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V-CYCLE CONVERGENCE OF SOME MULTIGRID METHODS
FOR ILL-POSED PROBLEMS

BARBARA KALTENBACHER

Abstract. For ill-posed linear operator equations we consider some V-cycle
multigrid approaches, that, in the framework of Bramble, Pasciak, Wang, and
Xu (1991), we prove to yield level independent contraction factor estimates.
Consequently, we can incorporate these multigrid operators in a full multigrid
method, that, together with a discrepancy principle, is shown to act as an it-
erative regularization method for the underlying infinite-dimensional ill-posed
problem. Numerical experiments illustrate the theoretical results.

1. Introduction

Consider the first kind operator equation

(1) Tx = y,

where T : X → Y is a compact linear operator between Hilbert spaces X and
Y, and y ∈ R(T)(+R(T)⊥), which we suppose to model some linear or linearized
inverse problem. Numerous applications leading to inverse problems appear in
science and industry. Their mathematical formulation (1) typically leads to an ill-
posed problem in the sense that the range of T is nonclosed, i.e., the (generalized,
cf., e.g., [10]) inverse of T is unbounded. Therefore, given data yδ with arbitrary
small noise δ in

(2) ‖y − yδ‖ ≤ δ ,
one can possibly arrive at large deviations in the solution when using conventional
numerical methods. Hence special stable approximation methods for solving (1)—
so-called regularization methods (cf. [10], [11], [23], [24], [26], [30], [32])—have to
be applied, the most well known one certainly being Tikhonov regularization:

(3) x̃ := (T∗T + αI)−1T∗yδ .

As a consequence of the ill-posedness, any numerical approximation method for
(1) converges—if at all—in general arbitrarily slowly as the noise level δ goes to
zero, and convergence rates can only be obtained under additional regularity or
sourcewise representation conditions

(4) x† ∈ R((T∗T)µ),
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Figure 1. Error development over the first twenty iterations of a
multigrid preconditioned conjugate gradient method for the Abel
integral equation (see Section 5 below for details) with Gauß-Seidel
smoother (squares) and with smoother as proposed in [22] (dots).

where µ > 0 is a real exponent and the operator (T∗T)µ is defined in the sense of
functional calculus (cf., e.g., Section 2.3 in [10]). The under condition (4) optimal
convergence rates for regularized approximations x̃ to x† are

(5) ‖x̃− x†‖ = O(δ
2µ

2µ+1 )

and therefore are always slower than the rate O(δ) that is typical for well-posed
problems.

While multigrid methods (MGM) are already well established as extremely effi-
cient solvers for large scale systems of equations originating from the discretization
of partial differential or second kind integral equations (see, e.g., [1], [2], [4], [6], [7],
[14]), the situation is quite different for first kind integral equations, or, generally,
ill-posed problems (1), though. This is due to the adverse structure of the singular
systems of compact operators (high frequency eigenfunctions correspond to small
singular values) that foils the smoothing properties of schemes such as Gauß-Seidel
iteration, used as smoothers in MGM for well-posed problems; see Figure 1.

Applications of MGM to (Tikhonov-)regularized ill-posed problems can be found
in [15], [29]. While these papers analyze MGM for equations with small but nonvan-
ishing regularization parameter α > 0 in (3), we are more interested in the situation
that the regularization is solely due to discreteness (see [9], [12], [16], [17], [25], [28],
[31]), so without introducing any additional (possibly artificial) regularization term.
For this purpose, MGM based on a smoother proposed by King in [22] have turned
out to be appropriate; see Figure 1. Further contraction number estimates for these
MGMs as well as an analysis of the full MGM with a priori or a posteriori stopping
rule as a regularization method for solving the original infinite-dimensional ill-posed
problem (1), including a generalization to nonlinear problems, can be found in [18]
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and [21]. Since the theory presented there still needs at least alternating or W-
cycles, the aim of the present paper is to give V-cycle convergence proofs of MGM
for ill-posed problems. To this end, we follow the approach of [3], where a V-cycle
convergent multigrid method for pseudo-differential operators of order minus one is
presented and analyzed, and we show how it can be used for defining and analyzing
V-cycle MG algorithms for general equations (1). Here norm equivalence theorems
such as those from [27] (with their computational implementation as given, e.g., in
[5]) play an important role. Based on these norm estimates, the smoother by King
[22] can also be modified in such a way that V-cycle convergence can be proved;
see Section 3.

The level-independence of the contraction factors in the proposed multigrid op-
erators makes it possible to use them in a full multigrid method for the iterative
solution of the underlying infinite-dimensional problem (1). In combination with
an a posteriori stopping rule that finds the optimal balance between approximation
error and propagated data noise, this can be shown to define a convergent and order
optimal regularization method for the ill-posed operator equation (1); see Section
4.

Section 5 reports on numerical experiments with the proposed methods and is
supposed to illustrate the foregoing theoretical results.

In the following we will use the notation c or C for positive constants that are
typically “small” or “large” and can have different values whenever they appear.

2. Discretization

Discretization of the ill-posed problem (1). Finite-dimensional problems,
though they might be ill-conditioned, are always well-posed in the sense of sta-
ble data dependence of a solution (as long as its existence and uniqueness can be
guaranteed, which can be done, e.g., by using a best approximate solution concept).
This fact forms the basis for several finite-dimensional projection approaches for the
regularization of ill-posed operator equations (1). Note, however, that for ill-posed
problems, discretization in preimage space does not generically yield a convergent
approximation, even in the noiseless situation (cf. the counterexample due to Seid-
man cited in [10]). Therefore we prefer here the approach of discretization in image
space ([9, 12, 25, 31]), defined by projecting (1), with possibly noisy data yδ satis-
fying (2), onto finite-dimensional nested subspaces Yn of Y, whose union is dense
in Y:

(6) Y1 ⊆ Y2 ⊆ · · · ⊆ Y ∧
⋃
n∈N

Yn = Y .

