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ON THE TOTAL NUMBER OF PRIME FACTORS
OF AN ODD PERFECT NUMBER

D. E. IANNUCCI AND R. M. SORLI

Abstract. We say n ∈ N is perfect if σ(n) = 2n, where σ(n) denotes the
sum of the positive divisors of n. No odd perfect numbers are known, but it

is well known that if such a number exists, it must have prime factorization

of the form n = pα
∏k
j=1 q

2βj
j , where p, q1, . . . , qk are distinct primes and

p ≡ α ≡ 1 (mod 4). We prove that if βj ≡ 1 (mod 3) or βj ≡ 2 (mod 5) for
all j, 1 ≤ j ≤ k, then 3 - n. We also prove as our main result that Ω(n) ≥ 37,

where Ω(n) = α + 2
∑k
j=1 βj . This improves a result of Sayers (Ω(n) ≥ 29)

given in 1986.

1. Introduction

A natural number n is said to be perfect if σ(n) = 2n, where σ(n) denotes the
sum of the positive divisors of n. Euclid in Book IX of his Elements showed that
2p−1(2p − 1) is perfect if 2p − 1 is a (Mersenne) prime; Euler showed that every
even perfect number has this form.

The status of odd perfect numbers remains completely unknown. No odd perfect
numbers are known, and a proof of their nonexistence remains elusive. In the
meantime, many necessary conditions for their existence have been found. One
such condition is a lower bound for the number of distinct prime factors of an odd
perfect number.

If n has the unique prime factorization
∏k
j=1 p

αj
j , we write ω(n) = k and Ω(n) =∑k

j=1 αj , the number of distinct prime factors and the total number of prime factors,
respectively. Chein [2] and Hagis [6] each showed that if n is an odd perfect number,
then ω(n) ≥ 8. Furthermore, Hagis [7] and Kishore [9] each showed that if 3 - n,
then ω(n) ≥ 11.

A related problem is that of finding a lower bound on Ω(n) for an odd perfect
number n. The first significant result of this type was obtained by Cohen [3] in
1982 when he proved that Ω(n) ≥ 23. In 1986, Sayers [12] improved this result to
obtain Ω(n) ≥ 29. In this paper, we will improve this lower bound to 37, and we
state our result here:

Theorem 1. If n is an odd perfect number, then Ω(n) ≥ 37.

For the past several decades, necessary conditions for the existence of odd perfect
numbers have been established with the extensive aid of computers, and Theorem 1
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is no exception. The proof, to be outlined in Sections 3 and 4, was obtained by
writing and executing several programs with the Mathematica software system.

2. Preliminaries

Without further explicit mention, we will let N denote an odd perfect number.
It is due to Euler, and it is well known that N has the shape given by

(1) N = pαq2β1
1 q2β2

2 · · · q2βk
k ,

where p, q1, . . . , qk are distinct primes, α, β1, . . . , βk are positive integers, and
p ≡ α ≡ 1 (mod 4). The prime p is referred to as special. From (1), it follows that
ω(N) = k+1 and Ω(N) = α+2

∑k
j=1 βj . We will assume that β1 ≥ β2 ≥ · · · ≥ βk.

Since N is perfect and σ is multiplicative, we have

(2) 2N = σ(pα)
k∏
j=1

σ(q2βj
j ).

It is clear from (1) and (2) that if r is an odd prime divisor of σ(pα) or of σ(q2βj
j )

for some j, 1 ≤ j ≤ k, then r | N .
We shall use the notation

σ−1(n) =
σ(n)
n

=
∑
d|n

1
d

for any natural number n. Thus σ−1(N) = 2. It is easy to show that σ−1(d) < 2
for any proper divisor d of N .

For prime p and natural number a, we have

σ−1(pa) = 1 +
1
p

+ · · ·+ 1
pa

=
pa+1 − 1
pa(p− 1)

.

