 a0y + M N0l 1170 (022, (A1)
<c ((NQ*%l M) 4 (NI 4 p2m0)2(N—1 4 M*Q)) 1Uolgz0.0-
Also the combination of Lemma 4.1 and Lemma 2.10 implies that
c*(Un,m) < HU|‘%(O,T;H54(Q)) + 1.

Finally we use (4.26)—(4.27), (4.29)—(4.35) to finish the proof of Theorem 3.2.

5. SOME CONCLUDING REMARKS

In this paper, we consider the stream function form of incompressible fluid flow,
and so we keep the physical boundary condition in actual computation. This avoids
the numerical boundary layer caused by the nonphysical boundary condition and
makes the calculation stable.

We use the Laguerre-Legendre pseudospectral approximation. So unlike the
Galerkin method, we do not use some quadratures on unbounded domains for
calculating the Laguerre coefficients, which is costly and usually not accurate.

We use the transformation W =% U so that the resulting system is well posed
in the weighted space and possesses the conservations as in the continuous case. If
we use the discrete inner product with uniform weight for the transformed function,
then the problem is not well posed and does not preserve the conservations. We may
not use this transformation and take the functions e~ 2 £; () as the base functions.
But in this case, we need to build up a set of results for the spectral approximation
by using the system {e~2L£;(x)}. This is not easy for spectral approximation of
partial differential equations of fourth order.

The method in this paper can be used for several kinds of problems. For instance,
we consider the fluid flow in a very long river that is walled by a dam. When the
water follows from the gate of the dam, we need to consider the fluid flow in a strip
that is walled at one end. Another important motivation of this work is the numer-
ical simulation of exterior problems. For example, if the obstacle is rectangular,
then we may divide the whole domain into eight subdomains (see Figure 3). In this
case, we could use the two-dimensional Laguerre approximation on the subdomains
Dy, D3, D5 and D7, while we should use Laguerre-Legendre approximation on the
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D, Dg D~
D5 | obstacle | Dg
D5 Dy Ds

FIGURE 3.

subdomains Do, D4, Dg and Dg. If the obstacle is not rectangular, then we can use
the finite element method coupled with the method in this paper.

The main disadvantage of scheme (3.7) is that we need to solve a Laplace equa-
tion numerically at each time step. This feature comes from using the pseudospec-
tral method for the high order differential equation (1.1). But if we solve the prim-
itive form of the Navier-Stokes equation, then we need the nonphysical boundary
condition on the pressure. On the other hand, if we solve the vorticity-stream form
of the Navier-stokes equation, then we need the nonphysical boundary condition
on the vorticity. They usually induce serious numerical errors. We may use the
Galerkin method and take some special functions as base functions for solving (1.1)
so that the corresponding matrix might not be full. But in this case, we have to use
some quadratures on the unbounded domain to calculate the Laguerre coefficients.
This is also costly and not as accurate as we usually expect. An interesting open
problem is: Can we find a pseudospectral method for the Laplace equation on the
unbouded domain so that the corresponding matrix is not full?

APPENDIX A

We have from David and Rabinowitz (see page 39 of [7]) that

(A.1) L (x):ﬂx]v*l—l—'-'—i—ax3+5x2+'yx+7
. N+1 (N+1)! 1 1 1 1
where
1 1
0412—%]\[(]\[2_1), ﬁlZZN(N+1)7 1 =—-(N+1), =1
Consequently
Lyn1(0) =1,
OeLn1(0) = =(N +1),
1
(4.2) 97Ln11(0) = EN(J\H- 1),

. 1
LN 11(0) = —EN(NQ —1).
By integration by parts, (A.2) and the orthogonality (2.3) with « = 0, we get that

/8££N+1(x)e*””dx :e’I8I£N+1(x)|8°+/ OxLny1(z)e “dx
A A

(A.3) !
= e "Ly (2)[57 + e L (2)]g” = N.
Similarly,
(A4)
2Ly (x)re de = — | O0.Lni1(2)0s(ze ")dx
A1 Al

= —0p(we ) Ln1(2)|F + | Lng1(2)02(ze")dx = 1.
Ay
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Since the oV are the zeros of the equation 2Ly 41 (x) = 0, we get from (A.1) that

_1\V+1 _1\N+1
(A5) i) = e o) - o) = s X

(N —-1)!
Letting x = 0 in the above equation, we obtain that
(A.6) o ooy = (N =1)! aiﬁNJrl(O)'
Differentiating both sides of (A.5) yields that
N-1
(A.7) olV.. -Ujv_laﬁ_l coN_ == (N =1 93LN11(0).
j=1

Substituting (A.5) and (A.6) into the definition of &, we get from (A.2) and (A.4)
that

—xT - 2
& = | Rexa@ae d@lnn0)” = gy

Similarly, substituting (A.5)—(A.7) into the definition of £}, we get from (A.2) and
(A.3) that
& = ([ Bovnle e~ 02w (0 6) @)
Ay

6N+ N(N?2—-1)&Y 24N —1)
B 3N(N +1) 3N(N+1)

APPENDIX B

We first prove that for any 0 < a < 1,

N-1 . 9
(B.1) D TN <e =
j=1
Indeed, by (3.6.5) of Davis and Rabinowitz [7], we have that
(B.2)
 erd = S faMp 4 N DUV D! oy
; f(z)z”e dx:jz:;f(aj )@; + N —2) f &), 0 <€ < o0
Let f(x) = e~ in (B.2). Then
o N-1 Y |
2 - _ (1-a)o ~N (N=DIN+1)! = oNo (1—a)e
/0 xie” dr = ;e V@ + N —2) (1-a) el e
N-1
> e(lfa)U;V(DJN
j=1
and so
N-1 N 5
(B.3) D el N < et
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Because @ = (07 )2wl, we have from (B.3) that
(B.4) S e N < $ g < 2
ajVZI ajVZI o
1
On the other hand, we take f(z) = — in (B.2) to get that
x
N-1 N-1
N N -1 -1V +1)! N N
1 = wj + N > w; > Z Wy
(B5) J=l1 2 Jj=1 O']N<1

> -1 Z 6(17(1)0?]“};\/.

N
o3 <1

9y

The combination of (B.4) and (B.5) leads to the desired result.
We now prove (2.20). In fact,

N-1 N-1 N N
W2 wa, = D oMl = 3 2o )e 0 (welt=o)
=1 =1
(B.6) J o
N
< ||Q]e_ p) ||L°°(A1) Z w e(l—a)aj .
j=1

Moreover (see Maday, Pernaud-Thomas and Vandeven [I7]), the space

wl—a wl—a

[H%“ (Ar), H? ¢ (Al)} L C LS ().

Hence

(B.7) |lve™ 2

l1—o

2
Wein < ol o Iolee
wt T wl—a

The combination of (B.1), (B.6) and (B.7) completes the proof.
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