The best approximate solution of this projected equation lies in the finite-dimen-
sional space

Xn := T∗Yn ,

so with

Pn := ProjXXn
, Qn := ProjYYn

,

we arrive at an appropriate discretization of (1)

(7) QnTxn = Qny
δ , xn ∈ Xn ,
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or, equivalently

(8)
xn = T∗u , u ∈ Yn,

〈T∗u,T∗v〉X = 〈yδ, v〉Y , for all v ∈ Yn .

Indeed, the exact solution of (7) can be seen as an approximation of the exact
best approximate solution x† = T†y of (1) since, in the noiseless case δ = 0, we
have

xn = Pnx
† .

Nonvanishing data noise is in the worst case amplified by the factor γ−1
n

, where
γ
n

is the smallest singular value of the system matrix in (7), i.e.,

γ
n

:=
1

‖(QnT)†Qn‖
= inf
v∈Xn

‖QnTv‖
‖v‖ ,

that, by the compactness of T, goes to infinity as n → ∞, i.e., with increasing
refinement of the discretization we have to face a possibly unboundedly growing
propagated data noise contribution to the total error—this reflects the instability
of the underlying infinite-dimensional problem. Consequently, an optimal choice
n := N(δ, yδ) of the discretization level has to balance between two error terms
of different asymptotic behavior: the approximation error that goes to zero and
the propagated data noise that in the worst case goes to infinity as n → ∞. This
corresponds to the necessity of correctly choosing a regularization parameter (e.g.,
α in (3)) in regularization methods for ill-posed problems.

Note that the residual ‖Txn − y‖ can (up to the propagated data noise, whose
contribution to the residual is O(δ)) be estimated by

γn := ‖(I −Qn)T‖ ,
and that, under a source condition (4) the approximation part of the error (i.e., the
total error in the noiseless case) goes to zero at some rate

(9) γn(µ) := ‖(I −Pn)(T∗T)µ‖ ≤ γ2µ
n ,

for µ ≤ 1
2 (cf., e.g., [21]). Moreover,

(10) γ
n
≤ γn−1 ,

and, in order to obtain optimal convergence rates (5) of x̃ := xN(δ,yδ) under source
conditions (4), it is necessary and sufficient to have, on the other hand, also

(11) γn−1 ≤ Cγn
for some constant C > 0 (see [22], [17], [18]). Condition (11) says that the data
noise amplification factor 1/γ

n
(that grows to infinity as n → ∞ due to the ill-

posedness of (1)) is compensated by a sufficiently good approximation property of
the spaces Yn in combination with the smoothing property of T. It is satisfied, e.g.,
by truncated SVD, which means that the finite-dimensional spaces Yn are spanned
by eigenvectors of TT∗, and which is optimal both with respect to stability and
convergence (see, e.g., Section 3.3 in [10], where a more detailed exposition on
regularization by projection can be found). For reasons of practical applicability in
cases where an explicit SVD is hard or impossible to compute, we here concentrate
on projection onto spaces of piecewise polynomial functions, though. In the context
of mildly ill-posed first kind integral equations or parameter identification problems
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with spline or finite element discretization Yn, condition (11) seems to be quite
natural (cf., e.g., [17], [18]).

In this paper, as in [18], [21], we consider instead of the exact solution xn of (7) its
approximation x̃n by (iterative) multigrid techniques—again with n := N(δ, yδ) ap-
propriately chosen—as our regularized approximate solution of the infinite-dimen-
sional problem (1).

The asymptotic behavior of the condition of our finite-dimensional system (7) is
characterized by the real sequence γ

n
: while the largest singular value of QnTPn

is uniformly bounded by the norm of T, its smallest singular value γ
n

goes to zero
as n→∞. This is due to the ill-posedness of (1) or, in other words, the smoothing
property of the forward operator T that, in combination with the approximation
property of the finite-dimensional spaces Yn, makes γn go to zero as n → ∞, on
the other hand.

To concretize the asymptotics, we denote by hn some discretization parameter
(think, e.g., of a mesh size) that geometrically goes to zero as n→∞:

(12) hn = Cσσ
n

for some σ ∈ (0, 1), and, by Y−p a Hilbert space that contains Y and has a weaker
topology:

Y−p ⊃ Y ,

i.e., we think of Y−p as a less smooth function space than Y, e.g., Y = Ht(Ω),
Y−p = Ht−p(Ω), for some t ∈ R, p > 0, and some domain Ω. The real positive
number p is supposed to quantify the degree of smoothing by T, which is closely
related to the concept of degree of ill-posedness as it is frequently used in the
literature on ill-posed problems.

Assumption 1. (Smoothing property of T∗)

∀v ∈ Y : ‖T∗v‖X ' ‖v‖Y−p .

For the pseudo-differential operators of order minus one considered in [5] one has
p = 1/2.

In order to be able to exploit this smoothing assumption, we combine it with a
condition on the quality of approximation by functions in Yn:

Assumption 2. (Approximation property of Yn)

‖I −Qn‖Y→Y−p ≤ Chpn .

These assumptions (having in mind Sobolev spaces and piecewise polynomial
approximation) yield the following crucial estimate

(13) γn ≤ Chpn ,

(and, by (9), γn(µ) = O(h2pµ
n )).