It is clear that

(3)
p+ 1
p
≤ σ−1(pa) <

p

p− 1

and that σ−1(pa) < σ−1(pb) if a < b. For odd primes p < q, we have q/(q − 1) <
(p+ 1)/p and thus

(4) σ−1(qb) < σ−1(pa)

for any natural numbers a and b.
Referring back to (1), McDaniel [11] proved that if βj = 1 or 2 for all j, then

N has no prime factor less than 101. This result was extended by Cohen [4] who
showed thatN has no prime factor less than 739 under the same conditions. Cohen’s
result then implies that ω(N) ≥ 47326; this follows from (2), (3) and (4) since

2 = σ−1(N) = σ−1(pa)
k∏
j=1

σ−1(q2βj
j ) <

p

p− 1

k∏
j=1

qj
qj − 1

and ∏
739≤p≤578309

p

p− 1
< 2,
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where the product is taken over the 47325 consecutive primes indicated. It follows
(from McDaniel’s result, in fact) that

(5) if βj = 1 or 2 for all j, then Ω(N) > 35.

Many similar results regarding the exponents βj have appeared in the literature.
We will apply some of these results to prove Theorem 1.

We first introduce some notation for the sake of brevity. For nonnegative integers
m, j, ai ≥ 1 (1 ≤ i ≤ m if m > 0) and bi ≥ 1 (1 ≤ i ≤ m+ j if m+ j > 0), we let
the expression

b1(a1), b2(a2), . . . , bm(am), bm+1(∗), . . . , bm+j(∗)

represent the following: Of the set {β1, β2, . . . , βk} of decreasing numbers,

(i) at most ai can equal bi, 1 ≤ i ≤ m,
(ii) any element not equal to bi, 1 ≤ i ≤ m, must belong to {bm+1, . . . , bm+j}

for which each member can occur an unrestricted number of times.

Then for x = 1, 3, or 5, we let the expression

(6) [x : b1(a1), b2(a2), . . . , bm(am), bm+1(∗), . . . , bm+j(∗) ]

represent the following:

If x = 1, then items (i) and (ii) above are impossible.
If x = 3 and (i) and (ii) are true, then 3 - N .
If x = 5 and (i) and (ii) are true, then 3 - N and 5 - N .

Some of the results we shall apply are then given as follows.
McDaniel [10] showed it is impossible to have βj ≡ 1 (mod 3) for all j, 1 ≤ j ≤ k.

This implies, sufficient for our purposes,

(7) [ 1 : 10(∗), 7(∗), 4(∗), 1(∗) ],

that is, the exponents 2β1, . . . , 2βk cannot all belong to {2, 8, 14, 20}. (Steuer-
wald [13] had previously obtained [ 1 : 1(∗) ].) Cohen and Williams [5] showed it is
impossible to have β1 = 5 or 6 and βj = 1 for all j, 2 ≤ j ≤ k. These results give
us, respectively,

[ 1 : 5(1), 1(∗) ],(8)

[ 1 : 6(1), 1(∗) ].(9)

Brauer [1] showed that β1 = 2, βj = 1 for all j, 2 ≤ j ≤ k, is impossible, and
Kanold [8] showed that β1 = 3, βj = 1 for all j, 2 ≤ j ≤ k, is impossible. Cohen [3]
showed that β1 = 3, β2 = 2, βj = 1 for all j, 3 ≤ j ≤ k, is impossible. These three
results, combined with that of Steuerwald, give us

(10) [ 1 : 3(1), 2(1), 1(∗) ].

Steuerwald’s result, along with Theorem 2 in Sayers [12], gives us

(11) [ 1 : 3(3), 1(∗) ].
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3. The proof of Theorem 1, part 1

We first assume that Ω(N) = 35. Then (5) becomes equivalent to

(12) [ 1 : 2(∗), 1(∗) ],

and this, in conjunction with Theorem 3 in Sayers [12], then gives us

(13) [ 1 : 4(1), 2(4), 1(∗) ].

There are exactly 686 possible cases for the exponents in (1) when Ω(N) = 35;
these range from α = 33, k = 1, β1 = 1, to α = 1, k = 17, β1 = · · · = β17 = 1.
The condition ω(N) ≥ 8 eliminates exactly 439 of these cases. Of the remaining
247 cases, exactly 81 are further eliminated by conditions (7) through (13). This
leaves 166 cases to consider.

