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A TECHNIQUE TO CONSTRUCT SYMMETRIC
VARIABLE-STEPSIZE LINEAR MULTISTEP METHODS
FOR SECOND-ORDER SYSTEMS

B. CANO AND A. DURAN

ABSTRACT. Some previous works show that symmetric fixed- and variable-
stepsize linear multistep methods for second-order systems which do not have
any parasitic root in their first characteristic polynomial give rise to a slow
error growth with time when integrating reversible systems. In this paper, we
give a technique to construct variable-stepsize symmetric methods from their
fixed-stepsize counterparts, in such a way that the former have the same order
as the latter. The order and symmetry of the integrators obtained is proved
independently of the order of the underlying fixed-stepsize integrators. As
this technique looks for efficiency, we concentrate on explicit linear multistep
methods, which just make one function evaluation per step, and we offer some
numerical comparisons with other one-step adaptive methods which also show
a good long-term behaviour.

1. INTRODUCTION

In a recent paper [6], we studied the error growth with time when integrating
periodic orbits which are solutions of initial value problems of the form

Y(t) = F(Y(),
(1.1) Y(to) = 7o,
Y(ty) = o.

We assume F' is a C°°-function and that the integration is done with variable-
stepsize linear multistep methods especially designed for these second-order sys-
tems. These integrators (denoted as VSLMM2s) are determined by the difference
equation
(1.2)

k k

Z Al(thrk*la sy hn)YnJrl = h%-{—k—l Z Bl(thrk*la cey hn)F(YnJrl)a n >0,

=0 =0

and a starting procedure (Yp,...,Ys_1)7, where k is the stepnumber. In this for-
mula Y,, approximates Y (¢,), and h,, is the corresponding stepsize t,,+1 — t,. The
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interest of the generalization from fixed stepsize to variable stepsize was the inte-
gration of moderately eccentric orbits, like those which turn up in the solar system.
In such a way, the coefficients {A;} cannot be constants any more but must depend
on the stepsizes to keep the order, as stated in (L2). In the study done in [6], it
was assumed that, given a tolerance ¢, the stepsize h,, is such that

(1.3) hn = es(Yy,€),
for a function s which satisfies

® Smin < S(Yvu 6) < Smax; with Smin, Smax > 0,

e s is C'° in both arguments and all the derivatives of s are bounded,
for € small enough and Y,, in a bounded domain.

The main conclusion in [6] was that symmetric VSLMM2s whose underlying
fixed-stepsize linear multistep method of second order (FSLMMZ2) has no double
roots in their first characteristic polynomial except the root 1 lead to very advan-
tageous error growth when integrating reversible systems, i.e., systems of the form
(1) for which there exists a linear involution A such that

AoFoA=F

Besides, the starting procedure for which we proved the best behaviour was that
which considered (Yp,...,Ys_1)7 as exact. Therefore, we will concentrate in this
paper on the exact starting values. On the other hand, the conditions for a
VSLMM2 to be symmetric were proved there to be the following. In a first place,
a sufficient condition on the coefficients of the method is that

Al(hnsits - hn) = Api(hns o hogie1), 1=0,... k.

l
1.4 h?
( ) Bl(thrkflv'"vhn) = h2 & kal(hna"'vthrkfl)a l:077k
n+k—1
Secondly, the stepsize function must also be symmetric in the sense that
(1.5) $(Yn,€) = s(Yog1, —¢),
for s in (I.3]). This condition is satisfied, for example, if
€
(1.6) hn = 5(7(Y) + 7(Ya41)),
2

for some function 7 [15]. Apart from symmetry, (L) gives reversibility with respect
to A whenever

(1.7) T(Ay) = 7(y).

