
MATHEMATICS OF COMPUTATION
Volume 73, Number 246, Pages 843–851
S 0025-5718(03)01539-4
Article electronically published on September 2, 2003

A SENSITIVE ALGORITHM FOR DETECTING
THE INEQUIVALENCE OF HADAMARD MATRICES

KAI-TAI FANG AND GENNIAN GE

Abstract. A Hadamard matrix of side n is an n×n matrix with every entry
either 1 or −1, which satisfies HHT = nI. Two Hadamard matrices are called
equivalent if one can be obtained from the other by some sequence of row
and column permutations and negations. To identify the equivalence of two
Hadamard matrices by a complete search is known to be an NP hard problem
when n increases. In this paper, a new algorithm for detecting inequivalence of
two Hadamard matrices is proposed, which is more sensitive than those known
in the literature and which has a close relation with several measures of unifor-
mity. As an application, we apply the new algorithm to verify the inequivalence
of the known 60 inequivalent Hadamard matrices of order 24; furthermore, we
show that there are at least 382 pairwise inequivalent Hadamard matrices of
order 36. The latter is a new discovery.

1. Introduction

A Hadamard matrix of side n is an n×n matrix with every entry either 1 or −1,
which satisfies HHT = nI. It is known that n is necessarily 1, 2, or a multiple of
four. A Hadamard matrix is called standardized if its first row and column consist
of all 1’s. Two Hadamard matrices are called equivalent if one can be obtained from
the other by some sequence of row and column permutations and negations. The
equivalence classes of Hadamard matrices of order ≤ 28 have been obtained by Hall
[7], [8], Ito et al. [10], Kimura [11], [12], [13] and Spence [20]. On the equivalence
class of Hadamard matrices, we have the following known results (see [2, Theorem
24.34], [21], [6]).

Lemma 1.1. There is a unique equivalence class of Hadamard matrices of each
order 1, 2, 4, 8, and 12. The number of classes for orders 16, 20, 24, 28, 32, and 36
are 5, 3, 60, 487,≥ 66000, and ≥ 200, respectively.

For identifying the equivalence of two Hadamard matrices of order n, a complete
search compares (2nn!)2 pairs of matrices and is known to be an NP hard problem
when n increases. Kimura used the K-matrix for classification of the Hadamard
matrices of order 28. For the definition of K-matrix associated with Hadamard
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matrices, see [14]. Smith normal form can certainly be applied as an invariable
for equivalent Hadamard matrices (see [4]), which is easy to compute but very
coarse for orders above 16. Several authors (see [3], [15], [16], [17]) proposed using
the profile to identify the inequivalence of two Hadamard matrices, which is more
sensitive than Smith normal form.

Suppose that H = (hij) is a Hadamard matrix of order n ≥ 8. Define

pijkl =

∣∣∣∣∣
n∑
x=1

hixhjxhkxhlx

∣∣∣∣∣ .
Denote by π(m) the number of sets {i, j, k, l} of four distinct rows such that pijkl =
m. We call π(m) the 4-profile of H . Similarly, we can define the 6-profile, 8-profile,
etc. For some modified version of the profile, such as the extended profile and the
generalized profile, can refer to [16]. Two equivalent Hadamard matrices have the
same profile, but the inverse is not true. We shall see that the profile criterion is
not sensitive enough to detect inequivalent Hadamard matrices. Therefore, we need
some criterion that is more sensitive than the profile and that is easy to compute.
Recently Ma, Fang and Lin [18] suggested using the uniformity and projection
uniformity that have been used in quasi-Monte Carlo methods (Hickernell [9] and
Niederreiter [19]) to detect nonisomorphism of factorial designs. Their idea may
be useful in detecting inequivalent Hadamard matrices. Because isomorphism in
factorial designs and equivalence in Hadamard matrices have different definitions,
we have to find a new criterion for Hadamard matrices.

The main purpose of this paper is to propose a new criterion that is based on
the symmetric Hamming distances of the rows of a Hadamard matrix and their
projections. The symmetric Hamming distance is a modified version of Hamming
distance and will be defined in the next section. The new criterion has a close link
with several measures of uniformity. We shall show that two Hadamard matrices are
equivalent if the Hamming distances between the rows are the same in all possible
projections. A new algorithm for detecting inequivalence of two Hadamard matrices
is proposed in Section 3. As an application of the new criterion and algorithm, we
will verify the inequivalence of the known 60 inequivalent Hadamard matrices of
order 24 in Section 4, and we will show in Section 5 that there are at least 382
inequivalent Hadamard matrices of order 36. A connection of the new criterion and
measure of uniformity, such as the centered L2-discrepancy that has been used in
quasi-Monte Carlo methods as well as in factorial designs, will be pointed out in
the last section.

