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THE HEXAGONAL VERSUS THE SQUARE LATTICE

PIETER MOREE AND HERMAN J.J. TE RIELE

Abstract. Schmutz Schaller’s conjecture regarding the lengths of the hexag-
onal versus the lengths of the square lattice is shown to be true. The proof
makes use of results from (computational) prime number theory.

Using an identity due to Selberg, it is shown that, in principle, the conjec-
ture can be resolved without using computational prime number theory. By
our approach, however, this would require a huge amount of computation.

1. Introduction

In [17, p. 201] Schmutz Schaller, motivated by considerations from hyperbolic ge-
ometry, makes the conjecture that in dimensions 2 to 8 the best known lattice sphere
packings have ‘maximal lengths’, that is, that their length spectrum dominates the
length spectrum of every other lattice of the same dimension and covolume at every
position, and goes on to write: “In dimension 2 the conjecture means in particular
that the hexagonal lattice is ‘better’ than the square lattice. More precisely, let
0 < h1 < h2 < · · · be the positive integers, listed in ascending order, which can
be written as hi = x2 + 3y2 for integers x and y. Let 0 < q1 < q2 < · · · be the
positive integers, listed in ascending order, which can be written as qi = x2 + y2 for
integers x and y. Then the conjecture is that qi ≤ hi for i = 1, 2, 3, . . . .” That he
uses the words ‘in particular’ is a bit surprising since the conjecture for dimension
2 implies that if a plane lattice having the same covolume as the hexagonal lattice
Σ fails to be isometric to Σ, then its length spectrum is dominated by that of Σ at
every position, which is weaker than the conjecture between the quotation marks,
which asserts that the length spectrum of Σ, thought of as the Eisenstein numbers,
dominates that of the square lattice in its realization as Gaussian integers (note
that the Eisenstein numbers have smaller covolume than the Gaussian integers).

The reader might also be surprised to see the norm form x2 + 3y2 appearing in
the quotation, rather than x2 +xy+y2. However, both represent the same integers.
Notice that x2 + 3y2 is the norm form of the sublattice [1, 2ζ3] of index 2 of Σ. The
two other sublattices of index 2 are easily seen to be [2, ζ3] and [−1 + ζ3, 1 + ζ3].
As under multiplication by ζ3 the sublattices are transformed into each other, they
each have the same length spectrum. Since the union of the three sublattices is Σ,
the length spectrum of every sublattice of index 2 must be the same as that of Σ
itself.

For a more introductory account to Schmutz Schaller’s work than [17], see [18].
For some progress regarding Schmutz Schaller’s general conjecture in dimension 2
see [8] (this case of the conjecture is also mentioned in [4]).

Received by the editor May 2, 2002 and, in revised form, August 6, 2002.
2000 Mathematics Subject Classification. Primary 11N13, 11Y35, 11Y60.

c©2003 American Mathematical Society

451



452 PIETER MOREE AND HERMAN J.J. TE RIELE

For j ≥ 1 let bj(n) = 1 if n is represented by the quadratic form X2 + jY 2 and
bj(n) = 0 otherwise. The characteristic functions b1 and b3 are well understood.
The following result was already known to Fermat.

Lemma 1. A positive integer n is represented by the form X2 + Y 2 if and only if
every prime factor p of n of the form p ≡ 3(mod 4) occurs to an even power. A
positive integer n is represented by the form X2 + 3Y 2 if and only if every prime
factor p of n of the form p ≡ 2(mod 3) occurs to an even power.

(In general the natural numbers n that are represented by a quadratic form
X2 + mY 2 are rather more difficult to describe, cf. the beautiful book of D. Cox
[5].) Lemma 1 implies that b1 and b3 are multiplicative functions.

Let Bi(x) =
∑
n≤x bi(n) for i = 1 and i = 3. Schmutz Schaller’s conjecture

regarding the square versus the hexagonal lattice can be reformulated as follows in
terms of B1 and B3.

Conjecture 1. We have B1(x) ≥ B3(x) for every x.

The first asymptotic result on B1(x) goes back to Landau [9], who proved in
1908 that

(1) B1(x) ∼ Cb1
x√

log x
,

where

(2) Cb1 =
1√
2

∏
p≡3(mod 4)

(1− p−2)−1/2 =
π

4

∏
p≡1(mod 4)

(1− p−2)1/2 ≈ 0.764.

(Here and in the sequel the letter p is used to indicate primes.) Landau’s proof uses
contour integration. It is not difficult to use his method to show, cf. [20], that for
every k ≥ 2 there exist constants Cb1(2), . . . , Cb1(k) such that

(3) B1(x) = Cb1
x√

log x

(
1 +

Cb1(2)
log x

+ · · ·+ Cb1(k)
logk−1 x

+O

(
1

logk x

))
.

This result can also be established by methods not using complex analysis, cf. [14,
p. 288]. At the beginning of 1913 a then unknown Hindu clerk by the name of
Ramanujan wrote in his first letter to Hardy [2] that he could prove that

(4) B1(x) = Cb1

∫ x

2

dt√
log t

+O(x1−ε),

for some ε > 0. (For a reconstruction of Ramanujan’s speculative argument see
[1, pp. 60-66].) Note the similarity of Ramanujan’s claim with the prime number
theorem. From (4) we infer that Cb1(2) = 1/2 by partial integration. Shanks [21]
showed, however, that Cb1(2) 6= 1/2, thus disproving Ramanujan’s claim. (Ra-
manujan gave the correct formula and numerical approximation for Cb1 , though.)
The constants Cb1 and Cb1(2) are known as the Landau-Ramanujan constant and
the second order Landau-Ramanujan constant, respectively. For more on the eval-
uation of these constants see Section 5. For more on mathematical constants in
general, see, e.g., [7].

Ramanujan [3] stated several claims similar to (4) in his ‘unpublished’ manu-
script on the partition and tau functions, see Section 6. All of them are disproved
in [11]. It can be shown, however, that in each case Ramanujan’s claims give the
correct asymptotic main term.
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Table 1. B1(x) versus B3(x)

x B1(x) B3(x) x B1(x) B3(x)
21 2 1 214 4357 3645
22 3 3 215 8363 6993
23 5 4 216 16096 13456
24 9 8 217 31064 25978
25 16 14 218 60108 50248
26 29 25 219 116555 97446
27 54 45 220 226419 189291
28 97 82 221 440616 368338
29 180 151 222 858696 717804
210 337 282 223 1675603 1400699
211 633 531 224 3273643 2736534
212 1197 1003 225 6402706 5352182
213 2280 1907 226 12534812 10478044

Similarly to (3), it can be shown that for arbitrary k ≥ 2 there exist constants
Cb3(2), . . . , Cb3(k) such that

(5) B3(x) = Cb3
x√

log x

(
1 +

Cb3(2)
log x

+ · · ·+ Cb3(k)
logk−1 x

+O

(
1

logk x

))
,

where

Cb3 =
1√
2

1
31/4

∏
p≡2(mod 3)

(1− p−2)−1/2 =
π31/4

√
2

9

∏
p≡1(mod 3)

(1− p−2)1/2 ≈ 0.639.

We thus arrive at the following conclusion.

Proposition 1. Conjecture 1 is asymptotically true.

