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INDEX-DOUBLING IN SEQUENCES
BY AITKEN EXTRAPOLATION

ROGER ALEXANDER

Abstract. Aitken extrapolation, applied to certain sequences, yields the even-
numbered subsequence of the original. We prove that this is true for sequences
generated by iterating a linear fractional transformation, and for some se-
quences of convergents of the regular continued fractions of certain quadratic
irrational numbers.

1. Introduction

Consider the sequence generated by iteration of a linear fractional transforma-
tion,

(1) C1 = A1/B1, Cn+1 =
A1Cn +A′1
B1Cn +B′1

, n ≥ 1.

Assume B1 6= 0 and δ ≡ A1B
′
1 − A′1B1 6= 0. We prove in §2 below that applying

Aitken extrapolation with any step length k to this sequence, that is, computing

Ck∗n =
Cn+kCn−k − C2

n

Cn+k − 2Cn + Cn−k
, k < n,

produces the even-indexed subsequence:

Ck∗n = C2n.

This result implies that applying Aitken extrapolation again to the resulting even-
indexed subsequence produces the subsequence with indices divisible by four, and
so on for all powers of two.

In §3 we consider sequences of convergents Cn of certain regular continued frac-
tions that represent quadratic irrational numbers:

Cn = b1 +
1

b2 +
1

b3 + .. . 1

bn−1 +
1
bn

.
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In special cases these sequences can be generated by iterating a linear fractional
transformation, but not in general. We derive necessary and sufficient conditions
for the Aitken extrapolant

C∗n =
Cn+1Cn−1 − C2

n

Cn+1 − 2Cn + Cn−1

to belong to the original sequence. For example, we prove that C∗n = C2n if the
partial quotients bk form a purely periodic sequence with minimal period `, say, and
the index n is a multiple of `, or of `/2 if ` is even. We also consider extrapolation
with step lengths greater than one, and extrapolation in subsequences of Cn.

The theorems on extrapolation of convergents of continued fractions appear to
be new. Several theorems on iterates of linear fractional transformations are known.
Phillips [Ph 1984] proves that ϕ∗k = ϕ2k for the sequence defined by

(2) ϕ1 = 1, ϕk+1 = 1 + 1/ϕk
that converges to the golden ratio ϕ. Elements of the sequence are ratios of con-
secutive Fibonacci numbers; they are also the convergents of the regular continued
fraction for ϕ.

McCabe and Phillips [MP 1985] prove the following, although they state it in a
form different from that given here.

Theorem 1. Let the sequence (Cn)∞n=1 be defined by

C1 = b, Cn+1 = b− a

Cn
,

and assume that b 6= 0, a 6= 0, and that cos−1(1
2b/
√
a) is not a rational multiple of

π. Then Aitken extrapolation with any step length p < n,

Cp∗n =
Cn+pCn−p − C2

n

Cn+p − 2Cn + Cn−p
,

yields Cp∗n = C2n.

This theorem implies that repeated Aitken extrapolation always “doubles the
index,” that is, extrapolating the even-indexed subsequence produces the subse-
quence with indices divisible by four, and so on. Brezinski and Lembarki [BL 1986]
proved the same for sequences defined by

C1 = b, Cn+1 = 1 +
a

Cn
.

2. Extrapolation of sequences

generated by linear fractional transformations

The purpose of this section is to prove our first main theorem.

Theorem 2. Let (Cn)∞n=1 be a sequence generated by a linear fractional transfor-
mation (1) such that δ ≡ A1B

′
1 − A′1B1 6= 0 and B1 6= 0. Then for any n > 1 the

Aitken extrapolant with any step length p < n is given by

(3) Cp∗n = Cn +
Cn+p − Cn

1− r(p)
n

, r(p)
n =

Cn+p − Cn
Cn − Cn−p

,

and satisfies Cp∗n = C2n.

Repeated application of Theorem 2 with p = 2k, k = 0, 1, 2, . . . , allows us to
conclude that repeated Aitken extrapolation “doubles the index every time.”
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Corollary 1. For every k ≥ 0, Aitken extrapolation of the subsequence (C2kn)∞n=1

of the sequence (1) produces the subsequence (C2k+1n)∞n=1.

Before giving the proof we derive several preliminary results, beginning with the
fact that Aitken extrapolation is correctly expressed by (3).

Given a sequence x1, x2, x3, . . . supposed (truly or not) to be linearly convergent,
one may compute estimates rn of the convergence rate by

rn :=
xn+1 − xn
xn − xn−1

and extrapolate by

x∗n = xn +
1

1− rn
(xn+1 − xn).

