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REAL ZEROS OF REAL ODD DIRICHLET L-FUNCTIONS

MARK WATKINS

ABSTRACT. Let x be a real odd Dirichlet character of modulus d, and let
L(s,x) be the associated Dirichlet L-function. As a consequence of the work
of Low and Purdy, it is known that if d < 800000 and d # 115147, 357 819,
636 184, then L(s, x) has no positive real zeros. By a simple extension of their
ideas and the advantage of thirty years of advances in computational power,
we are able to prove that if d < 300000000, then L(s, x) has no positive real
ZEros.

1. INTRODUCTION

Let x be a primitive real Dirichlet character. We wish to determine whether
the associated L-function L(s,x) = Yoo, Xr(:f) for Rs > 0 has any positive real
zeros. By classical arguments, we have L(s, x) # 0 for s > 1, and by the functional
equation, we need only consider 1/2 < s < 1. We shall restrict ourselves to odd
characters, i.e. those such that x(—1) = —1, for reasons which will become clear.
We remark that the best results for even x have been obtained by Rosser, who, in
unpublished work, showed that for moduli less than 986, L(s,x) has no positive
real zeros. The sharpest theoretical results have been obtained by Conrey and
Soundararajan [2], who show that asymptotically at least 20% of the primitive real
odd Dirichlet characters y with 8 dividing the modulus have L(s,x) > 0 for s > 0.

By well-known arguments, the assumptions that x is odd, primitive, and has
modulus d > 4 implies that ((s)L(s, x) is the Dedekind zeta-function of the imagi-
nary quadratic field of discriminant —d. In particular we have that x(n) = (—d|n),
where (—d|n) is the Kronecker symbol. For Rs > 1, we also have

C(s)L(s,x) = Z Z(s;a,b,c),

(a,b,c)€Q

where
Q=1{(a,b,c) €23 —d=0*—4ac, —a<b<a<cor0<b<a=c}

is the set of reduced integral solutions of —d = b? — 4ac, and

A
(s;a,b,c) ( Z:)%:O) am2+bmn+cn2)

Low [3] found three conditions which, if satisfied for a given modulus d, imply that
L(s, x) has no positive real zeros. Using an IBM 7094, he verified these conditions
for moduli less than 593 000, finding one exception to his first condition. In his
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review of Low’s work, Rieger [B] stated that an error analysis was lacking. To
remedy the problem, Purdy [4] extended Low’s work to moduli less than 800 000
and performed an accompanying error analysis. Purdy found three exceptions to
Low’s first condition: 115147, 357819, and 636814. By a slight modification of
Low’s argument, we can overcome the fact that these three moduli fail his first
condition. This is somewhat important, as many references to Low’s work sloppily
ignore this point. Moreover, due to thirty years of advances in computational power,
we can extend these results up to moduli less than 300 000 000. We shall show the
following;:

Theorem. Let x be a real odd Dirichlet character of modulus d < 300000 000.
Then L(s,x) has no positive real zeros.

2. LOW’S THREE CONDITIONS
We let —d be a fundamental discriminant with d > 4, and let @ be the afore-
mentioned set of reduced integral solutions of —d = b?> — 4ac. We define
1
(1) ala,d) =loga + 10g(8ﬂ'677) ~3 log d,

where 7 is Euler’s constant. We define b,, and j3,, from the relations (for |s —1| < 3)

1og[(s — 1)((5)} = Z(—l)"ﬁn(s -1 and b, = (2" — 1)? +2"83,.

n=1

We list some properties of the b,,:

(2) b, < 2"

2.09 < by <210, 2.66 <bsg <267, 399 <by<4.0, 6.39<bs <64,
(3) bs < 10.67, 18.28 < by < 18.29, 56.88 < by < 56.89, b1 < 186.19,

(4) b2n+1 > 594 for n > 6.

A proof of (2) appears in Low’s work, (3) can be verified directly, and (4) follows
from Low’s statement that b,, > 27 (1 —7.44(2/3)""1) for n > 6.
From [1], it is known that the analytic continuation of Z(s;a, b, ¢) satisfies

% (a—:)SF(s)Z(s; a,b,c) = f(s)+ f(1 —s)+ H(s;a,b,c),
where k = V/d/2a and f(s) = (k/m)*T'(s)((2s)/vVk and H(s;a,b,c) is an error term
given by

H(s;a,b,c) =4 Z ns_l/Qal_gs(n) COS(WTle)KS,l/Q(ZWkn),
n=1

where a;(n) = Emlnml and Kj(z) is the standard K-Bessel function given by
Ki(z) = [, e =Mt coshit dt.
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The three conditions of Low are

. ala,d)
(i) So= >0,
% Ve

Za sabc)>0 for 1/2 < s < 1,
Q f

1 2n+1(:’ ]l)
E — 2 > > 1.
(111) Sn = \/_ <b2n+1 + (2’11 1)! > 0 for n 1

It is proven in [3] that these imply L(s, x) > 0 for 0 < s < 1. Note that (4) implies
that (iii) trivially holds for sufficiently large n. In fact, the following lemma allows
us to check condition (iii) quite efficiently.