Table 1 (copied from [22] and verified by the second author) suggests that Con-
jecture 1 is true for small x as well. The literature thus provides us with good
indications that Conjecture 1 is true. The purpose of this paper is to go beyond
this and prove that Conjecture 1 is indeed true.

Theorem 1. We have B1(x) ≥ B3(x) for every x. That is, Schmutz Schaller’s
conjecture that the hexagonal lattice is ‘better’ than the square lattice is true.

Landau’s classical result (1) has been generalised in many directions; see [12] for
a survey with over 50 references. Despite this rich history, nobody but the first of
the present authors (in [10]) seems to have been concerned with proving effective
results in this area, which is precisely what is needed to establish Theorem 1.

2. Preliminaries

Let f be a multiplicative function from the natural numbers to R≥0. We define
Mf(x) =

∑
n≤x f(n), µf (x) =

∑
n≤x f(n)/n and λf (x) =

∑
n≤x f(n) logn. We

denote the formal Dirichlet series
∑∞

n=1 f(n)n−s associated to f by Lf (s). We
define Λf (n) by

−
L′f(s)
Lf(s)

=
∞∑
n=1

Λf (n)
ns

.
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Notice that

(6) f(n) logn =
∑
d|n

f(d)Λf
(n
d

)
.

If f is the characteristic function of a multiplicative subsemigroup of the natural
integers with (1 <) q1 < q2 < · · · as generators, then it can be shown that Λf(n) =
log qi if n equals a positive power of a generator qi, and Λf(n) = 0 otherwise. For
f = b1 we thus find, using Lemma 1,

Λb1(n) =


2 log p if n = p2r, r ≥ 1 and p ≡ 3(mod 4);
log p if n = pr, r ≥ 1 and p ≡ 1(mod 4) or p = 2;
0 otherwise.

For f = b3 we find

Λb3(n) =


2 log p if n = p2r, r ≥ 1 and p ≡ 2(mod 3);
log p if n = pr, r ≥ 1 and p ≡ 1(mod 3) or p = 3;
0 otherwise.

From property (6) of Λf(n), we easily infer that

(7) λf (x) =
∑
n≤x

f(n)ψf
(x
n

)
,

where ψf (x) =
∑
n≤x Λf (n). The functions Λf and ψf are analogues of, respec-

tively, the von Mangoldt function and the Chebyshev ψ-function.

3. Some related conjectures

Unfortunately it seems that Mf is not a very natural mathematical object,
whereas µf is (as is amply demonstrated by browsing through the literature). For
this reason we consider two additional conjectures:

Conjecture 2. We have λb1(x) ≥ λb3(x) for x ≥ 8.

Conjecture 3. We have µb1(x) ≥ µb3(x) for every x.

Note that exp(λb1 (x)/2) is the product of all different lengths in the square lat-
tice not exceeding

√
x. Thus Conjecture 2 can be reformulated as stating that the

product of the different distances not exceeding x occurring in the square lattice al-
ways exceeds the product of the different distances not exceeding x in the hexagonal
lattice, provided that x ≥ 2

√
2.

Conjecture 1 clearly implies Conjecture 3. Furthermore we have:

Proposition 2. Conjecture 2 implies Conjecture 1.

Proof. We have, for x ≥ 2,

(8) Mf (x) =
∫ x

2−

dλf (t)
log t

=
λf (x)
log x

+
∫ x

2

λf (t)
t log2 t

dt.

Denote the latter integral by If (x). It is not difficult to show that Ib1(x) ≥ Ib3(x)
for x ≤ 8. Conjecture 2 then implies that the latter inequality holds for every x.
The truth of Conjecture 2 together with (8) then implies that B1(x) ≥ B3(x) for
x ≥ 8. By direct computation we then infer that the latter inequality holds for
every x. �
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Thus in order to establish Theorem 1, it suffices to establish Conjecture 2. From
(7) and ψbi(x) ∼ x/2 as x tends to infinity it follows that λbi(x) ∼ µbi(x)/2, as x
tends to infinity. An effective form of this relationship, together with an effective
estimate for µbi (provided by Lemma 2), then allows us to prove the main result of
this paper:

Theorem 2. Conjectures 1, 2 and 3 are all true.

Complications arise due to the fact that

lim
x→∞

B1(x)/B3(x) = 1.1961377420 · · · ,

which is rather close to 1, and that ψbi(y) is not so close to y/2 for various ranges
of small y (the convolutional nature of (7) forces us to take the small y range into
account).

4. The toolbox

The following result from [10] will play a crucial rôle. It is in essence an effective
version of Theorem A of [25].

Lemma 2. Let f be a multiplicative function from the natural numbers to R≥0.
Suppose that there exist constants D−, D+ and τ , with τ > 0, such that for every
x ≥ x0,

(9) D−µf (x) ≤
∑
n≤x

f(n)
n

∑
m≤ xn

Λf(m)
m

− τ log
x

n

 ≤ D+µf (x).

Then we have, for x > max{x0, exp(D+)},

(10)
Cf
τ

logτ x

(
1− D+

log x

)τ+1

1− D−
log x

≤ µf (x) ≤ Cf
τ

logτ x

(
1− D−

log x

)τ+1

1− D+
log x

,

where

(11) Cf :=
1

Γ(τ)
lim

s→1+0
(s− 1)τLf (s).

In particular, if there exist constants C− and C+ such that

(12) C− ≤
∑
n≤x

Λf (n)
n
− τ log x ≤ C+ for x ≥ 1,

then (10) holds true, for x > exp(C+), with D− = C− and D+ = C+.

Remark 1. From the proof of this lemma,
∫ x

1
µf (t)dt/t appears as a more easily

estimated function than µf (x). Interestingly, Landau [9] in his proof of (1) using
contour integration, estimates

∫ x
1 µb1(t)dt/t rather than B1(x) itself.

Remark 2. If limx→∞(
∑

n≤x(Λf (n)/n− τ log x)) exists, we denote it by Bf .
Let us put

L(x, τ,D−, D+) =
(log x−D+)τ+1

log x−D−
and U(x, τ,D−, D+) =

(log x−D−)τ+1

log x−D+
.

Thus we can write (10) as CfL(x, τ,D−, D+)/τ ≤ µf (x) ≤ CfU(x, τ,D−, D+)/τ .
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Let r, s and c1 be given. At a few instances in the sequel we want to show that
for every x ≥ x2, with x2 some explicit constant, we have µf (x/r) ≥ c1µg(x/s),
where g satisfies the conditions of Lemma 2 with constants τ , D′− and D′+. By
Lemma 2 this leads us to consider inequalities of the form

(13) L
(x
r
, τ,D−, D+

)
≥ c2U

(x
s
, τ,D′−, D

′
+

)
,

where all variables and constants are real numbers with τ, r, s and c2 positive,
D− ≤ D+, D′− ≤ D′+ and x ≥ x0 := max{exp(D′+)s, exp(D+)r}. We recall the
following lemma from [10]:

Lemma 3. If log s+D′− ≤ D+ + log r and (13) is satisfied for some x1 > x0, then
(13) is satisfied for every x ≥ x1. If log s+D′− > D+ + log r and

c2

(
1 +

D′+ −D′−
log(x1/s)−D′+

)
≤ 1 +

D− −D+

log(x1/r)−D−
for some x1 > x0, then (13) is satisfied for every x ≥ x1.