It is easily verified that this expression is equivalent to the standard one, x∗n =
(xn+1xn−1 − x2

n)/(xn+1 − 2xn + xn−1), for Aitken extrapolation. Formulated this
way, the algorithm can be understood as approximating the series

lim
m→∞

xm = xn +
∞∑
k=0

(xn+k+1 − xn+k)

by a geometric one, replacing each term (xn+k+1 − xn+k) by rkn(xn+1 − xn).
For future use let us record some facts about Aitken extrapolation that are

immediately obvious from this formulation.

Lemma 1 ([Br 1991, §§1.1, 1.4]). Aitken extrapolation has the following properties.
(1) Aitken extrapolation of the sequence generated by the linear iteration Cn+1

= A1Cn + A′1 with C1 arbitrary produces “convergence” in a single step:
C∗n = C∞ ≡ A′1/(1 − A1). (This occurs whether the original sequence
converges (|A1| < 1) or diverges (|A1| ≥ 1).)

(2) Aitken extrapolation commutes with translation of the sequence by a con-
stant: if the sequence Dn is defined by Dn = Cn + a, then the extrapolated
sequences are related by D∗n = C∗n + a.

(3) Aitken extrapolation is homogeneous of degree one: if the sequence Dn is
defined by Dn = aCn, then the extrapolated sequences are related by D∗n =
aC∗n.

The first property means that if B1 = 0 in the linear fractional transformation
(1), so that the iteration function is linear, then Aitken extrapolation produces the
“limit” in a single step. We require B1 6= 0 to avoid this uninteresting case.

Proof of Theorem 2 using Theorem 1. Given a sequence (1), we define a new se-
quence by

(4) Dn = B1Cn +B′1.

Then D1 = B1(A1/B1) +B′1 = A1 +B′1, and a calculation shows that

(5) Dn+1 = (A1 +B′1)− A1B
′
1 −A′1B1

Dn
.

Thus the sequence Dn satisfies the hypotheses of Theorem 1, and we conclude that
Aitken extrapolation gives

Dp∗
n = D2n.
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By Lemma 1, Aitken extrapolation commutes with translation and dilation. There-
fore

Cp∗n =
Dp∗
n −B′1
B1

=
D2n −B′1

B1
= C2n,

and this completes the proof. �

We present next a direct proof of Theorem 2 that is no longer than that just
given if the proof of Theorem 1 be factored in, and that features techniques useful
in the extension of our results to sequences of convergents of continued fractions.
It will be advantageous to regard linear fractional transformations as mappings of
the real projective line, in the familiar way. Let M be the matrix with coefficients
from (1),

(6) M =
[
A1 B1

A′1 B′1

]
.

Lemma 2. Denote the elements of Mn by

Mn =
[
An Bn
A′n B′n

]
.

Then the iterates (1) satisfy

(7) Cn = An/Bn, n ≥ 1.

In (7) we understand Cn =∞ when Bn = 0; under our assumptions An and Bn
do not vanish simultaneously.

Proof. The case n = 1 is true by definition, and, assuming (7) is true for n, we have
(writing ei, i = 1, 2, for the standard unit vectors of R2) [An+1Bn+1] = eT1 M

nM =
[AnBn]M , so that

An+1

Bn+1
=
A1An +A′1Bn
B1An +B′1Bn

=
A1Cn +A′1
B1Cn +B′1

= Cn+1.

�

We may thus regard (An, Bn) as homogeneous coordinates for Cn, and under-
stand the iteration of the linear fractional transformation in terms of the related
matrix power iteration.

Given a linear fractional transformation (1) with corresponding matrix M (6),
we shall find useful a certain factorization of M .

Lemma 3. Given a matrix M (6) such that B1 6= 0 and δ = detM 6= 0, let

(8) b =
A1 −B′1
B1

, V =
[
b 1
1 0

]
,

Then H = MV −1 is symmetric with detH = −δ. Furthermore, whenever a non-
singular matrix M has a factorization M = HV with V as in (8) and H symmetric,
then for every n ≥ 1,

(9) (Mne2)TVMn = eT1 M
2n.

Proof. A calculation gives

(10) H = MV −1 =

[
B1 B′1
B′1

(B′1)2−δ
B1

]
,
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showing that H is symmetric, M = HV , and detH = −δ. Additionally, since both
V and H are symmetric,

(Mne2)TVMn = eT2 (V H)nV (HV )n

= eT2 V (HV )2n = eT1 M
2n.