On the other hand, estimating the lowest singular value of the system matrix in
(7) corresponds to assuming some kind of inverse inequality on Yn:

Assumption 3. (Inverse inequality)

sup
v∈Yn

‖v‖Y

‖v‖Y−p
≤ Ch−pn
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which, when thinking of the Yn as piecewise polynomial spaces, seems to be real-
istic, and from which we get

(14) γ
n
≥ chpn

(cf. [17]). Note that this implies uniform boundedness of the quotient γn/γ
n

(i.e.,

(11)) as well as of the operators T(QnT)†Qn approximating the projection TT† =
ProjYR(T) |D(T†) (cf. [21]).

Discrete norms. The discrete inner products used in the respective multigrid
approaches below will be based on norm equivalences of the form

(15) ∀v ∈ Yn : ‖v‖2
Y′ '

n∑
j=1

h−2q
j ‖(Qj −Qj−1)v‖2

Y + ‖Q0v‖2
Y ,

where Y′ is some Hilbert space containing Yn, q is an index that will be specified
below, and the equivalence constants are supposed to be independent of n. In the
case of Y′ being a Sobolev space on a (sufficiently smooth) domain Ω, Y being the
space of square integrable functions on Ω,

Y = L2(Ω) , Y′ = Hq(Ω) ,

(as typical, e.g., in parameter identification) and the Yn being finite element spaces
of piecewise polynomial Cr functions on a regular and quasi-uniform triangulation,
this norm equivalence follows for

(16) −r − 3/2 ≤ q ≤ r + 3/2

from Theorem 15 in Oswald [27].

3. Two V-cycle-convergent multigrid approaches

Before proposing concrete multigrid approaches for (1) in subsections 3.1, 3.2, we
introduce a general notational framework together with a fundamental convergence
assertion, following [6].

Going out from a finite-dimensional variational equation of finding u ∈ Yn such
that

A(u, v) = f(v) for all v ∈ Yn ,

where A(., .) is a positive definite symmetric bilinear form on Yn, inducing a norm

|||u||| =
√
A(u, u) ,

and projection operators Pk : Yn → Yk, k = 0, . . . , n,

A(Pkw, v) = A(w, v) for all v ∈ Yk ,

and f a linear functional on Yn, one can, via an additional inner product 〈., .〉 on
Yn with corresponding projectors Qk : Yn → Yk

〈Qkw, v〉 = 〈w, v〉 for all v ∈ Yk ,

and operators Ak : Yk → Yk given by

〈Akw, v〉 = A(w, v) for all v ∈ Yk ,

(which are spsd. with respect to both inner products A(., .) and 〈., .〉), and smooth-
ing operators Sk : Yk → Yk, inductively define a symmetric V-cycle multigrid
operator Bsk : Yk → Yk by:
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Algorithm 1. (Symmetric MG)
Set Bs0 := (A0)−1. Assume that Bsk−1 has been defined and define Bskb for b ∈ Yk

as follows:
Set u := Skb.
Set u := u+Bsk−1Qk−1(b −Aku).
Set u := u+ Sk(b−Aku).
Set Bskb := u.

A nonsymmetric V-cycle MG operator Bnk can be defined analogously by omit-
ting the post-smoothing step u := u+ Sk(b−Aku) in Algorithm 1.

If, on one hand

(17) SkAk and I − SkAk are spsd. with respect to A(., .) ,

and, on the other hand,

(18) |||(Pk − Pk−1)v||| ≤ C A(SkAkv, v) for all v ∈ Yk ,

Theorem 1 in [6] yields a level independent contraction number estimate, whose
proof in our special situation is quite short and will therefore be given explicitly for
the convenience of the reader.

Corollary 1 (to Theorem 1 in [6]). Assume that (17) and (18) hold and define
Bsn and Bnn by Algorithm 1 (omitting the post-smoothing step in the second case).
Then

(19) A((I −BsnAn)u, u) = |||(I −BnnAn)u|||2 ≤ (1− 1
C2

)|||u|||2 for all u ∈ Yn.

Remark 1. The constant C in the right-hand side of (19) equals the one in (18),
which by (17) must be larger or equal to one.

Proof. It can be easily checked that the sequence of operators Ek : Yn → Yk

defined by
E−1 := I,
Ek := (I −BnkAkPk)∗, k = 0, 1, . . .

(where the adjoint ∗ is taken w.r.t. A(., .)) obeys the recursion

Ek = (I − SkAkPk)Ek−1, k = 0, 1, . . . ,

where we have set S0 := A−1
0 for convenience of notation. Therefore, and since by

(17) SkAk − (SkAk)2 is spsd., we have, for any u ∈ Yn,

|||u|||2 − |||(I −BnnAn)∗u|||2

=
n∑
k=0

|||Ek−1u|||2 − |||Eku|||2

=
n∑
k=0

(
A((SkAk − (SkAk)2)PkEk−1u, PkEk−1u)

+A(SkAkPkEk−1u, PkEk−1u)
)