We also need the following result about the difference between U(xr ,
1
2 , D−, D+)

and L(xs ,
1
2 , D−, D+).

Lemma 4. Assume that D+ > D− and s ≥ r ≥ 1. The difference

U

(
x

r
,

1
2
, D−, D+

)
− L

(
x

s
,

1
2
, D−, D+

)
is monotonically decreasing for x ≥ s exp(1.01D+ − 0.01D−).

The difference in the latter lemma multiplied by Cbi appears if we try to bound
µbi(x/r) − µbi(x/s) from above. Notice that the latter difference is not mono-
tonically decreasing from any x onwards, although it can be bounded above by a
function that is monotonically decreasing for all sufficiently large x.

Our proof of Lemma 4 uses the following lemma.

Lemma 5. Let y and δ be non-negative real numbers. Then the inequality

(14)
√
y + 1 + δ(y + δ − 2)(y + 1)2 ≤ √y(y + 3)(y + δ)2

holds if either δ ≤ 2 or y ≥ 0.0099945.

Proof. On replacing the inequality sign in (14) with the equality sign and squaring
both sides, we obtain an equation of an algebraic curve. Using continuity and,
e.g., Maple’s function fsolve (for numerically determining roots of polynomial
equations), the result can then be deduced. �

Remark. For y = 0.0099944 and δ ≈ 5.4 inequality (14) is not satisfied. Indeed, if
we square both sides of the inequality and take the difference, then, considered as a
polynomial in y, the discriminant has 27δ5−198δ4+410δ3−936δ2+1299δ−730 as a
factor, which has 5.44694735 · · · as its largest real root. Considered as a polynomial
in δ, we find

27y8 − 72y7 − 2380y6 − 12792y5 − 33822y4 − 48888y3− 32076y2 − 2376y + 27

as a factor of the discriminant, which has 0.00999445028 · · · as its next to largest
real root.

We can now prove Lemma 4.
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Proof of Lemma 4. Differentiating U(x/r, 1
2 , D−, D+) − L(x/s, 1

2 , D−, D+) yields,
after some tedious calculations, that the derivative is non-positive provided that
(14) is satisfied with

y = (log(x/s)−D+)/(D+ −D−) and δ = log(s/r)/(D+ −D−).

The result then follows on invoking Lemma 5. �

5. Numerical evaluation of certain constants

For our proof of Theorem 1 we need to evaluate the constants Cb1 , Cb3 , Bb1 and
Bb3 with enough numerical precision. The purpose of this section is to achieve this.
(Recall that Bbi = limx→∞(

∑
n≤x Λbi(n)/n− (log x)/2).)

We first consider the evaluation of Cb3 and Cb1 (defined by (11)). We have, for
Re(s) > 1,

Lb3(s) = (1 − 3−s)−1
∏

p≡1(mod 3)

(1− p−s)−1
∏

p≡2(mod 3)

(1− p−2s)−1

and

(15) Lb3(s)2 = ζ(s)L(s, χ−3)(1− 3−s)−1
∏

p≡2(mod 3)

(1 − p−2s)−1.

From this, (11), lims→1+0(s− 1)ζ(s) = 1 and the fact that Γ(1
2 ) =

√
π, we obtain

C2
b3 =

3L(1, χ−3)
2π

∏
p≡2(mod 3)

(1 − p−2)−1,

where for any fundamental discriminant D, χD denotes Kronecker’s extension
(D/n) of the Legendre symbol [6, Chapter 5]. If χ is a real primitive character
modulo k and χ(−1) = −1, then

L(1, χ) = − π

k3/2

k∑
n=1

nχ(n),

by Dirichlet’s celebrated class number formula (cf. equation (17) of [6, Chapter 6]).
We infer that L(1, χ−3) = π/

√
27. Using that Cb3 must be positive and ζ(2) = π2/6,

we then infer that

Cb3 =
1√
2

1
31/4

∏
p≡2(mod 3)

(1− p−2)−1/2 =
π31/4

√
2

9

∏
p≡1(mod 3)

(1− p−2)1/2.

Likewise, using that L(1, χ−4) = π/4, we find formula (2) for Cb1 .
Note that, for <(s) > 1/2,

(16)
∏

p≡3(mod 4)

(1− p−2s)−2 =
ζ(2s)(1 − 2−2s)
L(2s, χ−4)

∏
p≡3(mod 4)

(1− p−4s)−1.

By recursion we then find from (2) and (16) the following formula:

Cb1 =
1√
2

∞∏
n=1

(
(1− 2−2n)

ζ(2n)
L(2n, χ−4)

)1/2n+1

,
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which was already known to Ramanujan [1, pp. 60-66] and Shanks [21, p. 78]. Using
this expression, one computes that Cb1 = 0.76422365358922066299 · · · . Similarly
one can show that

Cb3 =
1√
2

1
31/4

∞∏
n=1

(
(1− 3−2n)

ζ(2n)
L(2n, χ−3)

)1/2n+1

,

and use it to compute Cb3 = 0.63890940544534388225 · · ·, which is in agreement
with the first seven (out of eight) decimals computed for Cb3 by Shanks and Schmid
[22].

On noting that, for Re(s) ≥ 1,

∞∑
n=1

Λ(n)− 1
ns

= −ζ
′(s)
ζ(s)

− ζ(s),

and using that ζ(s) = 1/(s− 1) + γ + O(s− 1), where γ denotes Euler’s constant,
is the Taylor series for ζ(s) around s = 1, one infers that

(17)
∑
n≤x

Λ(n)
n

=
∑
n≤x

1
n
− 2γ + o(1) = log x− γ + o(1).

Taking the logarithmic derivative of (15), one obtains

−2
L′b3(s)
Lb3(s)

= −ζ
′(s)
ζ(s)

− L′(s, χ−3)
L(s, χ−3)

+
log 3

3s − 1
+ 2

∑
p≡2(mod 3)

log p
p2s − 1

,

from which one easily infers that

2
∑
n≤x

Λb3(n)
n

=
∑
n≤x

Λ(n)
n
− L′(1, χ−3)
L(1, χ−3)

+
log 3

2
+ 2

∑
p≡2(mod 3)

log p
p2 − 1

+ o(1),

which yields, on invoking (17),

2Bb3 = −γ − L′(1, χ−3)
L(1, χ−3)

+
log 3

2
+ 2

∑
p≡2(mod 3)

log p
p2 − 1

.

Similarly we deduce that

2Bb1 = −γ − L′(1, χ−4)
L(1, χ−4)

+ log 2 + 2
∑

p≡3(mod 4)

log p
p2 − 1

.

Note that the argument above yielded

Bbi = − lim
s→1+0

(
L′bi(s)
Lbi(s)

+
1

2(s− 1)

)
.

This can be alternatively deduced from Serre’s [20] proof of (3), cf. [11].
As to the numerical evaluation of, for example, the latter prime sum, we note

that

2
∑

p≡3(mod 4)

log p
p2 − 1

= − d

ds
log

∏
p≡3(mod 4)

(
1

1− p−2s

) ∣∣∣
s=1

.
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Then, applying (16) m times, we obtain∑
p≡3(mod 4)

log p
p2 − 1

=
∑

p≡3(mod 4)

log p
p2m+1 − 1

+
1
2

m∑
n=1

{
L′(2m, χ−4)
L(2m, χ−4)

− ζ′(2m)
ζ(2m)

− log 2
22m − 1

}
.