�

Direct proof of Theorem 2. Let n > p ≥ 1 and calculate

(11) Cn+p − Cn =
An+p

Bn+p
− An
Bn

=
An+pBn −AnBn+p

Bn+pBn
= − δnBp

Bn+pBn
,

using in the last numerator the determinant of the matrix[
An+p Bn+p

An Bn

]
=
[
eT1 M

n+p

eT1 M
n

]
=
[
Ap Bp

1 0

]
Mn.

Replacing n by n− p in (11) gives

(12) Cn − Cn−p = − δn−pBp
BnBn−p

,

so that the rate estimate (3) is r(p)
n = δpBn−p/Bn+p, and extrapolation yields

Cp∗n =
An
Bn

+
1

1− δpBn−p/Bn+p

An+pBn −AnBn+p

Bn+pBn
(13)

=
An+pBn − δpAnBn−p
Bn+pBn − δpBnBn−p

.(14)

To simplify this last expression we use b from (8) to define, for n ≥ 0,

A′′n = bAn +A′n, B′′n = bBn +B′n,

so that

(15)
[
A′′n B′′n
An Bn

]
=
[
b 1
1 0

] [
An Bn
A′n B′n

]
= VMn.

If X is any matrix, it will be convenient to write either eTi Xej or Xij for the (i, j)
element of X . In particular, when k is any integer, we write Xk

ij for the (i, j)
element of Xk. Then, using the factorization M = HV and (15), we have[

An+p Bn+p

A′n+p B′n+p

]
= MpMn = Mp−1HVMn = Mp−1H

[
A′′n B′′n
An Bn

]
,

and thus

An+p = (Mp−1H)11A
′′
n + (Mp−1H)12An,(16)

Bn+p = (Mp−1H)11B
′′
n + (Mp−1H)12Bn.(17)

Shifting the index down by p gives[
Bn
B′n

]
= Mp−1H

[
B′′n−p
Bn−p

]
or

[
B′′n−p
Bn−p

]
= (Mp−1H)−1

[
Bn
B′n

]
,

so that

(18) Bn−p = (Mp−1H)−1
21 Bn + (Mp−1H)−1

22 B
′
n.
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Now, since Mp−1H is 2× 2 with det(Mp−1H) = −δp, we have

(19) (Mp−1H)−1
22 =

−1
δp

(Mp−1H)11, (Mp−1H)−1
21 =

1
δp

(Mp−1H)21.

Inserting (16), (17) and (18) into formula (14) for Cp∗n and using (19) gives

Cp∗n =
(Mp−1H)11(A′′nBn +AnB

′
n) + ((Mp−1H)12 − (Mp−1H)21)AnBn

(Mp−1H)11(B′′nBn +BnB′n) + ((Mp−1H)12 − (Mp−1H)21)B2
n

But Mp−1H = (HV )p−1H is symmetric, so the second terms in numerator and
denominator vanish, leaving

Cp∗n =
A′′nBn +AnB

′
n

B′′nBn +BnB′n
.

We may write this as a quotient of inner products and apply (15),

Cp∗n =

[
Bn B′n

]
·
[
A′′n
An

]
[
Bn B′n

]
·
[
B′′n
Bn

] =
(Mne2)TVMne1

(Mne2)TVMne2
.

Therefore Cp∗n is expressed in homogeneous coordinates by the vector

eT2 M
n(VMn),

and by (9) of Lemma 3 this is eT1 M
2n = [A2n, B2n]. �

3. Extrapolation of convergents of regular continued fractions

3.1. Regular continued fractions and quadratic irrationals. Recall [Pe 1929,
§§1–25] that a regular continued fraction is an expression of the form

b1 +
1

b2 +
1

b3 + · · ·

= b1 +
1|
|b2

+
1|
|b3

+ · · ·

in which the bi are positive integers called the partial quotients. The convergents
of the continued fraction are the terminating continued fractions

(20) Cn = b1 +
1|
|b2

+
1|
|b3

+ · · ·+ 1|
|bn

=
An
Bn

with integral numerators An and denominators Bn computable recursively by A0 =
1, A−1 = 0, B0 = 0, B−1 = 1, and then, for n = 1, 2, . . . ,

An = bnAn−1 +An−2,(21)
Bn = bnBn−1 +Bn−2.(22)

The continued fraction represents the irrational number γ = limn→∞ Cn.
Conversely, a positive irrational number γ determines its sequence of partial

quotients bi by γ1 = γ and then (writing b·c for the greatest integer function)

(23) bi = bγic,
γi+1 = 1/(γi − bi)

}
, i = 1, 2, . . . .