2. A necessary and sufficient condition

Suppose that H is a Hadamard matrix of side n. LetDH = (dij) be the Hamming
distance matrix of a Hadamard matrix H , where dij is the Hamming distance of
the i-th and j-th rows of H and is defined as the number of positions with different
elements.

Recently, Clark and Dean in [1, Theorem 2.1] presented a necessary and sufficient
condition for the equivalence of two fractional factorial designs in terms of Ham-
ming distance matrices. Since a Hadamard matrix can be regarded as a fractional
factorial design, we have the following sufficient condition for Hadamard matrices.

Theorem 2.1. Let {c1, . . . , cn} be any permutation of the integers {1, . . . , n} and
let DH(c1, . . . , cq) be the distance matrix corresponding to columns {c1, c2, . . . , cq}
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of H. For any given permutation {c1, c2, . . . , cn} of {1, 2, . . . , n} and any given
n× n permutation matrix R, the sequence of matrices

RDH(c1, c2, . . . , cq)R′ , q = 1, 2, . . . , n ,

uniquely determines the Hadamard matrix H up to equivalence.

Remark. The reverse of Theorem 2.1 is also true for fractional factorial designs, but
it is not the case for Hadamard matrices. The main reason is that the definition of
isomorphism for factorial designs and the definition of equivalence for Hadamard
matrices are not identical. For factorial designs, the negation of a row is not allowed.

Corollary 2.2. Hadamard matrices H1 and H2 are equivalent if there exists an
n×n permutation matrix R and a permutation {c1, c2, . . . , cn} of {1, 2, . . . , n} such
that, for q = 1, 2, . . . , n,

DH1(q) = RDH2(cq)R′.

Let H(c1, . . . , cq) denote a matrix consisting of columns c1, . . . , cq of H . Note
that DH(c1, . . . , cq) = (qJq −H(c1, . . . , cq)H ′(c1, . . . , cq)) /2 , where Jq is a q × q
matrix of all ones. We then have the following corollary.

Corollary 2.3. Hadamard matrices H1 and H2 are equivalent if and only if
there exists an n × n permutation matrix R and a permutation {c1, c2, . . . , cn} of
{1, 2, . . . , n} such that, for q = 1, 2, . . . , n,

H1(1, 2, . . . , q)H1
′(1, 2, . . . , q) = RH2(c1, c2, . . . , cq)H2

′(c1, c2, . . . , cq)R′.

For a Hadamard matrixH , the Hamming distance matrix DH is invariant only to
permutations and negations on columns of H . Hence, we need a new conception on
distance which is more suitable for the study of classification of Hadamard matrices.

Let SDH = (sij) be the symmetric Hamming distance matrix of a Hadamard
matrix H , where sij is the symmetric Hamming distance of the i-th and j-th rows
of H and is defined as the smaller number of positions with the same entries and
different entries. For example, the Hamming distance and symmetric Hamming
distance of two rows (+, +, –, –, +, +, –, –) and (+, –, +, –, –, –, +, +) are 6 and
2, respectively.

Note that the symmetric Hamming distance matrix SDH is invariant to permu-
tations of columns and to negations of both rows and columns of H . Hence, we
have the following necessary condition for equivalence of Hadamard matrices.

Theorem 2.4. If Hadamard matrices H1 and H2 are equivalent, then there exists
a permutation matrix R such that

SDH1 = R(SDH2)R′ ,

where R′ denotes the transpose of R.

3. An algorithm for the inequivalence of Hadamard matrices

In this section we consider the problem of detecting inequivalence for two Hada-
mard matrices. If we directly use the theory developed in the previous section,
to identify two Hadamard matrices or to detect inequivalence of two Hadamard
matrices is still an NP hard problem when n increases. Therefore, we define a
set of criteria that are functions of symmetric Hamming distances and projection
symmetric Hamming distances of a Hadamard matrix. For any given Hadamard
matrix H of order n, let Si(H) be the number of pairs of two distinct rows whose
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symmetric Hamming distance is i. The sequence (S0(H), . . . , Sn/2(H)) is referred
to as the distance distribution of H .