Similarly we have∑
p≡2(mod 3)

log p
p2 − 1

=
∑

p≡2(mod 3)

log p
p2m+1 − 1

+
1
2

m∑
n=1

{
L′(2m, χ−3)
L(2m, χ−4)

− ζ′(2m)
ζ(2m)

− log 3
32m − 1

}
.

Using these expressions, one computes Bb1 = 0.163897318634581595856 · · · , and
similarly Bb3 = 0.1535522449949958272447 · · · .

Now we can invoke [10, Theorem 4] to compute the constants Cb1(2) and Cb3(2).
They are given by Cf (2) = (1 +Bf )/2 for f ∈ {b1, b3}. We thus find that

Cb1(2) = 0.581948659317290797928 · · · , Cb3(2) = 0.576776122497497913622 · · · .
In [22] the authors write (in our notation) “B3(x) remains so closely proportional to
B1(x) that it is not clear from this data whether Cb3(2) > Cb1(2) orCb1(2) < Cb3(2).
It would be unlikely that they are exactly equal.” We thus have resolved this matter.

The numerical data from Table 1 in conjunction with the values of Cb1 , Cb1(2)
and (3) suggest that Cb1(3) > 0 and Cb1(4) < 0. Similarly it seems plausible that
Cb3(3) > 0 and Cb3(4) < 0.

6. Intermezzo: On a claim of Ramanujan

In the previous section we have seen that Bb3 < log
√

3. This knowledge suffices
to disprove a claim that was made in a celebrated, hitherto unpublished, manuscript
of Ramanujan [3] on the partition and tau-functions.

Let τ denote Ramanujan’s tau-function. Put Tn = 0 if 3|τ(n) and Tn = 1
otherwise. In Ramanujan’s manuscript we read [3, p. 64]: “We can show by
transcendental methods that

(18)
n∑
k=1

Tk =
C

3

∫ n

1

dx√
log x

+O

(
n

(logn)r

)
,

where r is any positive number and

C =
21/2

31/4
.
1− 7−2

1− 7−3
.
1− 13−2

1− 13−3
.
1− 19−2

1− 19−3
· · · 1
{(1− 2−2)(1 − 5−2)(1− 11−2) · · · }1/2 ,

2, 5, 11, . . . being primes of the form 3k − 1 and 7, 13, 19, . . . being primes of the
form 3k + 1.” This implies that for almost all n, τ(n) is divisible by 3.

Using that τ(n) ≡ nσ1(n)(mod 3), where σ1(n) denotes the sum of the positive
divisors of n, it is easy to see that Tn is multiplicative and that

(19)
∞∑
n=1

Tn
ns

=
∏

p≡2(mod 3)

1
1− p−2s

∏
p≡1(mod 3)

1 + p−s

1− p−3s
.
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From (19) it is not difficult to verify Ramanujan’s claim regarding the value of C.
By logarithmic differentiation we obtain from (19) that

∞∑
n=1

ΛT (n)
ns

=
∑

p≡2(mod 3)

2 log p
p2s − 1

+
∑

p≡1(mod 3)

[
log p
ps + 1

+
3 log p
p3s − 1

]
.

On comparing this series with that for
∑∞
n=1 Λb3(n)n−s, it is easily seen, on using

the inequality Bb3 < log
√

3, that

BT = Bb3 −
∑

p≡1(mod 3)

(2p+ 1) log p
(p2 + p+ 1)(p+ 1)

− log
√

3 < Bb3 − log
√

3 < 0;

indeed, we have BT = −0.53 · · · . This shows that
n∑
k=1

Tk =
C

3
n√

logn

(
1 +

0.23 · · ·
logn

+O

(
1

(logn)1+ε

))
,

where 0.23 · · · = (1 + BT )/2 6= 0.5 (here we invoked Theorem 4 of [10]) and ε > 0.
Thus the above claim of Ramanujan is false for every r > 3/2 and true for r ≤ 3/2.

Note that if it were true that BT = 0, an amazing identity for Euler’s constant
would result. The manuscript [3] contains several further assertions of the type (18)
(with 3 replaced by various other primes), all of which are disproved for r > 3/2 in
[11].

7. On the behaviour of

∑
n≤x

Λbi (n)

n − log x
2

Put Hi(x) =
∑

n≤x Λbi(n)/n−log
√
x, for i = 1 and i = 3. A good understanding

of the behaviour of Hi is needed in order to apply our key lemma, Lemma 2. Let
us define, for i = 1 and i = 3, C+(bi) = supx≥1Hi(x) and C−(bi) = infx≥1Hi(x).
As in [15] we define V (x; d, a) =

∑
n≤x

n≡a(mod d)
Λ(n)/n. It can be shown that as x
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Figure 1. Plot of H1(x) (left) and H3(x) (right) for 1 ≤ x ≤ 35
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tends to infinity V (x; d, a) − log x/ϕ(d) tends to a limit C(d, a). Ramaré [15] has
established the following result.

Theorem 3. [15]. For x ≥ 68 we have |V (x; 3, 1)− 1
2 log x−C(3, 1)| ≤ 0.1205 and

|V (x; 4, 1)− 1
2 log x− C(4, 1)| ≤ 0.0961.

We recall from [10] that

(20)
∑
pr>
√
x

p≡a(mod d)

log p
p2r

≤ 1.3√
x

for x ≥ 289,

and that, for every fixed v > 1 and every x > 0,

(21)
log v
v − 1

(1− v

x
) ≤

[log x/ log v]∑
r=1

log v
vr
≤ log v
v − 1

.

Theorem 4. We have:
a) C−(b1) = − log

√
2 and C+(b1) < 0.2663;

b) C−(b3) = − log
√

3 and C+(b3) < 0.276.

Proof. After some computation for the interval [1, 68] we infer, from Theorem 3,
that C+(b1) ≤ Bb1 + 0.0961 and similarly C+(b3) ≤ Bb3 + 0.1205. For the de-
termination of C−(bi) we use (20) and (21) in addition to Ramaré’s inequalities;
this yields, for x ≥ 289, that H1(x) ≥ 1

2 log x + Bb1 − 1.3/
√
x − (log 4)/x and

H3(x) ≥ 1
2 log x+Bb3 − 1.3/

√
x− (log 27)/(2x). �

Let RH(d) be the hypothesis that for every character χ mod d every non-trivial
zero of L(s, χ) is on the critical line.

Theorem 5. We have:
a) C+(b1) = H1(461) = 0.1701069880305239 · · · , under RH(4).
b) C+(b3) = H3(3739) = 0.1554480047272349 · · · , under RH(3).

Proof (cf. [10, Theorem 6]). We recall from [10] that for d ≤ 432 and (a, d) = 1,
there exists a constant cd,a such that for x ≥ 224 we have, under RH(d), that∣∣∣∣∣∣∣

∑
n≤x

n≡a(mod d)

Λ(n)
n
− log x
ϕ(d)

− cd,a

∣∣∣∣∣∣∣ ≤
11

32π
√
x
{3 log2 x+ 8 logx+ 16}.