Lemma. Assume that d < 10'°. Then S, > 0 forn > 6, and S; > 0 and S > 0
imply that S, > 0 for all n > 1.

Since 1 < a < v/d, our assumption that d < 10'° combined with (1) gives us that
—v80 < a(a,d) < 3 for all (a,d) pairs. So for n > 6, we can use (4) to conclude
that
a2n+1(a, d)

(2n+1)!
Thus S,, > 0 for n > 6, since every term in the sum is positive. For the n = 3,

n =4, and n = 5 terms we can exploit the behavior of certain polynomials. We
have that

bant1 + > 594 —

30 13
D

x7  8zP

7 35!

for —/80 < x < 3. This follows from the fact that the critical points of the
polynomial are at = 0 and z = 4/80. Evaluating at the critical points and
using (3) gives the desired inequality. Letting = be a(a,d), multiplying by 1/1/a
and summing over @, this implies that S3 > %Sg > 0. Similarly,

+ b7 — 6520

2 327 3
o 27|+b9——b7>0

for —/80 < z < 3, and so Sy > %Sg > 0. Finally,

J,‘ll .1?9

ﬁ—§+b11_b920
for —v/80 < x < 3, and so S5 > Sy > 0. Thus if S; > 0 and So > 0 and d < 10'9,
we see that (iii) holds for all n, proving the Lemma.

In our range of moduli, the failures of Low’s method come mostly from (i). A
failure of (ii) would be very good evidence against GRH, while failures of (iii) might
occur for the same spurious reasons that (i) fails for certain moduli. For moduli
d < 300000000, we found that (ii) is always true, while (i) fails for 4507 moduli.
One failure of (iii) was found: —0.25 < Sp < —0.23 for d = 290661 067. In the
sequel, we shall have to deal with this modulus separately.
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3. DEALING WITH FAILURES TO CONDITION (i) IN THE RANGE d < 1010

We follow the proof of [2, Theorem 2]. For |r| < 1/2, we have

(5) 3 %[a(a, d) + m()h(ria,d) > So+ 3 Sur”,
Q

n=1
where
m(r) = Z b2n+17“2n, g(?") = r[a(a,d) + m(r)],
and )
oy SblE0)] _SS g)
h(r;a,d) g(r) n§=:0 (2n+ 1)1

We now show how to deal with failures to condition (i), and thus we shall assume
that So < 0. We shall also assume that (ii) and (iii) hold. We want to multiply
the left side of (5) by I(r) = exp(zzo:l bgnr2”> > 1, and if Sg+ 51r2 > 0, this will
yield the valid inequality

(6) 3 %[a(m 0) + m()h(r a,d) > Sur + 5o > So.
Q

This is in contrast to Low, who always required Sy > 0, which precluded him from
being able to handle the cases when Sy < 0. So for

(7) |7“| > V _SO/Slv

we see that (6) holds. As in Low’s proof, (6) and (ii) imply that L(s,x) > 0 for
s = 0.5+ r for r in the range (7). So if Sp < 0, we can conclude that L(s,x) # 0
for s > 0.5+ /—50/S1. For our range of d, our computations show that (when
So < 0) we always have y/—S5p/51 < 0.05, and so we need only consider |r| < 0.05
in the remainder of this section. Because of numerical round-off errors which may
occur, we shall actually consider all Sy < 0.02 instead of just negative Sy. This will
not be a big issue; our main goal will be to show (6) for certain ranges of r.

We see that (6) holds trivially at » = 0, and we hope that by taking a power
series expansion around r = 0, we will find that (6) holds in a region which overlaps
(7). Since the b; are nonnegative, to show (6), it suffices to show that
(8) z@: % [a(a, d) + bar® + b5r4} h(r;a,d) > So.