The sequence (2) mentioned in the Introduction is the sequence of convergents
of the regular continued fraction for the golden ratio ϕ = (1 +

√
5)/2, a quadratic

irrational number. Phillips’ theorem [Ph 1984] asserts that Aitken extrapolation
applied to this sequence produces the even-numbered subsequence. Such a result
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is not true for the sequence of convergents of arbitrary regular continued fractions.
Consider the first eight convergents of the regular continued fraction for

√
7:

(Ck)8
k=1 = (2, 3,

5
2
,

8
3
,

37
14
,

45
17
,

82
31
,

127
48

).

Then C∗2 = (5
2 ·2−32)/(5

2−2 ·3+2) = C4. However, C∗3 = 21/8 is not only different
from C6 but does not appear at all in the sequence of convergents, while again
C∗4 = C8. In fact in this case C∗2k = C4k but C∗2k+1 6= C4k+2 for k = 1, 2, . . . , and the
Aitken extrapolants of odd-numbered convergents are not themselves convergents.

Thus Aitken acceleration applied to the convergents of a regular continued frac-
tion can produce convergents, or not. In this section we determine necessary and
sufficient conditions for the result of Aitken extrapolation to belong to the sequence
of convergents. We begin by recalling the properties of periodic regular continued
fractions, which will play the main role in what follows.

A continued fraction is periodic (also called mixed periodic) if there exist a start-
ing index n0 and an integer ` ≥ 1 such that bn+` = bn for all n ≥ n0. The shortest
repeating sequence (bn, . . . , bn+`−1) is a primitive period. If the primitive period
starts at n0 = 1 the continued fraction is called purely periodic.

A number γ has a periodic continued fraction, if and only if γ is a quadratic
irrational, that is, if and only if γ can be written γ = (P+

√
D)/Q with P,Q,D ∈ Z,

D > 0 not the square of an integer, Q 6= 0 and P 2 ≡ D (mod Q). A quadratic
irrational γ > 0 is represented by a purely periodic continued fraction if and only
if it is reduced : γ > 1, and its conjugate γ′ = (P −

√
D)/Q satisfies −1 < γ′ < 0.

We write [b1, . . . , bk] for the finite continued fraction with partial quotients bi,
and [b1, . . . , b`] for the purely periodic infinite continued fraction with primitive
period of length `.

We state first some well known properties of convergents of regular continued
fractions [Pe 1929], in the form in which we use them here.

Lemma 4. Let (bn)∞n=1 be the sequence of partial quotients of a regular continued
fraction. Define matrices Vn for n ≥ 1 and Mn for n ≥ 0 by

Vn =
[
bn 1
1 0

]
, Mn =

[
An Bn
An−1 Bn−1

]
,

with An and Bn defined by the recursions (21) and (22). Then Mn = VnMn−1 =
VnVn−1 · · ·V1 for n ≥ 1, and the convergents satisfy

(24) Cn − Cn−1 =
(−1)n

BnBn−1
.

Proof. The first statement is immediate from the recursions (21) and (22) defining
the convergents. For the difference (24) we have

Cn − Cn−1 = An/Bn −An−1/Bn−1 =
AnBn−1 −An−1Bn

BnBn−1
=

detMn

BnBn−1
,

and, since detVn = −1 for all n, we have detMn = (−1)n. �

3.2. Extrapolation of period-ending convergents. We can now state the first
result on Aitken extrapolation of convergents. When the length ` of the primitive
period is greater than one, it is not true that the convergents are derived by iterating
a linear fractional transformation. It is true, however, if we restrict our attention
to the subsequence of period-ending convergents (Cn`)∞n=1.
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Theorem 3. Let γ be a reduced quadratic irrational number, let ` be the length
of the primitive period of its regular continued fraction, and let (Cn`)∞n=1 be the
subsequence of period-ending convergents. The Aitken extrapolants using any step
length p in this subsequence,

Cp`∗n` :=
C(n+p)`C(n−p)` − C2

n`

C(n+p)` − 2Cn` + C(n−p)`
, p < n,

satisfy
Cp`∗n` = C2n`.

Proof. Because the continued fraction for γ is purely periodic, we have

C(n+1)` = [b1, . . . , b`, Cn`].

Thus, by (21) and (22),

C(n+1)` =
A`Cn` +A`−1

B`Cn` +B`−1
,

so that the subsequence is generated by iterating a fractional linear transformation
(1), with coefficients A`, A`−1, B`, B`−1. The initial condition is C` = A`/B` as
required, and the coefficients satisfy B` 6= 0 and A`B`−1 − A`−1B` = detM` =
(−1)` 6= 0. Therefore the conditions of Theorem 2 are satisfied, and the proof is
complete. �

As before, repeated extrapolation always doubles the index.

Corollary 2. For every p ≥ 0, applying Aitken extrapolation to the subsequence
(C2pn`)∞n=1 of convergents of the purely periodic regular continued fraction produces
the subsequence (C2p+1n`)∞n=1.