Under RH(4) it follows from this that C+(b1) = maxvi≤6.15×108 H1(vi), where 2 =
v1 < v2 < · · · are the consecutive prime powers that can be written as a sum of two
squares. Similarly under RH(3) we deduce that C+(b3) = maxwi≤1.083×1010 H3(wi),
where 3 = w1 < w2 < · · · are the consecutive prime powers that can be represented
by the form X2 + 3Y 2. On computing these maxima (for details see Section 9), the
proof is then completed. �

The reason that, even under GRH, it requires a lot of computation to determine
C+(b1) and C+(b3) is that these values are so close to Bb1 , respectively Bb3 . A
similar phenomenon occurs in [10] for some of the functions considered there (cf.
Theorem 6).

Using Theorem 4 and Lemma 2 together with sufficiently accurate approxima-
tions for Cb1 and Cb3 , one infers that µb1(x) ≥ µb3(x) for x ≥ 27500. After some
computation we then deduce that Conjecture 3 holds true.
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Unfortunately, establishing Conjecture 2 requires quite a bit more work. In
particular we need values for D− and D+ in Lemma 2 that are closer together
than those coming from Theorem 4. Without improvement of Theorem 3, the
upper bounds in Theorem 4 cannot be improved. The lower bounds, however, are
amenable to improvement.

Let ∆f (x) denote the quantity sandwiched between D−µf (x) and D+µf (x) in
(9). Using the lower bound for H3(x) appearing in the proof of Theorem 4, we
deduce that H3(x) ≥ 0 for x ≥ 25. We infer that

∆b3(x) ≥ −log
√

3{µb3(x)− µb3(
x

25
)}.

On applying Lemma 3 with D− = − log
√

3 and D+ = 0.276, we deduce that
∆b3(x)/µb3(x) ≥ −0.09586 · · · for x ≥ 109. Taking D− = −0.09586 · · · as new
value and repeating the procedure, we obtain D− = −0.06890 · · · . Iterating twice
more, we see that for x ≥ 109 we can take D− = −0.0672 in Lemma 2.

For any x satisfying the conditions of Lemma 2, we can proceed as above. If
the first iteration yields an improved value of our initial D− (which we take to
be − log

√
3), then it is not difficult to see that every further iteration yields a

value of D− not less than the previous one (this is so since, for given r ≥ 1,
L(x/r, 1

2 , D−, D+)/U(x, 1
2 , D−, D+) is increasing, considered as a function in D−).

On the other hand, the value cannot be improved beyond zero, and hence the
iteration process must converge. If the first iteration does not yield an improved
value for D− (which is initially taken as − log

√
3), we put w̃i(x) = − log

√
3 for

every i ≥ 0; otherwise we put w̃0(x) = − log
√

3 and define

w̃i+1(x) =
(
L( x25 .

1
2 , w̃i(x), 0.276)

U(x, 1
2 , w̃i(x), 0.276)

− 1
)

log 3
2

.

Empirically it seems that after n iterations we can expect to have approached the
limit value limi→∞ w̃i(x) with O(n) decimal precision.

For b1 we proceed similarly. After some computation using the lower bound for
H1(x) given in Theorem 4, we find that H1(x) ≥ 0.065 for x ≥ 97. Hence

H1(x) ≥
(
− log

√
2− 0.065

)
{µb1(x) − µb1(

x

97
)}+ 0.065µb1(x).

If the first iteration does not yield an improved value for D− (which is initially
taken as − log

√
2), we put ṽi(x) = − log

√
2 for every i ≥ 0; otherwise we put

ṽ0(x) = − log
√

2 and define

ṽi+1(x) =
(
L( x97 .

1
2 , ṽi(x), 0.2663)

U(x, 1
2 , ṽi(x), 0.2663)

− 1
)

(log
√

2 + 0.065) + 0.065.

To sum up, we have established:

Lemma 6. Suppose that x ≥ x0 ≥ 2 and i ≥ 0. Then (9) holds true with f = b1,
D− = ṽi(x0), D+ = 0.276. It also holds true with f = b3, D− = w̃i(x0) and
D+ = 0.2663.

This lemma, although amenable to further improvement, is sufficiently sharp for
our purposes.
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8. The proof of Theorem 2

Before proving Theorem 2, we will need two more lemmas (which are illustrated
in Figure 2). From prime number theory we recall that

ψ(x; d, a) =
∑

n≤x, n≡a(mod d)

Λ(n).

Lemma 7. We have:
a) ψb1(x) ≥ 0.4924x for x ≥ 37.
b) ψb3(x) ≤ 0.5176x for x ≥ 3793.

Proof. Let d ≤ 13 and (a, d) = 1. Then |ψ(x; d, a) − x/ϕ(d)| ≤
√
x for 224 ≤

x ≤ 1010 by [16, Theorem 1] and |ψ(x; d, a) − x/ϕ(d)| < 0.004560x/ϕ(d) for x ≥
1010 by [16, Theorem 5.2.1]. From these inequalities the lemma follows after some
computation. �

For y ≥ 3 we define Sb3(y) by 0.5176y, except for the intervals [3, 49), [49, 181),
[181, 487), [487, 1369), [1699, 1933), [2287.2437), and [3733, 3793), where we define
Sb3(y) to be (respectively) 0.653954y, 0.605778y, 0.557372y, 0.534528y, 0.526579y,
0.521825y and 0.51996y.

Lemma 8. For y ≥ 2 we have ψb3(y) ≤ Sb3(y).

Proof. The points where ψb3 and Sb3 change value occur only at prime powers
representable by X2 + 3Y 2, which we denoted by 3 = w1 < w2 < · · · . We now
check that ψb3(wi) ≤ Sb3(wi) for every wi ≤ 3793. For wi ≥ 3793 the result follows
by Lemma 7. �

At last we are in position to prove Theorem 2.
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Figure 2. Plot of ψb1(x) versus 0.4924x (left) and plot of ψb3(x)
versus Sb3(x) (right), for 0 ≤ x ≤ 100
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Proof of Theorem 2. As we have shown in Section 2, it suffices to establish Conjec-
ture 2. To this end we have to prove that, for x ≥ 8,

λb1(x) =
∑
n≤ x2

b1(n)ψb1(
x

n
) ≥

∑
n≤ x3

b3(n)ψb3(
x

n
) = λb3(x).

Let us denote the 6 intervals in the definition of Sb3(y) by [ri, si) for i = 1, . . . , 6,
and put αi = Sb3(ri)/ri − 0.5176 (note that αi > 0). From Lemma 8 we infer that

λb3(x) ≤
∑
n≤ x3

b3(n)Sb3(
x

n
) = 0.5176µb3(

x

3
) +

6∑
i=1

αi{µb3(
x

ri
)− µb3(

x

si
)}.

Put x0 = 1.5 × 1011. Using a computer (see Section 9), Conjecture 2 can be
established for x < x0. Hence, assume now that x ≥ x0. For notational conve-
nience we shorten U(x/r, 1

2 , w̃8(x0/r), 0.276) to U3(x/r), L(x/r, 1
2 , w̃8(x0/r), 0.276)

to L3(x/r) and L(x/r, 1
2 , ṽ8(x0/r), 0.2663) to L1(x/r), where r is some fixed num-

ber. On applying Lemma 6, we deduce that

λb3 (x)
2Cb3

≤ 0.5176U3(
x

3
) +

6∑
i=1

αi{U3(
x

ri
)− L3(

x

si
)}.