Our computations show that |Sy| < 1/50 and S; > 1 for all moduli d in our range
for which Sy < 1/50, and so we will assume these inequalities for the remainder of
the section. Using 0 < b,, < 271 |r| < 1/20, and (3), we get that

Z b2 < 1279
n>3
and
14 bor? + (by + b2/2)r* < 1(r) < exp(bor? + byr* + 12r°)
<1+ bor? + (by + b3/2)r* 4 237°,
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which gives I(r) = 1+ bar? + (by + b3/2)r* + 230r° for some |0 < 1. We make the
abbreviation a = a(a, d) and note that

4 4
VR0 <a< I _ ban < — <3+ —,
« O”LZQ“T *t g9 =3+t 59

which gives that ¢g2(r) < 80r? < 1/5, which implies

- g*"(r) 3,6 - 1 6
- <80 — < 102r".
nz:; Cnt+nl =" ;5"*3(271-1-1)! =0
By a similar bounding of tails, we can obtain the results that

g*(r) = (ar +byr® +70°)° and ¢'(r) = (ar +30r°)*

for some |0] < 1, which need not be the same at every appearance. Thus we obtain
that

o0 2n 2
Cad) = gr) o (bsa a®
h(r,a,d)—1+;(2n+1)!—1+ = +( : +120>r + 200075,

In the last step we have used |a| < 9. Expanding out (8), we get that the left side
is

Z % (1 + bor®4-(by + b3 /2)7* + 239713) {Oc(a, d) + bsr? + b5r4}
Q

9) x (1 + @ﬁ + (b3a(a’ 9, o d)>r4 + 2009r6>.

3 120

We wish to find a range for r such that (9) is greater than Sy. We multiply out
(9) in order to find a lower bound for it. There will be some obviously positive
terms like b3a?r*/2/a and babsa?r® /6./a which we can ignore. Our multiplication
will also yield multiples of S; and Sa, such as Sy(bs + b3/2)7% and Saber®. Since
these are positive, we can ignore them also. We define T'= 3", 1/1/a, and thus we
obtain a lower bound of

So + (S1 + b2S0)r? + (S2 + b2S1 + [ba + b3/2]So)r* — 2100Tr°

for (9) by multiplying it out and using the bounds on the b; and |a|. Since |Sp| <
1/50 and S; > 1 for all of our failures of (i), the r* term in the above is positive,
and so we can ignore it. Thus we find that we have (8) for

. Si+bySo )
< . —_ .
(10) |r| < min (O 05, ( 51007 )

If this overlaps the previous range (7) for r, we can conclude that L(s, x) has no
positive real zeros. Our program found that these ranges do overlap for all failures
of (i) for d < 300000 000. As an example, the smallest Sy occurs for d = 223191 759,
for which Sy &= —0.01638. We have S; > 314 and T < 249. Hence (7) implies (6)
for r > .0073, while the range in (10) gives us (8) when |r| < min(.05,.156).
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4. THE MODULUS 290661 067

Even though condition (iii) fails for n = 2 for this modulus, we can still use
the ideas of the previous section to show that there are no positive real zeros of
the associated L-function. Computations show that Sy > 0, S; > 3, Sy > —1/4,
S3 > 250, and Sy > 1200, while the argument of Section 3 shows that S, > 0 for
n > 5. By (5) we have

1
—[a(a,d) +m(r)]h(r;a,d) > So + S17r? 4 Sor?.
Ve 0

In order to be able to obtain (6), we need both Sg + S17? + Sor > 0 and S17? +
Sort > 0. But for |r| < 1/2, both of these are true due to the inequalities Sy > 0,
Sy > 3, and S3 > —1/4. Thus we have (6), and so we only need to verify (ii)
to conclude that L(s,x) > 0 for real s > 0 for the quadratic character modulo
290661 067. Such a verification was done as for the other moduli, as described in
Section 5. We record the facts that this modulus is prime, and the class number of
the associated imaginary quadratic field is 1101. Also, the lowest height zero of the
associated L-function appears to be at approximately s = 1/2 + 0.0477924709188:.

5. HOW THE PROGRAMS WORKED

The first thing to do is to generate members of @, i.e. find solutions to —d =
b? — 4ac with certain bounds on the size of a, b, and ¢. The most expedient way to
do this is to let b run from 0 to 1/d/3 and then factor (b? + d)/4 to find possible
(a,c) pairs. Of course, factoring can be a time-consuming process. To speed up
the factoring step, we create an enormous array. In the gth position of the array,
we store the smallest prime factor of ¢, storing 0 if ¢ is prime. Such an array can
be created very quickly by the use of sieve methods. The array needs to contain
numbers up to d/3. Of course, we need not consider even numbers in the array, since
it is so easy to divide by two. Since the smallest prime divisor of a composite number
is less than its square root and d/3 is no more than 10® for our range of moduli,
we never have to store anything in our array greater than 10000, thus allowing the
word size to be 16 bits. This allowed us to keep the memory requirements down, a
great concern when dealing with an array with around 10% elements.