Denote

Ba(H) =
n/2∑
i=0

Si(H)(ai + an−i)

as the distance enumerator ofH , where a is a positive number. Given k (1 ≤ k ≤ n),
the distribution of Ba-values over all k-dimensional column projections is denoted
by FBa,k(H). It is not difficult to see that FBa,k(H) is invariant to row and column
permutations and negations. Hence, we propose the following necessary condition
for equivalence of Hadamard matrices.

Theorem 3.1. If Hadamard matrices H1 and H2 are equivalent, then FBa,k(H1) =
FBa,k(H2) for k = 1, 2, . . . , n/2.

From Theorem 3.1, we can conclude thatH1 andH2 are inequivalent if FBa,k (H1)
6= FBa,k(H2) for some k. The following two lemmas can save much computational
work.

Lemma 3.2. The relations FBa,k(H1) = FBa,k(H2), k = 1, 2, hold for any given
Hadamard matrices H1 and H2 with the same order.

Proof. Since any Hadamard matrix is equivalent to its standardized form, we can
suppose that both of H1 and H2 are standardized. Note that any column of a
standardized Hadamard matrix has half 1’s and half −1’s. The assertion for k = 1
follows. For the case of k = 2, since any two columns of a Hadamard matrix are
orthogonal, it is easy to see that their distance distributions are identical. Hence,
FBa,2(H1) = FBa,2 (H2). This completes the proof. �

Since any two rows of a Hadamard matrix of order n are orthogonal, we have
that the Hamming distance between them is n/2. Note that the residue of a k-
dimensional projection of H corresponds to an (n−k)-dimensional projection of H
and vice versa. Hence, we have

Lemma 3.3. Let H1 and H2 be two Hadamard matrices of order n. For any k
(1 ≤ k ≤ n),

FBa,k(H1) = FBa,k(H2) if and only if FBa,n−k(H1) = FBa,n−k(H2).

Proof. Let Hk denote the k-dimensional projection of a Hadamard matrix H and
let dkr1,r2 denote the Hamming distance of row r1 and r2 of Hk. For any two given
rows r1 and r2 of H1

k, if their symmetric Hamming distance is equal to that of
rows r3 and r4 of H2

k, then we have that dkr1,r2 = dkr3,r4 or dkr1,r2 = k−dkr3,r4 . Since
dkr1,r2 + dn−kr1,r2 = n

2 , we have that dn−kr1,r2 = dn−kr3,r4 or dn−kr1,r2 = (n− k)− dn−kr3,r4 . Hence,
the symmetric Hamming distance of rows r1 and r2 of H1

n−k is identical to that
of rows r3 and r4 of H2

n−k. The assertion then follows. �

From Theorem 3.1 and Lemmas 3.2 and 3.3, we propose the following algorithm
for detecting inequivalent Hadamard matrices, where the parameter a is chosen to
be an irrational number.
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An algorithm for detecting inequivalent Hadamard matrices.
Step 1. Let k = 3.
Step 2. Compare FBa,k (H1) and FBa,k(H2) and check whether FBa,k(H1) =

FBa,k(H2). If no, go to Step 4; otherwise go to Step 3.
Step 3. If k = n/2, we fail to identify equivalence between H1 and H2 and we

need further study; otherwise let k := k + 1 and go to Step 2.
Step 4. We conclude that H1 and H2 are not equivalent and terminate the

process.

Remark. We can see that symmetric distance is closely related to inner product.
Let K be a k-subset of X = {1, 2, ..., n}. Let uK , vK be the i-th and j-th row of
HK , respectively. Denote

〈uK , vK〉 =
∑
c∈K

hichjc.

Let d be the symmetric distance of uK and vK . When d is the number of positions
where uK and vK are identical, k − d is the number of positions where uK and
vK are distinct. When d is the number of positions where uK and vK are distinct,
k − d is the number of positions where uK and vK are identical. In any case,
k − 2d = |〈uK , vK〉|. So, d = (k − |〈uK , vK〉|)/2. In Ba(HK), ai and ak−i can
be replaced by a(k−|〈uK ,vK〉|)/2 and a(k+|〈uK ,vK〉|)/2, respectively. This connection
may reduce the computation since the inner product is easier to compute than the
symmetric distance d.