The aim of this paper is to construct explicit symmetric VSLMM2s in an ef-
fective and efficient way. Notice that explicit linear multistep methods just make
one function evaluation per step in contrast with one-step methods which usually
need many more, mainly when we require them to be high-order. Notice also that
considering symmetric variable stepsizes means solving (L6 implicitly. With ex-
plicit linear multistep methods, that means calculating new coefficients A;, B; each
time a stepsize is rejected, but the function F' is just evaluated once per step.
That does not happen, for example, with explicit Runge-Kutta-Nystrom methods,
in which the function must be evaluated every time a stepsize is rejected. For
one-step methods and first-order systems, some techniques have been developed in
[10], [13], [17], [20] to avoid this problem of efficiency. The procedure is to reduce
the problem to another reversible or Hamiltonian problem, in which fixed-stepsizes
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can be considered efficiently. The idea there is to consider a reparametrization
of the problem which conserves reversibility or a modified Hamiltonian which has
a common solution with the original. These techniques are very much suitable
when integrating general first-order systems, but we cannot apply these ideas to
our LMM2s because the reparametrized system would not have the form (1) any
more (the first derivate would necessarily turn up). On the other hand, notice that
symmetric LMMs for first-order systems lead to exponential error growth in general
[8]. As there are only a few particular cases for which they do not [5], [9], there
is a small range for finding optimal methods. Then, we concentrate on LMMs for
second-order systems, for which the range is much wider. For FSLMM2s, there
are already some optimal suggestions in [19]. Our purpose is to generalize them to
variable stepsizes.

The main difficulty comes from finding easy expressions for the coefficients {4}
and {B;} in ([2), which is aggravated when the order of the method increases (we
remind the reader that the higher the order the more the advantages of VSLMM2s
over one-step Runge-Kutta-Nystrom methods with respect to function evaluations).
In [6], we constructed a 4th-step 4th-order VSLMM2s by imposing the conditions
of order and symmetry and using a symbolic package to solve the equations. The
expressions obtained there were already quite complicated and led to long rational
expressions of third degree for B;. Trying to get symbolic equivalent expressions
for high-order methods is not an easy task, as well as the choice of appropiate
parameters which make those expressions simple and coincide with their fixed-
stepsize counterparts.

The paper is structured as follows. In section 2, we provide a technique to find
the coefficients of an explicit symmetric VSLMM?2 from its fixed-stepsize counter-
part. We do not get a closed expression for the coefficients but they are calculated
recursively. The procedure can be applied independently of the order of the un-
derlying symmetric FSLMM2; we prove that it gives rise to a symmetric VSLMM2
with the same order. Here, we will assume the explicit FSLMM?2 has as order its
stepnumber, which is the best which can be achieved [11] among explicit LMM2s.
As the method is symmetric, we always take into account that the stepnumber is
even. In section 3, we give some details of implementation as well as a numerical
comparison for different problems between the obtained VSLMM2s and symplectic
as well as symmetric one-step methods which also lead to slow error growth [2], [7],
[12]. Some concluding remarks are stated in section 4.

2. EFFECTIVE CONSTRUCTION OF A SYMMETRIC VSLMM?2

2.1. Description of the technique for a particular case. Let us assume in this
section that k = 4. Then, we consider a 4th-order symmetric FSLMM?2, from which
to construct the corresponding VSLMM?2. We will denote by A; (B;, respectively)
the A;(hnt3, ...y hn) (Bi(hnts, ..., hy), respectively) once the stepsizes are known,
and by A; (Bi, respectively) the coefficients of the fixed-stepsize method. Also to

simplify notation, we will call hg, ..., h3 to hy,, ..., hyt3, always taking into account
that the stepsizes are changing with the stepnumber n. We will take as B;
ho 5 .
Bz:h_B“ ZZO,...,4,
3

in such a way that the symmetry conditions (4] for the variable-stepsize method
are satisfied for the coeflicients of the second characteristic polynomial.
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In [6] it is proved that it suffices to impose order 2 to a VSLMM2 associated to
a 4th-order FSLMM to obtain in fact a 4th-order VSLMM2. To impose order 2,
we need the formula to be exact for the polynomials of degree < 3. Therefore, for
the basis

{1, (t = tn), (0 = tn)(t = tnsa), (t = tn)(t = tns2)(t — tnya) },

the following must be satisfied:
(2.1) Ao+ A1+ A+ As+ Ay =0,
(2.2)  Arho+ Az(ho + h1) + As(ho + hy + ha) + Ag(ho + h1 + ha + h3) =0,
(2.3)  —Aiho(h1 + ho + hs) — Aa(ho + h1)(he + hg) — As(ho + h1 + ha)hs

= 2hohs[B1 + Ba + Bs],
(2.4)  Aihohi(h1 + ha + hs) — As(ho + h1 + ha)hahs

= 2hohs[Bi(ho — 2h1 — hy — hs) + Ba(ho + hy — ho — hs)

+ Bs(ho + h1 4 2hg — h3)).