Of these 166 cases, exactly 136 satisfy ω(N) ≤ 10. Recalling that ω(N) ≥ 11 if
3 - N , 120 of these 136 cases are eliminated once we prove the following fourteen
lemmata:

[ 3 : 3(5), 1(∗) ],(14)

[ 3 : 4(1), 3(3), 2(1), 1(∗) ],(15)

[ 3 : 5(2), 3(1), 1(∗) ],(16)

[ 3 : 5(2), 2(2), 1(∗) ],(17)

[ 3 : 5(1), 4(2), 1(∗) ],(18)

[ 3 : 5(1), 3(3), 2(2), 1(∗) ],(19)

[ 3 : 6(2), 1(∗) ],(20)

[ 3 : 6(1), 5(1), 4(1), 3(1), 2(∗), 1(∗) ],(21)

[ 3 : 6(1), 3(2), 2(1), 1(∗) ],(22)

[ 3 : 7(1), 5(1), 1(∗) ],(23)

[ 3 : 7(1), 3(2), 1(∗) ],(24)

[ 3 : 8(1), 3(1), 2(∗), 1(∗) ],(25)

[ 3 : 9(1), 3(1), 2(∗), 1(∗) ],(26)

[ 3 : 11(1), 1(∗) ].(27)

(For example, (14) states: If, in (1), 2β1 = · · · = 2βl = 6 for 1 ≤ l ≤ 5 and
2βl+1 = · · · = 2βk = 2, then 3 - N .)

The remaining sixteen cases (of the 136 mentioned above) are eliminated once
we prove three further lemmata, namely

[ 3 : 4(3), 2(1), 1(∗) ],(28)

[ 3 : 7(1), 4(1), 2(1), 1(∗) ],(29)

[ 3 : 10(1), 2(1), 1(∗) ],(30)

and these are all special cases of the following:

Theorem 2. If N = pα
∏k
j=1 q

2βj
j is an odd perfect number and βj ≡ 1 (mod 3)

or βj ≡ 2 (mod 5) for all j = 1, 2, . . . , k, then 3 - N .

This leaves exactly 30 cases to consider. In each of these remaining cases, we
have ω(N) ≤ 14. It follows from (3) and (4) that ω(N) ≥ 15 if 3 - N and 5 - N
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since ∏
7≤p≤59

p

p− 1
< 2,

the product being over the 14 primes indicated. The remaining 30 cases are then
eliminated once we prove the following five lemmata:

[ 5 : 3(4), 2(∗), 1(∗) ],(31)

[ 5 : 4(2), 3(2), 2(∗), 1(∗) ],(32)

[ 5 : 6(1), 5(1), 4(1), 3(1), 2(∗), 1(∗) ],(33)

[ 5 : 7(1), 3(1), 2(∗), 1(∗) ],(34)

[ 5 : 8(1), 4(1), 1(∗) ].(35)

Lemmata (7) through (35) will also eliminate every possible case for the expo-
nents in (1) if we assume any one of Ω(N) = 29, 31, or 33. Therefore, recalling that
it is known that Ω(N) ≥ 29 (Sayers [12]), it suffices, for the proof of Theorem 1,
to prove the lemmata stated in (14) through (35); we outline these proofs in the
following section.

The lemmata (14) through (35) are all independent and quite specific for our
purposes, although they all contain some generality in allowing an unrestricted
number of exponents equal to 2, and in some cases an unrestricted number of
exponents equal to 4. Theorem 2, by which we prove (28) through (30), would have
greater applicability.

4. The proof of Theorem 1, part 2

Theorem 2 and the lemmata are all proved by contradiction.
For lemmata (14) through (27), we assume separately in each case that 3 | N

and we obtain a contradiction at the end of a chain of factorizations, in manners
to be described shortly.