By Lemma 4 each of the six terms in the above sum is non-increasing for x ≥ x0,
and thus the sum is bounded above by its value in x0, which in its turn is less
than 0.0224U3(x0/3). One easily checks that U3(x/3) ≥ U3(x0/3) for x ≥ x0

(on noting that U(y, τ,D−, D+), considered as a function of τ , is increasing for
y > exp(D++(D+−D−)/τ)). We thus obtain that λb3(x) ≤ 1.08Cb3U3(x/3). Using
Lemma 6 and the lower bound for ψb1 given in Lemma 7, we infer that λb1(x) ≥∑
n≤x/37 b1(n)ψb1(x/n) ≥ 0.4924µb1(x/37) ≥ 0.9848Cb1L1(x/37). A computation

shows that 0.9848Cb1L1(x0/37) > 1.08Cb3U3(x0/3). By Lemma 3 we then have
0.9848Cb1Lb1(x/37) > 1.08Cb3U3(x/3) for every x ≥ x0. We thus obtain that for
every x ≥ x0,

λb1 (x) ≥ 0.9848Cb1L1(
x

37
) ≥ 1.08Cb3U3(

x

3
) ≥ λb3(x),

completing the proof. �

9. Computations of results used in Theorems 2 and 5

In the proof of Theorem 2 we have used the fact that Conjecture 2 is true for
x ≤ x0 with x0 = 1.5× 1011. We established that result as follows.

Checking Conjecture 2 requires the computation and comparison of the sums

λbi(x) =
∑
n≤x

bi(n) log n, i = 1, 3,

and, consequently, the computation of the characteristic functions b1(n) and b3(n)
for all positive integers n ≤ x0. Because of the size of x0, the range of x-values for
which Conjecture 2 had to be checked was split up into subintervals of length 106,
large enough for efficiency, and small enough to avoid so-called cache misses during
the computations.
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We first describe the case λb1(n). For a given interval, say, [A,B], an integer
array b(j), j = 1, 2, . . . , B − A + 1 of length B − A + 1 is initialized to 0. Here,
b(j) corresponds to b1(j +A− 1). Next, all the possible sums of squares x2 + y2 of
integers 0 ≤ x ≤ y, with A ≤ x2 +y2 ≤ B, hence x ∈

[
0,
√
B/2

]
, y ∈

[√
A/2,

√
B
]
,

are computed as follows. First, the sequence of all the squares y2 ∈ [A/2, B] is
precomputed and stored. Next, for each x = 0, 1, . . . ,

⌊√
B/2

⌋
, the sums x2 + y2

are computed

for all y2 ∈
[
max(A− x2, A/2), B − x2

]
⊂ [A/2, B].

For all the sums x2 + y2 =: n obtained in this way, b(n−A+ 1) is set equal to 1.
The case λb3(n) is treated similarly: the same initialization of array b is carried

out. Next, all the possible sums x2 + 3y2 of integers x, y, with A ≤ x2 + 3y2 ≤ B,
hence x ∈

[
0,
√
B
]
, y ∈

[
0,
√
B/3

]
, are computed as follows. First, the sequence

of all the triples of squares 3y2 ∈ [0, B] is precomputed and stored. Next, for each
x = 0, 1, . . . ,

⌊√
B
⌋
, the sums x2 + 3y2 are computed

for all 3y2 ∈
[
max(0, A− x2), B − x2

]
⊂ [0, B]

and for all the sums x2 + 3y2 =: n obtained in this way, b(n − A + 1) is set equal
to 1. This corresponds to b3(n).

We have implemented these algorithms for b1(n) and b3(n) in Fortran and used
them to compute λbi(x) for i = 1, 3, and to verify Conjecture 2 for x = 8, 9, . . . , 1.5×
1011 on one 250 MHZ processor of CWI’s SGI Origin 2000 computing system.
Computing time was 7.6 CPU hours. We also used our program to check the
values of B1(x) =

∑
n≤x b1(n), given for x = 10i, i = 1, . . . , 12, by Shiu in Table

1 of [23] (where B1(x) is called W (x)). Computing time to extend our results
from 1.5 × 1011 to 1012 was 77 CPU hours. We found agreement with Shiu for
i = 1, . . . , 10, but differences for i = 11 and i = 12: B1(1011) = 15 570 512 744
and B1(1012) = 148 736 628 858, whereas Shiu gave W (1011) = 15 570 523 346
and W (1012) = 148 736 629 005. Shiu used a different, more efficient method than
ours, but he has confirmed our value of B1(1011) after checking and correcting his
program [24].

We have spot-checked our program for computing b1(n) and b3(n) on various
intervals of length 106 with the help of Lemma 1. This requires the decomposition
into primes of each n for which we wish to compute b1(n), which is extremely
expensive, compared with composing all integers in a given long interval [A,B] as
a sum of integer squares. However, we found agreement for all the checks we did,
in particular for those in the neighbourhood of x = 1012. In Table 2, we list, for
i = 1, 3, the values we found of λbi (x) andBi(x) for x = j×1011, j = 1, 1.5, 2, . . . , 10.

In the proof of Theorems 5a and 5b, we have used the fact that

(22) max
vi≤6.15×108

H1(vi) = H1(461) = 0.170106 · · · , respectively,

(23) max
wi≤1.083×1010

H3(wi) = H3(3739) = 0.155448 · · · ,

We established these results as follows.
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Table 2. λb1 (x), B1(x) versus λb3(x), B3(x)

x/1011 λb1(x) λb3(x) B1(x) B3(x)

1 378458908590.818 316358774044.179 15570512744 13015595425
1.5 572353849423.260 478438468735.511 23160971166 19360573686
2 767521856517.400 641582406621.494 30700929088 25663340448
3 1160486988190.213 970068358550.987 45678037444 38182949191
4 1555965223692.576 1300655152892.098 60558145064 50621477125
5 1953301629004.525 1632795521743.015 75367348255 63000746043
6 2352112868630.901 1966168966371.294 90120785046 75333407591
7 2752146230205.959 2300563843364.554 104828319151 87627692348
8 3153223047545.408 2635831188875.970 119496904413 99889427349
9 3555209733889.339 2971859287714.156 134131682979 112122909167
10 3958003171956.632 3308561817015.470 148736628858 124331455166

Let x = 6.15 × 108. We first generated the primes ≤
√
x with the sieve of

Eratosthenes, and stored the following pairs (n,Λb1(n)):

(2k, log 2), k = 1, 2, . . . , blog2 xc,

(p2k, 2 log p), k = 1, 2, . . . ,
⌊

1
2

logp x
⌋
, for the primes p ≡ 3 mod 4 ≤

√
x,

(pk, log p), k = 1, 2, . . . , blogp xc, for the primes p ≡ 1 mod 4 ≤
√
x,

into an array, sorted increasingly according to the first element of the pairs. The
set of numbers n in these pairs in fact contains as a subset all the prime powers
v1, v2, · · · ≤

√
x which can be written as a sum of two squares. For these (n,Λb1(n))-

pairs, we computed H1(n) and verified that

max
vi≤b√6.15×108c

H1(vi) = H1(461) = 0.170106 · · · .