At this moment, we have four equations and five unknowns, but the symmetry
conditions (L)) have not yet been imposed on the coefficients {4,;}. In order to get
that, we suggest taking
__C(hs, ha,h1, ho) __C(ho,h1, o, hs)

hoh(hy +ha+h3)” 7 haha(ho + by + ha)’
for a function C(,-,-,-) which allows (24) to be satisfied. We will denote the
right-hand side of (2.4) as T'(hs, ha, h1,ho). This function is odd in the sense that

T(h?n h27 hlv hO) = _T(hO; hlv h27 h?))

Ay

Because of this, we suggest considering

1 ~
C(hg, hg, hl, ho) = 5T(h3, hg, hl, ho) + A13hg/ h1h2h3,

in such a way that (2.4) is satisfied as well as the coincidence of A; and Az with
A; and Aj for fixed stepsizes. From here, the only thing to do is to solve for A,
from (23), then for A4 from (22, and finally for Ay from (ZI]). Notice that in this
case, Ay is symmetric in the sense of (I.4]) because of the symmetry of A; and As,
that of their coefficients in (E3)), and that of the right-hand side of (Z3]). Then, A4
and Ag can also be seen to turn out symmetric.

2.2. General case. Proof of order and symmetry. For general k, we suggest

h ~
(2.5) Bi=—2B;, i=0,...,k
hi—1
and then, the coefficients {A4;} should satisfy the equations which say that the
formula is exact for the basis {p;(t)}~, recursively defined by

po(t) = 1,
(2.6) p2j+1(t) = (t—=1t;)p2;(8), 7=0,..., 5 - 2};
paji2(t) = (t—tp_j)p2a(t), j=0,...,5 =2,
pr—1(t) = (t— tg)pk—Q(t),

(again to simplify notation we are denoting ¢,4; by t;). That is, the selected basis
is obtained by incorporating the monomials (¢ —¢;) in a symmetric way. This is the
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key point to finding a symmetric method in the end. In such a way, the resulting
method has order > k—2. Again we have k equations and &+ 1 unknowns, of which
we must take advantage to impose symmetry. As the equation corresponding to
the last element of the basis in (2.6) just involves the coefficients A kg and Axy,y
of the first characteristic polynomial, we suggest taking

(2.7)
Clhi—1,...,h
A§71 _ (_1)§ — ( k—1, 7k701) ’
H12=0 (h§_2+"'+hl)h%_l l:§+1(h%—1+'”+hl)
ho, ..., hy—
Angl _ (_1)§ — C( 0, 7k_k1 1) ,
Hf:o (hl-l—"'-f—h%)h% l:§+1(h%+1+"'+hz)
where
1
C(h—-1,...,ho) = gT(hkA,m,ho)
(2.8) (5 -DI(E+1)
.- )ik 41
—|—(—1)2A%_1h0 hk 2 hg_lhgh%_i_l hi_1 2 22 ,
with
k=1
T(hk-1,--.,ho) = hohg—1 ZBzP'kA(tl)a
=1

(T is the right-hand side of the kth equation). The rest of the coefficients will be
found in the order

(29) A%,A§+2;A§727A§+3;A§73a'~'7Ak;A07

by solving backwards the “nearly” triangular system of equations which gives the
consistency. This structure of the system is due to the selected basis (2.G).

To continue, let us consider the following notation. For each expression in which
we want to change hy_;—1 to h;, we will do it through the superindex R. Notice
that

(2.10) (B—ti) =hi+-+h1 = (hg—ic1 + -+ b)) = —(tor — tii)®

The following lemmas as well as the symmetry proved below are keys to deter-
mining the order of the method.

Lemma 2.1. T is odd in the sense that
T(hk—1,-..,ho) = =T(ho,..., hx—1).