Having created this array which allows fast factorization, the program next goes
through the moduli d in the range it is given. It checks that d is in one of the six
congruence classes 3, 4, 7, 8, 11, or 15 modulo 16, and also that 9, 25, and 49 do
not divide d. We just ignore the fact that higher squares may divide d, as it would
be too time-consuming to check this. For each d, we let b run from 0 to y/d/3, and
we find the factors of (b? + d)/4 by iteratively using our array to find the smallest
prime factors. Note that unless b =a or a = c or b = 0, a triple (a,b,¢) in @ has
a distinct “conjugate” in @, namely (a, —b,c). When we speak of doing operations
on members of ) in the sequel, it is understood that we only consider b > 0 and
multiply by the necessary multiplicity. For (a,b,c) triples in @, we make lower
bound estimates for the contributions to Sg, Si, Sa, and U(s). We describe these
more fully in the next paragraphs.

Since the C library functions log, exp, sqrt, and cos are rather time-consuming
to compute, and for the vast majority of d the conditions of Low will hold quite
comfortably, it was decided that, as a first measure, crudely bounding these func-
tions would be more efficacious in the long run, with sharper bounds then used
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only for the d which were cantankerous. The only quantity of which we need to
take the square root or natural logarithm many times is a, and we know that
a < 4/d/3 < 10000. Thus three arrays are created at the beginning of the program,
containing upper and lower bounds for v/a and lower bounds for log(a) for all in-
tegers 1 < a < 10000. To check condition (ii), we also need to be able to upper
bound H(s;a,b, c) easily, and by the results of [I] and [2, Theorem 4] we have
2cos(mb/a) 1 |2cos(mb/a)

H(S§avba0)§ k1/2¢27k 25  kl/2e27k

where k = \/E/ 2a. To expedite calculation of the terms involving k, two arrays
are created which contain upper and lower bounds for the values of k~/2¢=27F for
0 < k < 2 at k-intervals of 1/25. The upper bounds contain a factor of 2+% = 2.08,
while the lower bounds carry a factor of 1.92, as these quantities would appear in
the calculations in any case. The program then simply rounds k either up or down
to the nearest demarcation and looks up the appropriate bound in the tables. The
cosine is bounded by fourth order Taylor polynomials. If 2b < a, then upper
bounds for cos(rb/a) and the expression involving k are used, while if 2b > a, the
corresponding lower bounds are taken.

For a given d, each member of ) has its contribution to the four sums in ques-
tion bounded in this manner. In order to calculate a(a,d), the value of log(d) is
computed once with the C library function. Similarly, v/d is computed once with
the C library function so that k = \/E/ 2a can be determined. The computations
for a given d can be ended early if all four sums are positive and it is ascertained
that additional values of b can only add nonnegative values to the four sums. The
values of b3 and b5 that occur in S; and Sy were pre-computed, and lower bounds
for these are used in the program. Similarly, the value of log(8me™7) was computed
once and a lower bound is used in the program.

Note that the repetitive computations of the program involved with individual
members of () use nothing but the four basic operations, while the values in tables
at the beginning can easily be checked against more accurate computations to
bound their error. It is therefore a straightforward but tedious task to undertake
an error analysis as in [4]. In practice, any d with computed bounds for Sy, S1, Sa
or U(s) which are less than 0.001 are written to an output file, which is sufficient
to compensate for any accumulated round-off error. As mentioned above, for all
moduli we considered we had S; > 0, and So was positive for all d save 290 661 067.
Note that any modulus d which is not written to the output file satisfies all of
Low’s conditions, and thus we can conclude that the corresponding L-function has
no positive real zeros.