≥
n∑
k=0

A(SkAkPkEk−1u, PkEk−1u) ,
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so that it only remains to show that the latter is greater or equal to 1/C2|||u|||2.
To do so, we decompose

u =
n∑
k=1

(Pk − Pk−1)u + P0u

and get, since (I − Ek−1)u = (Bnk−1Ak−1Pk−1)∗u ∈ Yk−1 is orthogonal to
(Pk − Pk−1)u = (I − Pk−1)Pk−1u, that

|||u|||2 =
n∑
k=0

A(Ek−1u+ (I − Ek−1)u, (Pk − Pk−1)u) + |||P0u|||2

=
n∑
k=1

A(Ek−1u, (Pk − Pk−1)u) + |||P0u|||2

≤
n∑
k=1

|||(Pk − Pk−1)Ek−1u||| |||(Pk − Pk−1)u|||+ |||P0u|||2

≤
n∑
k=1

√
C A(SkAkPkEk−1u, PkEk−1u) |||(Pk − Pk−1)u|||

+
√
A(S0A0P0E−1u, P0E−1u) |||P0u|||

≤

√√√√max{C, 1}
n∑
k=0

A(SkAkPkEk−1u, PkEk−1u) |||u||| ,

(20)

where we have used (18) with v := PkEk−1u and the fact that we have set S0A0P0 =
P0 in the fourth line, and Cauchy-Schwarz in Rn yielded the last inequality. �

In our situation, the bilinear form A and the projections Pk are, due to (8), given
by

(21) A(w, v) := 〈T∗w,T∗v〉X , Pk := (T∗|Yk→Xk
)−1PkT∗

(where (T∗|Yk→Xk
)−1 has to be understood as the inverse of the bijective restriction

T∗ : Yk → Xk of T∗ to the finite-dimensional spaces on the k-th level) and the
right-hand side by

f = 〈yδ, .〉Y .

The behavior of the multigrid method obviously heavily depends on the choice
of the smoothers Sk and the inner products 〈., .〉. In the following we describe
two approaches that will lead to level independent contraction factor estimates
according to Corollary 1.

3.1. Generalization of Bramble, Leyk, Pasciak (1994). The ill-posedness
and its complicating consequences in the context of MGM are reflected in the fact
that the (generalized) inverse of T∗ is unbounded on its domain with respect to
the topologies of X and Y. The norm of the auxiliary space Y−p in Assumption 1
is just weak enough so that the (generalized) inverse of T∗ as a mapping from its
domain in X to Y−p is bounded. Now, let Y−2p denote a Hilbert space containing
Y,Y−p, with still weaker norm:

Y−2p ⊃ Y−p ⊃ Y .
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Then T∗ acts on (its domain within) Y−2p like a differential operator, i.e., its inverse
is smoothing. Hence, with respect to the topology of Y−2p, we are in a situation
similar to well-posed positive order differential equations, where the construction of
smoothers for MGM is well understood. By means of discrete norms, the resulting
operators can be “lifted” to the original topology. Based on this idea, in [3] a
smoother is constructed for the case Y = L2(Ω), Y−2p = H−1(Ω) (Ω some regular
domain) and is shown to yield a V-cycle convergent MGM for pseudo-differential
operators of order −1. This construction as well as the convergence proof can be
carried over to general ill-posed equations (1) as follows.

Returning to the notation of above, here, 〈., .〉 is chosen to induce a norm weaker
than |||.|||, namely, in our context,

〈w, v〉 := 〈TT∗w,TT∗v〉Y .

Its discrete implementation 〈., .〉k is based on the norm equivalence (15) with Y′ =
Y−p, q = −p, i.e.,

(22) ∀v ∈ Yn : ‖v‖2
Y−p '

n∑
j=1

h2p
j ‖(Qj −Qj−1)v‖2

Y + ‖Q0v‖2
Y ,

and the additional assumptions

∀v ∈ Y : ‖TT∗v‖Y ≥ c‖v‖Y−2p ,(23)

∀v ∈ Yk : ‖v‖2
Y−2p ≥ c

( k∑
j=1

h4p
j ‖(Qj −Qj−1)v‖2

Y + ‖Q0v‖2
Y

)
,(24)

where Y−2p is, as indicated by the superscript, a function space with weaker topol-
ogy than Y and Y−p. With the 〈., .〉Y-spsd. difference operator Dk : Yk → Yk

defined by

Dkv =
k∑
j=1

h−4p
j (Qj −Qj−1)v + Q0v

and the discrete inner product 〈., .〉k given by

〈v, w〉k = 〈D−1
k v, w〉Y ,

we get, with some constant C− independent of k:

(25) ∀v ∈ Yk : ‖v‖k ≤ C−‖TT∗v‖Y ;

moreover, by (22),

(26) ∀v ∈ Yk : ‖v‖Y−p ' ‖D−1/4
k v‖Y .

Following [3], we define the smoothing operator Sk : Yk → Yk by

〈Skw, v〉k =
1
ξk
〈w, v〉 for all v ∈ Yk ,

where

(27) C sup
v∈Yk

|||v|||2
‖v‖2

k

≥ ξk ≥ sup
v∈Yk

|||v|||2
‖v‖2

k

,

for some constant C > 0, i.e., ξk ∼ h−2p
k ,

(28) Sk =
1
ξk
DkQk(TT∗)2
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so that

SkAk =
1
ξk
DkQkTT∗

is symmetric and (17) holds by

A(SkAkv, v) =
1
ξk
〈DkQkTT∗v,TT∗v〉Y =

1
ξk
‖DkQkTT∗v‖2

k ≥ 0 ,(29)

A(SkAkv, v) ≤
1
ξk
|||DkQkTT∗v||| |||v|||

≤ 1√
ξk
‖DkQkTT∗v‖k |||v|||

=
√
A(SkAkv, v) |||v||| ,

(30)

where we have used the definition of ξk according to (27). On the other hand,
the upper bound on ξk in (27) implies, by the identity QnT[I − Pn] = 0, (13),
Assumption 1, and (26):