The remaining interval
[⌊√

6.15× 108
⌋

+ 1, x
]

was split up in pieces of length 107,
and for each of these intervals, [A,B], say, the primes p ≡ 1 mod 4 were generated
with the sieve of Eratosthenes, together with log p. These pairs (p, log p) were mixed
with the (n,Λb1(n))-pairs generated above for which n ∈ [A,B], and then it was
verified that maxvi∈[A,B]H1(vi) < H1(461). This proved (22). Computing time
was 81 CPU seconds. Relation (23) was proved in a similar way at the cost of 1340
CPU seconds.

10. An alternative approach

In the previous sections we have made essential use of asymptotic information
regarding the distribution of primes. Some of the results we used depend eventually
on RH(3) and RH(4) to be true up to some finite height. It might come as a surprise
then that it is possible to show that B1(x) ≥ B3(x) for x ≥ 109111, without invoking
any result from computational prime number theory (one only needs the ability to
compute some successive primes. . . ).

Our method of establishing this is inspired by Selberg’s [19, pp. 183-185] method
of obtaining an asymptotic evaluation for N(x; 4, 1), where N(x; d, a) denotes the
number of integers n ≤ x that have no prime factor p with p 6≡ a(mod d). Unfortu-
nately Selberg’s method does not seem to generalise well; for example we have no
idea how to generalise it so as to show that N(x; 4, 3) ≥ N(x; 4, 1) for x ≥ x0, with
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x0 some effectively computable constant. See [13] for generalisations of Selberg’s
method.

Lemma 9. a) For x ≥ 2 we have

|B1(x) − Cb1
x√

log x
| ≤ 9.62

x

logx
.

b) For x ≥ 2 we have

|B3(x) − Cb3
x√

log x
| ≤ 8.53

x

logx
.

Corollary 1. For x ≥ 109111 we have B1(x) ≥ B3(x).

In the proof of Lemma 9 we will make use of the following result. For a plot of
the function g, see Figure 3.

Lemma 10. Let c2 = 2eγ and c3 =
√

3eγ. For z ≥ 1 we put

f(z) = z
∑

n≤z, 2-n

1
n
− z

2
log(c2z) and g(z) = z

∑
n≤z, 3-n

1
n
− 2

3
z log(c3z).

Then

sup
z≥1
|f(z)| = −f(3−) =

3
2
{log 6 + γ} − 3 = 0.55346270119438 · · ·

and
sup
z≥1
|g(z)| = −g(4−) =

8
3

log(4
√

3eγ)− 6 = 0.70084312094794 · · · .

Proof. We only prove the statement concerning f(z); the statement regarding g(z)
can be proved in a similar way.

Since z log(c2z) is monotonically increasing, we obtain, cf. [10, Lemma 4], that
supz≥1 |f(z)| = sup{|f(1)|, |f(3−)|, |f(3)|, |f(5−)|, |f(5)|, . . . }. Using the Euler-
MacLaurin summation formula, cf. [26, p. 6], one finds that for integers n ≥ 1,

(24)
∑
m≤n

1
m

= logn+ γ +
1

2n
− 1

12n2
+
θ1(n)
60n4

,

where θ1(n) ∈ [0, 1]. Clearly

(25)
∑

m≤n, 2-m

1
m

=
∑
m≤n

1
m
− 1

2

∑
m≤n/2

1
m
.

Let n ≥ 3 be an odd integer. Notice that f(n−) = f(n)− 1. Using (24) and (25),
it is not difficult to deduce that

−1
2
≤ f(n) ≤ n

2
log(

n

n− 1
) +

n

6(n− 1)2
+

1
60n3

and
−1

2
≤ −f(n−) ≤ 1

2
+

1
2(n− 1)

+
1

12n2
+

2
15(n− 1)4

.

Using that the latter two right-hand sides are monotonically decreasing in n and
noting that supz≥1 |f(z)| ≥ |f(3−)|, we see that supz≥1 |f(z)| = sup1≤z≤11 |f(z)| =
|f(3−)|. �
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Figure 3. Plot of g(x) for 1 ≤ x ≤ 10 (left) and of g(x) minus its
limit function for 1 ≤ x ≤ 20 (right)

Let {z} = z− [z] denote the fractional part of z. Using (24) it can be shown that
the functions f and g are almost periodic in the sense that they converge uniformly
to the periodic functions 1

2 −{
z−1

2 }, respectively 1−{ z−1
3 }− {

z+1
3 } (cf. Figure 3).

11. Proof of Lemma 9

Let P2, P3 denote the set of primes p that satisfy p ≡ 2(mod 3), respectively
p ≡ 3(mod 4). Let (P2), (P3) denote the set of natural numbers that have no prime
divisor p with p 6≡ 2(mod 3), respectively p 6≡ 3(mod 4). Let ψ3(x), ψ4(x) denote
the number of integers 1 ≤ n ≤ x that have no prime divisor p with p 6≡ 2(mod 3),
respectively p 6≡ 3(mod 4).

Proof of part a. Put c2 = 2eγ . We consider the expression

∞∑
j=0

∑
m∈(P3)

∑
1≤n≤x/(2jm2)
n≡1(mod 4)

∑
d|n

d∈(P3)

µ(d) log
c2x

2jm2d

=
∞∑
j=0

∑
m∈(P3)

∑
d∈(P3)

d≤x/(2jm2)

µ(d) log
c2x

2jm2d

∑
d|n, 1≤n≤x/(2jm2)

n≡1(mod 4)

1.

(26)

By approximating both sides of this equation in terms of the function B1, we will
arrive at an approximate functional equation, (34), for B1 which on solving will
yield an explicit lower bound for B1.
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On recalling that
∑
d|n µ(d) log d = −Λ(n), one sees that, when n ≡ 1(mod 4)

and d ≤ x/(2jm2), we have

∑
d|n

d∈(P3)

µ(d) log
c2x

2jm2d
=


log c2x

2jm2 if n has no divisor p from P3;
log p if n is divisible by exactly one p from P3;
0 if n has ≥ 2 distinct prime factors from P3.

On noting that

B1(x) =
∞∑
j=0

∑
m∈(P3)

ψ4(
x

2jm2
),

we see that the left-hand side of (26) equals

(27) B1(x) log c2x+
∑
p∈P3
r≥1

log p B1(
x

p2r
)−

∞∑
j=0

∑
m∈(P3)

log(2jm2)ψ4(
x

2jm2
),

which we write as

(28) B1(x) log c2x+ I1(x) − I2(x).

We write z = x/2j and consider the expression formed by the three inner sums in
(26), that is,

(29)
∑

m∈(P3)

∑
d∈(P3)
d≤z/m2

µ(d) log
c2z

m2d

∑
d|n, 1≤n≤z/m2
n≡1(mod 4)

1.

Given an integer k, let ξ(k) denote the product of the distinct primes that occur to
an odd power in the prime factorisation of k. We put ξ(k) = 1 if there is no prime
that occurs to an odd power in k. Note that

(30)
∑

m2d=k

µ(d) = µ(ξ(k)),

where the sum is over all integers m and d such that m2d = k. On writing m2d = k
in (29), and invoking (30), we deduce that the triple sum in (29) equals∑

k∈(P3)
k≤z

µ(ξ(k)) log
c2z

k

∑
k1≤z/k

k1≡k(mod 4)

1.