The moduli which remain are then handled by a more robust program, using a
multi-precision package. To put the level of precision in perspective, we note that
the smallest lower bound for U(s) in our range of d is 2.073 x 107 for the modulus
d = 175990 483. This secondary program computes the sum T = ZQ 1/+/a, which
appeared in Section 3, and also checks to see if d has a nontrivial odd square factor
(recall that previously we had only checked this for 9, 25, and 49; for instance,
d = 13932787 will fail the first program, but it is divisible by 121). There were 4507
moduli with Sy < 0 which got passed to this secondary program, of which 64 were
eliminated by having a nontrivial odd square factor. For each of the 4443 remaining
moduli, it is relatively easy to verify that the ranges (7) and (10) of Section 3
overlap, but condition (ii) can often be difficult to verify, since the L-function is so
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small near its central point in many of these cases. As a first measure, we do not
make a time-consuming effort to get an impressive upper bound on H(s;a,b,c),
but we are less crude than previously. In fact, often the crude bound of the first
program is enough to conclude that U(s) is positive (throughout the desired range),
but the secondary program still verified this anyway. If our lower bound for U(s)
is still negative, then a heavy-duty tertiary program with even sharper bounds and
more precision is used (these was necessary for a total of nine moduli).

We describe the estimates used in the generic secondary program. We write
v=2s—1/2, and from [3], we have that

b 27h 7
(11) H(s;a,b,c) < 4005(%)1(@(27%)4—4[2”_,_2%] cos(%)KU(élwk)—i—m.
We need only consider v in the range 0 < v < 1/2; and in this range from [I] we
have (for all positive integers n)

L—do® 2(kn) Y2627k [, (27kn) < 1.
16mnk — -

Thus if cos(wb/a) is positive, then the first term in (11) is no greater than
2 cos(mb/a) /vke* ™, while if cos(mb/a) is negative, the corresponding bound is

2 cos(mb/a) 1 1
VEe2rk 167k |

Similarly, if cos(2mb/a) is positive, then the second term of (11) is no more than
3cos(2mb/a)/Vke*™ and if cos(27b/a) is negative, the bound is

3cos(2mb/a) | 1
\/Ee47rk 327k ’

Plugging these into (11), we get the bounds that are used in the secondary program;
this gave us a positive lower bound on U(s) for all but nine of the moduli, the outliers
being 119299192, 124414899, 157619067, 172672063, 174523771, 175990 483,
177351128, 192214136, and 246 616 980.

Equation (12) is the tip of the iceberg; in fact, we have a whole family of in-
equalities of this type. The relevant one for us comes from [I] and approximates
K, (2mkn) more sharply in some cases:

1—4v?  (1—402)(9—4v?) (1 —4v2)(9 — 40?)(25 — 4v?)

(12) 1—

16mnk 2! (167mnk)? 31 (167nk)3
(13) < Q(kn)l/QeQWk"K (2mkn) <1 — 1—4v? (1 —40?)(9 — 40?)
- ! - 167nk 2! (167nk)?2

For the nine remaining moduli, we divided up the v-range into ten equal parts and
used the better of the above bounds (12) and (13) to bound the Bessel functions
in each of these ranges. We also note the bounds

3
ns—1/201_28(n) < nl/Qo_l(n) and o_1(n) < 5(n -1) for n > 2,

both of which are proven in [I]. These are used in conjunction with the above. For
each v-range, H(s) is estimated using these. In theory, if the lower bound were not
positive, the v-range could be further divided or expansions with more terms could
be used in place of (13), but for the nine moduli we considered at this stage, the
above was sufficient to show condition (ii).
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6. RESULTS

The programs were run during off-peak hours on a SPARC over a 3-month period
in 1997. As indicated above, we were able to show that (ii) always holds for the
d in our range, while failures of (i) and (iii) could be handled. In all cases, the
programs were able to show that L(s, x) had no positive real zeros, in accordance
with the well-believed conjectures.

REFERENCES

[1] P. Bateman and E. Grosswald, On Epstein’s zeta function. Acta Arith. 9 (1964), 365-373.
MR 131:3392

[2] J. B. Conrey and K. Soundararajan, Real zeros of quadratic Dirichlet L-functions. Invent.
Math. 150 (2002), 1-44.

[3] M. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field. Acta Arith.
14 (1968), 117-140. MR [38:4425

[4] G. Purdy, The real zeros of the Epstein zeta function. Ph. D. thesis. Univ. of Illinois (1972).

[5] G. Rieger, Review of [3], Math. Reviews 38/4425 (1970).

DEPARTMENT OF MATHEMATICS, MCALLISTER BUILDING, THE PENNSYLVANIA STATE UNIVER-
SITY, UNIVERSITY PARK, PENNSYLVANIA 16802
E-mail address: watkins@math.psu.edu


http://www.ams.org/mathscinet-getitem?mr=31:3392
http://www.ams.org/mathscinet-getitem?mr=38:4425

	1. Introduction
	2. Low's three conditions
	3. Dealing with failures to condition (i) in the range d1010
	4. The modulus 290661067
	5. How the programs worked
	6. Results
	References