Call an exact prime-power divisor pa of N a component of N and write pa ‖
N ; then pa+1 - N . The factorization chains are constructed systematically, one
component at a time, beginning with 32, or 34, or . . . , with, in practice, each new
component implying at least one additional candidate prime divisor (since an odd
perfect number was not found!). For example, if N is an odd perfect number and,
by assumption, 32 ‖ N , then 13 | N since σ(32) = 13 and σ−1(32 · 13a) < 2 for any
natural number a. Then 13 ‖ N (since 13 may be the special prime) so 7 | N since
σ(13) = 2 ·7 and σ−1(32 ·13 ·7a) < 2; or 132 ‖ N so 61 | N since σ(132) = 3 ·61 and
σ−1(32 ·132 ·61a) < 2; or 134 ‖ N so . . . . (The algorithm is illustrated in Table 1.) If
there is more than one candidate prime divisor available, then choosing the smallest
as the basis for the next component of N results in the greatest increase in σ−1(N ′)
(and hence usually the shortest path to a contradiction), where N ′ is the product of
the components so far assumed or as yet unexplored (and in the latter case, for the
purpose of calculating σ−1(N ′), they are given their smallest possible exponent).
For each prime chosen to continue a chain, exponents are investigated as allowed by
the exponent pattern for the lemma under consideration. (If the candidate prime
might be the special prime, then only the exponent 1 is considered for it, since
p+ 1 = σ(p) | σ(pα), when p ≡ α ≡ 1 (mod 4).)
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Table 1. Beginning the proof of [3 : 5(1), 2(1), 1(∗)].

32 ⇒ 13a

131 ⇒ 7b

72 ⇒ 3 · 19
192 ⇒ 3 · 127
1272 ⇒ 3 · 5419 xs=3c

1274 ⇒ 262209281
2622092812 ⇒ 13 · 1231 · 4296301150081d

12312 ⇒ 3 · 13 · 37 · 1051 xs=3
123110 ⇒ 23 · 67 · 3323 · 38237 · 40842910222965466771 S=2.04507e

26220928110 ⇒ 23 · 67 · 947 · 153342821665045555262919920768081·
6865379200955135391524384965083073728767674853 S=2.04490f

12710 ⇒ 23 · 47834644354838156839 S=2.01226
194 ⇒ 151 · 911
1512 ⇒ 3 · 7 · 1093
9112 ⇒ 830833g

10932 ⇒ 3 · 39858 xs= 3
109310 ⇒ 23 · 6491 · 2608387 · 6254429058851062673 S= 2.01438

91110 ⇒ 67 · 472319 · 50390258557 · 247174661801
672 ⇒ 3 · 72 · 31 xs=3

15110 ⇒ 23 · 14864609 · 18145704541823 S=2.01223
1910 ⇒ 104281 · 62060021
1042812 ⇒ 3 · 7 · 43 · 67 · 179743
432 ⇒ 3 · 631 xs=3
434 ⇒ 3500201
672 ⇒ 3 · 72 · 31 xs=3

1042814 ⇒ 5 · 41 · 3181 · 181345750520141 S=2.42843
74 ⇒ 2801
28012 ⇒ 37 · 43 · 4933
372 ⇒ 3 · 7 · 67
432 ⇒ 3 · 631
672 ⇒ 3 · 72 · 31 xs=3
6710 ⇒ 11 · 89 · 1890149702927663 S=2.15947

4310 ⇒ 60381099 · 3664405207
672 ⇒ 3 · 72 · 31 S=2.00408

3710 ⇒ 2663 · 1855860368209
432 ⇒ 3 · 631
6312 ⇒ 3 · 307 · 433
3072 ⇒ 3 · 43 · 733 xs=3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aConvenient notation for odd prime factors of σ(32) = 13; further factorizations in the chain
are indicated by indentations.

b13 could be the special prime.
cContradiction: an excess of 3’s.
dAlthough 262209281 ≡ 1 (mod 4), the smallest possible exponent is 2, since 13 is currently

the special prime.
eContradiction: S = σ−1(321317219212742622092812123110 · 232672 . . . ) > 2.
fThe program would not need to fully factorize σ(26220928110 ): it would calculate S =