By Lemma 1 Aitken extrapolation commutes with adding a constant to the
sequence, so a slightly more general result is true.

Corollary 3. The conclusions of Theorem 3 and its corollary hold also if γ > 0
has the form γ = a+β with an integer a and a reduced quadratic irrational number
β.

3.3. Extrapolation of arbitrary convergents. We now consider Aitken extrap-
olation in the sequence of convergents of an arbitrary regular continued fraction.
As we have seen, extrapolation of convergents does not always produce convergents.
We begin by deriving some expressions for the extrapolated convergents, making
it possible to state a simple necessary and sufficient condition for an extrapolated
convergent to be a convergent.

Theorem 4. Let [b1, b2, . . . ] be a regular continued fraction, and let (Cn)∞n=1 be its
sequence of convergents. For each n ≥ 2 the Aitken extrapolant C∗n is equal to the
quotient

(25) C∗n =
An+1Bn +AnBn−1

Bn+1Bn +BnBn−1
,

and to the finite continued fraction of length 2n

(26) C∗n = [b1, b2, . . . , bn, bn+1, bn, . . . , b2],

and is expressed in homogeneous coordinates by the vector

(27) eT2 M
T
nMn+1.
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Therefore C∗n belongs to the sequence of convergents if and only if one, and thus
all, of (25), (26) or (27) so belongs.

Proof. By (24) of Lemma 4, the estimated contraction rates for the sequence of
convergents of a regular continued fraction are

rn =
Cn+1 − Cn
Cn − Cn−1

= −Bn−1

Bn+1
.

Thus the extrapolated convergents are

C∗n = Cn +
1

1− rn
(Cn+1 − Cn)

=
An
Bn

+
Bn+1

Bn+1 +Bn−1
·
(
An+1

Bn+1
− An
Bn

)
,

and (25) follows upon simplification. Next, write (25) as a quotient of inner prod-
ucts,

An+1Bn +AnBn−1

Bn+1Bn +BnBn−1
=

[
Bn Bn−1

]
·
[
An+1

An

]
[
Bn Bn−1

]
·
[
Bn+1

Bn

] =
(Mne2)TMn+1e1

(Mne2)TMn+1e2
,

proving (27). Finally, reading from right to left in the matrix product in (27),
MT
nMn+1 = (V1 · · ·Vn)(Vn+1Vn · · ·V1), we see using homogeneous coordinates that

C∗n is identical to the 2nth convergent of the finite continued fraction of length
2n+ 1,

[b1, . . . , bn, bn+1, bn, . . . , b1],

and this proves (26). �

To formulate general sufficient conditions for C∗n to be equal to C2n we identify
in the next theorem a particular class of periodic regular continued fractions.

Theorem 5. Let γ be a reduced quadratic irrational number, and ` the length of the
primitive period of its regular continued fraction. Assume that γ + γ′ is an integer
b1. Then the partial quotients in the continued fraction for γ have the palindrome
property

(28) bi = b`+2−i, i = 2, . . . , `.

Conversely, if the primitive period in the regular continued fraction for the reduced
quadratic irrational number γ has the palindrome property, then γ+γ′ is an integer.

Proof. Let γ be a reduced quadratic irrational. If γ + γ′ = b1, an integer, then
since −1 < γ′ < 0 we have b1 = bγc. Hence the regular continued fraction for γ has
the form [b1, . . . , b`], and the continued fraction algorithm (23) gives γ = b1 + 1/γ1

with γ1 also reduced and

(29) γ1 = [b2, . . . , b`, b1].

By Galois’ theorem [Pe 1929, §23], the continued fraction for −1/γ′1 is obtained by
reversing the period of γ1, that is,

(30)
−1
γ′1

= [b1, b`, . . . , b2].
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But −1/γ′1 = b1 − γ′ = γ; thus by the uniqueness of the regular continued fraction
development, (30) matches the continued fraction for γ, proving the theorem.

Conversely, if the palindrome property (28) holds, we apply the continued frac-
tion algorithm as before to find γ = b1 + 1/γ1, and the continued fracton for
γ1 = 1/(γ − b1) is given by (29). Thus by Galois’ theorem

b1 − γ′ =
−1
γ′1

= [b1, b`, . . . , b2].

By (28) this is γ, so that γ + γ′ = b1, an integer, and the proof is complete. �

In fact, if b1 is even, it is well known [Pe 1929, §24] that there exists a rational
number d > 1, not the square of a rational number, such that γ =

√
d+b
√
dc. When

b1 is odd, it may be shown that there is a rational number c with 0 < c < b1 + 1
such that γ is the positive root of a quadratic x2 − b1x− c.