ξk ‖T(I −Pk−1)‖2 ≤ ξkγ
2
k−1

≤ C h2p
k

(
sup
v∈Yk

‖D−1/4
k v‖Y

‖D−1/2
k v‖Y

)2

= C h2p
k ‖D

1/4
k ‖2

Y→Y ≤ Cξγ

(31)

for some constant Cξγ > 0, so that, by Cauchy-Schwarz, (21), and (25), we get

A(SkAkv, v) =
1
ξk
‖D1/2

k QkTT∗v‖2
Y

≥ 1
ξk

(〈D1/2
k QkTT∗v,D−1/2

k (Pk − Pk−1)v〉Y
‖D−1/2

k (Pk − Pk−1)v‖Y

)2

=
1
ξk

( |||(Pk − Pk−1)v|||2
‖(Pk − Pk−1)v‖k

)2

≥ 1
C− ξk

( ‖(I −Pk−1)PkT∗v‖X

‖T(I −Pk−1)PkT∗v‖Y

)2

|||(Pk − Pk−1)v|||2

≥ 1
C− Cξγ

|||(Pk − Pk−1)v|||2 .

(32)

Taking into account the fact that here

Qk =
(
Qk(TT∗)2Qk

)−1

Qk(TT∗)2,

Ak =
(
Qk(TT∗)2Qk

)−1

QkTT∗Qk

and setting

Sk :=
1
ξk

T∗Dk,

we can transform Algorithm 1 (or its nonsymmetric version) to define a multigrid
operator Bs

n (or Bn
n) for the iterative solution or preconditioning of equation (7):
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Algorithm 2. Set Bs
0 := (Q0TP0)−1. Assume that Bs

k−1 has been defined and
define Bs

kb for b ∈ Yk as follows:
Set x := Skb.
Set x := x+ Bs

k−1Qk−1(b−QkTx).
Set x := x+ Sk(b−QkTx).
Set Bs

kb := x.

The nonsymmetric version Bn
k is defined by omitting the fifth line of Algorithm

2.
It can be easily seen by induction that the so-defined Bs

k (Bn
k ) is related to Bsk

(Bnk ) by

Bs/n
k = T∗Bs/nk

(
Qk(TT∗)2Qk

)−1

,

and hence we have

(33) Bs/n
k QkTPk = T∗Bs/nk Ak .

Corollary 1 together with (29), (30), (31), (32) therefore implies

Corollary 2. Let Assumptions 1, 2, 3, and (22), (23), (24) hold and define Bs
n

and Bn
n by Algorithm 2 with Sk according to (28). Then

(34) 〈(I −Bs
nQnT)x, x〉X = ‖(I −Bn

nQnT)x‖2
X ≤ c‖x‖2

X for all x ∈ Xn

for some c < 1 independent of n.

The contraction factor result (34) is given here in the form in which it is needed
for the theory yielding the regularization result, Corollary 5 below. For a practical
implementation one will of course not work in Xk but in Yk, where one usually has
a convenient basis available, approximating a solution to the system in the second
line of (8) and subsequently applying T∗, as prescribed by the first line of (8). For
this purpose, we also give here the matrix form of Algorithm 2 with (28) and of
Corollary 2. With bk ∈ Rdim(Yk) being the vector of coefficients of b ∈ Yk with
respect to some basis {ψk1 , . . . , ψkdim(Yk)} of Yk,

(35) b =
dim(Yk)∑
j=1

bkjψ
k
j ,

and with the matrices

D̄k :=
(
〈Dkψ

k
i , ψ

k
j 〉Y

)
1≤i,j≤dim(Yk)

,

Ḡk :=
(
〈ψki , ψkj 〉X

)
1≤i,j≤dim(Yk)

,(36)

M̄k :=
(
〈T∗ψki ,T∗ψkj 〉X

)
1≤i,j≤dim(Yk)

,(37)

and C̄k−1 ∈ Rdim(Yk)
dim(Yk−1) such that, by (6)

(38) (ψk−1
1 , . . . , ψk−1

dim(Yk−1))
T = C̄k−1(ψk1 , . . . , ψ

k
dim(Yk))

T

we can write

(39) Bs/n
k b = T∗

dim(Yk)∑
j=1

(Bs/n
k
bk)jψkj ,
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where

Algorithm 3. (Matrix form of Algorithm 2 with (28))
Set Bs0

:= (M̄0)−1Ḡ0. Assume that Bsk−1
has been defined and define Bskbk for

bk ∈ Rdim(Yk) as follows:
Set xk := 1

ξk
(Ḡk)−1D̄kbk.

Set xk := xk + (C̄k−1)TBsk−1
Ḡk−1C̄k−1(Ḡkbk − M̄kxk).

Set xk := xk + 1
ξk

(Ḡk)−1D̄k(bk − (Ḡk)−1M̄kxk).

Set Bskbk := xk.

(To get Bnk, omit the fifth line in Algorithm 3.)
The result (34) of Corollary 2 in matrix form reads as

(40)
〈(Īn −Bsn(Ḡn)−1M̄n)xn, xn〉M̄n = ‖(Īn −Bnn(Ḡn)−1M̄n)xn‖2

M̄n ≤ c‖xn‖2
M̄n

for all xn ∈ Rdim(Yn) ,

where Īn is the dim(Yn)-dimensional identity matrix and 〈·, ·〉M̄n and ‖ · ‖M̄n are
the energy inner product and norm, respectively, with respect to the system matrix
M̄n: 〈xn1 , xn2 〉M̄n := (xn1 )T M̄nxn2 , ‖xn1‖M̄n :=

√
〈xn1 , xn1 〉M̄n , xn1 , x

n
2 ∈ Rdim(Yn).

3.2. Modification of King (1992). The smoother proposed in [22] in our context
reads as

Sk := cξh
−2p
k (I −Qk−1)Qk .