The right-hand side of (26) is thus seen to equal
∞∑
j=0

∑
k∈(P3)
k≤x/2j

µ(ξ(k)) log
c2x

2jk

∑
k1≤x/(2jk)
k1≡k(mod 4)

1,

which simplifies to ∑
d∈(P ′3)
d≤x

µ(ξ(d′)) log
c2x

d

∑
k1≤x/d

k1≡d′(mod 4)

1,

where d′ denotes the largest odd divisor of d and P ′3 = P3 ∪{2} and (P ′3) is defined
as (P3), but where now no prime divisor p with p ≡ 1(mod 4) is allowed. The
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right-hand side of (26) is thus seen to equal
(31)∑
d∈(P ′3)
d≤x

[
x

4d
+

2 + (−1)
d′−1

2

4

]
µ(ξ(d′)) log

c2x

d
=
x

4

∑
d∈(P ′3)
d≤x

µ(ξ(d′))
d

log
c2x

d
+ I3(x),

where

(32) |I3(x)| ≤ 3
4

∑
d∈(P ′3)
d≤x

log
c2x

d
.

For 1 ≤ d ≤ x we have, recalling the definition of f (made in Lemma 10),

1
2

log
c2x

d
=

∑
n≤x/d, 2-n

1
n
− f(

x

d
)
d

x
.

Combining the latter equation with the sum in the right-hand side of (31) yields

x

4

∑
d∈(P ′3)
d≤x

µ(ξ(d′))
d

log
c2x

d
=
x

2

∑
dn≤x, d∈(P ′3)

2-n

µ(ξ(d′))
dn

+ I4(x),

where

(33) |I4(x)| ≤ 1
2

∑
d∈(P ′3)
d≤x

|f(
x

d
)|.

Note that
x

2

∑
dn≤x, d∈(P ′3)

2-n

µ(ξ(d′))
dn

=
x

2

∑
k≤x

1
k

∑
dn=k, d∈(P ′3)

2-n

µ(ξ(d′)).

Denote the latter inner sum by h(k). We claim that h(k) = b1(k). First let us
consider the case where k is odd. Then

h(k) =
∑

dn=k, d∈(P3)

µ(ξ(d)) =
∑
dn=k

µ(ξ(d))2−ω(d)
∏
p|d

(1 − (−1)
p−1

2 ),

where ω(d) denotes the number of distinct primes dividing d. We see that for odd
k, h is the Dirichlet convolution of two multiplicative functions and is thus itself a
multiplicative function. For arbitrary k we note that h(k) = h(k′), where k′ is the
largest odd divisor of k. Thus h is a multiplicative function. An easy computation
shows that for every prime power q we have h(q) = b1(q). Since both h and b are
multiplicative, this completes the proof of the claim. We thus infer that

x

2

∑
dn≤x, d∈(P ′3)

2-n

µ(ξ(d′))
dn

=
x

2

∑
m≤x

b1(m)
m

=
x

2

∫ x

1

dB1(t)
t

=
B1(x)

2
+
x

2

∫ x

1

B1(t)
t2

dt.

Thus the right-hand side of (26) equals

B1(x)
2

+
x

2

∫ x

1

B1(t)
t2

dt+ I3(x) + I4(x).
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Equating it with the expression (28) for the left-hand side of (26), we get

(34) B1(x) log c2x−
x

2

∫ x

1

B1(t)
t2

dt = −I1(x) + I2(x) + I3(x) + I4(x) +
B1(x)

2
.

Next we will consider effective estimates for Ij(x) for 1 ≤ j ≤ 4. Using the trivial
estimate B1(x) ≤ x, we obtain that

0 ≤ I1(x) ≤ x
∑
p∈P3

log p
p2 − 1

< .23x.

On noting that
∞∑
j=0

∑
m∈(P3)

log(2jm2)
2jm2

= 2
∑

m∈(P3)

log(2m2)
m2

< 2.7

and ψ4(x) ≤ x, we deduce that 0 ≤ I2(x) < 2.7x. Using (32), we deduce that

|I3(x)| ≤ 3
4

∑
d∈(P ′3), d≤x

log
cx

d
≤ 3

4

∑
1≤d≤x

∫ cx

d

dt

t
≤ 3

4
cx < 2.68x.

For I4(x) we have, by (33) and Lemma 10, |I4(x)| ≤ 0.277x.
Put A(x) =

∫ x
1
B1(t)dt/t2. An easy calculation (divide by x2 log3/2 x and inte-

grate) now shows that if

(35) −α−x ≤ x2 log xA′(x)− x

2
A(x) ≤ α+x, for x ≥ x0,

then there exists a constant c0 such that

c0
√

log x− 2α+ ≤ A(x) ≤ c0
√

log x+ 2α−, for x ≥ x0.

On inserting the latter estimate in (35) and invoking (1), it then follows that

(36)
∣∣∣B1(x)− Cb1

x√
log x

∣∣∣ ≤ (α− + α+)
x

log x
, for x ≥ x0.

From our estimates for Ij(x) with j = 1, . . . , 4, we see that we can take α− = 3.96,
α+ = 5.66 and x0 = 2. �
Proof of part b. Making the obvious modifications in the proof of part a, we deduce
that

(37) B3(x) log c3x−
x

2

∫ x

1

B3(t)
t2

dt = −J1(x) + J2(x) + J3(x) + J4(x) +
B3(x)

2
,

where

J1(x) =
∑

p∈P2, r≥1

log p B3(
x

p2r
),

J2(x) =
∞∑
j=0

∑
m∈(P2)

log(3jm2)ψ3(
x

3jm2
),

|J3(x)| ≤ 2
3

∑
d∈(P ′2), d≤x

log
c3x

d
,

and

|J4(x)| ≤ 1
2

∑
d∈(P ′2), d≤x

|g(
x

d
)|,
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with P ′2 = P2 ∪ {3} and (P ′2) defined as (P2), but where now no prime divisor p
with p ≡ 1(mod 3) is allowed. Reasoning as before, we find that

0 ≤ J1(x) < x
∑
p∈P2

log p
p2 − 1

< 0.36x

and

0 ≤ J2(x) <
3
4
x
∑

m∈(P2)

log(3m4)
m2

< 2.7x.

Furthermore we find that |J3(x)| ≤ 2xc3/3 < 2.06x and |J4(x)| ≤ 0.36x. From
these estimates and (37) we infer that we can take α+ = 5.12, α− = 3.41 and
x0 = 2 in the analogue of (36). �

Remark. In the proof of part a we have used the trivial estimates ψ4(x) ≤ x and
B1(x) ≤ x. Using that the integers n counted by ψ4(x) satisfy n ≡ 1(mod 4) and
3 - n, we obtain the sharper estimate

(38) ψ4(x) ≤ [
x+ 11

12
] + [

x+ 7
12

] ≤ x

6
+

7
6
.

Similarly, some computation yields that B1(x) ≤ x/2 + 2. In this way the value
9.62 appearing in Lemma 9 a can still be further decreased, but we have not carried
this out. Similarly the estimates in the proof of part b can be improved.
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