Now we can state sufficient conditions for the Aitken extrapolant of a convergent
to be another convergent.

Theorem 6. Let γ be a quadratic irrational number, (Cn)∞n=1 the sequence of
convergents of its regular continued fraction, and ` the length of the primitive period.
Assume:

(1) The number γ > 0 has the form γ = a+ β with an integer a and a reduced
quadratic irrational number β such that β + β′ is an integer.

(2) For ` odd, ` | n; for ` even, (`/2) | n.

If C∗n is defined by C∗n = (Cn+1Cn−1 −C2
n)/(Cn+1 − 2Cn +Cn−1), then C∗n = C2n.

In particular, if ` = 1 or ` = 2, Aitken extrapolation of the sequence of conver-
gents yields the subsequence of even convergents.

The case of period length ` = 1 actually follows from Theorem 1 [MP 1985]:
for then all the three-term recursions (21) for the numerators read simply An =
b1An−1 + An−2, every Bn = An−1, and the convergents are generated by the iter-
ation C1 = b1, Cn+1 = b1 + 1/Cn.

Proof of Theorem 6. By Lemma 1 and Theorem 5 we may assume that γ is a re-
duced quadratic irrational number and that the primitive period of its continued
fraction has the palindrome property.

By Theorem 4, C∗n is expressed in homogeneous coordinates by the vector (27).
Assume first that n = m`, without regard to the parity of `. Then

Mn = Mm
` , Mn+1 = V1M

m
` .

The matrix M` has the factorization M` = HV1 with H = V` · · ·V2 = HT by the
palindrome property, and Lemma 3 applies to the vector eT2 (Mm

` )TV1M
m
` repre-

senting C∗n. We conclude that this vector is eT1 M2m
` = eT1 M2m`. This completes

the proof in the case that ` | n.
Assume now that ` is even and n = (2m+ 1)`/2. The palindrome property now

implies that the period matrix M` has the factorization

M` = KTVsKV1, K = V`/2 · · ·V2, s = `/2 + 1.
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Using again the homogeneous coordinates (27) for C∗n, we calculate

eT2 M
T
nMn+1 = eT2 M

T
m`+`/2Mm`+`/2+1

= eT2
(
KV1(KTVsKV1)m

)T · VsKV1M
m
`

= eT2 (V1K
TVsK)mV1K

TVsKV1M
m
`

= (eT2 V1)Mm
` M`M

m
` = eT1 M

2m+1
` = eT1 M2n,

completing the proof also in the case that ` is even and `/2 divides n. �

The difference between Theorem 3 and Theorem 6 may be illustrated as follows.
Consider the reduced quadratic irrational number with its purely periodic continued
fraction

(31) ξ =
3
7

+
1
7

√
37 = [1, 3, 2].

According to Theorem 3, extrapolation in the subsequence (C3, C6, C9, C12, . . . )
produces

C∗6 =
(
C9C3 − C2

6

)
/(C9 − 2C6 + C3) = C12.

However, the full sequence of convergents of the continued fraction for ξ does not
satisfy the hypotheses of Theorem 6 (the period does not have the palindrome
property), and its conclusion need not hold. Indeed, by (26) of Theorem 4, we can
calculate

C∗6 =
(
C7C5 − C2

6

)
/(C7 − 2C6 + C5) = [1, 3, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3],

and this is not equal to C12 by the uniqueness of the finite continued fraction.
The factorizationM = HV derived in Lemma 3 and used to prove Theorem 2 was

suggested by the factorization M` = (V` · · ·V2)V1 used in the proof of Theorem 6,
where H = V` · · ·V2 is symmetric by the palindrome property. When, as in (31),
the sum ξ + ξ′ is not an integer, the factorization of M` provided by Lemma 3 is
not related to the factorization M` = V` · · ·V1.

Finally, Theorem 6 by no means describes all cases in which extrapolation of a
convergent produces a convergent. Consider

η = 2 +
7
12

√
22 = [4, 1, 2, 1, 3, 1, 2, 1].

Then ` = 8, and Theorem 6 tells us C∗4 = C8, C∗8 = C16, and so on. However, using
(26) of Theorem 4 again, we also find that

C∗2 = [4, 1, 2, 1] = C4,

C∗3 = [4, 1, 2, 1, 2, 1] = [4, 1, 2, 1, 3] = C5,

the last line being valid by the qualifying clause [Pe 1929, §9 Satz 2] in the theorem
on uniqueness of finite continued fractions.

Examples like these should be regarded as accidents, however, for they do not
occur when n > `.