By the projection Qk−1, it separates Yk into a relatively low and a relatively high
frequency part. On the high frequencies it acts as a very simple approximation of
the inverse of QkTT∗Qk (note that by Assumptions 2, 3, and (12), the eigenvalues
of (I −Qk−1)QkTT∗Qk(I −Qk−1) are proportional to h2p

k ), while just removing
the low frequencies. It is intuitively clear that it could be improved by replacing
the removal of the low frequency part by a more refined treatment, e.g., by a
perpetuation of the principle described above, to the lower levels:

Sk := cξ

k∑
j=1

h−2p
j (I −Qj−1)Qj + Q0 .

In the framework of the general Corollary 1, this means that we choose 〈., .〉 to
be equal to the Y-inner product, i.e.,

〈., .〉 = 〈., .〉Y ,

hence this time corresponding to a stronger norm than |||.||| on Yk. The norm
equivalence (15), which we assume here to hold for Y′ = (Y−p)∗, q = p, i.e.,

(41) ∀v ∈ Yn : ‖v‖2
(Y−p)∗ '

n∑
j=1

h−2p
j ‖(Qj −Qj−1)v‖2

Y + ‖Q0v‖2
Y ,

in combination with Assumption 1 is used here to analyze the smoothing operator
Sk, that can be rewritten as

Sk = cξD̂k ,
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where the difference operator D̂k : Yk → Yk is the square root of Dk from subsec-
tion 3.1:

D̂kv =
k∑
j=1

h−2p
j (Qj −Qj−1)v + Q0v ,

so that, by our assumptions,

cD̂ ‖v‖(Y−p)∗ ≤ 〈D̂kv, v〉Y ≤ CD̂ ‖v‖(Y−p)∗ ,

and the constant cξ is chosen such that

0 < cξ ≤
1

CD̂ ‖T∗‖Y−p→X

.

The operator SkAk is then clearly symmetric with respect to A(., .) and
(42)

0 ≤ A(SkAkv, v) = cξ

(∑k
j=1 h

−2p
j ‖(Qj −Qj−1)Akv‖2

Y + ‖Q0Akv‖2
Y

)
≤ cξCD̂ ‖Akv‖2

(Y−p)∗

= cξCD̂

(
supw∈Yk

〈T∗v,T∗w〉X
‖w‖Y−p

)2

≤ cξCD̂ ‖T∗‖Y−p→X|||v|||2.

Analogously, one sees that

(43) A(SkAkv, v) ≥ c|||v|||2

for some c > 0.
By the fact that now

Qk = Qk , Ak = QkTT∗Qk,

we obtain, as in the section above, multigrid operators Bs
n, Bn

n for (7) from Algo-
rithm 2, this time setting

(44) Sk := cξT∗D̂k .

Note that the so-defined Bs
k, Bn

k satisfy

Bs/n
k = T∗Bs/nk ,

as well as (33), so that Corollary 1 together with (42), (43) implies

Corollary 3. Let Assumptions 1, 2, 3, and (41) hold and define Bs
n and Bn

n by
Algorithm 2 with Sk according to (44). Then

(45) 〈(I −Bs
nQnT)x, x〉X = ‖(I −Bn

nQnT)x‖2
X ≤ c‖x‖2

X for all x ∈ Xn

for some c < 1 independent of n.

In matrix notation with respect to a basis of Yk and using the notations (35)–
(39) of the previous subsection, Algorithm 2 with (44) by (35), (36), (37), (38),
(39) and

ˆ̄Dk :=
(
〈D̂kψ

k
i , ψ

k
j 〉Y

)
1≤i,j≤dim(Yk)

,
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becomes

Algorithm 4. (Matrix form of Algorithm 2 with (44))
Set Bs0

:= (M̄0)−1Ḡ0. Assume that Bsk−1
has been defined and define Bskbk for

bk ∈ Rdim(Yk) as follows:
Set xk := cξ(Ḡk)−1 ˆ̄Dkbk.
Set xk := xk + (C̄k−1)TBsk−1

Ḡk−1C̄k−1(Ḡkbk − M̄kxk).
Set xk := xk + cξ(Ḡk)−1 ˆ̄Dk(bk − (Ḡk)−1M̄kxk).
Set Bskbk := xk.

(To get Bnk, omit the fifth line in Algorithm 4.)
As in the previous subsection, the result (45) of Corollary 3 can be rewritten in

matrix form as (40).
Since it is just a straightforward consequence of the norm equivalence assump-

tions made (cf. inequalities (42) and (43)), we finally also mention the uniform
preconditioning property of the additive BPX preconditioner from [7]

(46) Ba
n = cξT∗

( n∑
k=1

h−2p
k (Qk −Qk−1) + Q0

)
:

Corollary 4. Let Assumptions 1, 2, 3, and (41) hold and define Ba
n by (46). Then

(47) 0 ≤ 〈(I −Ba
nQnTPn)x, x〉X ≤ c‖x‖2

X for all x ∈ Xn

for some c < 1 independent of n.