Proof. The key point is (ZI0), that py_1 has odd degree and the indexes of its
factors are symmetric. U

Lemma 2.2. The underlying fized-stepsize method is the one selected.
Proof. Because of Lemma 1] T'(h,...,h) = 0 and therefore in that case
qu :Agfp A§+1 :A§+1~

The rest of the coefficients must coincide with their fixed-stepsize counterparts
because they are completely determined by the consistency equations. O

The following theorem assures the symmetry of the constructed VSLMM2.
Theorem 2.3. The coefficients {A;} and {B;} satisfy (C4).
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Proof. The symmetry of {B;} is obvious from (23), as is that of Ay o1 and Ay /941
from (7). Then, Ay, is solved from the equation corresponding to the (k — 1)th-
element of the basis (Z6). But the symmetry of the indexes of t; associated to
this element, that of its second derivative which now has even degree, as well as
the already proved symmetry of Ay, and Agjo4q (which are the only other
coefficients A; which turn up in this equation), also make Ay, symmetric. From
here, for [ = 2,...,k/2, we should solve consecutively for Ay/o4; and Ay 5_; in two
adjacent equations going backwards:

)= hohk-1 X570 Bybkaia (),
;) = hohk—1 25;11 Bjpr—2(t;).

l
2]771+1Ak+jpk 2l+1(t
Z]__lAk+jpk 2(t

Notice also the following relations between py_o;+1 and pg_o;:

(2.11)

k4
3+
L
3+

(2.12) Pr—2i41(t;) = (tj — tg_l)]?kfzz(tj)a
' Pr-21(t;) = 2Pe—2a(ty) + (G — te_)Pr—2(t;).

Now, because of the even and odd degrees of the corresponding polynomials and
the symmetry of the indexes associated to it,

pe—2(t;) = pk72l(tk7j)Rv
(2.13) Proa(t;) = —Pe—2(tsy)?,
Pr2t(t;) = Prea(tey)®

From (2.17]),

(2.14)
k-1 -1
Ak pr—241(te ) = hohk—1 p Bjpe—ai41(t;) — A k-2 (b ),
j=1 j=—1+1
(2.15)
Ak _pr-21(te_;) = hohi— 12331% 21( Z Ay ipr-21(te ;)
j=—1+1

The matter to check is whether or not A A AR which is equivalent to proving

k )
2 l
Wle 1er O1 |O‘

R R
(2.16) (ts o —ts ) As ypr-ar(ts ) = (bx g —te )AL pe-a(ts )",

because of (ZI3). Due to (ZIH) and ([ZI2), the expression on the left in ([(ZTId) can
be written as
By —te_)Ax_pre—a(ts_y)

-1

k-1
= (tsy —te_ )<h0hk 1ZBng 21 ( Z Ak P zz(tkﬂ))

j=1 j=—1+1

— Ag pr—21 (tg ).
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Considering (2.14) and (2I2), this equals

—1
hohk—1 Bj (t%Jrl - tj)jjk—Ql(tj)
j=1

o

-1 k-1
— Z A%-ﬁ-j(tg-i-l — t§+j)pk,21(t%+j) — 2hohg—1 Zijkfgl(tj).
j=—1+1 Jj=1

On the other hand, for the expression on the right in (ZI6), due to (ZIZ) and
&10),

R R R R
(g —te DAg ety )™ = AL ype-arra(ty )

Now, by using (Z.14)) in reverse order, (2.13) and ([212), this is

k-1
hohi—1 Z B; < — 2Pp—2(te—;) + (tgﬂ - tkj)ﬁkm@kj))
i=1

-1
- Z Agfj(tgﬂ - t%—j)pk—Ql(t%—j)'
G=—l41
So, after a change of indexes and the symmetry of {Bj}, 214) is proved. O

The following lemmas will be useful in the proof of the order of the method.
From the results above, we deduce the order of the method.

Theorem 2.4. The constructed VSLMM?2 has order k when the selection of the
stepsize is symmetric (L3).

Proof. Remark 2.11 in [6] will be used, which says that whenever a symmetric
VSLMM?2 has order of consistency > r — 2 and order r with fixed stepsize (r even),
then the method also has order of consistency r with variable stepsizes.