Theorem 7. Let ` ≥ 3 and let (b1, · · · , b`) be the primitive period of a purely
periodic continued fraction having the palindrome property.

Let n > ` and assume that n is not divisible by `, nor, if ` is even, by `/2. Then
the finite continued fraction

C∗n = [b1, · · · , bn, bn+1, · · · , b2],
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derived by Aitken extrapolation of Cn, is not a convergent of [b1, · · · , b`].

Proof. In order for C∗n to be equal to some convergent, say Ck, it is necessary that
Ck can be written as a continued fraction of length 2n. According to the uniqueness
theorem [Pe 1929, §9, Satz 2] there are only three possibilities:

C∗n = C2n = [b1, · · · , b2n],
C∗n = C2n−1 = [b1, · · · , b2n−1 − 1, 1], if b2n−1 > 1,
C∗n = C2n+1 = [b1, · · · , b2n + 1], if b2n+1 = 1.

We show that none of these cases can occur under the stated hypotheses.
By division n = q` + s with 0 < s < `, and by hypothesis q ≥ 1 and 2s 6= `.

Thus C∗n has the form

C∗n = [· · · , b1, · · · , bs, bs+1, · · · , b2, b1, b`, · · · , b2, · · · ],

in which the first ellipsis stands for q repetitions of (b1, · · · , b`) and the last stands
for q− 1 repetitions of (b1, b`, · · · , b2). By the palindrome property we may rewrite
C∗n as

(32) C∗n = [· · · , b1, · · · , bs, bs+1, · · · , b2, b1, b2, · · · , b`, · · · ].

Here the first and last ellipses denote respectively q and q − 1 repetitions of the
primitive period.

We show first that C∗n 6= C2n, treating separately the cases 2s < ` and 2s > `.
For the case 2s < ` we display C∗n in parallel with C2n, freely using the periodicity

of the bi to shift subscripts by multiples of ` in C2n when convenient:

C∗n = [· · · b1 · · · bs bs+1 · · · b2 b1 · · · b` · · · ],
C2n = [· · · b1 · · · bs bs+1 · · · b2s b2s+1 · · · b2s+` · · · ].

Thus, if it were true that C∗n = C2n, it would follow that bi = b2s+i for 1 ≤ i ≤ `,
and hence, by periodicity, for all i, contradicting the minimality of the period length
`.

In the case 2s > ` we have similarly

C∗n = [· · · b1 · · · bs bs+1 · · · b2 b1 · · · b` · · · ],
C2n = [· · · b1 · · · bs bs+1 · · · b2s−` b2s−`+1 · · · b2s · · · ],

so that C∗n = C2n implies bi = b2s−`+i for 1 ≤ i ≤ `, again contradicting the
minimality of `.

This argument shows additionally that C∗n 6= C2n±1 when n > 2` satisfies our
hypotheses, for the proof does not depend on the last ` partial quotients. It remains
only to prove C∗n 6= C2n±1 in the case n = `+ s with 0 < s < ` and 2s 6= `.

If b2s−1 > 1, we write C2`+2s−1 as a continued fraction of length 2` + 2s par-
allel with C∗`+s. In each display, the initial ellipsis denotes the initial sequence
(b1, · · · , bs).

C∗`+s = [· · · bs+1 · · · b3 b2 b1 · · · b`−1 b`],
C2`+2s−1 = [· · · bs+1 · · · b2s−1 b2s b2s+1 · · · b2s−1 − 1 1].

If these were equal we would have b2s−1 = b3 = b`−1 = b2s−1−1. (In the case s = 1
the display would be slightly different, and we would deduce b1 = b3 = b`−1 =
b1 − 1.)
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Finally, if b2s+1 = 1, then C2`+2s+1 can be written as a continued fraction of
length 2` + 2s. As before, we show only the tail following the initial segment
(b1, · · · , bs+1):

C∗`+s = [· · · bs+1 · · · b2 b1 · · · b`],
C2`+2s+1 = [· · · bs+1 · · · b2s b2s+1 · · · b2s + 1].

From the equality of these two would follow b2s = b2 = b` = b2s + 1.
The proof is complete. �

3.4. Extrapolation with arbitrary step length. Our final theorem shows that
the conclusion of Theorem 6 holds for arbitrary step length k not necessarily a
multiple of `.

Theorem 8. Let γ, ` and n satisfy the assumptions of Theorem 6. Then for any
k < n the extrapolant of Cn with step length k,

Ck∗n =
Cn+kCn−k − C2

n

Cn+k − 2Cn + Cn−k
,

satisfies Ck∗n = C2n.