Remark 2. In applications like parameter identification, the evaluation of T (and
of T∗) will often involve the solution of a PDE, which usually has to be done in
an approximate way. In that case it will be more appropriate not to explicitly
calculate the entries of the matrix M̄k, but to assemble uk :=

∑dim(Yk)
j=1 xkjψ

k
j and

(approximately) compute the coefficients of QnTT∗uk, in the coarse grid correction
(and in the post-smoothing step) of the respective multigrid algorithm. To derive
sufficient closeness conditions for the numerical approximations T̃k, T̃∗k of T, T∗

on each level k (where T̃∗k need not necessarily be the adjoint of T̃k), we denote
by a tilde the respective perturbed operators produced by Algorithm 2 when using
T̃k, T̃∗k instead of T, T∗ on the k-th level. It is straightforward to see that the
difference between the preconditioned (unperturbed) operator on the k-th level with
perturbed and with unperturbed nonsymmetric preconditioner, respectively, obeys
the recursion

B̃n
kQkT−Bn

kQkT =
(
B̃n
k−1Qk−1T−Bn

k−1Qk−1T
)

(I − S̃kQkT)

+(I −Bn
k−1Qk−1T)

(
S̃kQkT− SkQkT

)
−B̃n

k−1Qk−1

(
T̃k −T

)
S̃kQkT

for all k ≤ n, so that for the real sequences

εk := ‖B̃n
kQkT−Bn

kQkT‖X→X,

αk := ‖S̃kQkT− SkQkT‖X→X , βk := ‖Qk−1

(
T̃k −T

)
‖X→Y
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we get

εk ≤ εk−1 (2(1 + C
c ) + αk)(1 +

βk
γ
k−1

)

+ (1 + c)(1 + C
c )αk + (1 + c)(1 + C

c + αk)
βk
γ
k−1

,

where we have used the estimates
‖(I −Bn

k−1Qk−1T)‖X→X

= ‖(I −Bn
k−1Qk−1T)Pk−1 + (I −Pk−1)

−Bn
k−1Qk−1T(Qk−1T)†Qk−1T(I −Pk−1)‖X→X

= ‖ (I −Bn
k−1Qk−1T)Pk−1︸ ︷︷ ︸
‖·‖X→X≤c

+(I −Pk−1)

−Bn
k−1Qk−1TPk−1︸ ︷︷ ︸
‖·‖X→X≤1+c

(Qk−1T)†Qk−1︸ ︷︷ ︸
‖·‖Y→X=1/γ

k−1

T(I −Pk−1)︸ ︷︷ ︸
‖·‖X→Y≤γk−1

‖X→X

≤ (1 + c)(1 + C
c )

(cf. (13), (14), (34), (45)),

‖B̃n
k−1Qk−1‖Y→X = ‖B̃n

k−1Qk−1T(Qk−1T)†Qk−1‖Y→X ≤
1 + c+ εk−1

γ
k−1

,

‖I − S̃kQkT‖X→X ≤ 2(1 + C
c ) + αk , ‖S̃kQkT‖X→X ≤ 1 + C

c + αk

(cf. (29), (30), (42), (43)). Imposing some maximal tolerance tolk ∈ (0, 1] on αk
and βk

γ
k

,

(48) αk ≤ tolk ,
βk
γ
k

≤ tolk , k = 0, . . . , n,

therewith implies an estimate of the form

(49)

εn ≤ ε0

n∏
i=1

(1 + C1 toli) + C2

n∑
j=1

tolj
n∏

i=j+1

(1 + C1 toli)

≤ ε0 exp(C1

n∑
j=1

tolj) + C2

n∑
j=1

tolj exp(C1

n∑
i=j+1

toli),

with C1 = 3 + 2Cc , C2 = (1 + c)(3 + 2Cc ). In order to be able to conclude from (34)
or (45) together with (49) and the estimate

‖B̃n
nQn

(
T̃n −T

)
Pn‖X→X ≤

(1 + c+ εn)βn
γ
n

that also
‖(I − B̃n

nQnT̃n)Pn‖X→X ≤ c̃
for some c̃ ∈ (0, 1), we therefore demand the sum of all tolerances to be uniformly
bounded with sufficiently small bound:

(50)
n∑
j=1

tolj ≤ stol, toln ≤ tol ,
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with c+(1+c)tol+(1+tol)(ε0+C2stol) exp(C1stol) < 1. In the context of subsection
3.1

αk = ‖
(
T̃∗k −T∗

)
Qk

1
ξ k
DkQkT‖X→X ≤ Ch−pk ‖

(
T̃∗k −T∗

)
Qk‖Y→X ,

and in subsection 3.2

αk = ‖
(
T̃∗k −T∗

)
QkcξD̂kQkT‖X→X ≤ Ch−pk ‖

(
T̃∗k −T∗

)
Qk‖Y→X ,

for some constant C independent of n. Hence, in order to guarantee (48), (50), we
demand the operator approximations T̃k, T̃∗k to satisfy

h−pk ‖
(
T̃∗k −T∗

)
Qk‖Y→X and h−pk ‖Qk−1

(
T̃k −T

)
‖X→Y

summable with sufficiently small sum,

so that the approximation accuracy has to become higher with increasing level. For
the symmetric multigrid operators and the additive one (46), one can do a similar
perturbation analysis.

Remark 3. The exact implementation of projections Qj involves inversion of Gra-
mian matrices with respect to bases of Yn. Note that the system matrices in
(8) are typically full so that the inversion of a tridiagonal matrix asymptotically
does not count as compared to, e.g., a system matrix × vector multiplication.
Nevertheless it might in some cases be advisable to save computational effort by
using efficient numerical approximations Q̃j of the projections Qj , that avoid Gram
matrix inversions. Bramble, Pasciak, and Vassilevski [5] provide an abstract norm
equivalence theorem (Theorem 2.1 in [5]) allowing for approximation operators Q̃j

to Qj in (15) and give a concrete choice of Q̃j , based on nodal bases and local
L2-projections, that satisfies the assumptions of Theorem 2.1 in [5] in the context
of piecewise linear finite elements (r = 0) and therefore can be used for an efficient
inner product computation. For other implementations Q̃j of Qj that are based
on wavelet-like space decompositions, see the references in [5].