Thanks to Lemma 2] and the symmetry of the right-hand side of (ZH), the
last equation imposing order > k — 2 will be satisfied. The rest of the equations
are satisfied just because of the way in which the terms in ([2.9) are determined.
Since the VSLMM?2 has order > k — 2 and is symmetric and since the underlying
fixed-stepsize method has order k, this implies that the VSLMM2 has in fact order
k. O

3. NUMERICAL STUDY

3.1. Implementation. We describe some implementation details looking for the
efficiency of the methods proposed.

At each change of stepsize, the coefficients of the method must be calculated solv-
ing the “nearly” triangular system which imposes that the formula of the method
is exact for the basis [2:6). So, the first thing to do is to find the coefficients of
that linear system as well as its independent term. Therefore, we need to calculate
{pi(t;)} and Z;:ll Bjjil(tj) for I =0,1,...,k — 1. For that, we use the recurrent
relations (226), which imply

ni(ty) = (t; —to)pi-1(ty),
(3.1)  pu(ty) = pi—1(t;) + (t; — tQ)pi—1(t)),
Di(ty) =21 () + (4 —tQ)hi-1(t), 7=0,....k 1I=1,....k—1,
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where tg is the corresponding point according to (Z.6) (notice that (Z.I2) was a
subset of these relations). Therefore, the computation of {p;(¢;), pi(¢;), pi(¢;)} is
obtained through the computation of the previous set {p;—1(¢;), pi—1(t;), Bi—1(¢;)}-
This leads to a recurrent way to calculate the coefficients and independent vector
of the system.

Some more implementation details can be given. First of all, we scale the step-
sizes h;,j7 = 0,...,k, in order to avoid roundoff errors in the calculus of the co-
efficients of the system. On the other hand, p;(t) is just evaluated at the points
t; in which we know they do not vanish; this is the fact which makes the system
“nearly” triangular.

A last remark concerns the computation of the independent terms Zf;ll B;pi(t;)
for 1 =2,...,k—1. After the calculation of (¢;), these terms require in principle
(k—2)(k—1) products. This can be reduced by using a slight modification of (31J).
We multiply po(t;) by Bj and then apply the relations in (BI). In such a way, no
product is needed for the independent terms. As the coefficient matrix of the new
system changes, we solve it and then scale each unknown appropiately. The latter
just implies k products.

3.2. Numerical experiments. The main goal of the numerical experiments pre-
sented below is to compare the behaviour of the methods analysed in this article
with other efficient one-step integrators of the same order, which are problem-
adaptive and show a good long-term behaviour. We have considered VSLMM2s of
orders 4 and 8 (denoted as VSLMM2-4 and VSLMM2-8, respectively) based on the
respective FSLMM2s (R, S)

19 53 5 53
. )2 =203 2220
R(z) = (z —|—1Ox+1)(x 1)%, S(x) 10" —|—4x —|—4Ox,
R(zr) = %227 +22% —2® —2® + 227 — 22 + 1,
1
S(z) = 1309q17671a" — 236222° + 614492° — 505162

+ 6144923 — 2362222 + 17671x].

The first one was suggested in [6] and the second in [19]. They both make local error
small. We study the efficiency of these methods with relation to Gauss integrators of
2 and 4 stages (denoted as VG4 and VG8, respectively) implemented in an adaptive
way. We have chosen these methods for the comparison because VG4 was suggested
as the most efficient for long-term integration for the Kepler problem among 4th-
order integrators in [3] and among some 8th-order integrators in [2I]. However,
we do not state that they are the optimal ones among one-step methods. This
comparison is just a first step in proving the efficiency of the methods suggested in
the paper.

In order to reduce roundoff errors, both types of methods have been implemented
by using the compensated summation technique [I16] in the computation of the
components of the solution. Also to this end, our methods have been performed
with the stabilization process [11]. This consists of introducing the sequence {v,,}
such that if y, is the numerical solution at level n, then

Yn+1 = Yn + hnvn;

and then solving the resulting difference equation for the v,.
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As far as the Gauss methods are concerned, we have used fixed-point iteration
to solve the corresponding algebraic equations [II]. We have tried different start-
ing algorithms for the fixed-point iteration and elected the most efficient for the
problems and the order of the methods considered. Specifically, for VG4 we have
used the technique of Calvo 4] and, for VG8, the starting algorithm due to Laburta
[18], with two additional evaluations per step. On the other hand, since the test
problems considered are Hamiltonian systems, the variable-step size Gauss meth-
ods have been implemented by introducing a time transformation and integrating
a reparameterized system with fixed stepsize. The use of Poincaré transforma-
tions avoids that the transformed system fails to be Hamiltonian, and requires the
differentiability of the stepsize function [10].