Proof. The proof is in two steps.
In the first step we find a matrix F (depending on n and k) such that the

following expressions for the differences are valid:

(33) Cn+k − Cn =
−(−1)nF12

Bn+kBn
, Cn − Cn−k =

−(−1)n−kF12

BnBn−k
.

These two equations together yield the simple expression r(k)
n = (−1)kBn−k/Bn+k

for the rate estimate; hence the extrapolant is

(34) Ck∗n =
An+kBn − (−1)kAnBn−k
Bn+kBn − (−1)kBnBn−k

.

In the second step of the proof, we simplify (34) to obtain (25). The conclusion
then follows as in the proof of Theorem 6.

We begin with the proof of (33). Define matrices Ui, i = 1, . . . , ` by

(35) Ui =
{

Vi if ` | n,
Vi+`/2 if ` even, ` 6 | n, `/2 | n,

and observe that because in the second case ` is even, the Ui have the same palin-
drome property as the Vi, viz.

(36) Ui = U`+2−i, i = 2, . . . , `.

Now calculate the forward difference as usual:

(37) Cn+k − Cn =
An+kBn −AnBn+k

Bn+kBn
.

The numerator is the determinant of

(38)
[
An+k Bn+k

An Bn

]
=
[
eT1 Mn+k

eT1 Mn

]
=
[
eT1 Vn+k · · ·Vn+1

eT1

]
·Mn.

If we set

(39) F = Vn+k · · ·Vn+1,
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then the determinant (38) is −(−1)nF12. This gives the left-hand equation (33).
By a similar calculation we find that

(40) Cn − Cn−k =
− (Vn · · ·Vn+1−k)12 (−1)n−k

BnBn−k
,

and it remains to show only that the matrix element in the numerator is F12. To this
end write k = q` + s by division; because of Theorem 3 we may assume 0 < s < `.
Because n is either a multiple of ` or (when ` is even) a multiple of `/2, we have
by the periodicity and the definition (35) of the matrices Ui that

F = Us · · ·U1(U` · · ·U1)q.

Now express the matrix element in the numerator of the right side of (40) in terms
of the Ui: it is

(Vn · · ·Vn+1−k)12 = (Vn+1−k · · ·Vn)21

= eT2 U`+1−s · · ·U`(U1 · · ·U`)qe1

= (eT2 U`+1−s)U`+2−s · · ·U`U1(U2 · · ·U`U1)q(U−1
1 e1)

= eT1 Us · · ·U1(U` · · ·U1)qe2 = F12.

(The ascending product U`+2−s · · ·U` in the third line is empty if s = 1.) The last
line follows from the palindrome property (36).

It remains to simplify the expression (34) for the extrapolated quantity. We may
assume k ≥ 2.

By looking at the column vectors in Mn+k = Vn+k · · ·Vn+2Mn+1 we have, setting
E = Vn+k · · ·Vn+2,

(41)
[

An+k

An+k−1

]
= E

[
An+1

An

]
,

[
Bn+k

Bn+k−1

]
= E

[
Bn+1

Bn

]
.

Now writing k = q` + s with 0 < s < ` as before, use periodicity to express

E =
{
Us · · ·U2, q = 0, s ≥ 2,
Us · · ·U1(U` · · ·U1)q−1U` · · ·U2, q ≥ 1.

Similarly,

(42) Mn = Vn · · ·Vn−k+2Mn−k+1,

and this product of k − 1 matrices Vi is simply

Vn · · ·Vn−k+2 =
{

(U` · · ·U1)qU` · · ·U`+2−s, s ≥ 2,
(U` · · ·U1)q, s = 1,

}
= ET .

by the palindrome property. Therefore the second column of (42) implies

(43)
[
Bn−k+1

Bn−k

]
= E−T

[
Bn
Bn−1

]
.

By (41) and (43) we have

An+k = E11An+1 + E12An,

Bn+k = E11Bn+1 + E12Bn,

Bn−k = E−T21 Bn + E−T22 Bn−1.
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We substitute these expressions into (34) and find that

(44) Ck∗n =

(
E12 + (−1)k−1E−T21

)
AnBn + E11An+1Bn + (−1)k−1E−T22 AnBn−1(

E12 + (−1)k−1E−T21

)
B2
n + E11Bn+1Bn + (−1)k−1E−T22 BnBn−1

.

Finally, use the fact that Ek is 2 × 2 and a product of k − 1 matrices Vj , so that
detEk = (−1)k−1 and

(E−Tk )22 = (E−1
k )22 = (−1)k−1(Ek)11,

(E−Tk )21 = (E−1
k )12 = −(−1)k−1(Ek)12.

Substitute into (44) and simplify to get (25), and the proof is complete. �
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