4. Classification of Hadamard matrices of order 24

In this section, to show the sensitivity of our new algorithm proposed in the last
section, we apply it to classify the known 60 Hadamard matrices of order 24. We
downloaded these matrices from http://www.research.att.com/∼njas/hadamard/
and we order them as they were ordered on the web page. To save space, we do not
list the detailed numerical results that are put into Tables 1 and 2, which can be
found in our technical report [5], which appeared on the web site http://www.math.
hkbu.edu.hk as an appendix to the paper.

Take a = π ≈ 3.1415926; we first compute FBa,4(H) for these 60 Hadamard
matrices. The computation results are listed in the 5 left columns of Table 1 (see
[5]), where we just report the integer part for each Ba-value (denoted by [Ba]) and
their frequencies. From the above computation results, we can see that there are
at least 35 inequivalent classes for Hadamard matrices of order 24. Furthermore,
we compute FBa,6(H) for the 38 unseparated Hadamard matrices. To save space,
we only report the frequency of [Ba,6] = 34953 for all the 38 matrices in the last
column of Table 1. From Table 1, we can see that the 60 Hadamard matrices are
pairwise inequivalent.

From the above results, we can see that our algorithm is more sensitive than
that of the profiles. In fact, as pointed out in [16], for Hadamard matrices of order
24 there are 35 classes for 4-profiles; 45 classes for 8-profiles; 42 classes for extended
4-profiles; and 48 classes for generalized 4-profiles. Neither one can distinguish the
60 classes.
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5. Classification of Hadamard matrices of order 36

In this section, as a demonstration of applications of our new algorithm to clas-
sification of Hadamard matrices, we apply again the algorithm proposed in Section
3 to classify the known 192 Hadamard matrices of order 36. They were down-
loaded from the web site http://www.uow.edu.au/∼jennie/matrices/. The first 180
Hadamard matrices were supplied by E. Spence (see [21]). The next 11 Hadamard
matrices were supplied by V. D. Tonchev (see [22]). The last one was given by
Z. Janko. In the following, we shall adopt the corresponding sequence orders as
they were ordered on the web page to denote these 192 Hadamard matrices. We
shall also use 1000 + i to represent the transpose of the i-th Hadamard matrix for
1 ≤ i ≤ 192. Note that Hi

′
= Hi for i = 1 and 174. That means there are 382

distinct Hadamard matrices of order 36 in this study. All these Hadamard matrices
have been put on the web site http://www.math.hkbu.edu.hk as an appendix to
the paper.

Taking a = π ≈ 3.1415926, we first compute FBa,4(H) for the 382 Hadamard ma-
trices. The computation results are listed in the 6 left columns of Table 2 (see [5]),
where we just report the integer part for each Ba-value and their frequencies. From
the above computation results, we can see that there are at least 269 inequivalent
classes for Hadamard matrices of order 36. Furthermore, we compute FBa,6(H) for
the 204 unseparated Hadamard matrices. Here, we only report the frequency of
[Ba,6] = 86610 for all the 204 matrices, which is listed in the last column of Table
2. Up to now, we can see that the 382 Hadamard matrices are pairwise inequivalent
except possibly the pairs (160, 1160) and (191, 1191). Note that the frequency of
[Ba,6] = 87814 for matrix 160 and 1160 is 0 and 3, respectively. Similarly, the
frequency of [Ba,6] = 88389 for matrix 191 and 1191 is 3971 and 4214, respectively.
Hence, we can announce that there are at least 382 inequivalent classes for
Hadamard matrices of order 36. It seems to us that this discovery is new.

6. Discussion and concluding remarks

In this paper we propose some new criteria for equivalence of Hadamard matrices
and a related algorithm. We apply this algorithm to classify the known 60 inequiv-
alent Hadamard matrices of order 24 and the 192 Hadamard matrices of order 36
and their transposes. It turns out that we can easily find that they are pairwise
inequivalent. The new algorithm as well as the profiles are an attempt to provide
a canonical form to sorts. To classify m Hadamard matrices, it is not necessary
to test all pairs, a procedure requiring O(m2) comparisons between two matrices.
In the new algorithm, each matrix is tested and related information (parameters)
are tabulated. Then the tabulated values can be compared. This is an advantage
of the new algorithm. Additionally, from the computation process, we found out
that FBa,2i+1 (H) has almost the same effect as that of FBa,2i(H) to distinguish
the inequivalence of Hadamard matrices. So we can modify Steps 1 and 3 of the
algorithm as follows:

Step 1. Let k = 4.
Step 3. If k = n/2, we fail to identify equivalence between H1 and H2 and need

further study; otherwise let k := k + 2 and go to Step 2.
Although the algorithm complexity to compute FBa,k (H) (O(kn2( nk ))) is in gen-

eral a little bit larger than that to compute k-profiles (O(kn( nk ))) for any given
Hadamard matrix H of order n, the complete classification of Hadamard matrices
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of order 24 shows that the new algorithm is significantly faster on average and more
sensitive than the profiles. In fact, we have also applied the 4-profiles to these 382
Hadamard matrices of order 36 and found that the profile cannot distinguish each
matrix and its transpose matrix for these 192 Hadamard matrices. The situation is
even worse—the profile cannot detect pairwise inequivalence for all these 192 ma-
trices. It can detect only 173 pairwise inequivalent classes from these 192 matrices
by the 4-profiles. This shows again that the new algorithm is more sensitive than
the profiles.

The algorithm proposed in this paper is efficient only for detecting inequivalence
of Hadamard matrices. It cannot identify two equivalent Hadamard matrices. For
two equivalent Hadamard matrices the new algorithm cannot give any conclusion
after we carry out n/2− 2 tests or n/4− 1 tests if you use the modified algorithm.
Therefore, the algorithm is only a necessary algorithm, like Smith normal form and
profiles. For identifying equivalence of two Hadamard matrices, we need some effi-
cient algorithm. A complete search is tractable only for small order n, for example,
n ≤ 28 (see [12], [13], [20]). A further study is needed.

The criterion Ba(H) and its projection Ba,k(H) have a close relationship with
measures of uniformity in quasi-Monte Carlo methods. For example, the cen-
tered L2-discrepancy (CD) and warp-around L2-discrepancy (WD) proposed by
Hickernell (1998) can measure uniformity of a set of points on a unit cube. Let
P = {u1, . . . , un} be a set of points on Cs = [0, 1]s. Its CD can be calculated by

(CD(P))2 =
(

13
12

)s
− 2
n

n∑
k=1

s∏
j=1

(1 +
1
2
|ukj − 0.5| − 1

2
|ukj − 0.5|2)

+
1
n2

n∑
k=1

n∑
j=1

s∏
i=1

[
1 +

1
2
|uki − 0.5|+ 1

2
|uji − 0.5| − 1

2
|uki − uji|

]
,

where uk = (uk1, . . . , uks)′. For any Hadamard matrix H = (hij) of order n, its n
rows form a set of n points over Cn, denoted by PH if two entries −1 and 1 are
mapped to [0,1] by a linear transformation. Without loss of any generality we can
choose 1/4 and 3/4 as two entries. We define the centered L2-discrepancy of H ,
denoted by CD(H), as the CD of PH .

CD2(H) =
(

13
12

)n
− 2

(
35
32

)n
+

1
n2

(
5
4

)nn+ 2
n∑
i=1

i−1∑
j=1

(
4
5

)dij ,

where dij is the Hamming distance between the i-th and j-th rows of H . As a
sequence we have

CD2(H) =
(

13
12

)n
− 2

(
35
32

)n
+

1
n2

(
5
4

)n n∑
i=0

Ei(H)
(

4
5

)i
,(6.1)

which shows CD2(H) is a linear function of
∑n

i=1Ei(H)(4/5)i, where Ei(H) is
the number of pairs of two rows of H whose Hamming distance is i. As CD(H)
is invariant only to permutations of rows, columns and negations on the columns,
we cannot directly use it as a criterion in classification of Hadamard matrices.
From formula (6.1), it is suggested that we choose a = 4/5 in Ba(H) and Ba,k.
Unfortunately, the B4/5,k, k = 3, 4, . . . , n/2, have less efficiency than the Bπ,k. In
fact, by computing the distribution of B4/5,k for k = 3, 4, 5, 6, we can only obtain
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368 inequivalent classes from these 382 Hadamard matrices. It cannot distinguish
each of the 14 Hadamard matrices labelled 26, 35, 106, 137, 138, 163, 169, 175, 176,
177, 179, 180, 187 and 188 and their transposes. We believe that the parameter a
can be chosen as any small irrational number. A similar discussion can be applied
to the warp-around L2-discrepancy.
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