Kepler’s problem. The first test problem considered is Kepler’s problem

G = — qi
=
(

ST oaam = L2
F+ B

with Hamiltonian function

1 1

H(p,q) = 507 +13) — —F=—=

(pv Q) 9 (pl p2) \/ma
and initial conditions ¢1(0) = 1—e, ¢2(0) = 0, p1(0) =0, p2(0) = /(1 +¢)/(1 —¢),
0 < e < 1. The solution describes the motion in a plane of a point attracted to
the origin with a force inversely proportional to the distance squared. The orbit
is 2m-periodic and consists of an ellipse with eccentricity e. In all the numerical
experiments we have taken e = 0.9, a severe test for which variable-stepsize methods
are necessary due to the variability in the solution [1]. This problem is reversible
with respect to the involution

(3-2) A(p17p27Q17QQ)T = (—p17p27(h, —qQ)T-

The stepsize function elected for both types of integrators is similar. In the case of
the multistep methods, the equation (8 is solved iteratively with a given relative
tolerance, while for the variable-stepsize Gauss methods, the stepsize function is
incorporated in the system, as explained above. The function 7 has been chosen as

T 2 2\3/4
T(q1,q2) = —=(¢1 +
(q )y q ) 2\/5((]1 QQ) ’
a suitable selection already suggested in other papers [6], [7] among other possible
selections. Notice that it satisfies (7)) for A in (32).

Error growth with time. The first experiment we show concerns the behaviour in
time of the error for the VSLMM2s considered in this paper. It is a way to check
experimentally that the method obtained is symmetric. As was proved in [6], for this
problem the growth with time of the first three terms of the asymptotic expansion of
the global error provided by symmetric VSLMM2s with no parasitic root is linear,
in contrast with the quadratic error growth shown by general methods. This is
confirmed by Figure Bl In the left plot we have measured the error at final times
107,307, ...,21870T (T = 2w is the period of the problem) given by VSLMM2-4.
The scale is logarithmic. Each line corresponds to a different tolerance ¢; we have
taken € = 27 x 1073, 7 x 1073, 7 X 1073, The slopes of the lines show the linear
growth with time of the error (see the line plotted in the lower right-hand corner of
the picture). When the final time is multiplied by 3, the errors are multiplied by the
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ERROR

10° 0
TIME TIME

FIGURE 3.1. Error growth with VSLMM2-4 and VSLMM?2-8

same number. On the other hand, by watching the distance between parallel lines,
the order four of the method is noticed: errors corresponding to a same final time
are divided by approximately 16 when the stepsize is halved. The same conclusion
is reached from the right plot, which displays the growth with time of the error
corresponding to VSLMM2-8. The final times are 107,307, ...,72907 and the
tolerance € = 27/250,27/500. Linear error growth is observed just till that time
because from there on the fourth term of the asymptotic expansion, which does
not grow linearly, becomes dominant. Notice that the values of € considered above
for the 4th-order method are smaller, which makes those quadratic terms become
dominant in a longer time. However, if we had done our experiments in quadruple
precision and considered smaller values of ¢, we would have observed linear error
growth over longer times also for the 8th-order methods.

Comparison of efficiency. Now we focus on the comparison in efficiency between
VSLMM2-4, VSLMM2-8 and the corresponding variable-stepsize Gauss integrators.
For the last integrators, we have taken a tolerance in the fixed-point iteration for
which the error of the corresponding integrator grows linearly until the time in
which we observe linear error growth with the corresponding VSLMM2. Thus, in
order to compare the efficiency of the methods, it is sufficient to measure error and
cost after one period of time.