4. Full multigrid as an iterative regularization method

The contraction factor estimates in Corollaries 2, 3 and 4 (that obviously also
hold for cycles of more than one coarse grid correction) make it possible to apply the
respective multigrid operators as preconditioners for (7), yielding level independent
condition numbers (see [20] for an application of (46) as a preconditioner for a
Newton-CG algorithm for the reconstruction of the reluctivity curve of nonlinearly
magnetic materials).

Alternatively, the multigrid operators of Section 3 can be used in a full multigrid
method (cf., e.g., [8]) for the iterative solution of (7):

Algorithm 5. (Full multigrid method)
Set x̃0 := (Q0T )†Q0y

δ

For k = 1, . . . , n
Set x̃k := x̃k−1 + Bk(Qky

δ −QkTx̃k−1) which in matrix form with

fkj := 〈yδ, ψkj 〉Y , j = 1, . . . ,dim(Yk) , k = 0, . . . n,
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reads as

Algorithm 6. (Full multigrid method in matrix form)
Set x̃0 := (M̄0)−1f0

For k = 1, . . . , n
Set x̃k := (C̄k−1)T x̃k−1 + B

k
(Ḡk)−1(fk − M̄k(C̄k−1)T x̃k−1)

Set x̃n := T∗
∑dim(Yn)

j=1 x̃nψnj .

This iterative scheme can be easily shown to converge to an exact solution of the
infinite-dimensional problem (1), if the data are exact, i.e., δ = 0. In the practically
relevant situation of nonvanishing data noise, one has to take special care of the
propagated data noise, though, which is amplified by a worst case factor ∼ h−pn
at the n-th level, hence may explode as n → ∞. It is therefore crucial to find
for given data yδ and noise level δ a stopping rule n = N(δ, yδ) for the iteration
according to Algorithm 5, that carries out the trade-off between approximation
error and propagated data noise in an optimal way in the sense that the so-defined
approximation x̃N(δ,yδ) converges to the exact best approximate solution of (1) as
δ → 0, and additional a priori information (4) yields optimal rates (5) (cf. [18]). It
was shown in [21] that a Morozov-type discrepancy principle does so even without
needing explicit knowledge of the exponent µ in (4).

Corollary 5. Let the assumptions of Corollary 2 or of Corollary 3 hold and fix
τ > 1.

Then for any δ < ‖y‖
τ+1 and for any data yδ with (2), a finite N(δ, yδ), with

(51) N(δ, yδ) := min{n ∈ N | ‖Tx̃n − yδ‖ ≤ τδ}
exists.

For any family of data yδ with (2), x̃N(δ,yδ) converges to x† as δ → 0.
Under an additional source condition (4) for µ ≤ 1

2 , the optimal convergence
rate (5) is achieved.

Proof. See the proof of Theorem 3 in [21]. �

Remark 4. To be able to treat also nonlinear ill-posed problems

F (x) = y,

one can either use the proposed multigrid operators in each linear step of a Newton
iteration, or, analogously to [21], generalize the smoothing operators to directly
incorporate them into a nonlinear multigrid method.

5. Numerical experiments

For numerically verifying the theoretically predicted condition number estimates
using the proposed multigrid operators as preconditioners, we implemented the
proposed multigrid methods in a MatLab program on an SGI origin. As a simple
application example we study the Abel integral equation

(52)
∫ t

0

x(s)√
t− s

ds = y(t) , t ∈ (0, 1) ,

which represents the rotational symmetric two-dimensional case in X-ray tomogra-
phy. Here X = Y = L2(0, 1) and the degree of smoothing of the forward operator
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Figure 2. Condition numbers for Abel integral equation (52),
projection onto piecewise linear C0-splines.

and its adjoint

T : X → Y,
x 7→

∫ ·
0
x(s)√
·−s ds,

T∗ : Y → X,
y 7→

∫ 1

·
y(t)√
t−· dt

is p = 1
2 (see, e.g., [10]; this can also be easily checked by taking Fourier transforms)

and therefore Y−p = H−
1
2 (0, 1), Y−2p = H−1(0, 1), which corresponds to the

situation considered in [3]. Using continuous piecewise linear splines for defining
our discretization spaces Yn, we fulfill the norm equivalence requirements in both
multiplicative multigrid variants of subsections 3.1, 3.2 as well as the additive one
(46). The resulting condition numbers are plotted in Figure 2.

For further numerical experiments for a different model example we refer to [18],
[19], [21]; a practical application example can be found in [20].

Remark 5. The theoretical analysis implies that the BPX preconditioner (46) and
the modification of King’s algorithm (according to Algorithm 4), which is just the
multigrid algorithm resulting from applying the BPX preconditioner on each level as
a smoother, give the same qualitative result. However, in our numerical experiments
it turns out that the possible additional effort of implementing Algorithm 4 seems to
pay by yielding better condition numbers. Moreover, the numerical tests show that
the theoretically needed additional requirements (23), (24) for the generalization
of Bramble, Leyk, Pasciak (according to Algorithm 3) do not seem to be really
necessary (at least in our examples; see also [19]).
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[28] S.V. Pereverzev, S. Prössdorf, On the characterization of self-regularization properties of a

fully discrete projection method for Symm’s integral equation, J. Integral Equations Appl. 12
(2000), no. 2, 113–130. MR 2001j:65198

[29] A. Rieder, A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regula-
rization, Numer. Math. 75 (1997), 501-522. MR 97k:65299

[30] A.N. Tikhonov, V.A. Arsenin, Methods for Solving Ill-Posed Problems, Nauka, Moskau, 1979.
MR 82e:65002
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