σ−1(3213172192127426220928110 · 2326729472) > 2.
gThe smallest unexplored prime, 911 here rather than 1093, is used to continue the chain.
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If q2β (or pα) is the new additional assumed component of N , then the set of
assumed prime divisors of N needs to be updated with the prime divisors of σ(q2β)
(or of σ(p)/2). A chain is continued while σ−1(N ′) < 2. However, it can be observed
that the larger assumed primes make little contribution to the value of σ−1(N ′). We
can take advantage of this by finding only the “small” prime divisors of σ(q2β) (or of
σ(p)/2), perhaps leaving a single “hard” composite. Any such composites are easily
identified and then excluded from the calculation of σ−1(N ′). This underestimates
the value of σ−1(N ′) and may lead to slightly longer chains in some cases but this
is more than offset by the substantial reduction in factorization time. If there is no
unexplored prime available from earlier factorizations with which to continue the
chain, then it is necessary to factor one of the composites carried forward (and in
practice the most recently added composite was used).

For the proofs of lemmata (14) through (27), an additional constraint, that
each (nonspecial) prime factor q of N occurred to a given exponent 2β, so that
qb ‖ σ(N ′) for b ≤ 2β, was employed to allow another contradiction that could
terminate a chain. A violation of this constraint (when so many primes q arose
from factorizations as to imply b > 2β) was described as saying there was an excess
of the prime q.

For the proofs of each of lemmata (31) through (35), we first showed that 3 - N ,
as above, and then assumed that 5 | N ; in a similar manner, this was also shown
to lead to a contradiction.

The proof of Theorem 2 was accomplished by assuming 3 | N , ignoring the
second possible contradiction (of an excess of primes), and employing the facts that
σ(q2) | σ(q2β) when β ≡ 1 (mod 3) and σ(q4) | σ(q2β) when β ≡ 2 (mod 5). Only
exponents with β = 1 or 2 were assumed (on nonspecial primes), and the only
contradiction used to terminate a chain was σ−1(N ′) > 2.

5. Implementation

The most novel feature of the algorithm is the effective use of incomplete fac-
torizations. This was implemented as follows. If the composite was less than a
chosen bound, usually 1015, then the complete factorization was carried out (with
minimal effort). For composites greater than the bound, a stored list of complete
factorizations was searched. If the desired factorization was not found, then an
incomplete factorization was carried out using the FactorComplete->False option
of the FactorInteger[] function of Mathematica. (Maple has a similar `easy`
option for its ifactor() function.) In Mathematica, for incomplete factorization,
only the trial division, Pollard p−1, Pollard rho and continued fraction methods of
factorization are applied to find “small” factors, in some combination not detailed
in the accompanying documentation.

To help clarify the algorithm, see Table 1, which shows the beginning of the
computational proof of [3 : 5(1), 2(1), 1(∗)] (in fact subsumed by lemma (17)). In
this example, full factorizations are shown although the opportunity for partial
factorization is noted.

If it became necessary for the continuation of a chain to have the full factorization
of a composite, then this was established separately either by looking up known
tables or by calculation. A list of needed, complete factorizations would then be
updated within the program.
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The most difficult factorization required was that of σ(σ(616)16), the product of
a 73-digit prime and a 100-digit prime. This was realized through the assistance of
Herman te Riele and Peter Montgomery at CWI, to whom we are most grateful.

6. Economization

The patterns of exponents represented by the lemmata are the result of amal-
gamation through generalization of the patterns of the original 166 cases. Ini-
tially, we experimented with generalizations of the form [3 : . . . , 1(∗)], that is, an
unrestricted number of components with an exponent of 2. Then patterns like
[3 : . . . , 2(∗), 1(∗)] were selectively tried. This was followed by generalizations such
as [3 : 3(1), 2(∗), 1(∗)], . . . , [3 : 3(4), 2(∗), 1(∗)]. Another series of generalizations
investigated was [3 : 3(1), 2(∗), 1(∗)], . . . , [3 : 6(1), 5(1), 4(1), 3(1), 2(∗), 1(∗)]. This
last pattern (lemma (21)) involved the generation of a computational proof of al-
most nine million lines. In each case, practical considerations determined how
comprehensive the generalization could be made.
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