ERROR
ERROR

10’
COST OF FUNCTION EVALUATIONS COST OF FUNCTION EVALUATIONS

FIGURE 3.2. Error against function cost (* for VSLMM2-4(8); o for VG4(8))
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10° 10"
CPUTIME

FIGURE 3.3. Error against CPU time (* for VSLMM2-8; o for VG8)

Figure compares the error (after one period) against the cost of function
evaluations for methods of order 4 and 8, respectively. For Gaussian schemes, the
system is written in first-order form and the formulas for the derivatives are more
complicated that in the original case because of the introduction of a reparame-
terization and the evaluation of the Hamiltonian. In such a way, the cost of each
function evaluation is at least double that in the original case. In our figures, we
have considered it exactly double. Asterisks correspond to VSLMM2-4(8) (with
tolerances € = 27/250, 27 /500, 27/1000) and circles correspond to VG4(8) (with
€ =0.2,0.1,0.05 for VG4 and € = 0.8,0.4 for VG8). Observe that, for errors greater
than approximately 10~8, VSLMM2-4 is less expensive, changing the situation for
smaller errors. For a fixed cost greater than 4000, VG4 is more accurate. A differ-
ent situation is presented when we compare the efficiency of the methods of order
eight. The cheaper cost in function evaluations of VSLMM2-8 is manifest for the
reasonable range of errors in double precision. By increasing the order of the meth-
ods, we render evident the improvement in efficiency in terms of function evaluation
cost when we use multistep methods. We remind the reader again that the number
of function evaluations per step does not grow when increasing the order of the
multistep method while it necessarily increases for the one-step methods.

However, the advantage of VSLMM2-8 as far as evaluation cost is concerned
is lost when we study the efficiency in terms of computational time for Kepler’s
problem. Figure gives the error against CPU time for each method of order eight
and shows the more efficient behaviour of VG8. Something similar happens with
the 4th-order integrators. This is due to the fact that the calculus of the coefficients
in the VSLMM2 is quite expensive compared with the operations needed by Gauss
methods which do not come from the function evaluations.

Five-body problem. The better behaviour of VG8 in computational time observed
in Figure B3lis associated to the simplicity of the equations of Kepler’s problem. It
is necessary to state the comparison when we integrate more complicated problems,
increasing the number of variables or the complexity to evaluate the right-hand side
of the equations involved.

To this end, we consider the five-body problem that describes the motion of
five outer planets about the sun. If we denote by v1;,%25,¥35, 7 = 1,...,5, the
coordinates of the jth body, then each of the 15 coordinates satisfies a second-order
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FIGURE 3.4. Error in energy against CPU time (* for VSLMM2-8;
o for VG8)

differential equation [14]

5
(33) Yi; = 9 _(m0+mj)r%] + E mg < . dgk 2 3) )
J

A "k
where
3 3
T?:ny_ﬁ d_?k:Z(yij_yik)2a jak:17"'757
i=1 i=1

g is the gravitational constant, mg the mass of the sun and m; the mass of the jth
planet. We consider equations (3.3]) to implement the multistep methods but they
have to be rewritten in Hamiltonian form in order to be integrated by the Gauss
schemes, leading to a system of 30 components.

We have measured the error in the Hamiltonian of the problem at time ¢y = 1000
and represented this error against CPU time in Figure[3.4l Asterisks correspond to
VSLMM2-8 and circles to VG8. The stepsize function considered for both methods

is
5
S AR
j=1 i<j
and we have chosen ¢ = 1072,5 x 1074,2.5 x 10~ for VSLMM2-8 and € = 4 x
1073,2x 103,103 for VG8. Note that more complexity of the problem translates
to a better behaviour of the multistep method in computational time. This reveals
the interest in the use of the methods proposed for moderately large problems.

4. CONCLUDING REMARKS

We remark that, in principle, symplectic and symmetric one-step methods lead
to slow error growth for longer times than symmetric VSLMM2s with exact starting
values. However, for the latter, the range of times for which the same slope for the
errors is observed is very large, and therefore they are still very useful. Notice also
that making the tolerance smaller means getting a wider range in time for slow error
growth whenever the precision of the machine is high enough. At the same time,
for the numerical comparisons made in section 3, we took a tolerance for the fixed-
point iteration in Gauss methods which just led to the same range of slow error



SYMMETRIC VARIABLE-STEPSIZE LINEAR MULTISTEP METHODS 1815

growth as the compared VSLMM2s. If the tolerance for that fixed-point iteration
had been smaller, the linear error growth would have been observed further, but
also at a higher computational cost.

In the paper, we have considered 4th- and 8th-order methods for the compar-
isons, but higher order methods could also have been constructed with the same
technique. We emphasize again that the higher the order the more the advantages
of VSLMM2s over one-step integrators. In such a way, these methods are very
much recommended to solve some problems in astronomy for which high accuracy
and long-term integration is required.
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